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In this work we explore confidence elicitation methods for crowdsourcing “soft” labels, e.g., probability
estimates, to reduce the annotation costs for domains with ambiguous data. Machine learning research has
shown that such “soft” labels are more informative and can reduce the data requirements when training
supervisedmachine learningmodels. By reducing the number of required labels, we can reduce the costs of slow
annotation processes such as audio annotation. In our experiments we evaluated three confidence elicitation
methods: 1) “No Confidence” elicitation, 2) “Simple Confidence” elicitation, and 3) “Betting” mechanism for
confidence elicitation, at both individual (i.e., per participant) and aggregate (i.e., crowd) levels. In addition, we
evaluated the interaction between confidence elicitation methods, annotation types (binary, probability, and
z-score derived probability), and “soft” versus “hard” (i.e., binarized) aggregate labels. Our results show that both
confidence elicitation mechanisms result in higher annotation quality than the “No Confidence” mechanism
for binary annotations at both participant and recording levels. In addition, when aggregating labels at the
recording level, results indicate that we can achieve comparable results to those with 10-participant aggregate
annotations using fewer annotators if we aggregate “soft” labels instead of “hard” labels. These results suggest
that for binary audio annotation using a confidence elicitation mechanism and aggregating continuous labels
we can obtain higher annotation quality, more informative labels, with quality differences more pronounced
with fewer participants. Finally, we propose a way of integrating these confidence elicitation methods into a
two-stage, multi-label annotation pipeline.

CCS Concepts: • Applied computing → Sound and music computing; •Human-centered com-
puting → Empirical studies in collaborative and social computing; • Information systems →
Collaborative and social computing systems and tools.
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1 INTRODUCTION
Crowdsourcing has made it possible to annotate large amounts of data quickly, making it revolu-
tionary in domains where the annotation process is quick (e.g., image annotation) and machine
learning models require large training datasets. However, the benefits of scale in crowdsourcing
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are not easily replicated in domains where the annotation process is slower and thus more costly,
e.g., subjective tasks such as sentiment annotation on text, and perceptual tasks such as video
annotation for visual object detection and tracking, and audio annotation for sound event detection
in complex environments. For example, manually tagging 10 s audio recordings (a common example
length in audio datasets) is a slower process than it is for images due to the temporal nature of
audio (i.e., audio annotation tasks require devoting time to listening to examples). For this reason,
crowdsourcing for audio annotation typically does not scale as well as image annotation, i.e.,
when compared to image annotation each label takes longer to get and thus is more expensive to
collect. Moreover, real-world audio data can contain multiple simultaneously occurring sounds,
making it hard to disambiguate one sound from the other. Ambiguity in the data leaves room for
annotator interpretation, thus increasing chances of disagreement and creating the need to quantify
uncertainty in data labels [2].
Machine learning research has shown that training with more informative labels, representing

the uncertainty in the data labels, can reduce the amount of required data. More specifically, “soft”
labels provide richer training information than “hard” labels, and consequently, models can be
trained with much less data [32]. “Soft” labels are continuous labels based on probability estimates,
i.e., labels from 0 to 1, where a label of 0.4 means there is a 40% probability that the example
corresponds to the target class. Whereas, “hard” labels are discrete labels, i.e., 0 or 1, where 0
indicates the non-presence of the target class and 1 indicates the presence of the target class.
Studies have shown that training with “soft” labels of ambiguous data increases model performance
when compared to training with “hard” labels [6, 25, 26, 77].

Crowdsourcing researchers have also adopted the idea of “soft” labels and have investigated
collecting “soft” labels for ambiguous data to increase annotation quality [5, 17, 25, 39]. However,
most previous research did not evaluate the elicitation method but only the aggregation mechanisms
used to convert several individual “hard” labels to aggregate “soft” labels [25], or several individual
“soft” labels into aggregate “soft” labels [5, 39]. The exception is recent work by Chung et al. [17],
which evaluated elicitation methods for collecting “soft” multi-class1 labels of facial expressions.
For their task, the authors found that “fine-grained” annotation methods are more beneficial for
more ambiguous data and that collecting aggregate “soft” labels through multi-label2 annotations
(for a multi-class problem) achieves the highest accuracy while reducing human annotation effort.
They found this method resulted in higher quality labels than asking annotators to directly provide
“soft” labels. This finding corresponds with studies that show that people tend to misjudge their
probability and confidence assessments [69]. In addition, annotation tasks for real-world audio
recordings are typically multi-label rather than multi-class, and thus their findings for multi-class
annotation may not transfer to this other family of tasks.

We seek to address these limitations by proposing two alternative methods for collecting “soft”
labels from individual annotators. Our goal is to obtain “fine-grained” probability estimates from
an individual participant rather than a population of participants. With a binary (0 or 1) setting
or a multi-label setting you would need more people to get the same granularity that you would
in a multi-class setting using the multi-label mechanism proposed by [17]. With our proposed
methods, we aim to obtain “fine-grained” annotations with fewer annotators than the method
proposed in [17]. In our analysis, we first focus on the confidence elicitation method rather than
aggregation as a way to address ambiguous tasks where repeated annotations are expensive.
Subsequently, we proceed to study the interaction between the elicitation method, the annotation
1A multi-class problem is a task where each data point corresponds to one class among multiple possible classes (e.g.,
classifying dog species).
2A multi-label problem is a task where each data point can correspond to multiple possible classes (e.g., tagging attributes
of a dog like fur color, fur type, size, among others).
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type, and the aggregation method for when repeated annotations are within budget. To make this
approach applicable to real-world audio annotation, we initially formulate our approaches for
binary annotation but later discuss how to integrate them into a multi-label annotation pipeline.
We study this problem in the context of machine listening of urban sound which has numerous
applications where the data is ambiguous and the quality of the annotations highly impacts results.
1) Urban noise pollution monitoring, which can help in developing plans for mitigating noise
pollution, a “quality of life issues for urban residents in the U.S. with proven effects on health,
education, the economy, and the environment” [8]. 2) Urban bioacoustic monitoring, which is
key in understanding bird migration patterns, how species communicate in cities, and how they
are affected by city living, especially in areas with collision hazards such as buildings, planes,
communications towers, and wind turbines [58]. 3) Audio-based traffic monitoring, which is a
promising privacy-preserving alternative to vision-based methods. 4) Sound-awareness tools for
the hard of hearing, which can increase awareness of critical sound events for deaf and hard of
hearing people. 5) Audio forensics, upon on which decisions based could have a big impact in
the fate of a person. And 6) machine perception for autonomous robots/vehicles, where incorrect
predictions about the environment can potentially be fatal. All of these problems require annotation
of real-world environments, which could be highly ambiguous, making it important to collect
confidence information to get higher quality labels, and thus, higher quality models. Finally, to the
best of our knowledge this study is the first of its kind in the audio domain, although we believe
findings are transferable to other domains where the annotation process is inherently slow and
labels are often ambiguous.
We propose two methods for collecting “soft” labels from individual annotators: 1) a direct

confidence elicitation method, where participants not only provide “hard” labels, but also directly
state how confident they are in each label provided — these confidence estimations are then
converted to probabilities and used as “soft” labels — and 2) a betting mechanism based on de
Finetti’s probability theory [21]. De Finetti defined that “the degree of probability attributed by an
individual to a given event is revealed by the conditions under which he would be disposed to bet
on that event” [21]. This means that if a person is willing to place money on an event, it is because
they think the probability of the event occurring exists. We investigate this approach since studies
have shown that the value of the monetary incentives in betting tasks improves the accuracy of
participants’ responses [44, 55, 66]. In this method, participants indirectly select their confidence
by placing bets either on their “hard” label or on a lottery. As in the first method, we then convert
these confidences to probabilities for use as “soft” labels. We evaluate these two methods in an
experiment in which we compare them to a baseline method that collects only “hard” labels. In
addition, we explore three annotation types: 1) binary annotations, 2) probabilities transformed
directly from the confidence annotations, and 3) probabilities transformed from z-score confidence
annotations. Finally, we compare “hard” versus “soft” aggregate labels. In our experiment, we aim
to answer two questions:

(1) Does confidence elicitation for collecting “soft” labels affect individual (i.e. per participant)
annotation quality?

(2) Do the confidence elicitation method and aggregate label type affect aggregate (i.e. crowd)
annotation quality and cost?

The first question addresses the annotation quality per participant. However, we can also aggre-
gate “hard” labels from multiple annotators into “soft” labels. Thus, when addressing the second
question, we investigate which annotations to use, how to aggregate them, and from how many
annotators.
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2 RELATEDWORK
2.1 Ambiguity in crowdsourced labels for machine learning
Crowdsourcing is often used to collect annotations from the crowd that can be used as “ground
truth” annotations for solving machine learning problems. The key of crowdsourcing lies in the fact
that such tasks quickly reach large amounts of people, hence providing scale. However, there are
challenges to crowdsourcing data annotation. One of them is the uncertainty in the quality of the
labels it produces [42]. Prior work discusses best practices for achieving expert or “ground truth”
performance using novices in domains like image annotation and natural language [52, 63, 64].
Results show that annotation quality improves as redundancy is added.
While these studies have shown that aggregating data can resolve disagreements resulting in

higher label quality, they have not taken into consideration the fact that there might be more
than one possible “ground truth” label. Ambiguity in data allows for different interpretations and
thus creates the necessity of collecting different types of annotations. Moreover, not all instances
are created equal. Some examples are easier to identify, while others are more confusing, and in
consequence, disagreement is higher [2]. The “ground truth” label, the annotators, and the instances
to be labeled can be placed as vertices in the triangle of reference [53] discussed by Aroyo & Welty
and Dumitrache et al. [2, 24]. The instances to be labeled correspond to the sign, the “ground truth”
label corresponds to the referent, and the annotator corresponds to the interpreter. Some examples
of ambiguous tasks are: 1) emotion recognition [50, 57, 76], where the annotation depends on
the interpretation of the annotator, 2) text sentiment analysis [22, 54, 75], where words can have
different meanings depending on the context, and 3) audio annotation [11, 18, 31], where multiple
sources can overlap making it hard to disambiguate them. One solution for solving disagreement
between annotators is by aggregating the collected labels.
Furthermore, machine learning has been shown to benefit from representing ambiguity in

data [6, 25, 26, 77]. However, until recently, crowdsourcing work has focused on creating “soft”
labels by collecting annotations from multiple participants [25], but this solution is expensive.
Although directly eliciting confidence from annotators is challenging, recent work has addressed
collecting individual “soft” labels [17]. This approach has its challenges and it is not clear how it
could be incorporated into multi-label annotations scenarios like real-world audio annotation.

2.2 Improving crowdsourced annotation quality through redundancy
In the recent past, crowdsourcing research seeked to improve the quality of the annotations obtained
through crowdsourcing by finding the most efficient way of aggregating such labels. Research in
machine learning in different domains have used majority voting [1, 19] for aggregating labels
collected through crowdsourcing for training models. However, more recently, work has focused on
finding aggregating techniques that can result in higher accuracy labels, and in consequence, higher
accuracy models by modeling the correct answer (the referent), the reliability of the annotators
(the interpreter), and the difficulty of the instances to label (the sign) [7, 20, 30, 41, 46–48, 56, 62, 67,
68, 72, 73, 78, 79]. Such works do not take into consideration the process of collecting these labels.

Consequently, with the goal of collecting higher quality labels, some studies have focused on the
annotation task and tool design as a way of improving aggregate accuracy [15, 16, 37, 38, 45, 65].
Other studies have allowed interaction between participants as a way of solving inter-annotator
agreement and improving aggregation quality [13, 14, 33, 34].

2.3 Machine learning with “soft” labels
The previously mentioned studies focused on collecting “hard” (binary) annotations, about the
presence of different target classes, leaving unstudied the fact that there might be more than one
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true label as discussed by Aroyo & Welty [2]. A way of collecting information for those kind
of instances is to collect “soft” labels. Such “soft” labels allow small machine learning models to
achieve similar performance to larger models trained using “hard” labels [27, 32], as models are
allowed to learn from multiple answers instead of learning from only one answer [6, 29]. “Soft”
labels or label distributions are continuous labels based on probability estimates. Dumitrache et
al. [25, 26], Zhang et al. [77], and Aung et al. [6] show that, for ambiguous data, collecting “soft”
labels and using these labels for training machine learning models, results in better performance
when compared to training with “hard” labels. In the audio domain, researchers have shown that
“soft” labels train better acoustic models for speech enhancement than “hard” labels [23, 71].

2.4 Crowdsourcing aggregate “soft labels” for representing ambiguous data
To collect “soft” labels for trainingmachine learningmodels, researchers have investigated collecting
multiple “hard” labels through crowdsourcing and aggregating them into “soft” labels for describing
ambiguous data. Dumitrache et al. [25] demonstrated that aggregating labels with high disagreement
into “hard” values is inappropriate for training a semantic language model. This study collected
multi-label annotations from participants that are later aggregated and converted into “soft” labels.
However, they do not show how they calculated the probabilities of the labels to model the “ground
truth”.

2.5 Crowdsourcing individual “soft labels” for representing ambiguous data
Other work focuses on directly collecting probabilities with the goal of solving annotator disagree-
ment [5]. In a study by Augustin et al., participants assign values between 0 and 100 to each of 6
sentences in a sentiment analysis task. To evaluate their results, the authors model spam data and
compare their probability aggregates with spammers to approaches without spammers. When 60%
of the workers are spammers, they show comparable results to state-of-the-art approaches without
spammers. Jurgens [39] created a task for eliciting annotations for word sense disambiguation with
the goal of obtaining high inter-annotator agreement.

In response to previous studies, Chung et al. [17] investigated collecting “soft” labels through four
different elicitation methods: multi-class annotations, multi-label annotations, ranked multi-label
annotations, and probability multi-label annotations (for a multi-class problem). Their goal was
to achieve the highest annotation accuracy while reducing human efforts. Their results suggest
that the multi-label approach resulted in higher quality labels than directly requesting “soft” labels.
At the same time, they also found that as the number of annotators increased, the differences
between elicitation methods became insignificant. One possible downside is that if more granularity
is needed, using the recommended multi-label method would require more annotators to gain
probability resolution. In addition, results from this study may not translate well to tasks that are
typically multi-label rather than multi-class, which is the case of real-world audio recordings. Using
their recommended method, the probability of the classes needs to sum up to 1, while for multi-
label annotations each label has its separate probability distribution. If we divide the multi-label
problem into multiple binary problems, using the method proposed in [17] would require more
annotators to gain probability resolution. For example, if one participant selects “yes” and “no”, the
probability would be 0.5. The possible probabilities from this one participant are 0, 0.5 or 1. From
two participants, the maximum probability resolution would be 0, 0.25, 0.5, 0.75 and 1. As we want
to keep the number of annotators per sample to a minimum, we want to increase the resolution
per participant. Collecting audio annotations through crowdsourcing remains understudied and is
evaluated in this work.
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2.6 The challenge of eliciting confidence
To better understand how to collect “soft” labels and the way humans perform confidence annota-
tions, we need to understand human’s capabilities to evaluate their own performance. Some studies
have focused on understanding how monetary incentives influence confidence accuracy by varying
the value of the incentives, allowing the participants to place bets on their answers [44, 55, 66].
Their results show that although participants fail to maximize their winnings when placing bets
based on the correctness of their answers, the value of the monetary incentives improves the
accuracy of their responses. In addition, when faced with a betting task, participants make decisions
faster when the chances of winning are high [66].

However, a downside of collecting annotations using confidence scales has been shown in studies
in metacognition where they explain that “while two participants may have a comparable clarity
in their experience of a stimulus, they might use different criteria to decide themselves confident”
[61].
Although the use of such mechanisms has been growing in crowdsourcing, it is still an open

research area, as crowdsourcing often focuses on collecting as many labels as possible in the shortest
amount of time. However, inherently slower processes like audio and video annotation could benefit
from such mechanisms. In this work, we propose an alternative betting mechanism for collecting
annotations for ambiguous data. This method has the potential of being more efficient at getting
higher label resolution of the “soft” labels by decreasing the step size for the probabilities when
needed, while still keeping the number of annotators low. In addition, this method is appropriate for
cases where the multiple choice method, such as those proposed by Chung et al. [17], is inefficient
because of the lack of multiple classes. We will study the interaction between the confidence
elicitation method, the annotation type, and the aggregation method. Finally, we will demonstrate
the use of these methods in an audio annotation task, although we believe our findings are replicable
across domains.

2.7 Crowdsourcing audio annotations
Prior work in the sound domain shows that as the number of annotators is increased, on average, ag-
gregate annotations are closer to “ground-truth” annotations [12]. Datasets like OpenMic-2018 [36],
Audio Set [31], FSD-50k [28], and SONYC-UST-V2 [10] are some of the most recent works for
collecting crowdsourced audio annotations. These four datasets collected redundant annotations,
and aggregated them to form the “ground truth” labels. However, the temporal characteristics
of such mediums, require a certain amount of time invested to be annotated regardless of the
annotation time, making it inefficient to collect as many redundant annotations as usually collected
through crowdsourcing. At the same time, sound recordings are often ambiguous, making “soft”
labels collected from fewer annotators potentially more appropriate for such instances.

3 EXPERIMENTAL SETUP
We performed a between-subjects study where each participant is randomly assigned to one of
the three elicitation mechanism tasks. For the first research question, the independent variables
are the confidence elicitation method and annotation type, while the dependent variable is the
individual annotation quality. For the second research question, the three independent variables are
the confidence elicitation method, the annotation type, and the aggregation method. The dependent
variables are the aggregate annotation quality and the cost (number of annotators).

We collected “hard” and “soft” labels using three different confidence/no-confidence elicitation
mechanisms and compared which type of label and elicitation mechanism combination achieves
higher-quality labels.
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(1) No confidence elicitation: The first method consists of a binary task where participants
were asked to identify whether there is or not a jackhammer present in the audio recordings.
This method does not elicit participant confidence in any way and is used as the baseline for
comparison.

(2) Simple confidence elicitation: The second method is a two-step mechanism. The first step
is identical to the first method. In the second step participants were asked how confident
they are in their previous response. During step 2 participants were allowed to change their
answer to the question in step 1.

(3) Betting-based confidence elicitation: The third method consists of a betting mechanism
based on de Finetti’s probability theory [1]. As defined in section 1, “the degree of probability
attributed by an individual to a given event is revealed by the conditions under which he
would be disposed to bet on that event.” To collect this information, we asked participants to
answer the question about the presence of a jackhammer, in the same way as the first and
second methods. After this, we asked them, in a series of questions, to choose between an X%
chance lottery and their answer to the first question for the chance to win a bonus, where
in each question X was varied from 50% to 90%. Choosing their answer would mean that
they are more confident in winning the bonus with their answer than winning a lottery with
X% chances of winning. On the other hand, choosing the lottery, would mean they are more
confident in the lottery than in their answer.

Section 3.2 will elaborate on these steps in more detail.

3.1 Audio Generation Process
We used the Scaper [60] soundscape generator with audio from the UrbanSound8K [59] dataset to
create a controlled dataset for experimentation. UrbanSound8k is a dataset consisting of 8,732 audio
excerpts taken from field recordings from Freesound3 divided into 10 folds for cross-validation.
Each of the files contains one of 10 classes: siren, air conditioner, children playing, gunshot, engine
idling, drilling, jackhammer, car horn, dog barking and street music. Based on the cross-validation
folds, we created 10 groups of recordings using Scaper [60]. With Scaper, a user provides a collection
of source audio files as input, and then the system samples, sequences, and mixes the source audio
into polyphonic soundscapes. This tool allows you to select the length of the final recordings, the
minimum and maximum length of each of the input sounds, the minimum and maximum number
of classes per recording, among other parameters. For the purposes of this work, we wanted to
have a dataset that is ambiguous, in a way that participants find it difficult to identify the target
class. This added difficulty allows us to get more useful information from the confidence elicitation
method for both the model and the quality of the labels. To accomplish the desired ambiguity level,
we selected a minimum of three events per recording and a maximum of nine, with a minimum
duration of two seconds and a maximum of six seconds per event,increasing the probability of
overlapping sounds.
The target class in this work is jackhammer, which can be easily confused with two other

categories from the UrbanSound8k dataset: drilling and engine idling. The chosen categories are the
only ones in the UrbanSound8k dataset that follow similar spectro-temporal patterns to those of
the jackhammer, thus creating higher ambiguity than when overlapped with other sounds. When
making the selection of files to present to participants, we considered the difficulty of the recordings
as one important aspect. To increase the ambiguity of examples even further, positive examples
contain the jackhammer plus at least one of the confusing categories, i.e., jackhammer + engine
idling, jackhammer + drilling, or jackhammer + engine idling + drilling. Negative examples do not

3www.freesound.org
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contain the jackhammer class but could contain the other two (drilling and engine idling). All of the
generated examples are 10 seconds long.
For the annotation tasks, we generated 2,000 examples for each of the folds and applied the

selection criteria explained earlier in this section for choosing positive examples on each of the
folds. The fold with the least number of positive examples had 290 recordings. Using this number,
we randomly selected 290 positive recordings and 290 negative recordings for each fold, ending up
with a total of 580 recordings per fold. Although using this data to train a machine learning model
is beyond the scope of this study, we plan to use the results from this study in future work to test
the practical applications of “soft labels”, based on the different confidence elicitation methods, for
machine learning. For this reason, we determined the number of recordings needed to achieve a
performance of 70% accuracy. To do so, we randomly selected groups of 15, 20, 30 and 40 recordings
per fold, balanced to have the same number of positive and negative recordings, and trained models
using cross-validation based on said folds. In total, the number of examples for training for each
variation was 135, 180, 270, and 360, respectively. Accuracy did not increase significantly when
selecting more than 20 recordings per fold (180 total training examples for 9 combined folds), thus,
we selected 20 recordings per fold to be annotated. The same set of audio recordings was used for
all three annotation methods.

3.2 Annotation Tasks
To collect labels through crowdsourcing, we created a web-based annotation application, which
had interfaces to support three annotation tasks, one for each confidence elicitation method.

The annotation tasks consisted of listening to 20 sound recordings (all of the recordings in a single
fold) and identifying whether there was a jackhammer present or not in the recordings. Depending
on the task shown, participants were also asked to select their confidence in the presence/non-
presence of the jackhammer. More specifically, we recruited 300 participants who were randomly
assigned to one of the three tasks and one of the 10 folds, i.e., 10 participants per fold per task.
The three tasks differed in the way the confidence was collected: task 1 did not request confidence
responses; task 2 directly requested confidence labels; and task 3 used a betting method for indirectly
eliciting confidence.
Participants were recruited on Amazon Mechanical Turk, applying a selection criteria of 95%

or greater HIT approval rate on all their tasks, and US location. This study received New York
University IRB approval (IRB-FY2019-2872). We paid all participants a $1 participation fee and a
bonus calculated based on their performance. All interfaces reminded participants at every step
that their payment would depend on their performance. The bonus fee per recording depended on
the type of task and was based on the probability of winning this bonus to account for the different
probabilities of winning with each task, i.e., to make the expected payment the same. For the “No
Confidence” and “Simple Confidence” elicitation tasks, the probability of winning was based on the
probability of correctly answering the question about the presence of the jackhammer. Since it was
a “yes”/“no” question and half of the recordings contained the target class and half did not, the
probability of getting a correct answer was 0.5, and thus, the bonus per recording was $0.2 for an
average estimated payment of $2.50 per task. For the “Betting” mechanism task, the probability
for winning the bonus depended on both the round selected for payment and on whether the
participant decided to play the lottery or chose to keep their answer for testing (more details about
this process are explained in Section 3.2.3). For an average estimated payment of $2.50 per task, we
estimated the bonus per recording to be $0.24.

Once participants accepted the task on Mechanical Turk and the study consent, they were shown
the task instructions, which were accessible for the duration of the task. Before proceeding to the
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Audio Classification 

Click Play to begin 

0 @ ® ( WHAT DOES A JACKHAMMER SOUND LIKE? )

00:00:10 / 00:00:10 

Is there a jackhammer present in the recording? 

@ Yes Q No

? 

Fig. 1. “No Confidence” elicitation interface. Participants are asked to answer the question: “Is there a
jackhammer present in the recording?”

primary annotation task, participants had to annotate at least two example audio clips for practice
to familiarize themselves with the task.

3.2.1 Task 1: “No Confidence” elicitation. In the first task we asked participants to listen to an audio
recording and then answer the question “Is there a jackhammer present in the recording?”, to which
they had to reply “yes” or “no”. Once participants answered the question, they were directed to the
next recording. Figure 1 shows the interface for this task. The step-by-step process is described
below:

(1) The first step showed one audio recording with a play button. Participants had to click “play”
and listen to the entire recording before proceeding to the next step.

(2) They then were asked to answer the question: Is there a jackhammer present in the recording?
To which they had to reply “yes” or “no”.

(3) After answering the first question, they were directed to the next recording by clicking on
the “next” button, back to Step 1 until the 20 recordings were labeled.

(4) Once all recordings had been annotated, participants received a summary table with a review
of their performance and their performance-based monetary compensation.

The annotations from this task consisted of binary annotations where “0” represented the “no”
answer and “1” represented the “yes” answer.

3.2.2 Task 2: “Simple Confidence” elicitation. In the second task, we requested probability estimates
directly from the participants on how confident they were about the presence of a jackhammer
in the recordings. The interface for this task is shown in Figure 2 and the step-by-step process is
described below:

(1) The first step showed one audio recording with a play button. Participants had to click “play”
and listen to the entire recording before proceeding to the next step.

(2) They were then asked to answer the question: Is there a jackhammer present in the recording?
To which they had to reply “yes” or “no”.

(3) After answering the first question, they were asked a second question: “How confident are
you that there is (is not) a jackhammer present in the recording?”, for which they had to select
a confidence estimate of the presence of the class on a scale from 50 to 100 in increments of
10. It is worth mentioning that during this step participants were allowed to change their
answer to the first question in Step 2 if they considered they made a mistake.
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Fig. 2. “Simple Confidence” elicitation interface. Participants get to directly select how confident they are in
their answer to the question: “Is there a jackhammer present in the recording?”. In this case, the participant
selected 60% confident that there is a jackhammer.

(4) Then, participants clicked on the “next” button and went to the next recording, back to Step 1
until the 20 recordings were done.

(5) Once all recordings had been annotated, participants received a summary table with a review
of their performance and their performance-based monetary compensation.

The annotations from this task consist of a pair of a binary annotation, in the same way as in the
previous task, and a confidence in that annotation ranging from 50% to 100%.

3.2.3 Task 3: Betting mechanism. In Task 3 we elicited confidence through a betting mechanism
based on de Finetti’s [21] probability theory. Figure 2 shows the interface for this task, and the
step-by-step process is described below:

Steps (1) and (2) are the same as in Task 2.

(3) After answering the question, they were presented with a follow-up step: “You have the
chance to win a bonus in one of the following ways (choose one): 1) by lottery (X% chance of
winning), or 2) by correctly answering the question.”

(4) Step 3 was repeated 5 times per recording, progressively increasing the chances of winning
the lottery from 50% to 90%. Each of these options happened only once. After the fifth round
was played, the round for payment was randomly chosen (e.g., if the participant selected
their answer for rounds 1, 2 and 3, and the lottery for 80% and 90%, the payment round
selected uniformly at random could either test if their answer was correct if rounds 1 through
3 were selected or play an 80 or 90% chance lottery.) It is worth mentioning that during this
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(a) 50% chance lottery selected

(b) 60% chance lottery selected

Fig. 3. “Betting” mechanism interface. Participants play a game where they can selected between a lottery
with increasing chances of winning from 50% to 90% and their answer to the question: “Is there a jackhammer
present in this recording?”, for a chance to win a bonus. In 3a, the participant selected to play a 50% chance
lottery and in the following round (shown in 3b, the participant selected to play a 60% chance lottery)

step participants were allowed to change their answer to the first question in Step 2 if they
considered they made a mistake.
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(5) Once participants were done with Step 4, they had to select the “next” button, where they
were shown a popup window letting them know which of the 5 rounds had been selected for
payment, and go to the next recording, back to Step 1 until the 20 recordings were done.

(6) Finally, participants received a review of their performance and their monetary compensation
based on their performance or lottery results, depending on the round selected for payment
in Step 4. For each round the lottery was selected, participants were presented with a button
with a running timer, up to millisecond precision, based on their computer clock. To play
the lottery, they had to click on this button. If, when stopped, the centiseconds were less
than the lottery chances, then the participant won the bonus for that round, otherwise, the
participant lost. The use of the clock mechanism is meant to give the participant trust in the
lottery process.

The annotations from this task consist of a pair of: 1) a binary annotation, as in the previous
task, and 2) a list of binary responses representing whether the participant selected to play the
lottery or their answer. For example, a list consisting of [1, 1, 0, 0, 0], means that the participant
selected their answer on rounds 1 and 2, and the lotteries for 70%, 80% and 90%.

3.3 Processing of Collected Annotations
To use the confidence labels collected in both of the confidence elicitation tasks for training machine
learning models, we first converted them into probability estimates. For the direct elicitation task,
the confidence labels collected range from 50% to 100% in increments of 10%. For those to which the
answer to the question about the presence of the jackhammer was “yes”, the probability estimates
remain the same, for those to which the answer was “no”, the probability estimates are calculated
by subtracting the confidence from 1, e.g., if the answer was “no” and the confidence was 60%, the
probability estimate is 0.4 (40%).

For the “Betting” task, the confidence estimates were first calculated based on the five responses
to the second question. For example, if one participant selected their answer to the first question
instead of the lottery, a “1” was assigned to that response, if they selected the lottery, a “0” was
assigned to that response. After all responses were collected, a list with the responses is saved (e.g.,
[1, 1, 0, 0, 0], which would mean the participant selected their answer the first two times and then
the lottery for 70, 80 and 90%). The switch from their answer to the lottery would indicate the
confidence they have in their answer. In the previous example, it would mean that the participant
is between 60 and 70% confident that there is (or is not) a jackhammer present in the recording. In
this case, we assigned a 65% confidence estimate. After we did this process with all responses for
the betting task, we calculated the probability estimates using the same procedure as for the direct
elicitation task.
For both of these methods, we also explored a variation of the probability calculation in which

we added an additional per-participant standardization step. In this variation, we computed z-scores
based directly on their confidence responses, min-max scaled over all participants to convert them
back to confidences, and then converted to probabilities in the same manner as described earlier.
Z-scores are calculated because the distribution of the collected labels depends on the personal
interpretation of the scale presented [61]. In our analysis, we refer to these labels as “z-score derived
probability” labels.

3.4 Metrics
We measured annotation quality based on two types of metrics: metrics that are dependent on
the decision threshold for binarizing annotations and those that are not. The threshold-dependent
metrics we used were accuracy, precision, recall and F-measure. The metric we used that was
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not dependent on a fixed decision threshold for binarizing annotations was the area under the
precision-recall curve (AUPRC). The AUPRC curve shows the trade-off between precision and
recall across different decision thresholds. Because it requires probability estimates, this metric
was not used to evaluate the baseline “no confidence” annotation method.

3.5 Estimating annotation time
Due to a data collection mishap, our web application did not collect completion time information for
the original 200 participants assigned to the “Betting” and “Simple Confidence” annotation tasks, but
the application did collect this information for the original 100 participants assigned to the baseline
annotation task. To remedy this situation, we collected data from an additional 20 participants in
the “Betting” annotation task and additional 20 participants in the “Simple Confidence” annotation
task. This data was only used to estimate the average annotation time for these tasks and was not
used in the annotation quality analysis.

4 RESULTS
4.1 Summary
We collected 10 annotations per recording for each of the three tasks, for a total of 300 unique
participants. The average task completion times are in Table 1 and show that while the baseline
“No confidence” task had the lowest median completion time (6.53 mins), the “Betting” task had the
next lowest (7.19 mins), with “Simple Confidence” having the highest (7.65 mins). Based on these
completion times, we estimate we paid participants a median of $37.45 per hour for the “Simple
Confidence” elicitation tasks, $35.43 per hour for the “Betting” mechanism task, and $35.73 per hour
for the “No Confidence” task. Since there was a possibility of annotation conflicts for the “Betting”
task (e.g., [1, 0, 1, 0, 1]), which could affect the quality of the results, we checked the annotations
and found that conflicts were rare (44 out of 2000, i.e., 2.2%). In these situations, we selected the
confidence value as that corresponding to the first transition from 1 to 0.

In our analysis, we aim to answer two research questions:
(1) Does confidence elicitation for collecting “soft” labels affect individual (i.e. per participant)

annotation quality?
(2) Do the confidence elicitation method and aggregate label type affect aggregate (i.e. crowd)

annotation quality and cost?
We can answer the first research question by saying that the confidence elicitation method for

collecting “soft” labels affects individual annotation quality. More specifically, when comparing
confidence elicitation methods on the quality of the binary labels per participant, both “Simple
Confidence” and “Betting” methods are statistically significantly better than the baseline “No
Confidence” elicitation method. When measuring confidence elicitation method and confidence
annotation type at the individual level, the “Simple Confidence” method is borderline significantly
better than the “Betting” method, with no statistical differences between the annotation types.

The second research question (do the confidence elicitationmethod and aggregate label type affect
aggregate (i.e. crowd) annotation quality and cost?) is answered by the fact that confidence elicitation
method and annotation type affect aggregate annotation quality and cost. More specifically, when
using “hard aggregate” labels to compare performance against the ground-truth binary labels, the
“Betting” method performs better than the “Simple Confidence” method for AUPRC, with differences
more pronounces at higher number of participants. Moreover, when comparing “hard aggregate”
labels to “soft aggregate” labels based on annotator agreement, we can see that “soft aggregate”
labels perform better than “hard aggregate” labels at any number of participants, which means we
can reduce the cost of the task using the “soft aggregate” labels.
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Table 1. Completion time for annotation tasks in seconds

Task Median Mean Standard deviation N
No confidence 6.53 8.41 4.78 100
Simple confidence 7.65 8.36 3.49 20
Betting 7.19 6.58 3.56 20

We elaborate more on the results in the sections below.

4.2 Does confidence elicitation for collecting “soft” labels affect individual (i.e. per
participant) annotation quality?

In order to answer our first research question we investigate: 1) the effect of confidence elicitation
method on the quality of the binary labels per participant, and 2) the effect of both confidence
elicitation method and annotation type (binary labels, continuous probability labels and z-score
derived probability labels) on the quality of the annotations per participant.
We first explain the different annotation types: 1) the binary labels are the direct answers to

the question about the presence of the jackhammer, 2) the continuous probability labels are the
probabilities calculated directly from the confidence annotations as described in Section 3.3, and 3)
the z-score derived probability labels are probabilities computed from the per-participant normalized
confidence scores as described in Section 3.3.

While we are primarily interested in “soft” labels, analyzing the “hard” (i.e., binary) labels from
the tasks gives us some insight into whether label quality differences in confidence elicitation tasks
are due to changing behavior of the annotator or the richer information of the “soft” labels. Thus
we analyze “hard” labels and “soft” labels separately.

4.2.1 Effect of confidence elicitation method on the quality of the “hard” labels per participant. To
measure the effects of the elicitation method on the quality of the binary annotations per participant,
we calculated a one-way ANOVA for each of the quality metrics (with 0.5 threshold) using the
cross-validation fold as blocking variable. After testing the residuals, the normality assumption does
not hold for all of the metrics, so we proceeded with the Aligned Ranks Transformation ANOVA
(ART anova) [74] for all the quality metrics.

The results for accuracy are shown in Figure 4. These results suggest that both the “Simple Con-
fidence” and the “Betting” mechanisms have better performance than the “No Confidence” method.
We proceeded to perform statistical analysis to understand if these differences are significant. The
ART anova (F (2, 270) = 5.403, p = 0.005) shows that we reject the null hypothesis that the means of
all confidence elicitation methods are equal. Similar results were obtained for precision, shown
in Figure 4 as well (F (2, 270) = 4.271, p = 0.0149). Given these results, we performed a post hoc
Tukey HSD test to understand which differences are statistically significant. Table 2 shows the
results for the Tukey HSD tests for accuracy and precision, the two metrics that showed statistical
significance in the ART anova. For accuracy there is a significant difference, at 𝛼 = 0.05, between
the “No Confidence” elicitation method and the “Simple Confidence” method, and between the “No
confidence” and “Betting” method, and no significant difference between the “Simple Confidence”
and “Betting” methods. For precision, there is significant difference, at 𝛼 = 0.05, between the
“Simple Confidence” method and the “No Confidence” method, and between the “Betting” method
and the “No Confidence” method. This result is important, as it shows us that eliciting confidence
results in an improvement of the accuracy and precision per participant. No significant differences
were found between mechanisms for either recall nor F-measure.
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Fig. 4. Individual Precision, recall, F-measure and accuracy boxplots, averaged over cross-validation folds,
for each of the confidence elicitation methods for the binary annotation type. The lines in the boxplots
correspond to the medians, the boxes are the inner quartiles, and the whiskers extend to 1.5 the IQR.

Table 2. Tukey HSD Results for Accuracy and Precision when Comparing Confidence Elicitation Methods

Metric Method Estimate p-value

Accuracy
Simple confidence - No confidence 37.85 0.008
Betting - No confidence 33.61 0.022
Simple confidence - Betting 4.24 0.94

Precision
Simple confidence - No confidence 31.46 0.036
Betting - No confidence 32.59 0.028
Simple confidence - Betting -1.13 0.996

Table 3. Tukey HSD Results for AUPRC when Comparing Confidence Elicitation Methods and Annotation
Types

Metric Method Estimate p-value
AUPRC Simple confidence - Betting 23.1 0.0565

4.2.2 Effect of both confidence elicitation method and confidence annotation type on the quality
of “soft” labels per participant. To measure the effects of the elicitation method, annotation type,
and their interaction on the quality of the “soft” labels per participant, we calculated a two-way
ART anova for each of the quality metrics using the cross-validation fold as blocking variable. We
focused on the AUPRC metric that does not have a set threshold for binarizing the annotations.
Figure 5 shows the AUPRC for both confidence elicitation methods and confidence annotation
types. We found that the “Simple Confidence” elicitation method performs borderline statistically
significantly higher than the “Betting” mechanism at 𝛼 = 0.1 (AUPRC: F (1, 360) = 3.66 , p = 0.0565).
However, no significant effects were found for the continuous annotation types (probability versus
z-score derived probability).
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Fig. 5. Individual AUPRC boxplots averaged over cross-validation folds, for each of the confidence elicitation
methods and annotation type. The lines in the boxplots correspond to the medians, the boxes are the inner
quartiles, and the whiskers extend to 1.5 the IQR.

4.3 Do the confidence elicitation method and aggregate label type affect aggregate (i.e.
crowd) annotation quality and cost?

We also want to understand the effect of elicitation and per-recording aggregation methods on
aggregated annotation quality.

For each elicitation method, we:

(1) Averaged the binary labels per recording.
(2) Averaged the probability labels per recording.
(3) Averaged the z-score derived probability labels per recording.

Finally, the aggregate labels were directly binarized using a threshold of 0.5 to form what we call
“hard aggregate” labels. The non-binarized aggregates are called “soft aggregate” labels.

4.3.1 Effect of confidence elicitation method and annotation type on aggregate labels. Similarly to
Section 4.2, we measured performance with AUPRC, as it does not depend on choosing a threshold
for binarizing the labels. Each curve in Figure 6 represents the average over 500 iterations when
calculating AUPRC (Figure 6), where in each iteration we randomly ordered the participants per
condition, i.e., adding one randomly selected participant per cross-validation fold at a time for each
confidence elicitation mechanism and annotation type.
For averaged binary labels, both confidence elicitation mechanisms produce aggregate labels

of higher quality than the baseline “No Confidence” method at all levels of participant averaging.
Within each of the two confidence elicitation methods, we see that “soft” labels have higher quality
than “hard” labels for all levels of participant averaging. In addition, much like the per-participant
results presented in Section 4.2, when averaged over few participants, there is little difference
between the two elicitation mechanisms. However, as we increase the number of participants, the
quality of labels from the “Betting” mechanism achieve higher performance than those for the
“Simple Confidence” mechanism.
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Fig. 6. Aggregate AUPRC quality metric while varying the the number of annotators aggregated per example
shown for each elicitation mechanism and annotation type

4.3.2 Effect of confidence elicitation method and annotation type on aggregate label type (hard
or soft) based on annotator agreement. While the previous analysis investigates the effect of the
annotation mechanisms on the binary annotations, we cannot perform a similar per-participant
annotation quality analysis for the “soft annotations” because we do not have ground-truth “soft
annotations” to compare to. Thus, to measure the quality of the “soft annotations”, we instead
measured annotator agreement, using the Krippendorff’s 𝛼 coefficient, as we increased the number
of annotators and compared it to the aggregated annotations for all 10 participants. Bymeasuring the
“soft annotation” quality relative to the 10-participant aggregate annotations we can establish when
the annotator agreement gain, as a result of adding one participant, plateaus for “soft annotation”.
At the same time, we can directly compare the performance of “hard” versus “soft” aggregate label
types. Figure 7 shows how the elicitation mechanism, annotation type and number of participants
affect annotator agreement for “soft” and “hard” aggregate label type. When comparing “soft”
and “hard” aggregate label types for each confidence elicitation method and annotation type as
in Figure 7, we can see that agreement for “soft aggregate” labels is higher than agreement for
“hard aggregate” labels at any number of participants. Similarly to findings by Chung et al. [17],
these results suggest that using “soft aggregate” labels, we can collect annotations from fewer
participants than if we use “hard aggregate” labels.

5 DISCUSSION
5.1 Findings
In this study we have evaluated two confidence elicitation methods: 1) “Simple confidence” and 2)
“Betting-based” confidence, evaluated three annotation types: 1) binary responses, 2) probabilities
directly transformed from confidence submitted by participants, and 3) probabilities transformed
from z-scores of confidence submitted by participants, and compared two aggregate label types: 1)
“hard” and 2) “soft”.

In our analysis, we first studied if the confidence elicitation method affects the individual anno-
tation quality. The results show that individual binary annotations collected using either of the
confidence elicitation methods have higher quality than those collected using the baseline “No
Confidence” task. This finding suggests that giving participants an additional step to provide their
confidence increases annotator performance. This may be explained by participants’ increased
attention to the task driven by the need to re-evaluate their performance of it. Such an explanation
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Fig. 7. Annotator agreement measured by the Krippendorff’s 𝛼 coefficient as the number of annotators is
increased, when compared to the 10-participant aggregation, for each confidence elicitation method and
annotation type.

is supported by studies that have found that participants who were are given the opportunity to
change their answers achieve higher quality answers than those who are not allowed [3, 4, 49, 51, 70].
However, we did not collect participant interaction logs and thus more evidence is needed to support
this claim. Moreover, these results suggest that eliciting confidence is beneficial even for tasks
where the model is trained with only binary targets, e.g. binary classification with a support vector
machine or decision tree.
We evaluated the quality of “soft” labels by calculating AUPRC, a metric that does not depend

on a set decision threshold for binarizing the labels. For the individual annotations, the “Simple
Confidence” method achieves higher quality than the “Betting” mechanism but with only borderline
statistical significance. On the aggregate labels, the “Betting” and “Simple Confidence” mechanisms
achieve similar performance at low participant aggregation levels, but as the number of participants
averaged in the aggregates increases, the quality of the labels from “Betting” mechanism increases to
a higher level than those from the “Simple Confidence” mechanism. In addition, for all participant
levels, the “soft aggregate” labels yield higher quality labels than the “hard aggregate” labels.
Moreover, when analyzing our data sample containing completion times, the “Betting” task took
less time to complete than the “Simple Confidence” task (7.19 vs 7.65 minutes). Although directly
eliciting confidence seems more straightforward, providing a slider interface seems to make the
overall task slower than the buttons in the “Betting” method. Additionally, one way to speed up
more the “Betting” method would be to stop asking participants for their choice once they select
the lottery and assign the lottery to the remaining rounds when randomly selecting the round for
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payment. We did not do this in the current study because we wanted to make sure that participants
were selecting their true bets instead of randomly going from betting to their answer and providing
conflicting annotations. However, given that we did not find conflicting annotations to be an issue,
this is an easy change that may reduce task completion times.
Thus, similarly to previous work [5, 17, 26, 39], we find that when using confidence elicitation

methods, the resulting annotations have higher accuracy and precision when compared to those of
the baseline (“No Confidence” elicitation), giving further evidence that collecting more fine-grained
annotations is beneficial when dealing with ambiguous data. With the methods evaluated in this
paper, our aim was to be able to collect continuous labels not just in the aggregate from multiple
annotators but from individuals. Because some mediums take longer to annotate, asking a bit more
from individual annotators is preferable to having multiple annotators per data item. In addition, the
methods evaluated in this paper fall between the multi-label and probability multi-label approaches
from Chung et al. [17], and while the methods from Chung et al. [17] are better suited to multi-class
problems, as explained in the introduction, we believe the methods presented in this paper are more
suitable for binary and multi-label tasks. We propose the “Betting” method as a way of collecting
probabilities while avoiding directly asking participants for their confidence, since it has been
shown that people misjudge their own confidence [69].

The proposed methods can be used in both binary annotation tasks and expanded to multi-label
tasks, as discussed in Section 5.2. We evaluate our methods in an audio annotation task which
has applications to many important real-world problems, e.g., noise pollution monitoring, urban
bioacoustic monitoring, audio-based traffic monitoring, sound-awareness tools for the hard of
hearing, audio forensics, and machine perception for autonomous robots/vehicles. Moreover, the
annotation methods are not limited to an audio use case. The confidence elicitation methods
evaluated could be applied to other annotation scenarios where data can be ambiguous, binary or
multi-label, e.g., tasks such as video annotation for visual object detection and tracking, or multiple
evidence-based diagnosis.

The results of this study imply the following recommendations. If your machine learning method
supports “soft” labels as targets, then we recommend eliciting confidence labels for ambiguous
data, but which elicitation method depends on your label quality requirements and your annotation
budget. For lower annotation budgets in which only one annotator per instance is collected, the
differences between the two evaluated mechanisms are small. However for larger annotation
budgets which can support increased quality through additional participants, the results show
that the “Betting” mechanism yields higher quality labels. In fact, even if your machine learning
method only supports “hard” labels as targets, we still recommend using the confidence elicitation
mechanisms for higher quality labels on ambiguous data if the annotation budget is there. For
example, for only a 10% increase in annotation cost (due to the increase in annotation time in the
elicitation tasks), the increase in quality of the binary labels is equivalent to adding an additional
annotator per example in the “No confidence” task (100% increase in annotation time).

5.2 Incorporating our approach into a multi-label annotation pipeline
To collect annotations for real-world audio data we would need to make some adjustments. First,
we would need to some “ground-truth” or “gold standard” data in order to pay participants. Our
approach depends on “ground-truth” annotations for verifying performance and determining
payment. If we mix in recordings for which we know this information, we would base the payment
on those recordings. This is a standard approach in crowdsourcing for verifying the quality of the
annotations and has been used and discussed in multiple works [17, 35, 40, 43, 64].
Given that real-world audio recordings are typically multi-label, it would also be important to

incorporate multi-label annotation into the annotation pipeline. In previous work, researchers
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found that people tend to under annotate in multi-label settings, finding a lot of disagreement in
some classes [11]. Moreover, fine-grained annotations benefit more ambiguous data [17], but in
non-ambiguous data, this type of annotations are not necessary. This is especially important when
the number of classes present is too large for setting them up in a one-stage pipeline, which is a
common case in real-world audio recordings. For future work, we propose a two-stage annotation
setup where we first collect multi-label annotations with fewer participants. On those classes
where there is disagreement, we setup a second stage, in which participants provide probability
estimates using the most appropriate confidence elicitation for the task, incorporating this work
into a multi-label annotation pipeline. This approach would allow us to focus specifically on classes
with disagreements — which are common in many real-world settings such as healthcare — and
which require the collection of useful “soft” labels. In future work, we would like to explore how to
aggregate the binary annotations from the first stage with the “soft” annotations from the second
stage efficiently.

5.3 Limitations
The data that we created for this experiments was generated using the UrbanSound8k dataset [59],
a dataset containing 10 urban sound classes. We chose this source dataset because its classes are
similar to the scenario of our real-world use case. While there are many possible class combinations
that could result in ambiguous acoustic scenes, exploring all such combinations is infeasible in
a controlled human subjects experiment. Thus, we limited target classes and distraction class
combinations to a feasible set for evaluation and ones likely to result in ambiguous acoustic scenes.
To generate our positive jackhammer examples, we incorporated engine idling and drilling as
distraction classes. These two sources follow similar spectro-temporal patterns to those of the
jackhammer making it more difficult to disambiguate them [9]. While this set is limited, we believe
the results of our experiment should generalize to other class combinations with overlapping
spectro-temporal patterns.

While we believe these results are applicable to other domains in which data is ambiguous, the
“Betting” elicitation mechanism only increased the task completion time by an average of 1.98 s per
item (60 ∗ (7.19 − 6.53)/20 = 1.98 𝑠). While this increase in cost is a small percentage of the cost for
audio annotation, this increase may be too high for domains in which annotation is fast. Therefore,
the results of this paper are most applicable slower annotation tasks (e.g., audio, video, long-text
annotation, etc.).
As a workaround for a data collection mishap in which we initially only collected timing

information for the “No Confidence” tasks, we collected an additional sample of data for the
“Betting” and “Simple Confidence” tasks (20 participants each) at a later point in time. Because
of this, we don’t have paired timing and quality data for our entire sample of data. It is possible
that the distribution of Mechanical Turk workers changed in the time between the two samples,
however our selection criteria was the same for both samples. In addition, while the task completion
times currently show that participants took less time with the “Betting” task, if a task requires an
increase in confidence granularity (i.e., increasing the number of confidence levels per task), it is
unclear how such an increase will affect each of the task completion times. While one may predict
that additional questions will slow down the granularity in the “Betting” task, it may also be that
additional slider levels may increase the cognitive load and thus completion time for the “Simple
Confidence” task.

Finally, to draw conclusions about the listening behavior from the elicitation tasks, it is necessary
to collect data about the interaction with the interface, e.g., interaction logs. With this type of data,
we could understand if participants listened to the recordings more than once and if they switched
their binary responses after listening to the recordings, or after doing some bets. Unfortunately,
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this interaction logging data was not collected, and thus such an investigation is left for a future
study.

5.4 Future Work
One of our main motivations is to collect annotations that can help achieve more accurate machine
learning models. For future work, we will explore the use of the collected “soft” labels for training
machine learning models, as we expect that the use of the “soft” labels will help us achieve higher
model performance than models trained with “hard” labels, while using fewer participants.
Moreover, we will test the generalizability of our results to other tasks and domains with

ambiguous sources. Also, we will evaluate how different sources of ambiguity affect the quality
of the annotations. Additionally, we will test different step sizes for increasing granularity of the
probabilities and its effect on the annotation quality and the cost (number of annotators). Finally,
we will expand our experiments to real-world audio data in a multi-label, two-stage annotation
approach.

6 CONCLUSION
In this study we investigated three methods for collecting crowdsourced audio annotations based
on confidence elicitation: 1) one in which we don’t elicit confidence, 2) one in which we elicit
confidencewith a simple confidence slider, and 3) one inwhichwe elicit confidence through a betting
mechanism. In addition, we also investigated whether discretizing the continuous confidence-based
labels to binary affects annotation quality. We analyzed the resulting annotations both individually
and aggregated over all annotators.
We show that confidence elicitation results in individual binary annotations that are of higher

quality at the cost of only a minimal increase in annotation time. This implies that we should collect
confidence information when dealing with ambiguous data even when machine learning models
have only binary targets, e.g., if a classification model only accepts “yes”/“no” labels for training.
As an example, a noise monitoring system that detects whether a recording contains sound sources
such as “car horns”, “sirens”, “construction”, and “dogs barking”, would benefit from collecting
confidence information even if the model only accepts binary labels for each class.
When comparing confidence elicitation methods, we found that eliciting confidence with a

simple slider mechanism resulted in individual confidence annotations of marginally higher quality
than the betting mechanism. However, the betting mechanism resulted in higher quality aggregate
annotations, with differences being more pronounced as more annotators were added. Thus we
recommend using the betting mechanism for confidence elicitation when the annotation budget
allows it, and when in need of higher quality data. Finally, we show that aggregating confidence
annotations results in higher quality aggregate labels than when directly aggregating the binary
labels, a finding that is consistent with previous literature [17].

In conclusion, using a confidence elicitation mechanism and aggregating continuous labels results
in higher annotation quality. We propose using a betting-based mechanism to indirectly elicit
confidence. In our experiments, we found it to be a faster mechanism for collecting annotations
than the asking annotators to rate confidence with a slider, and we found it results in higher quality
aggregate annotations, a desired result when dealing with potentially life changing tasks such
as sound-awareness tools for the hard of hearing, audio forensics, and machine perception for
autonomous robots/vehicles. While we evaluate our methods in a binary classification task, we
discuss how we can expand this work into a multi-label approach, i.e., where there is more than
one class present at a time, which is the case for most of the tasks discussed above. We investigate
these annotation tasks in the context of urban audio classification, but we believe these confidence
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elicitation mechanisms may be useful in a variety of subjective and perceptual annotation tasks in
which data is ambiguous and annotation is slow.
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