§&

S,
S,
et v

-—

This article focuses on human-artificial intelligence (Al):
'machines that think, that learn and that create”. | shed
light on some issues that have led to unbalanced progress
in Al (more progress in artificial and less progress in
intelligence), and introduce quantum cognition as

a viable cognitive architecture for human-Al and

emerging hardware.
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ost of the cognitive ar-

chitectures, thatis, mod-

els of human reasoning

in artificial intelligence
(AI) research, do not necessarily try to
model the human reasoning process.
They assume humans are rational
agents, that is, utility maximizers,
who always follow Boolean logic, which
implies that events can always be
combined (for example, via logical
conjunction) in any order. They try to
locate an equivalent of an arithmetic
logic unit (ALU) in human brains, and
shuffle data to make it independent
and identically distributed (IID). The
following section shows more details.

ISSUES WITH CLASSICAL
PROBABILITY IN
REASONING

Classical probability theory and
widely accepted Kolmogorov axioms
follow Boolean logic. This implies
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that the logic of events is commuta-
tive and that events are always com-
patible. That is, A and B is the same
as B and A, and simultaneous measure-
ments of AandB, or B and A will cause
no interference.

In fact, this logic works well for com-
patible events. For example, first mea-
suring your height and then your weight,
or first measuring your weight and then
your height, or simultaneously measur-
ing your height and weight all yield the
same result.

But the reality is that events could
be incompatible, that is, evaluation is or-
der dependent, and interference could
occur. For example, consider question
A:“Areyou going to Florida?” and ques-
tion B: “Did you hear there is a storm
coming to Florida?” First requesting an
answer to question A and then question
B, or first requesting an answer to ques-
tion B and then question A, or asking
questions A and B simultaneously and
then requesting an answer could result
in different answers.

Additionally, a Boolean conjunc-
tion can be perceived as more repre-
sentative than one of its constituents
and change human reasoning. Here is
a simplified example.

Assume that Bob has been identi-
fied as the suspect of exploiting a ze-
ro-day vulnerability. Also, assume that
exploiting such a vulnerability has of-
ten been observed from the members
of a famous hacking group called H.
Then, which of the following scenarios
seems more probable?

1. Bobisaskilled hacker.
2. Bobisaskilled hacker,and a
member of group H.

Intuitively speaking, scenario 2
could be perceived as more probable.
But with Boolean logic and classical
probability theory, the probability of
two events happening together can-
not be larger than the probability of a
single event. We perceive scenario 2
as being more probable than scenario
1 because of a conjunction fallacy, a
cognitive bias identified by Tversky
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and Kahneman! that explains that
humans are usually more inclined to
believe a detailed story with explicit
details over a short compact one. In
fact, phishing attackers have greatly
benefited from this bias by first pro-
viding their targets with an explicit
and detailed description of an event
that requires immediate attention and
then asking them to click alink.

UNCONSCIOUS LEARNING
Goyal and Bengio? argue that to
achieve human-Al, we need to move
from system 1/implicit/unconscious
processing to system 2 /explicit/con-
scious processing. System 1 operation
is similar to when we are driving in a
familiar neighborhood, where we can
be fast and unconscious. System 2 op-
eration is similar to when we are driv-
ing in an unfamiliar neighborhood and
need to be slow and conscious and may
need consultation as well. Goyal and
Bengio's® proposal requires “sequential
conscious processing” and consider-
ing “attention as sequentially selecting
what computation to perform on what
quantities.” However, as briefly dis-
cussed, classical probability has major
limitations with sequential processing.
It assumes that all events are compati-
ble and does not consider order effect.
For example, to avoid overfitting
(paying too much attention to the par-
ticular dataset it is trained on), the ma-
chine learning community shuffles
data to make them IID. But the reality
isthat data do not arrive to us as IID.2

“Nature doesn't shuffle data,
and we should not. When we
shuffle the data, we destroy
useful information about those
changes in distribution that
areinherentin the data we
collect and contain informa-
tion about causal structure.”

QUANTUM PROBABILITY
FOR REASONING

AND INFERENCE

I recommend quantum cognition3
as a viable alternative for cognitive

architectures that use classical rea-
soning and inference. Quantum cog-
nition is different from the quantum
mind. It does not follow the assump-
tion that there is something quantum
like taking place in the brain but takes
inspiration from the mathematical
structure of quantum theory and its
dynamic principles. For example, it
uses quantum probability—modeling
cognition using the theory of probabil-
ity from quantum mechanics, without
any of the physics.

The following section shows an
example feature of quantum proba-
bility that makes it appropriate for hu-
man-Al software and hardware.

CAPTURING
INCOMPATIBILITIES

Quantum probability, unlike classical
probability that assumes all questions
are compatible, can capture incom-
patibles. Quantum probability uses
vector space and subspace similar to
classical probability’'s use of sample
space and event (that is, a subset of
sample space), respectively. Vector
space contains all possible outcomes
for questions. A vector representing
a question outcome spans a 1D sub-
space, called a ray, and the set of be-
liefs a person has about the question
is represented by a unit length vector,
called a state vector. Quantum prob-
ability also uses a mapping process,
called projecting, and the probabil-
ity assigned to an event equals the
squared length of the projection. To
compute the conjunction of question
outcomes, quantum probability em-
ploys a sequential projection. This al-
lows distinguishing between orders,
that is, project A and then project B
has a different outcome than project
B and then project A.

Revisiting the simplified example

Here, we revisit our simplified exam-
ple to illustrate how quantum prob-
ability, using vector space, can illus-
trate conjunction fallacy in human
reasoning. In Figure 1, blue arrows
represent “Bob being a skilled hacker”
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by B and its negation with #B. Simi-
larly, orange arrows represent “being
a member of group H” with H and its
negation with #H. S, the state vector,
represents our belief state about Bob’s
characterization and is represented
by the black arrow. In Figure 1, pro-
jection paths are shown by green and
red dotted lines. Probabilities are
computed as the squared length of
the projection of the state vector onto
the corresponding axis and shown
by green and red square lengths. The
projection onto the B ray is shown by
the green dotted line, and the proba-
bility of (B) equals the squared length
of this bar, shown by the green square
length. For the probability of (B and
H), we need to follow two steps, as
shown by the two red dotted lines.
First, we project the state vector onto
the Hray. Second, we project this pre-
vious projection onto the B ray. Then,
the probability of (B and H) is the
squared length of the last projection,
shown by the red square length.

In Figure 1, the sequential proba-
bility of (B and H) is greater than the
probability of a single event, that is,
the probability of (B), corresponding
to the red square length being longer
than the green square length. This
is because of the conjunction fallacy
that led to perceiving scenario 2 as be-
ing more probable than scenario 1. We
can relate the incompatibility of (B and
H), leading to their interference, to the
representativeness heuristic (a mental
shortcut); conjunction seems more rep-
resentative than one ofits constituents,
and being a member of H can be easier
toimagine or toretrieve than Bobasan
inclusive category. For a mathematical
explanation of this example, see the
supplementary materials available at
10.1109/MC(C.2023.3242056.

The ability of quantum probability
to capture incompatibilities can also play
an important role in developing causal
structures for human-AlI, specifically
when we are dealing with incompati-
ble events by putting together complex
situations with massive amounts of
data from various sources. In such

situations, we need causal structural
models to uncover the underlying
mechanisms of the data versus elemen-
tal causal induction, that is, modeling
a single cause-and-effect relationship,
using classical probability. In such
complex situations, quantum proba-
bility can provide a way to formalize
the idea of structurally local causal rea-
soning by working with incompatible
events, pasting together sample spaces,
and forming a vector space.

For example, assume we need to
make a predictive judgment, that is, find

QUANTUM PROBABILITY FOR
IN-MEMORY COMPUTING

Quantum probability uses vector
space, similar to the computing frame-
work vector symbolic architectures
(VSAs), also known as hyperdimen-
sional computing, which is central to
the emerging hardware, for example,
in-memory computing (IMC). In con-
ventional von Neumann architecture,
memory and processor are separate,
and the computation requires data
to be moved back and forth. But with
IMC architecture using “vector-matrix

| recommend quantum cognition as a viable
alternative for cognitive architectures that use
classical reasoning and inference.

the conditional probability of an effect
given a cause, or P (effect|cause), in a
complex problem with massive amounts
of data, where the order of data arrival
matters. Quantum probability enables
us to break the problem into smaller
problems by answering queries such as:

P (effect|cause;, noalternative cause),

P (effect|cause,, cause,),
P (effect|cause,, cause;), etc.

~ H

a B

multiplication,”® memory and proces-

sor are fused together, and computa-
tions are performed where data are
stored with minimal data movement.
That makes IMC, in contrast to con-
ventional von Neumann architecture,
similar to the human brain, where
memory and computation are collo-
cated. In fact, locating the equivalent
ofan ALU in the human brainisanun-
realistic expectation.

Probability of B: s
Probability of B and H:

FIGURE 1. A guantum probability representation of the simplified example B: “Bob
being a skilled hacker” and H: "being a member of group H". S represents the state

vector, our belief state about Bob's story.
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Quantum probability and IMC can
be considered as promising computa-
tional architectures for human-AI as
both use VSAs. So it is reasonable to
consider quantum probability asa cog-
nitive architecture for IMC.

Here is an example. Working mem-
ory in the human brain is a mech-
anism for the temporary storage
of information related to the current
task. It is critical for cognitive capac-
ities such as attention, reasoning, and

computing architectures. But I argue
that we need to learn from Einstein's
relativity theory, Godel's incomplete-
ness theorem, and Simon’s bounded ra-
tionality theory, as they all shed light on
the collapse of absolutes.

Inthisarticle, I presented some com-
putational limitations of existing Al
systems. I explained that, unlike the ax-
ioms of classical probability, the logic of
events is not necessarily Boolean. If two
events A and B are incompatible, then

Quantum probability and IMC can be considered
as promising computational architectures for
human-Al as both use VSAs.

learning; thus, most cognitive archi-
tectures implement it in some form.
With quantum cognition, we can use
high-dimensional vectors to represent
the function of working memory and to
deal with the relevant data in an ongo-
ing computation. Quantum probabili-
ty's state vector can be considered as a
working-memory state that represents
human beliefs about feature patterns
and serves as a cache for the current
world model, the state of the system,
and/or current goals.

Quantum probability builds a strong
mathematical foundation for IMC and
organizing the “operations on hyper-
dimensional patterns that could be
used for computing.” By viewing pat-
terns asvectors, we can’®

“tap into the vast body of
knowledge about vectors,
matrices, linear algebra, and
beyond. This indeed has
been the tradition in artifi-
cial neural-net research,

yet rich areas of high-
dimensional representation
remain to be explored.”

gents who always maximize
utility, using structures
that always follow Boolean
logic, are fundamental to existing Al
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the conjunction of events A and B can-
not be defined because they do not com-
mute, in sharp contrast with Boolean
logic, where events always commute.

I offered recommendations about
quantum probability and explained
how to consider quantum states as
measures over the non-Boolean struc-
ture of projection operators. To com-
pare quantum states and classical
probabilistic states, I explained how
projection can be used to describe
experiments similar to classical prob-
ability. I explained how causal struc-
tural models (versus elemental causal
induction) can help with capturing
sequential conscious processing. I
also explained how quantum proba-
bility’'s use of vector space makesitan
appropriate cognitive architecture for
IMC architecture.

Achieving human-AI and develop-
ing “machines that think that learn and
that create”® require computational
models that can act likewise. But hu-
man thinking, learning, and creating
are often strongly context and order
dependent, and that appears perplex-
ing to classical probability and utility
maximization models.
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