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Fig. 1: Overview of matching contactless fingerprint images with a legacy database of contact-based fingerprint impressions. While only a specific scenario
is shown here where contact-based images are obtained from optical FTIR readers (slap or single finger capture) and contactless images are captured by a
smartphone camera, our approach can be applied to any heterogeneous fingerprint matching problem.

Abstract—Matching contactless fingerprints or finger photos
to contact-based fingerprint impressions has received increased
attention in the wake of COVID-19 due to the superior hygiene
of the contactless acquisition and the widespread availability of
low cost mobile phones capable of capturing photos of finger-
prints with sufficient resolution for verification purposes. This
paper presents an end-to-end automated system, called C2CL,
comprised of a mobile finger photo capture app, preprocessing,
and matching algorithms to handle the challenges inhibiting
previous cross-matching methods; namely i) low ridge-valley
contrast of contactless fingerprints, ii) varying roll, pitch, yaw,
and distance of the finger to the camera, iii) non-linear distortion
of contact-based fingerprints, and vi) different image qualities
of smartphone cameras. Our preprocessing algorithm segments,
enhances, scales, and unwarps contactless fingerprints, while
our matching algorithm extracts both minutiae and texture
representations. A sequestered dataset of 9,888 contactless 2D
fingerprints and corresponding contact-based fingerprints from
206 subjects (2 thumbs and 2 index fingers for each subject) ac-
quired using our mobile capture app is used to evaluate the cross-
database performance of our proposed algorithm. Furthermore,
additional experimental results on 3 publicly available datasets
show substantial improvement in the state-of-the-art for contact
to contactless fingerprint matching (TAR in the range of 96.67%
to 98.30% at FAR=0.01%).
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Contact to contactless fingerprint matching

I. INTRODUCTION

UE to their presumed uniqueness and permanence, fin-

gerprints are one of the most widely used biometric
traits for secure authentication and search [1], [2]. Over the
years many different types of fingerprint readers have been
developed to obtain a digital image of a finger’s friction ridge
pattern. These readers vary in a number of different ways,
including the underlying sensing technology (e.g., optical,
capacitive, ultrasonic, efc.) or in the manner in which a user
interacts with the reader (i.e. contactless, 4-4-2 slap, or single
finger contact-based acquisition). Most prevailing fingerprint
readers in use today necessitate physical contact of the user’s
finger with the imaging surface of the reader; however, this
direct contact presents certain challenges in processing the
acquired fingerprint images. Most notably, elastic human skin
introduces a non-linear deformation upon contact with the
imaging surface which has been shown to significantly degrade
matching performance [3], [4], [S]. Furthermore, contact with
the surface is likely to leave a latent impression on the imaging
surface [6], which presents a security risk as an imposter
could illegally gain access to the system though creation of
a presentation (i.e., spoof) attack.

In light of the ongoing Covid-19 pandemic, contactless
fingerprint recognition has gained renewed interest as a hy-
gienic alternative to contact-based fingerprint acquisition [7].
This is further supported by a recent survey that showed
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Fig. 2: Examples of contactless fingerprints (a) and their corresponding
contact-based fingerprint images (b). Varying viewing angle, resolution, and
illumination of contactless images and non-linear distortion of contact-based
fingerprints contribute to the degradation of cross-matching performance. The
contactless images shown are from the ZJU dataset.

that the majority of users prefer touchless capture methods in
terms of usability and hygeine considerations [8]. Prior studies
have explored the use of customized 2D or 3D sensing for
contactless fingerprint acquisition [9], [10], [11], [12], [13],
[14], while others have explored the low-cost alternative of
using readily available smartphone cameras to capture “finger
photos”! [15], [16], [17].

Despite the benefits of contactless fingerprint acquisition,
imaging and subsequently matching a contactless fingerprint
presents its own set of unique challenges. These include
(i) low ridge-valley contrast, (ii) non-uniform illumination,
(iii) varying roll, pitch, and yaw of the finger, (iv) varying
background, (v) perspective distortions due to the varying
distances of the finger from the camera, and (vi) lack of
cross-compatibility with legacy databases of contact-based
fingerprints (see Figure 2). For widespread adoption, con-
tactless fingerprint recognition must overcome the aforemen-
tioned challenges and bridge the gap in accuracy compared to
contact-contact fingerprint matching.

The most significant factor limiting the adoption of contact-
less fingerprint technology is cross-compatibility with legacy
databases of contact-based fingerprints, which is particularly
important for governmental agencies and large-scale national
ID programs such as India’s Aadhaar National ID program
which has already enrolled over 1 billion users based upon
contact-based fingerprints. Several studies have aimed at im-
proving the compatibility of matching legacy slap images to
contactless fingerprint images [21], [20], [24], [25], [23], [19];
however, none have achieved the same levels of accuracy as

'In general, contactless fingerprints refers to fingerprint images acquired by
a contactless fingerprint sensor, whereas finger photo refers to fingerprint
images acquired by a mobile phone. In this paper, we use the two terms
interchangeably.

state-of-the-art (SOTA) contact-contact fingerprint matching
(such as the results reported in FVC-ongoing [26] and NIST
FpVTE [27]). Furthermore, all of these works focus on solving
only a subset of the challenges in an effort to push the
contact-contactless matching accuracy closer to the SOTA
contact-contact matching systems. Indeed, to the best of our
knowledge, this study presents the most comprehensive, end-
to-end” solution in the open academic literature for contact-
contactless fingerprint matching that addresses the challenges
inherent to each step in the contact to contactless matching
process (mobile capture, segmentation, enhancement, scaling,
non-linear warping, representation extraction, and matching).

We show that our end-to-end matcher, called C2CL, is
able to significantly improve contact-contactless matching
performance over the prevailing SOTA methods through exper-
imental results on a number of different datasets, collected by
various research groups using their own app and fingerprint
readers. We also demonstrate that our matcher generalizes
well to datasets which were not included during training. This
cross-database evaluation solves a shortcoming of many ex-
isting studies which train and evaluate algorithms on different
training and test splits of the same contact-contactless dataset.
Furthermore, despite multiple evaluation datasets, we train
only a single model for our evaluations, rather than fine-tuning
individual models to fit a specific dataset.

Concretely, the contributions of our work are stated as:

1) An end-to-end system, called C2CL, for contact-
contactless fingerprint matching. C2CL is comprised of
preprocessing (segmentation, enhancement, scaling, and
deformation correction), feature extraction (minutiae and
texture representations), and matching modules. Our pre-
processing also benefits the Verifinger 12.0 commercial
fingerprint SDK.

2) A fully automated, preprocessing pipeline to map con-
tactless fingerprints into the domain of contact-based fin-
gerprints and a contact-contactless adaptation of Deep-
Print [28] for representation extraction. Our preprocess-
ing and representation extraction is generalizable across
multiple datasets and contactless capture devices.

3) SOTA cross-matching verification and large-scale identi-
fication accuracy using C2CL on both publicly available
contact-contactless matching datasets as well as on a
completely sequestered dataset collected at Zhejiang
University, China. Our evaluation includes the most
diverse set of contactless fingerprint acquisition devices,
yet we employ just a single trained model for evaluation.

4) A smartphone contactless fingerprint capture app that
was developed in-house for improved throughput and
user-convenience. This app will be made available to
the public to promote further research in this area®.

5) A new dataset of 9,888 2D contactless and correspond-
ing contact-based fingerprint images from 206 subjects

2The Cambridge Dictionary defines end-to-end as “from the very beginning
of a process to the very end”. Our method is end-to-end as it carries out
the full process from data collection to recognition. Our use of “end-to-end”
should not be confused with “end-to-end learning”.

3The project repository for the smartphone contactless fingerprint capture app
is available at https://github.com/ronny3050/FingerPhotos.
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Fig. 3: Example contactless and contact-based fingerprint image pairs from databases which we have obtained from different research groups: (a) IIT
Bombay [18], (b) ISPFDvV2 [19], (c¢) MSU [20], (d) PolyU [21], (e) UWA [22], and (f) ZJU datasets. In general, contactless fingerprints suffer from low
ridge-valley contrast, varying roll, pitch, and yaw, and perspective distortions, especially those captured by smartphone cameras (e.g., (a), (b), (c) and (f)). We
believe our study involves the largest collection of public domain databases of contactless and contact-based fingerprints.

(2 thumbs and 2 index fingers per subject), which will
be made available in the public domain to advance much

needed research in this area®.

II. PRIOR WORK

Prior studies on contact-contactless fingerprint matching pri-
marily focus on only one of the sub-modules needed to obtain
matching accuracy close to contact-contact based fingerprint
matching systems (e.g., segmentation, distortion correction,
or feature extraction only). These studies are categorized and
discussed below.

A. Segmentation

The first challenge in contact-contactless matching is seg-
menting the relevant fingerprint region from the captured
contactless fingerprint images. Malhotra et al. [19] proposed
a combination of a saliency map and a skin-color map to
segment the distal phalange (i.e., fingertip) of contactless
fingerprint images in presence of varying background, illumi-
nation and resolution. Despite impressive results, the algorithm
requires extensive hyperparameter tuning and still fails to ac-
curately segment fingerprints in severe illumination conditions
or noisy backgrounds. To alleviate these issues, we incorporate
segmentation via an autoencoder trained to robustly segment
the distal phalange of input contactless images.

B. Enhancement

One of the main challenges with contactless fingerprint
images is the low ridge-valley contrast (Figure 3). The lit-
erature has addressed this in a number of different ways,

4This dataset will be available to interested readers after this paper has been
accepted.

including adaptive histogram equalization, Gabor filtering,
median filtering, and sharpening by subtraction of the Gaussian
blurred image from the captured image ([25], [23], [19]).
We also incorporate adaptive contrast enhancement in our
work; however, one consideration that is lacking in existing
approaches is the ridge inversion that occurs with Frustrated
Total Internal Reflection (FTIR) optical imaging. In particular,
the ridges and valleys of an FTIR fingerprint image will appear
dark and light, respectively, while the opposite is true in
contactless fingerprint images. Therefore, a binary inversion
of the contactless fingerprint images is expected to improve
the correspondence with their contact-based counterparts.

C. Scaling

After segmenting and enhancing a contactless fingerprint,
the varying distances between fingers captured and the camera
must be accounted for. In particular, since contact-based
fingerprints are almost always captured at 500 pixels per inch
(ppi), the contactless fingerprints need to be scaled to be as
close to 500 ppi as possible. Previous studies have applied
a fixed manual scaling, set for a specific dataset, or have
employed contact-based fingerprint ridge frequency normaliza-
tion algorithms that rely on accurate ridge extraction - which
is often unreliable for contactless fingerprints. In contrast,
we incorporate a spatial transformer network [30] which has
been trained to automatically normalize the resolution of the
contactless fingerprints to match that of the 500 ppi contact
images. This scaling is performed dynamically, i.e. every input
contactless fingerprint image is independently scaled.

D. Distortion Correction

A final preprocessing step for contact-contactless matching
is non-linear distortion correction. To address this problem,



TABLE I: Summary of Published Cross-Matching Contact to Contactless Fingerprint Recognition Studies.

Study Approach

Database Accuracy’

Robust TPS deformation correction model,

Lin and Kumar, 2018 [21] minutiae and ridge matching

1,800 contactless and contact fingerprints
from 300 fingers [21].

2,000 contactless and 4,000 contact fin-
gerprints from 1, 000 fingers [22]

EER = 14.33% [21]
EER = 19.81% [22]

Deb et al., 2018 [20] COTS matcher

TAR = 92.4% — 98.6%
@ FAR = 0.1% [20]

2,472 contactless and contact fingerprints
from 1,236 fingers [20]

Lin and Kumar, 2019 [23] | Fusion of three Siamese CNNs

960 contactless and contact fingerprints
from 160 fingers [21].

1,000 contactless and 2,000 contact fin-
gerprints from 500 fingers [22]

EER = 7.93% [21]
EER = 7.11% [22]

Wild et al., 2019 [24] Filtering based on NFIQ 2.0 quality mea-

sure, COTS matcher

TAR = 95.5% — 98.6%
@ FAR = 0.1% [24]

1,728 contactless and 2,582 contact fin-
gerprints from 108 fingers [24]

TPS spatial transformer network for de-
formation correction and binary ridge-map
extraction network, COTS matcher

Dabouei et al., 2019 [25]

2,000 contactless and 4, 000 contact

fingerprints from 1,000 fingers [22] EER = 7.71% [22]

Feature extraction with deep scattering net-

Malhotra et al., 2020 [19] work, random decision forest matcher

8,512 contactless and 1,216 contact

fingerprints from 152 fingers [19] EER = 2.11% — 5.23% [19]

Neural network-based minutiae feature ex-

Priesnitz ef al., 2021 [8] traction, open-source minutiae matcher

896 contactless from two different capture
setups and 464 contact fingerprints from
232 fingers [8]

EER = 15.71% and
32.02% [8]

TPS spatial transformer for 500 ppi
scaling and deformation correction of
contactless fingerprints. Fusion of
minutiae and CNN texture representations.

Proposed Approach

8,512 contactless and 1,216 contact fin-
gerprints from 152 fingers [19].

2,000 contactless and 4,000 contact fin-
gerprints from 1,000 fingers [22].

960 contactless and contact fingerprints
from 160 fingers [21].

9, 888 contactless and 9, 888 contact fin-
gerprints from 824 fingers (ZJU Dataset)

EER = 1.20% [19]
EER = 0.72% [22]
EER = 0.30% [21]
EER = 0.62% (ZJU Dataset)

t Some studies only report EER while other studies only report TAR @ FAR = 0.1%.
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Fig. 4: System architecture of C2CL. (a) A contactless fingerprint is captured and used as input to the preprocessing module, consisting of segmentation,
enhancement, 500 ppi ridge frequency scaling, and deformation correction; (b) the transformed image output by the preprocessing module is fed to
DeepPrint [28], which extracts a texture representation (shown in red). Without performing any additional preprocessing, the corresponding contact-based
fingerprint is again fed to DeepPrint to extract a texture representation (shown in blue). Simultaneously, a minutiae representation is extracted using the
Verifinger 12.0 SDK from both the contactless and contact-based fingerprint images.

[21] used thin-plate-spline (TPS) deformation correction mod-
els (previously applied for contact-contact matching [3], [31],
[32], [5], [33], [34]) using the alignment between minutiae
annotations of corresponding contactless and contact finger-
prints. A limitation is that the transformation is limited to
one of six possible parameterizations. In a different study,
Dabouei et al. [31] train a spatial transformer to learn the
distortion correction that is dynamically computed for each
input image. In [31], a contact-based image is used as the
reference for learning the distortion correction for a contactless
image. However, we argue that this is not a reliable ground
truth since the deformation varies among different contact-

based fingerprint impressions. In our attempt to re-implement
their algorithm, we found that this lack of a reliable and
consistent ground truth makes training unstable, making it
difficult to learn sound distortion parameters. In our work,
rather than using the contact-based image as a reference, we
use the match scores of our texture matcher as supervision
for generating robust distortion correction. In other words, the
distortion correction is optimized to maximize match scores
between genuine contact-contactless fingerprint pairs.



TABLE II: Summary of contact to contactless fingerprint recognition datasets used in this study.

Dataset # Subjects | # Unique # Images Contactless Capture Device Contact Capture Device
Fingers (Contactless / Contact)
UWA Benchmark 3D Finger- 150 1,500 3,000 / 6,000 3D Scanner (TBS S120E) CROSSMATCH Verifier 300
print Database, 2014 [22] LC2.0
Cross Match Guardian R2,
AOS ANDI On-The-Go Cross Match SEEK Avenger,
. (OTG), MorphoTrak MorphoTrak ~ MorpholDent,
ManTech Phase2, 2015 [29] 496 4,960 N/A T NIA Finger-On-The-Fly (FOTF), MorphoTrust TouchPrint
IDair innerID on iPhone 4. 5300, Northrop Grumman
BioSled
PolyU Contactless 2D to N/A 336 2,976 /2,976 Low-cost camera and lens | URU 4000
Contact-based 2D  Images (specific device not given)
Database, 2018 [21]
MSU  Finger Photo and 309 1,236 2,472/ 2,472 Xiaomi Redmi Note 4 smart- | CrossMatch Guardian 200,
Slap Fingerprint Database, phone SilkID (SLK20R)
2018 [20]
IIT Bombay Touchless and N/A 200 800 / 800 Lenovo Vibe k5 smartphone eNBioScan-C1 (HFDUOS)
Touch-Based Fingerprint
Database, 2019 [18]
OnePlus One (OPO) and Mi-
ISPFDv2, 2020 [19] 76 304 17,024 / 2,432 cromax Canvas Knight smart- Secugen Hamster IV
phones
ZJU Finger Photo and Touch- 206 824 9,888 /9,888 HuaWei P20, Samsung s9+, | URU 4500
based Fingerprint Database and OnePlus 8 smartphones

* The number of contact and contactless images acquired per finger varies for each device and the exact number is not provided.

E. Representation Extraction and Matching

After preprocessing a contactless fingerprint image to lie
within the same domain as a contact-based fingerprint, a
discriminative representation must be extracted for matching.
In the prior literature there are two main approaches to feature
representation: (i) minutiae representation ([31], [21]) and (ii)
deep learning representation ([23], [19]). Minutiae-based ap-
proaches rely on clever preprocessing and other techniques to
improve the compatability of contactless fingerprint images for
traditional contact-based minutiae extraction algorithms. On
the other hand, deep learning approaches place less emphasis
on preprocessing to manipulate the contactless fingerprints to
improve correspondence with contact-based fingerprints, rather
the responsibility is placed on the representation network to
learn the correspondence despite the differences. For example,
Lin and Kumar [35] and Dabouei et al. [31] both apply a
deformation correction to the contactless image to improve
the minutiae correspondence. In contrast, the deep learning
approach taken in [23] applies very little preprocessing to
the contactless image (just contrast enhancement and Gabor
filtering) and leverages a Siamese CNN to extract features
for matching. Similarly, Malhotra et al. [19] utilize a deep
scattering network to extract multi-scale and multi-directional
feature representations.

In contrast to prior studies, our approach utilizes both a
texture representation and a minutiae representation. Given the
lower contrast and quality of contactless fingerprints (causing
missing or spurious minutiae) and the non-linear distortion
and scaling discrepancies between contact and contactless
fingerprints (negatively impacting minutiae graph matching
algorithms) a global texture representation is useful to improve
the contact-contactless matching accuracy. We demonstrate
this hypothesis empirically in the experimental results.

(b)

Fig. 5: Example segmentation success (a) and failure (b) cases from images
in the ISPFDv2 dataset using our segmentation algorithm. Sources of failure
are presence of skin-like color tones in the background and varying skin
complexion due to varying illumination.

III. METHODS

Our matcher, C2CL, aims to improve contact to contactless
fingerprint recognition through a multi-stage preprocessing al-
gorithm and matching algorithm comprised of both a minutiae
representation and a texture feature representation. The prepro-
cessing is employed to minimize the domain-gap between the
contactless fingerprints residing in a domain D.; and contact-
based fingerprints residing in another domain D, and consists
of segmentation, enhancement, ridge frequency scaling to 500
ppi, and deformation correction through a learned spatial
transformation network. After preprocessing, we extract deep-
textural and minutiae representations (unordered, variable
length sets T = {(z1,y1,61), ..., (Xn, Yn, 0n)}) for matching.
The final match scores are obtained via a score-level fusion
between the texture and minutiae matching scores.

A. Preprocessing

Here we discuss the details of each stage of our preprocess-
ing algorithm as illustrated in Figure 6.



(a)

(d

Fig. 6: Illustration of our preprocessing pipeline including (a) segmentation, (b) enhancement, (c) scaling, and (d) warping. For reference, a corresponding

contact-based fingerprint is shown in (e).

1) Segmentation: Many contactless fingerprint datasets are
unsegmented; for example, the ISPFDv2 dataset [19] contains
unsegmented, (4,208 x 3,120) images with varying illumina-
tion, resolution, and background conditions. Thus, the first step
in our preprocessing pipeline is to segment the distal phalange
of the fingerprint using a U-net segmentation network [36].
Our segmentation algorithm is a network S(-) which takes as
input the unsegmented contactless fingerprint I.; of dimension
(m x n) and outputs a segmentation mask M & {0,1} of
dimension (m X n). The obtained segmentation mask, M , 18
element-wise multiplied with I,; to (i) crop out only the distal
phalange of the contactless fingerprints and (ii) eliminate the
remaining background to avoid detection of spurious minutiae
in the later representation extraction stage. The segmented
image I/, is then resized to 480 x 480 by maintaining the
aspect ratio with appropriate padding for further processing.

For training S(-), we manually marked segmentation masks
M of the distal phalange of 496 contactless fingerprints
from the ISPFDv2 dataset®. Initially, 200 images were ran-
domly selected to have varying resolutions of either 5MP,
8MP, or 16MP and another 200 were selected with varying
backgrounds and illumination. An additional 96 images were
specifically selected for their greater perceived difficulty, par-
ticularly images with skin tone backgrounds. The optimization
function for training S(-) is a pixel-wise binary cross-entropy
loss between M and M (Eq. 1).

Eseg(Icla Icv M) = - Z[Mi,j log(Mi,j|Icl)
,J

+ (1 — Mi,j) 10g(1 - Aj@jucl)] (1

2) Enhancement: Following segmentation, we apply a se-
ries of image enhancements E(-) to increase the contrast of
the ridge-valley structure of the contactless images, including:
(i) an adaptive histogram equalization to improve the ridge-
valley contrast and (ii) pixel gray-level inversion to correct for
the inversion of ridges between contact-based and contactless
fingerprints. We also experimented with SOTA super resolu-
tion and de-blurring techniques, such as RDN [38], to further
improve the contactless image quality, but found only minimal
matching accuracy improvements at the expense of significant
additional computational cost.

5We used the open source Labelme segmentation tool found on GitHub [37].

3) Distortion Correction and Scaling: After segmenting
and enhancing the contactless fingerprints, the non-linear dis-
tortions that separate the domains of contactless and contact-
based fingerprints must be removed. In particular, this includes
both a perspective distortion (caused by the varying distance of
a finger from the camera) and a non-linear distortion (caused
when the elastic human skin flattens against a platen).

To correct for these discrepancies, we train a spatial
transformer network (STN) [30] 7'(-) that takes as input a
segmented, enhanced contactless image I = FE(I/;) and
aligns the ridge structure to better match the corresponding
contact-based image domain D.. The goal of the STN is two-
fold: (i) an affine transformation T(-) to normalize the ridge
frequency of the contactless images to match the 500 ppi
ridge spacing of the contact-based impressions and (ii) a TPS
deformation warping T}(+) of the contactless images to match
the deformation present in contact-based images due to the
elasticity of the human skin.

Both T(-) and Ty(-) are comprised of a shared localization
network [(-,w) and individual differentiable grid-samplers.
Given an enhanced contactless fingerprint IS, [(IS;, w) outputs
the scale (s), rotation (), and translation (t,,t,) of an affine
transformation matrix A, (Eq. 2) and a distortion field ©
which is characterized by a grid of n x n pixel displacements
{(z1,y1)--.(Tn,yn)}. Subsequently, a scaled, warped image

IYj is obtained via Equation 3.

To learn the weights w of the localization network such
that T (-) and Ty(-) correctly scale the contactless fingerprints
to 500 ppi, and unroll them into a contact-based fingerprint,
we minimize the distance between DeepPrint representations
extracted from genuine pairs of scaled, warped contactless
fingerprints (I}]) and contact-based fingerprints (I.). In par-
ticular, let f(-) be a frozen DeepPrint network pretrained
on contact-based fingerprints. Then, we can obtain a pair
of 192D DeepPrint identity representations R, and R. via
Ry = f(I¥) and R, = f(I.). Our loss can then be computed
from Equation 4. By using the DeepPrint identity features
extracted from contact-based fingerprint images to compute
the loss, we are able to utilize the contact-based impressions
as a ground truth of sorts. In particular, we are training our
localization network to output better scalings and warpings
such that the distortion and scale corrected contactless images
have DeepPrint representations closer to their corresponding
“ground truth” contact-based image.



We note that this approach has key differences to that which
was proposed in [25] where the distortion corrected contactless
image (scale was not learned in [25]) would be more directly
compared to the ground-truth contact-based fingerprint via a
cross-entropy loss between “binarized” versions of I and
I.. We found that directly comparing the contactless and
contact images via a cross entropy loss was quite difficult in
practice since the ground truth contact image and the corre-
sponding contactless image will have different rotations and
translations separating them (even after scaling and distortion
correction - resulting in a high loss value even if the scaling
and distortion are correct). Furthermore, the contact-based
image itself varies based upon the pressure applied during
the acquisition, environmental conditions, sensor model, etc.,
meaning that directly using the contact-based image as ground
truth is unreliable. In contrast, since DeepPrint has been
trained to be invariant to pressure, environmental conditions,
and sensor model, our ground truth (DeepPrint representations
from contact-based images) will remain stable across different
contact-based impressions. In short, unlike [25], we learn both
distortion correction and scaling correction simultaneously,
and we use the DeepPrint identity loss to stabilize training
of T(-) and to enable predictions of warpings and scalings
which better improve matching accuracy.

A= scos(f) —ssin(f) t, )
ssin(f)  scos(8) i,

o = TU5; As, ©) = Ta(Ts (15, As), ©) 3)

Lstn = [[Re — Rell3 “4)

B. Representation Extraction

After performing all of the aforementioned preprocess-
ing steps, we enter the second major stage of our contact-
contactless matcher, namely the representation extraction
stage. Our representation extraction algorithm extracts both
a textural representation (using a CNN) and a minutiae-set.
Scores are computed using both of these representations and
then fused together using a sum score fusion.

1) Texture Representation: To extract our textural repre-
sentation, we fine-tune the DeepPrint network proposed by
Engelsma et al. in [28] on a training partition of the publicly
available datasets which we aggregated (Table III). Unlike
the deep networks used in [23] and [19] for extraction of
textural representations, DeepPrint is a deep-network which
has been specifically designed for fingerprint representation
extraction via a built-in alignment module and minutiae do-
main knowledge. Therefore, in this work, we seek to adopt
DeepPrint for contact-contactless fingerprint matching. As is
common practice in the machine learning and computer vision
communities, we are utilizing a pretrained DeepPrint network
to warm start our model, which has been shown to improve
over random initialization for many applications; for example,
in fingerprint spoof detection [39].

Formally, DeepPrint is a network f(-) with parameters
w that takes as input a fingerprint image / and outputs a
fixed-length fingerprint representation 2 (which encodes the
textural related features). During training, DeepPrint is guided
to encode features related to fingerprint minutiae via a multi-
task learning objective including: (i) a cross-entropy loss on
both the minutiae branch identity classification probability ¢,
and texture branch identity classification probability 7> (Eq.
5), (i1) minimize the intra-class variance of class y via a center
loss between the predicted minutiae feature vector R; and its
mean feature vector R} and the predicted texture feature vector
R and its mean feature vector Rg (where R; concatenated
with Ry form the full representation R), and (iii) a mean
squared error loss on the predicted minutiae maps H output by
DeepPrint’s minutiae branch and ground truth minutiae maps
H (Eq. 7). These losses are combined to form the DeepPrint
identity loss, Lrp (Eq. 8), where A1 = 1, Ay = 0.00125,
A3 = 0.095 are set empirically.

L1(1,y) = —log(g] |1, w) —log(@ "L, w)]  (5)

Lo(I,y) = | Ry — RY||3 + || Re — RY |3 (6)
Ls(I,H) = (Hjki— Hjk) (7
7.k,
Lip(1,y, H) = argmin Y [\ Ly (I, y") + AaLa(I',y)
wo=1

+ \sLs(I, HY)] (8)

Due to the differences in resolution, illumination, and
backgrounds observed between different datasets of contact-
less fingerprint images, generalization to images captured on
unseen cameras becomes critical. The problem of cross-sensor
generalization in fingerprint biometrics (e.g., optical reader to
capacitive reader), of which contact to contactless matching is
an extreme example, has been noted in the literature [40], [41],
[42], [43], with many previous works aimed at improving the
interoperability [44], [45], [46]. Motivated by the recent work
employing adversarial learning to cross-sensor generalization
of fingerprint spoof detection [47], we incorporate an adversar-
ial loss to encourage robustness of DeepPrint to differences be-
tween acquisition devices. The adversarial loss L4 is defined
as the cross-entropy on the output of an adversary network
q(+,04) across C classes of sensors, where the adversarial
ground truth y’ is assigned equal probabilities across these C'
classes (Eq. 9). The adversarial loss £ 4 and identity loss Lp
form the overall loss function £ used to train DeepPrint (Eq.
10), where Ay, = 0.1 is empirically selected. The adversary
network, ¢(-,604), is a two layer fully connected network, with
weights 6 4, that predicts the probability of the class of input
device used to capture each image, i.e., minimizes the cross-
entropy of the predicted device and the ground truth device
label y (Eq. 11). Intuitively, if DeepPrint learns to fool the
adversary, it has learned to encode identifying features which
are independent of the acquisition device or camera.



TABLE III: Number of contactless and contact fingerprint images used in training each component of C2CL (# contactless / # contact).

Dataset Segmentation Deformation Correction & Scaling DeepPrint
s() T() £0)
UWA Benchmark 3D Fingerprint Database [22] 0/0 0/0 1,000/2, 000
ManTech Phase2, 2015 [29] 0/0 0/0 21,352/28,574
PolyU Contactless 2D to Contact-based 2D Images Database [21] 0/0 1,920/1, 920 1,920/1,920
MSU Finger Photo and Slap Fingerprint Database [20] 0/0 2,472/2,472 2,472/2,472
IIT Bombay Touchless and Touch-based Fingerprint Database [18] 0/0 800/800 800/800
ISPFDV2 [19] 496/0 8,400/1,200 8,400/1,200
71U Finger Photo and Touch-based Fingerprint Database 0/0 0/0 0/0
Total 496/0 13,592/6,392 35,944/36, 966
o A. Datasets
La(l,y)=— Z yrlog ga(ye| f(I;w);04) 9) Table II gives a detailed description of the publicly available
e=1 datasets for contact to contactless matching used in this

N
£D(I7 Y, H? y/) = a‘rgminZ[‘cID(Iv Y, H)
w i—1

+AaLa(I' Y] (10)

Lo(I,ye) = —yelog qa(yel f(I;w);04)] (11)

In addition to the adversarial loss, we also increased the
DeepPrint representation dimensionality from the original
192D to 512D and added perspective distortion and scal-
ing augmentations during training. In an ablation study (Ta-
ble VIII), we show how each of our DeepPrint modifications
(fine-tuning, adversarial loss, perspective and scaling aug-
mentations, and dimensionality change) improves the contact-
contactless fingerprint matching performance.

2) Minutiae Representation: Finally, after extracting a tex-
tural representation with our modified DeepPrint network, we
extract a minutiae-based representation from our preprocessed
contactless fingerprints with the Verifinger 12.0 SDK.

C. Matching

Following feature extraction, from which we obtain texture
representations (RS, R$') and Verifinger minutiae represen-
tations (R¢,, R¢) for a given pair of contact and contactless
fingerprint images (I, I.;), we compute a final match score as
a weighted fusion of the individual scores computed between
(RS, R¢Y and (RS, RS). Concretely, let s; denote the sim-
ilarity score between (RS, R¢') and s,, denote the similarity
score between (RS, Rf,i), then the final similarity score is
computed from a sum score fusion shown in Equation 12. For
our implementation, w; = w,, = 0.5 was selected empirically.
(12)

S = WSt + W Sm

IV. EXPERIMENTS

In this section, we give details on various experimental
evaluations to determine the effectiveness of C2CL for contact
to contactless fingerprint matching. We employed various
publicly available datasets for the evaluation of our algorithms,
as well as a new database of contactless and correspond-
ing contact-based fingerprints which was collected using our
mobile-app in coordination with Zhejiang University (ZJU).

study and Figure 3 shows some example images from these
datasets. For comparison with previous studies, we use the
same train/test split of the PolyU dataset that was used in
[23], which consists of 160 fingers for training with 12 im-
pressions each and the remaining 160 fingers for testing with 6
impressions each. Similarily, we split the UWA Benchmark 3D
dataset into 500 training fingers and 1, 000 unique test fingers.
Furthermore, following the protocol of Malhotra et al. [19], we
split the ISPFDv2 dataset evenly into 50% train and 50% test
subjects. Finally, we captured and sequestered a new dataset of
contactless fingerprints and contact-based fingerprint images in
coordination with ZJU for a cross-database evaluation (e.g.,
not seen during training) to demonstrate generalizability of
our algorithm. The cross-database evaluation is much more
stringent than existing approaches which only train/test on
different partitions of the same dataset. Indeed, the cross-
database evaluation is a much better measure of how C2CL
would perform in the real world.

The ZJU Finger Photo and Touch-based Fingerprint
Database contains a total of 206 subjects, with 12 contactless
images and 12 contact-based impressions per finger. The
thumb and index fingers of both hands were collected for each
subject, giving a total of 9, 888 contactless and contact-based
images each. The contactless images were captured using three
commodity smartphones: HuaWei P20, Samsung s9+, and
OnePlus 8, whereas the contact-based fingerprint impressions
were captured on a URU 4500 optical-based scanner at 512
ppi. An Android fingerphoto capture app was developed to
improve the ease and efficiency of the data collection. To
initiate the capturing process, a user or operator enters the
transaction ID for the user and uses an on screen viewing
window to help guide and capture the fingerprint image.
Furthermore, a counter displayed on the screen keeps track of
subsequent captures to streamline the data collection process.

B. Implementation Details

All the deep learning components (segmentation network,
deformation correction and scaling network, and DeepPrint)
are implemented using the Tensorflow deep learning frame-
work. Each network is trained independently and information
regarding how many of the contactless and contact fingerprint



TABLE IV: Deformation Correction and Scaling Spatial Transformation
Network Architecture, 7°(+).

Layer #Filters, Filter Size, Stride Output Dim.
0. Input 0,0,0 480 x 480 x 1
1. Convolution 32,3 x 3,2 240 x 240 x 32
2. Convolution 64,3 x 3,2 120 x 120 x 64
3. Convolution 128,3 x 3,2 60 x 60 x 128
4. Convolution 256,3 x 3,2 30 x 30 x 256
5. Max Pool 256,6 x 4,2 13 x 14 x 256
6. Dense - 1024

7. Dense — 2Xng+4

The final dense layer contains output neurons for a 2 X ng grid of ng =
n X n pixel displacements and 4 neurons for the affine transformation
matrix (s, 0, t; and t,.). In our implementation, n = 4.

images from each of the datasets used in training each com-
ponent of our algorithm is given in Table III.

1) Segmentation Network: A total of 496 contactless finger-
print images from the ISPFDv2 were manually labeled with
segmentation masks outlining the distal phalange were used
for training. Input images were down sampled to 256 x 256
during training to reduce the time to convergence, which
occurred around 100, 000 iterations using stochastic gradient
descent (SGD) with a learning rate of le™3 and a batch
size of 8 on a single NVIDIA GeForce RTX 2080 Ti GPU.
During inference, the contactless fingerprint images are re-
sized to 256 x 256 and resulting segmentation masks are
upsampled back to the original resolution. Due to limited
number of manually marked images, we employed random
rotations, translations, and brightness augmentations to avoid
over-fitting. Additionally, we incorporated random resizing of
input training images within the range [128 x 128, 384 x 384]
to encourage robustness to varying resolution between capture
devices.

2) Deformation Correction and Scaling Network: The pre-
trained DeepPrint model in [28] was used to provide supervi-
sion of our spatial transformation network in line with Eq 4.
The motivation for using a network pretrained on contact-
based fingerprints, rather than our new finetuned model on
contactless fingerprints, is that the goal of our transformation
network is to transform the contactless fingerprint images
to better resemble their contact-based counterparts. Thus, a
supervisory network trained on solely contact-based fingerprint
images is more suitable for this purpose. The architectural
details of our STN localization network are given in Table IV.
For our implementation, we set the number of sampling points
for the distortion grid to n = 4 x 4. Data augmentations
of random rotations, translations, brightness adjustments, and
perspective distortions were employed to avoid over-fitting.
This network was trained for 25, 000 iterations using an Adam
optimizer with a learning rate of 1e~¢ and a batch size of 16
on a single NVIDIA GeForce RTX 2080 Ti GPU.

3) DeepPrint: The DeepPrint network was trained on two
NVIDIA GeForce RTX 2080 Ti GPUs with an RMSProp opti-
mizer, learning rate of 0.01, and a batch size of 16. The added
adversary network, which was trained in step with DeepPrint,
also utilized an RMSProp optimizer with a learning rate of
0.01. A small validation set was partitioned from the DeepPrint

fine-tuning data outlined in Table III to stop the training (which
occurred at 73,000 steps). Lastly, random rotation, translation,
brightness, cropping, and perspective distortion augmentations
were utilized during training.

C. Evaluation Protocol

To evaluate the cross-matching performance of our algo-
rithms, we conduct both verification (1:1) and identification
(1:N) experiments. For verification, we report the Receiver
Operating Characteristic (ROC) curves at specific operating
points and equal error rates (EER). Note that we report the
True Acceptance Rate (TAR) at a False Acceptance Rate
(FAR) of 0.01%, which is a stricter threshold than is currently
reported in the literature, and which is also a threshold
expected for field deployment. For the search experiments,
the rank-one search accuracy is given against an augmented
large scale gallery of 1.1 contact million fingerprints taken
from an operational forensics database [2]. This is a much
larger gallery than has previously been evaluated against in the
literature and is again more indicative of what C2CL would
face in the real world. Finally, we present ablation results on
each significant component of our proposed system.

D. Verification Experiments

The verification experiments are conducted in a manner con-
sistent with previous approaches to facilitate a fair comparison.
In particular, (i) the PolyU testing dataset yields 5, 760 (160 x
6 x 6) genuine scores and 915, 840 (160 x 159 x 6 x 6) imposter
scores, (ii) the UWA Benchmark 3D dataset yields 8,000
(1,000 x 4 x 2) genuine and 7,992, 000 (1,000 x 999 x 4 x 2)
imposter scores, (iii) the ISPFDv2 dataset (which is split into 7
different capture variations)® yields 68, 096 ((152 x 8 x 8) x 7)
genuine and 10,282,496 ((152 x 151 x 8 x 8) x 7) imposter
scores, and (iv) the ZJU dataset yields 118,656 (824 x 12x 12)
genuine and 97,653, 888 (824 x 823 x 12 x 12) imposter scores.
Due to the very high number of possible imposter scores for
ZJU, we limit the number of imposter scores computed to only
include the first impression of each imposter fingerprint. This
process results in 678, 152 imposter scores out of the possible
97,653, 888 scores. It is assumed for all experiments that the
contactless fingerprints and contact-based impressions are the
probe and enrollment images, respectively.

Table V provides the Equal Error Rate (EER) and TAR
@ FAR=0.01% of C2CL on the different datasets. For com-
parison with previous methods, rather than implement the
relevant SOTA approaches that have been proposed and risk
under representing those methods, we directly compare our
approach to the results reported in each of the respective
papers. In terms of EER, our method outperforms all the
previous approaches in the verification setting. Not only does
our individual performance of the minutiae and textural repre-
sentations alone exceed that of the previous SOTA methods (in

%The 7 scenarios consist of different background, illumination, and resolution
variations (e.g., white background & indoor lighting, white background &
outdoor lighting, natural background & indoor lighting, natural background
& outdoor lighting, 5SMP resolution, SMP resolution, and 16MP resolution.
For our evaluation, we combine each of these into a single dataset.



TABLE V: Verification performance of C2CL.

Dataset Verifinger 12.0 DeepPrint DeepPrint + Verifinger 12.0 Previous SOTA
EER (%) TAR @ FAR=0.01% EER (%) TAR @ FAR=0.01% EER (%) | TAR @ FAR=0.01% EER (%)
PolyU 0.46 97.20 2.37 72.07 0.30 97.74 7.93 [23]
UWA 6.81 92.56 5.29 83.40 0.72 98.30 7.11 [23]
ISPFDv2 1.46 96.02 2.33 84.33 1.20 96.67 3.40% [19]
zjut 0.79 96.86 2.08 86.42 0.62 97.56 N/A

£ [19] reports results on the ISPFDv2 dataset per individual capture condition; 3.40 is the average EER across these data splits.

T Cross-database evaluation, i.e., not seen during training.

TABLE VI: DeepPrint verification performance when finetuned on only
PolyU.

Dataset EER (%) | TAR (%) @ FAR=0.01%
PolyU 1.90 74.62
UWA 8.35 35.42
ISPFDv2 3.87 57.10
ZJU 2.99 68.99

particular, even if we remove Verifinger, we still beat SOTA in
all cases), the fusion performance attains matching accuracy
(EER = 0.30% — 1.20%), which is much closer to contact-
contact fingerprint matching [26]. Even in the most challeng-
ing cross-database evaluation (ZJU), C2CL attains competitive
performance with contact-contact matching - demonstrating
the generalizability of C2CL to unseen datasets. Note that we
report the TAR @ FAR=0.01% only for C2CL since most of
the prior approaches only report EER and none report TAR
@ FAR =0.01%.

Different from previous approaches, which train individual
models on a train/test split for each evaluation dataset, we
have trained just a single model for our evaluation across four
different datasets. This protocol is actually more challenging
than finetuning for each individual evaluation dataset. This is
because despite having a smaller number of training samples,
higher verification performance can more easily be achieved
by individually trained models. To support this claim, we have
finetuned an additional model on just the PolyU dataset using
the same train/test split specified in [23] and recorded the
verification performance in Table VI. We observe that our
accuracy improves on PolyU from 2.37% EER for the model
trained on our full combination of training datasets to 1.90%
EER for the model trained on just PolyU; however, because
of the lower performance on the other three datasets, we can
see that this model is indeed over-fit to PolyU.

1) Ablation study: We present an ablation study (Table VII)
to fully understand the contribution of the main components
of our algorithm; namely, segmentation, enhancement, 500
ppi frequency scaling, and TPS deformation correction. From
the ablation, we notice there is a substantial improvement in
both EER and TAR @ FAR=0.01% just from incorporating
proper enhancement of the contactless images. In most cases,
there is almost a 50% reduction in EER from including
both contrast enhancement and binary pixel inversion. For
brevity, not shown in the table is the individual contribution
of inverting the ridges of the contactless images aside from
contrast enhancement. For reference, the EER of DeepPrint on
ZJU warped images with only contrast enhancement is 2.49%.

This is in comparison to the EER of 2.08% on the warped
images with both contrast enhancement and pixel inversion.

Furthermore, we observe that for the smartphone captured
contactless fingerprints in the ISPFDv2 and ZJU datasets,
there is a dramatic performance jump when incorporating
our 500 ppi scaling network. Additionally, there is another
noticeable improvement when incorporating the deformation
correction branch of our STN, most notably for the ISPFDv2
dataset. Since the ZJU dataset contains equal numbers of
thumb and index fingers, where the majority of our training
datasets contain mostly non-thumb fingers, we observed that
the deformation correction is less beneficial on average for the
ZJU dataset compared to ISPFDv2. In fact, from Table IX, we
see that the EER of just index fingers of ZJU is noticeably
lower than the EER on thumbs.

To investigate whether the lower performance on thumbs is
a limitation of the available training data or whether thumbs
require a different distortion correction from non-thumbs, we
retrained separate warping models on thumb data only and
non-thumb data only. The test results for the ZJU dataset are
in Table X. A couple of observations: i.) The performance
(TAR @ FAR=0.01%) is highest for the model trained on both
thumbs and non-thumbs, ii.) the model trained on non-thumbs
performs slightly worse when applied to the test set of thumbs
in the ZJU dataset, which indicates that the warping required
for thumbs may be slightly different, and iii.) the performance
of the thumb only model decreases on both thumbs and non-
thumbs due to the limited number of thumb training examples.

2) Multi-finger fusion verification: The final set of verifica-
tion experiments is to investigate the effects of finger position
and multiple finger fusion in the verification accuracy for the
ZJU dataset. Table IX, shows the individual performance per
finger position and the fusion of multiple fingers; namely,
thumb only, index only, fusion of right thumb and right index,
fusion of left thumb and left index, and four finger fusion.
The motivation for considering fusion of the thumb and index
on each hand is that from a usability standpoint, a user may
be able to use their dominant hand when capturing their own
fingerprints. Notably, when fusing multiple fingers (e.g., right
index and left index), we obtain nearly perfect accuracy.

E. Search Experiments

For the identification (or search) experiments, we utilize
the first impressions of both the contactless and contact-based
fingerprints of the ZJU dataset. The contact-based fingerprints
are placed in the gallery which is augmented with 1.1 million
fingerprint images from an operational forensic database [2].



TABLE VII: Ablation study of C2CL using only Verifinger 12.0 for
matching®. S = segmentation, £ = enhancement Ts = scaling, Ty =
deformation correction.

TABLE IX: Multi-finger fusion verification results of the proposed matcher
on the ZJU dataset.

Finger Type EER (%) | TAR (%) @ FAR = 0.01%
Dataset Modules Overall (%) Thumb 0.95 95.89
S | E|Ts | Tgq EER | TAR @ FAR = 0.01% T , 1
; 0.86 93.19 ndex 0.48 98.3
v v 0.45 06.96 LT + LI 0.00 99.77
PolyU vy 0.48 96.44 RT + RI 0.00 99.74
VvV v 0.46 97.20 RT + LT 0.00 99.80
UWAE v 6.62 91.05 RI + LI 0.00 99.89
v |V 6.81 92.56
v 13.76 23.93 TABLE X: Applying separate warping modules for thumbs vs. non-thumbs
(TAR (%) @ FAR=0.01%).
ISPEDv2 v |V 7.83 38.53
vy 2.02 93.3 Method Trained on Trained on Trained on
V| vV v 1.46 96.02 thumbs and non-thumbs thumbs
v 3.35 82.8 non-thumbs
v v 1.88 89.9 ZJU 92.22 92.24 91.66
zjut sl 0.9 96.97 non-thumbs
sl Y 0.79 96.86 7ZJU thumbs 80.66 77.50 76.80
- - - - ZJU all 86.42 84.80 84.46
* Ablation results for DeepPrint are not shown since only a single

model was trained on the final E+S+Ts+71,; images.
¥ We do not apply our STN here since these images are captured with
a 3D scanner and are already unrolled and at a resolution of 500 ppi.

T Cross-database evaluation, i.e., not seen during training.

TABLE VIII: DeepPrint Ablation Study

Method ZJU EER (%)
DeepPrint [28] 4.07
+ finetune 2.68
+ 512D 2.64
+ Augmentations 2.35
+ Adversarial Loss 2.08

* Each row adds on to the previous row.

The contactless fingerprint images serve as the probes. We note
that our 1.1 million augmented gallery is significantly larger
than any of the existing galleries used to evaluate contact-
contactless fingerprint search, and is more indicative of the
real world use-case of cross fingerprint matching (e.g., in a
National ID system like Aadhaar where a large gallery of
contact-based fingerprints is already enrolled and used for de-
duplication).

We evaluate 3 different search algorithms on the ZJU
augmented gallery: (i) Verifinger 1:N search, (ii) search via
our DeepPrint texture matcher (scores s; from Eq. 12 are
computed between a given preprocessed, contactless probe,
and all 1.1 million contact-based fingerprints in the gallery),
and (iii) a two-stage search algorithm [28] where the DeepPrint
texture scores are first used to retrieve the top-500 candidates,
followed by a reordering using the 1:1 minutiae matching
scores (s,, from Eq. 12) from Verifinger. The advantage of
the two-stage search scheme is that it balances both speed
and accuracy by utilizing the matching speed of DeepPrint
to locate the first list of 500 candidates and the accuracy of
Verifinger to further refine this list.

From Table XII, we observe that Verifinger outperforms

DeepPrint stand-alone but at a search time against 1.1 million
that is quite slow in comparison to DeepPrint. This motivates
combining both approaches into the aforementioned two-stage
search algorithm which outperforms Verifinger at Rank-1 and
reduces the search time by 50 seconds. In short, our two stage
search algorithm obtains high levels of search accuracy on a
large-scale gallery at a significant search time savings.

F. Segmentation Evaluation

A successful segmentation algorithm for contactless finger-
print images must not only reliably detect the distal phalange
of the contactless fingerprint, but also be robust to varying
illumination, background, and resolution that is expected to oc-
cur in highly unconstrained capture environments. The method
by Malhotra et al. [19] performed well on the ISDFPDv2
dataset using certain hyperparameters that were fit to this
particular dataset; however, the authors did not evaluate it on
unseen datasets. In contrast, our algorithm requires no hyper-
parameter tuning and still performs well across a variety of
different evaluation datasets, both seen and unseen. Table XIII
gives a comparison on the unseen ZJU dataset between our
method and our implementation of the baseline approach of
Malhotra et al., which was trained on the ISPFDv2 dataset.
For this evaluation, we manually marked the first contactless
fingerprint image of each unique finger in the ZJU dataset
with ground truth segmentation masks of the distal phalange,

TABLE XI: Improvement in minutiae correspondence without and with
warping correction on ZJU dataset.

Avg. Avg. Avg. Goodness
Number of | Number of | Number of | Index [48]
Paired Missing Spurious
Minutiae Minutiae Minutiae
Without 28.06 67.95 71.13 -0.0167
warping
With 30.11 65.00 69.20 —0.0157
warping




TABLE XII: Search performance of the proposed matcher on the ZJU dataset
with a gallery of 1.1 million.

Method Rank (%) S.earch

1 10 100 500 Time (s)
DeepPrint 83.56 | 93.06 | 95.86 | 97.08 0.4
Verifinger 12.0 95.25 | 96.47 | 96.95 | 97.20 60.1
DeepPrint + | 95.49 | 96.10 | 96.95 | 97.08 10.5
Verifinger 12.0

DeepPrint + Verifinger 12.0 refers to indexing the top-500 can-
didates with DeepPrint and then re-sorting those 500 candidates
using a fusion of the Verifinger and DeepPrint score.

TABLE XIII: Intersection Over Union (IOU) for segmentation S(-).

Method 10U
Baseline [19] 0.747
Proposed 0.899

and then computed the Intersection Over Union (IOU) metric
between the predicted segmentation masks of our algorithm
and our implementation of the benchmark algorithm in [19].
Our method does not require any hyper-parameter tuning and
still achieves higher IOU compared to [19].

A qualitative analysis of our segmentation network (see Fig-
ure 5) shows our algorithm is robust to varying illumination,
background, and resolution and generalizes across multiple
datasets of contactless fingerprints. However, as seen in Fig-
ure 5 (b), the network may still fail in extremely challenging
background and illumination settings. An additional consid-
eration, which is of importance for real-time deployment,
is the processing speed of the segmentation network. Our
segmentation algorithm is extremely fast compared to existing
methods - requiring just 12.6ms to segment a (900 x 1200)
resolution image. In contrast, our parallel implemenation of the
baseline approach of Malhotra et al. requires 3s per image.

V. DISCUSSION

Despite the low error rates achieved across each dataset,
there are many factors that complicate the cross-matching
performance and lead to both type I (false rejects) and type II
(false accepts) errors. Many of the type I and type II errors are
attributed to a failure to correctly segment and scale only the
distal phalange of the input contactless fingerprint. Incorrect
segmentation can lead the large amounts of the image con-
taining background rather than the relevant fingerprint region.
Other errors can be attributed to the inherent low-contrast of
the contactless fingerprints, despite any effort of contrast or
resolution enhancement. The only way to mitigate these types
of failures is to include a quality assurance algorithm at the
point of capture of the contactless fingerprint images. Lastly,
minimal overlap in the fingerprint ridge structure between
genuine probe and gallery fingerprint images is the cause of
many false rejections, whereas very similar ridge structure
between imposter fingerprint pairs leads to a number of false
accepts. This challenge is present in contact-contact matching;
however, is exaggerated in C2CL because of the unconstrained
pose variance of the finger in 3D space.

The potential for greater variance in the capture conditions
when capturing contactless fingerprint images necessitates
more robust preprocessing to reliably match contactless fin-
gerprints. Thus, performance will likely be markedly lower in
unconstrained scenarios compared to highly controlled capture
environments that employ dedicated hardware for the image
acquisition, such as the PolyU and UWA datasets. How-
ever, C2CL has pushed the SOTA forward both in matching
more unconstrained fingerphotos and the more constrained
dedicated-device captured contactless fingerprints. Addition-
ally, one might consider acquiring multiple image views of
the same finger to build a complete 3D model of the finger
to guide the preprocessing stage; however, this would add
additional computational costs and latency to the acquisition
process. Furthermore, in some capture scenarios, certainly the
setup employed by our capture app, this process may be
ergonomically challenging for the user.

As highlighted in the ablation study of Table V, most of
the improvement in interoperability between contactless and
contact-based fingerprints is due to appropriate 500 ppi scaling
of the contactless prints; however, incorporating a deformation
correction module is also shown, with statistical signiﬁcance7,
to further improve the compatibility. Figure 7 aims to highlight
this fact through an overlay of the fingerprint ridge structure
of one pair of corresponding contact and contactless finger-
prints before and after applying the deformation correction.
Additionally, Table XI shows the average number of paired
minutiae, missing minutiae, spurious minutiae, and Goodness
Index [48] without and with the warping correction on the ZJU
dataset. The GI, ranging from -1 to 3, is a combined measure
of paired, missing, and spurious minutiae. The warping module
improved the GI by 5.99%. Thus, the improved alignment
indubitably leads to better minutiae-based and texture-based
matching, as verified by our experiments.

Lastly, in order to utilize a large CNN, such as DeepPrint,
for the task of contact-contactless fingerprint matching, we
leveraged a large dataset [2] from a related domain of contact-
contact fingerprint matching to pretrain our DeepPrint net-
work. Since this dataset is not currently publicly available, we
have repeated the verification experiments when pretraining
DeepPrint on the publicly available NIST N2N dataset [50]
(see Table XIV). Due to the smaller dataset, we experience
a slight degradation in the DeepPrint performance on some
of the evaluation datasets; however, further data augmentation
and incorporation of other publicly available datasets can be
used to improve the performance.

VI. COMPUTATIONAL EFFICIENCY

Our system architecture consists of a variety of deep
networks (segmentation network, deformation correction and
scaling STN, DeepPrint CNN feature extractor) and a minutiae
feature extractor. The inference speeds of the segmentation
network, STN, and DeepPrint are approximately 12.6ms,

TThe Mann-Whitney rank test [49] was used to compute the statistical
significance between the ROC curves of S+E+Ts and S+E+1s+T,. For all
four datasets, the p value is smaller than 0.05, indicating that the difference
is statistically significant to reject the hypothesis that the two curves are
similar with a confidence of 95%.



TABLE XIV: DeepPrint performance pretrained with NIST N2N [50] dataset vs. Longitudinal dataset referenced in Yoon and Jain [2].

Dataset Pretrained on NIST N2N Dataset (publicly available) Pretrained on Longitudinal Dataset
EER (%) TAR (%) @ FAR = 0.01% EER (%) TAR (%) @ FAR = 0.01%
PolyU 2.04 71.30 2.37 72.07
UWA 5.62 56.99 5.29 83.40
ISPFDv2 2.60 81.83 2.33 84.33
zyut 3.09 77.92 2.08 86.42

T Cross-database evaluation, i.e., not seen during training.

(b)

Fig. 7: Comparison of ridge overlap (a) with and (b) without the unwarping
module. Use of the unwarping module results in better ridge alignment
between contactless and contact-based images.

6.2ms, and 26.3ms using a single NVIDIA GeForce RTX
2080 Ti GPU and 143.8ms, 19.5ms, and 120.2ms on an Intel
Core 17-8700X CPU @ 3.70GHz, respectively. The Verifinger
12.0 feature extractor requires 600ms on an Intel Core i7-
8700X. In total, the inference speed of the end-to-end network
is &~ 643.6ms with an NVIDIA GeForce RTX 2080 Ti GPU
or ~ 883.5ms on an Intel Core i7-8700X CPU.

The deep network components of our algorithm are capable
of very fast inference per input image; however, the system as
a whole consumes a large amount of memory (400 MB). To
fit into a resource constrained environment, such as a mobile
phone, further optimization to the system architecture can
easily be implemented with very little, if any, performance
drop. First, the intermediate step of generating a scaled image
prior to the deformation correction is not required for deploy-
ment and was just included for the ablation study. Instead, we
can remove the affine transformation layer of our STN and
directly scale and warp the input images in one step. As it
stands, the main components of the algorithm, DeepPrint and
Verfinger, require ~ 1s and = 1.2s on a mobile phone (Google
Pixel 2), respectively. Thus, the inference time is estimated
to be ~ 2 seconds. However, to further boost the speed,

rather than rely on a COTS system for minutiae extraction
and matching, we can directly use the minutiae sets output by
DeepPrint and a computationally efficient minutiae matcher to
obtain the minutiae match scores, such as MSU’s Latent AFIS
Matcher [51]. Porting the model with these optimizations to a
mobile phone remains as a point of future work.

VII. CONCLUSION AND FUTURE WORK

We have presented an end-to-end system for matching
contactless fingerprints (i.e., finger photos) to contact-based
fingerprint impressions that significantly pushes the SOTA
in contact-contactless fingerprint matching closer to contact-
contact fingerprint matching. In particular, our contact to
contactless matcher achieves less than 1% EER across multiple
datasets employing a variety of contactless and contact-based
acquisition devices with varying background, illumination, and
resolution settings. Critical to the success of our system is
our extensive preprocessing pipeline consisting of segmen-
tation, contrast enhancement, 500 ppi scale normalization,
deformation correction, and our adaptation of DeepPrint for
contact-contactless matching. Our cross-database evaluations
and large-scale search experiments are more rigorous eval-
uations than what is reported in the open literature, and it
enables us to confidently demonstrate a step toward a contact-
contactless fingerprint matcher that is comparable to SOTA
contact-contact fingerprint matching accuracy.
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