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Abstract— An information source generates independent and
identically distributed status update messages from an observed
random phenomenon which takes n distinct values based on a
given probability mass function (PMF). These update packets
are encoded at the transmitter node to be sent to a receiver
node which wants to track the observed random variable with
as little age as possible. The transmitter node implements a
selective k encoding policy such that rather than encoding all
possible n realizations, the transmitter node encodes the most
probable k realizations. We consider three different policies
regarding the remaining n−k less probable realizations: highest
k selective encoding which disregards whenever a realization from
the remaining n−k values occurs; randomized selective encoding
which encodes and sends the remaining n − k realizations with
a certain probability to further inform the receiver node at the
expense of longer codewords for the selected k realizations; and
highest k selective encoding with an empty symbol which sends a
designated empty symbol when one of the remaining n − k

realizations occurs. For all of these three encoding schemes,
we find the average age and determine the age-optimal real
codeword lengths, including the codeword length for the empty
symbol in the case of the latter scheme, such that the average age
at the receiver node is minimized. Through numerical evaluations
for arbitrary PMFs, we show that these selective encoding policies
result in a lower average age than encoding every realization,
and find the corresponding age-optimal k values. Since we focus
on real-valued codeword lengths in this paper, the resulting age
value obtained in each case studied here serves as a lower bound
to what can be attained by integer-valued codeword lengths in
that case.

Index Terms— Timely source coding, age of information, infor-
mation freshness, selective encoding.

I. INTRODUCTION

A
GE of information is a performance metric which quan-

tifies the timeliness of information in networks. It keeps

track of the time since the most recent update at the receiver

has been generated at the transmitter. Age increases linearly
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Fig. 1. An information source generates i.i.d. status updates from a random
variable X. Only a portion of the realizations (shown with a square) is encoded
into codewords. Update packets that come from the selected portion of the
realizations that find the transmitter node idle are sent to the receiver node.
Non-selected realizations (shown with a triangle) are always discarded at the
transmitter node even if the transmitter node is idle.

in time such that at time t age Δ(t) of an update packet which

was generated at time u(t) is Δ(t) = t − u(t). When a new

update packet is received, the age drops to a smaller value. Age

of information has been studied in the context of queueing

networks [2]–[11], scheduling and optimization [12]–[32],

energy harvesting [33]–[42], reinforcement learning [43]–[47]

and so on. The concept of age is applicable to a wide range

of problems, e.g., in autonomous driving, augmented reality,

social networks, and online gaming, as information freshness

is crucial in all these and other emerging applications.

In this work, we consider a status updating system that

consists of a single transmitter node and a single receiver

node (see Fig. 1). The transmitter receives independent and

identically distributed time-sensitive status update packets

generated by an information source based on an observed

random phenomenon that takes n distinct values with a known

probability mass function (PMF). This observed random vari-

able could be the position of a UAV in autonomous systems

or share prices in the stock market. Arriving status update

packets are encoded at the transmitter and sent to the receiver

through an error-free noiseless channel. The receiver wants

to acquire fresh information regarding the observed random

variable, which brings up the concept of age of information.

Unlike most of the literature in which the transmission

times, also referred to as service times in queueing theory, are

based on a given service distribution, in this work, we design

transmission times through source coding schemes by choos-

ing the codeword lengths assigned to realizations. That is,

the codeword length assigned to each realization represents

the service time (transmission time) of that realization.

References that are most closely related to our work

are [48]–[50] which study the timely source coding problem

for a discrete-time system. References [48] and [49] study
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a communication system where a source follows a zero-wait

update generation model whereas in [50] status updates arrive

exogenously as a Bernoulli process. In [48], the transmitter

only skips the status updates that are generated while the

channel is busy. Unlike the model in [48], references [49]

and [50] reconstruct the entire source message stream in a

lossless manner. Reference [48] finds real-relaxation of the

underlying integer-valued codeword lengths using Shannon

codes based on a modified version of the given PMF that

achieve the optimal age with a constant gap. References [49]

and [50] consider block coding and source coding problems

to find age-optimal codes for FIFO queues.

Different from [48]–[50], in our model, time is not slotted

and the status update packets arrive at the transmitter node

following a Poisson process with a known parameter λ. Unlike

the model in [48], we introduce an encoding mechanism

where the transmitter skips not only the status updates that are

generated while the channel is busy but also the least probable

ones to achieve a lower average age of information at the

receiver. We term this encoding mechanism selective encoding.

In this selective encoding model, instead of encoding all pos-

sible realizations, we encode only a portion of the realizations

and send to the receiver node. Specifically, we consider what

we call the highest k selective encoding scheme in which we

only encode the most probable k realizations and disregard

any update packets from the remaining n − k realizations.

We note that a smaller k yields shorter codeword lengths but

larger interarrival times, as in this case most of the updates are

not encoded. However, when k is large, codeword lengths and

correspondingly the transmission times get larger even though

the interarrival times get smaller. Thus, in this paper, based

on the given PMF, we aim to find the optimal k which strikes

a balance between these two opposing trends such that the

average age at the receiver node is minimized. Due to this

selective encoding scheme not every realization is sent to the

receiver even if the channel is free.

Next, we consider a scenario in which the remaining n− k

realizations are not completely disregarded but encoded with

a certain probability which we call the randomized selective

encoding scheme. In this scheme, in addition to the most

probable k realizations, the remaining n − k less probable

realizations are sometimes encoded.

A disadvantage of the highest k selective encoding scheme

is the fact that the receiver node is not informed when one

of the non-selected realizations occurs. For instance, during a

period with no arrivals, the receiver node cannot differentiate

whether there has been no arrivals or if the arrival has taken

one of the non-selected values as in either case it does not

receive any update packets. Thus, lastly, we take a careful

look at the remaining n−k realizations and propose a modified

selective encoding policy which we call the highest k selective

encoding with empty symbol that still achieves a lower average

age than encoding every realization but also informs the

receiver node when one of the non-selected values is taken

by the observed random variable. In this scheme, only the

most probable k realizations are encoded and the remaining

n−k realizations are mapped into a designated empty symbol

such that in the case of these n− k non-selected realizations,

Fig. 2. Update packets that come from the selected portion of the
realizations (shown with a square) that find the transmitter idle are sent to
the receiver. Non-selected realizations (shown with a triangle) that find the
transmitter idle are mapped into an empty symbol.

this empty symbol is sent to further inform the receiver (see

Fig. 2). Thus, in such a case, the receiver at least knows

that the observed random variable has taken a value from

the non-selected portion even though it does not know which

value was taken specifically. We consider two variations on

this policy: when the empty symbol does not reset the age

and when the empty symbol resets the age.1

For all three encoding schemes, we find the average

age experienced by the receiver node and determine the

age-optimal real codeword lengths, including the codeword

length of the empty symbol in the case of the highest k selec-

tive encoding with empty symbol scheme. Through numerical

evaluations for given arbitrary PMFs, we show that the pro-

posed selective encoding policies achieve a lower average age

than encoding every realization, and find the corresponding

age-optimal k values. In addition, we discuss the optimality

of the highest k selective encoding policy. We note that, since

we focus on age-optimal real-valued codeword lengths in this

paper, the obtained age values serve as lower bounds to what

can be attained by integer-valued codeword lengths. Designing

age-optimal integer-valued codeword lengths is not addressed

in this paper and remains an interesting open problem.

Finally, a similar k out of n type of idea was used

in [51]–[55] in the context of multicasting updates in networks,

where each packet is transmitted until the earliest k out of n

receiver nodes have received the packet. While the multicast

communication problem studied in [51]–[55] and the source

coding problem studied here are fundamentally different, there

is an analogy between their results as follows. In [51]–[55],

it was shown that sending status updates to (earliest) k out

of n receivers achieves a smaller average age of information

than sending status updates to every one of n receivers. Anal-

ogously, in this paper, we show that sending status updates for

(most probable) k out of n realizations achieves a smaller age

of information than sending status updates for every one of n

realizations.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a communication system in which an informa-

tion source generates independent and identically distributed

1When the empty symbol xe is received, the receiver does not know
exactly which update is realized at the source. For that reason, operationally,
the receiver may not reset its age when xe is received. On the other hand,
the receiver may reset its age as the empty symbol carries some partial

information regarding the status update at the source, i.e., when the empty
symbol xe is received, the receiver knows that one of the least probable
status updates is realized at the source. That is why we consider both of these
scenarios in our analysis.
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status update packets from an observed phenomenon that takes

realizations from the set X = {x1, x2, . . . , xn} based on a

known PMF PX(xi) for i ∈ {1, . . . , n}.2 Without loss of

generality, we assume that PX(xm) ≥ PX(xm+1) for all m,

i.e., the probabilities of the realizations are in a non-increasing

order. Update packets arrive at the transmitter node following

a Poisson process with parameter λ. The transmitter node

implements a blocking policy in which the update packets that

arrive when the transmitter node is busy are blocked and lost.

Thus, the transmitter node receives only the updates that arrive

when it is idle.

We consider three different encoding policies: highest k

selective encoding, randomized selective encoding, and highest

k selective encoding with an empty symbol.

A. Policy 1: Highest k Selective Encoding

In the first policy, we consider a selective encoding mech-

anism that we call highest k selective encoding where the

transmitter node only sends the most probable k realizations,

i.e., only the realizations from set Xk = {x1, . . . , xk}, which

have the highest probabilities among possible n updates gen-

erated by the source, are transmitted for k ∈ {1, . . . , n}; see

Fig. 1. If an update packet from the remaining non-selected

portion of the realizations arrives, the transmitter disregards

that update packet and waits for the next arrival. If an update

packet arrives from the selected portion of the realizations,

then the transmitter encodes that update packet by using a

binary alphabet with the conditional probabilities given by,

PXk
(xi) =

⎧

⎨

⎩

PX(xi)

qk

, i = 1, 2, . . . , k

0, i = k + 1, k + 2, . . . , n,

(1)

where

qk �

k
∑

ℓ=1

PX(xℓ). (2)

The transmitter assigns codeword c(xi) with length `(xi) to

realization xi for i ∈ {1, 2, . . . , k}.

B. Policy 2: Randomized Selective Encoding

In the second policy, inspired by [48], we study a ran-

domized selective encoding scheme. In this policy, the most

probable k realizations are always encoded. However, instead

of discarding the remaining n− k realizations, the transmitter

node encodes them with probability α and discards them with

probability 1 − α. In other words, in this model, less likely

realizations that are not encoded under the highest k selective

encoding policy are sometimes transmitted to the receiver

node. Thus, under this operation, codewords for each one of

the n possible realizations need to be generated since every

realization can be sent to the receiver node. The transmitter

2Even though the number of realizations, n, is a finite number, it can be
arbitrarily large. We highlight that this modeling choice is well suited to many
practical applications even when the underlying randomness is continuous so
long as it is quantized to sufficiently many discrete levels, e.g., quantized
temperature sensor measurements, trajectory commands in a UAV system such
as move right, left, up, down, and so on.

assigns codeword c(xi) with length `(xi) to realization xi for

i ∈ {1, 2, . . . , n}.

The transmitter node performs encoding using the following

conditional probabilities,

PXα
(xi) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

PX(xi)

qk,α

, i = 1, 2, . . . , k

α
PX(xi)

qk,α

, i = k + 1, k + 2, . . . , n,

(3)

where

qk,α �

k
∑

ℓ=1

PX(xℓ) + α

n
∑

ℓ=k+1

PX(xℓ). (4)

C. Policy 3: Highest k Selective Encoding With an Empty

Symbol

In the third policy, we consider an encoding scheme that we

call the highest k selective encoding with an empty symbol.

In this encoding scheme, the transmitter always encodes the

most probable k realizations as in the previous two policies.

However, unlike the previous models, if an update packet from

the remaining non-selected portion of the realizations arrives,

the transmitter sends an empty status update denoted by xe to

further inform the receiver at the expense of longer codewords

for the selected k realizations.

When an update packet arrives from the set X ′
k =

Xk ∪ {xe}, the transmitter node encodes that update packet

with the binary alphabet by using the PMF given as

{PX(x1), PX(x2), . . . , PX(xk), PX(xe)} where PX(xe) =
1 − qk. Thus, in this policy, the transmitter node assigns

codewords to the most probable k realizations as well as to the

empty symbol xe. That is, the transmitter assigns codeword

c(xi) with length `(xi) to realization xi for i ∈ {1, . . . , k, e}.

In this paper, we focus on the source coding aspect of

timely status updating. Therefore, in all these three policies,

the channel between the transmitter node and the receiver node

is error-free. The transmitter node sends one bit at a unit time.

Thus, if the transmitter node sends update xi to the receiver

node, this transmission takes `(xi) units of time. That is, for

realization xi, the service time of the system is `(xi).

D. Problem Formulation

We use the age of information metric to measure the

freshness of the information at the receiver node. Let Δ(t)
be the instantaneous age at the receiver node at time t with

Δ(0) = Δ0. Age at the receiver node increases linearly in

time and drops to the age of the most recently received update

upon delivery of a new update packet. We define the long term

average age as,

Δ = lim
T→∞

1

T

∫ T

0

Δ(t)dt. (5)

Our aim is to find the codeword lengths for each encoding

policy described in Sections II-A, II-B, and II-C that minimize

the long term average age for a given k such that a uniquely

decodable code can be designed, i.e., the Kraft inequality is

satisfied [56].

In the following section, we find an analytical expression

for the long term average age Δ.
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III. AVERAGE AGE ANALYSIS

As described in Section II, status update packets arrive

at the transmitter as a Poisson process with rate λ. Update

packets that arrive when the transmitter is busy are blocked

from entry and dropped. Thus, upon successful delivery of a

packet to the receiver, the transmitter idles until the next update

packet arrives. This idle waiting period in between two arrivals

is denoted by Z which is an exponential random variable

with rate λ due to the memoryless property of exponential

random variables as update interarrivals at the transmitter are

exponential with λ.

We note that in all of the encoding policies in Section II,

every packet from the set Xk which successfully enters the

transmitter node is always sent to the receiver. However,

a packet from the remaining least probable n− k realizations

which enters the transmitter might not be sent. Under the high-

est k selective encoding policy described in Section II-A, when

one of the remaining n−k packets enters the transmitter node,

the transmitter node drops the packet and proceeds to wait

for the next update arrival. Under the randomized selective

encoding scheme described in Section II-B, remaining n − k

less likely realizations are transmitted to the receiver node

with probability α. Under the highest k selective encoding

scheme with an empty symbol described in Section II-C,

the transmitter node sends a designated empty status update

to further inform the receiver about the occurrence of a

realization from the remaining n − k realizations.

We denote the update packets which arrive when the trans-

mitter node is idle and reset the age as successful update pack-

ets. Since the channel is noiseless and there is no preemption,

these successful packets are received by the receiver node.

We denote Tj−1 as the time instant at which the jth successful

update packet is received. We define update cycle denoted

by Yj = Tj − Tj−1 as the time in between two successive

successful update arrivals at the transmitter. Update cycle Yj

consists of a busy cycle and an idle cycle such that

Yj = Sj + Wj , (6)

where Sj is the service time of update j and Wj is the overall

waiting time in the jth update cycle.3

Fig. 3 shows a sample age evolution at the receiver. Here,

Qj denotes the area under the instantaneous age curve in

update cycle j and Yj denotes the length of the jth update

cycle as defined earlier. The metric we use, long term average

age, is the average area under the age curve which is given

by [9]

Δ = lim sup
n→∞

1
n

∑n

j=1 Qj

1
n

∑n
j=1 Yj

=
E[Q]

E[Y ]
. (7)

By using Fig. 3, we find Qj = 1
2Y 2

j + YjSj+1, where Yj is

given in (6). Thus, using the independence of Yj and Sj+1,

(7) is equivalent to

Δ =
E[Y 2]

2E[Y ]
+ E[S]. (8)

3We note that Wj can be thought of as the idle time following the service
completion of update j.

Fig. 3. Sample age evolution ∆(t) at the receiver node. Successful updates
are indexed by j. The jth successful update arrives at the server node at
Tj−1. Update cycle at the server node is the time in between two successive
arrivals and is equal to Yj = Sj + Wj = Tj − Tj−1.

In the following section, we find the optimal real-valued

codeword lengths for the highest k selective encoding policy

described in Section II-A.

IV. OPTIMAL CODEWORD DESIGN UNDER

SELECTIVE ENCODING

In this section, we consider the highest k selective encoding

policy described in Section II-A. Under this way of operation,

the transmitter only sends the most probable k realizations

from the set Xk, and drops any update packets from the

remaining n − k least probable realizations.

Proposition 1 characterizes the average age Δ given in (8)

for the encoding scheme described in Section II-A.

Proposition 1: Under the highest k selective encoding

scheme, the average age at the receiver node is given by

Δ =
E[L2] + 2

qkλ
E[L] + 2

(qkλ)2

2
(

E[L] + 1
qkλ

) + E[L], (9)

where the first and the second moments of the codeword

lengths are given by E[L] =
∑k

i=1 PXk
(xi)`(xi) and E[L2]

=
∑k

i=1 PXk
(xi)`(xi)

2.

Proof: With the highest k selective encoding scheme,

we note that the overall waiting time W is equal to W =
∑M

ℓ=1 Zℓ where Zℓs are the i.i.d. exponential random variables

with rate λ as discussed earlier. Here, M is a geometric

random variable with parameter qk (defined in (2)) which

denotes the total number of update arrivals until the first update

from the set Xk is observed at the transmitter node. W is also

an exponential random variable with rate λqk [57, Prob. 9.4.1].

Then, noting that the service time random variable S in (6) is

the codeword length random variable L, we have

E[Y ] = E[L] + E[W ], (10)

E[Y 2] = E[L2] + 2E[W ]E[L] + E[W 2], (11)

where E[W ] = 1
qkλ

and E[W 2] = 2
(qkλ)2 . Substituting (10)

and (11) in (8) yields the result in (9).4 �

4We note that the average AoI expression in (9) is aligned with [9,
Theorem 1], as expected.
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Thus, (9) characterizes the average age Δ achieved at

the receiver node in terms of the first and second moments

of the codeword lengths for a given PMF, selected k, and

update arrival rate λ. Next, we formulate the age minimization

problem as,

min
{ℓ(xi)}

E[L2] + 2aE[L] + 2a2

2(E[L] + a)
+ E[L]

s.t.

k
∑

i=1

2−ℓ(xi) ≤ 1

`(xi) ∈ R
+, i ∈ {1, . . . , k}, (12)

where the objective function is equal to the average age found

in Proposition 1 with a = 1
λqk

, the first constraint is the Kraft

inequality, and the second constraint represents the feasibility

of the codeword lengths, i.e., each codeword length should be

non-negative.

We note that the optimization problem in (12) is a nonlinear

fractional problem. To solve this problem, we define the

following intermediate problem, which is parameterized by θ,

similar to [22] and [36]

p(θ) := min
{ℓ(xi)}

1

2
E[L2] + E[L]2 + (2a − θ)E[L] + a2 − θa

s.t.

k
∑

i=1

2−ℓ(xi) ≤ 1

`(xi) ∈ R
+, i ∈ {1, . . . , k}. (13)

One can show that p(θ) is decreasing in θ and the optimal

solution is obtained when p(θ) = 0 such that the optimal

age for the problem in (12) is equal to θ, i.e., Δ∗ = θ [58].

We define the Lagrangian [59] function for (13) as

L =
1

2
E[L2] + E[L]2 + (2a − θ)E[L] + a2 − θa

+ β

(

k
∑

i=1

2−ℓ(xi) − 1

)

, (14)

where β ≥ 0. Next, we write the KKT conditions as

∂L
∂`(xi)

= PXk
(xi)`(xi) + 2E[L]PXk

(xi) + (2a − θ)PXk
(xi)

− β(log 2)2−ℓ(xi) = 0, ∀i, (15)

and the complementary slackness condition as

β

(

k
∑

i=1

2−ℓ(xi) − 1

)

= 0. (16)

In the following lemma, we prove that the optimal codeword

lengths must satisfy the Kraft inequality as an equality.

Lemma 1: For the age-optimal real codeword lengths,

we must have
∑k

i=1 2−ℓ(xi) = 1.

Proof: Assume that the optimal codeword lengths satisfy
∑k

i=1 2−ℓ(xi) < 1, which implies that β = 0 due to (16).

From (15), we have

PXk
(xi)`(xi) + 2

⎛

⎝

k
∑

j=1

PXk
(xj)`(xj)

⎞

⎠PXk
(xi)

+ (2a− θ)PXk
(xi) = 0, ∀i. (17)

Summing (17) over all i ∈ {1, . . . , k} we find

3E[L] + 2a − θ = 0, (18)

where E[L] is as in Proposition 1. Thus, we find `(xi) = θ−2a
3

for all i ∈ {1, 2, . . . , k}. Thus, E[L] = θ−2a
3 and E[L2] =

(

θ−2a
3

)2
so that p(θ) = − θ2

6 − θa
3 + a2

3 . By using p(θ) = 0,

we find θ = (−1 +
√

3)a which gives `(xi) = (−3+
√

3)a
3 < 0

for i ∈ {1, 2, . . . , k}. Since the codeword lengths cannot be

negative, we reach a contradiction. Thus, the optimal codeword

lengths must satisfy
∑k

i=1 2−ℓ(xi) = 1. �

Next, we find the optimal codeword lengths which satisfy
∑k

i=1 2−ℓ(xi) = 1. By summing (15) over all i, we obtain

E[L] =
θ + β log 2 − 2a

3
. (19)

From (15), we obtain

−`(xi) +
β log 2

PXk
(xi)

2−ℓ(xi) = 2E[L] + 2a − θ, (20)

for i ∈ {1, 2, . . . , k}, which yields

β(log 2)2

PXk
(xi)

2−ℓ(xi)e
β(log 2)2

PXk
(xi)

2−ℓ(xi)

=
β(log 2)2

PXk
(xi)

2
−θ+2β log 2+2a

3 .

(21)

Note that (21) is in the form of xex = y where the solution

for x is equal to x = W0(y) if y ≥ 0. Here, W0(·) denotes

the principal branch of the Lambert W function [60]. Since

the right hand side of (21) is always non-negative, we are only

interested in W0(·) which is denoted as W (·) from now on.

We find the unique solution for `(xi) as

`(xi) = −
log

(

PXk
(xi)

β(log 2)2 W
(

β(log 2)2

PXk
(xi)

2
−θ+2β log 2+2a

3

))

log 2
, (22)

for i ∈ {1, 2, . . . , k}.

In order to find the optimal codeword lengths, we solve (22)

for a (θ, β) pair that satisfies p(θ) = 0 and the Kraft inequality,

i.e.,
∑k

i=1 2−ℓ(xi) = 1. Starting from an arbitrary (θ, β) pair,

if p(θ) > 0 (or p(θ) < 0), we increase (or respectively

decrease) θ in the next iteration as p(θ) is a decreasing function

of θ. Then, we update β by using (19). We repeat this process

until p(θ) = 0 and
∑k

i=1 2−ℓ(xi) = 1.

We note that the age-optimal codeword lengths found in this

section are for a fixed k. Thus, depending on the selected k,

different age performances are achieved at the receiver node.

In Section VII, we find the age-optimal k values for some

given arbitrary PMFs numerically.

Under the highest k selective encoding policy, the receiver

node does not receive any update when the remaining n − k

realizations occur. However, there may be scenarios in which

these remaining realizations are also of interest to the receiver

node. In the next section, we focus on this scenario and con-

sider a randomized selection of the remaining n−k realizations

so that these realizations are not completely ignored.
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V. OPTIMAL CODEWORD DESIGN UNDER RANDOMIZED

SELECTIVE ENCODING

The selective encoding scheme discussed so far is a deter-

ministic scheme in which a fixed number of realizations are

encoded into codewords and sent to the receiver node when

realized. In this section, inspired by [48], we consider a

randomized selective encoding scheme where the transmitter

encodes the most probable k realizations with probability 1,

and encodes the remaining least probable n − k realizations

with probability α and thus, neglects them with probability

1−α. Thus, this randomized selective encoding policy strikes

a balance between encoding every single realization and the

highest k selective encoding scheme discussed so far.

Theorem 1 determines the average age experienced by

the receiver node under the randomized highest k selective

encoding scheme.

Theorem 1: Under the randomized highest k selective

encoding scheme, the average age at the receiver node is given

by

Δα =
E[L2] + 2

qk,αλ
E[L] + 2

(qk,αλ)2

2
(

E[L] + 1
qk,αλ

) + E[L], (23)

where E[L] =
∑n

i=1 PXα
(xi)`(xi), and E[L2] =

∑n

i=1 PXα
(xi)`(xi)

2.

The proof of Theorem 1 follows similarly to that of

Proposition 1 by replacing qk with qk,α.

Next, we formulate the age minimization problem for this

case as,

min
{ℓ(xi),α}

E[L2] + 2āE[L] + 2ā2

2(E[L] + ā)
+ E[L]

s.t.

n
∑

i=1

2−ℓ(xi) ≤ 1

`(xi) ∈ R
+, i ∈ {1, . . . , n}, (24)

where the objective function is equal to the average age Δα

in Theorem 1 with ā = 1
λqk,α

, the first and second constraints

follow from the Kraft inequality and the feasibility of the

codeword lengths, i.e., each codeword length should be non-

negative.

We first solve this problem for a fixed α in this section and

determine the optimal α numerically for given arbitrary PMFs

in Section VII. Following a similar solution technique to that

in Section IV, we find

`(xi) = −
log

(

PXα (xi)
β(log 2)2 W

(

β(log 2)2

PXα (xi)
2
−θ+2β log 2+2ā

3

))

log 2
, (25)

for i ∈ {1, 2, . . . , n}. To determine the age-optimal codeword

lengths `(xi) for i ∈ {1, 2, . . . , n}, we then employ the

algorithm described in Section IV.

In the following section, we consider the case where instead

of sending the remaining least probable n − k realizations

randomly, the transmitter sends an empty symbol for these

updates to further inform the receiver.

VI. OPTIMAL CODEWORD DESIGN UNDER SELECTIVE

ENCODING WITH AN EMPTY SYMBOL

In this section, we calculate the average age by considering

two different scenarios for the empty symbol. Operationally,

the receiver may not reset its age when xe is received as

it is not a regular update packet and the receiver does not

know which realization occurred specifically. On the other

hand, the receiver may choose to update its age as this

empty symbol carries some information, the fact that the

current realization is not one of the k encoded realiza-

tions, regarding the observed random variable. Thus, in this

section, we consider both of these scenarios5 and find the

age-optimal codeword lengths for the set X ′
k with the PMF

{PX(x1), PX(x2), . . . , PX(xk), PX(xe)} in each scenario.

A. When the Empty Symbol Does Not Reset the Age

In this way of operation, the age at the receiver is not

updated when the empty status update xe is received. Thus,

sending xe incurs an additional burden since it does not reset

the age but increases the average codeword length of the

selected k realizations.

The update cycle is given by (6) with

W = (M − 1)`(xe) +

M
∑

ℓ=1

Zℓ, (26)

where M is defined in Section IV and denotes the total number

of update arrivals until the first update from the set Xk is

observed at the transmitter. In other words, there are M −
1 deliveries of the empty status update xe in between two

successive deliveries from the encoded set Xk. As discussed

earlier, Z is an exponential random variable with rate λ and M

is a geometric random variable with parameter qk. By using

the fact that the arrival and service processes are independent,

i.e., S and Z are independent, and M is independent of S

and Z , in Theorem 2, we find the average age when an empty

status update does not reset the age.

Theorem 2: When the empty status update xe does not reset

the age, the average age under the highest k selective encoding

scheme with an empty symbol at the receiver is given by

Δe =
E[L2|X ′

k 6= xe] + 2E[W ]E[L|X ′
k 6= xe] + E[W 2]

2 (E[L|X ′
k 6= xe] + E[W ])

+ E[L|X ′
k 6= xe]. (27)

Proof: We note that the service time of a successful update

is equal to its codeword length so that we have

E[S] = E[L|X ′
k 6= xe] =

k
∑

i=1

PXk
(xi)`(xi) (28)

E[S2] = E[L2|X ′
k 6= xe] =

k
∑

i=1

PXk
(xi)`(xi)

2 (29)

5We note that another possible scenario may be to drop the age to an
intermediate level between not updating at all and updating fully, considering
the partial information conveyed by the empty status update. This case is not
considered in this paper.
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where PXk
(xi) is defined in (1). By using the independence

of M and Z , we find

E[W ] = `(xe)

(

1

qk

− 1

)

+
1

λqk

, (30)

E[W 2] =
(2−qk)(1−qk)

q2
k

`(xe)
2+

4(1 − qk)

λq2
k

`(xe)+
2

(λqk)2
,

(31)

where we used E[M ] = 1
qk

, E[M2] = 2−qk

q2
k

, and Z has

exponential distribution with rate λ. Substituting (28)-(31)

in (8) yields the result in (27). �

We note that Δe in (27) depends on `(xe) only through the

overall waiting time W as the age does not change when xe

is received. Next, we write the age minimization problem as

min
{ℓ(xi),ℓ(xe)}

E[L2|X ′
k 6= xe]+2E[W ]E[L|X ′

k 6=xe]+E[W 2]

2 (E[L|X ′
k 6= xe]+E[W ])

+ E[L|X ′
k 6= xe]

s.t. 2−ℓ(xe) +

k
∑

i=1

2−ℓ(xi) ≤ 1

`(xi) ∈ R
+, i ∈ {1, . . . , k, e}, (32)

where the objective function is equal to the average age

expression Δe in (27). We note that problem (32) is not convex

due to the middle term in the objective function. However,

when `(xe) is fixed, it is a convex problem. Thus, we first

solve the problem in (32) for a fixed `(xe) and then determine

the optimal `(xe) numerically in Section VII.

Thus, for a fixed `(xe), (32) becomes

min
{ℓ(xi)}

E[L2|X ′
k 6= xe] + 2E[W ]E[L|X ′

k 6= xe] + E[W 2]

2 (E[L|X ′
k 6= xe] + E[W ])

+ E[L|X ′
k 6= xe]

s.t.

k
∑

i=1

2−ℓ(xi) ≤ 1 − 2−c

`(xi) ∈ R
+, i ∈ {1, . . . , k}, (33)

where `(xe) = c. Since the empty status update length `(xe) is

fixed and given, we write the Kraft inequality by subtracting

the portion allocated for `(xe) in the optimization problem

in (33). Similar to previous sections, we define p(θ) as

p(θ) := min
{ℓ(xi)}

1

2
E[L2|X ′

k 6= xe] + E[L|X ′
k 6= xe]

2

+ (2â − θ)E[L|X ′
k 6= xe] +

d

2
− θâ

s.t.

k
∑

i=1

2−ℓ(xi) ≤ 1 − 2−c

`(xi) ∈ R
+, i ∈ {1, . . . , k}, (34)

where â = E[W ] and d = E[W 2]. For a fixed and given

`(xe), the optimization problem in (34) is convex. We define

the Lagrangian function as

L =
1

2
E[L2|X ′

k 6= xe] + E[L|X ′
k 6= xe]

2

+ (2â− θ)E[L|X ′
k 6= xe] +

d

2
− θâ

+ β

(

k
∑

i=1

2−ℓ(xi) + 2−c − 1

)

, (35)

where β ≥ 0. The KKT conditions are

∂L
∂`(xi)

= PXk
(xi)`(xi) + 2E[L|X ′

k 6= xe]PXk
(xi)

+ (2â − θ)PXk
(xi) − β(log 2)2−ℓ(xi) = 0, (36)

for all i, and the complementary slackness condition is

β

(

k
∑

i=1

2−ℓ(xi) + 2−c − 1

)

= 0. (37)

Lemma 2 shows that the optimal codeword lengths satisfy
∑k

i=1 2−ℓ(xi) = 1 − 2−c.

Lemma 2: For the age-optimal real-valued codeword

lengths, we must have
∑k

i=1 2−ℓ(xi) = 1 − 2−c.

Proof: Assume that the optimal codeword lengths satisfy
∑k

i=1 2−ℓ(xi) < 1−2−c, which implies that β = 0 due to (37).

From (36), we have

PXk
(xi)`(xi) + 2

⎛

⎝

k
∑

j=1

PXk
(xj)`(xj)

⎞

⎠ PXk
(xi)

+ (2â − θ)PXk
(xi) = 0, ∀i. (38)

By summing (38) over all i, we get E[L] = θ−2â
3 . Then,

we find `(xi) = θ−2â
3 for all i ∈ {1, . . . , k} which makes

p(θ) = − θ2+2âθ+4â2−3d
6 . By using p(θ) = 0, we find θ =

−â +
√

3(d − â2) which gives `(xi) = −â +
√

d−â2

3 for

i ∈ {1, . . . , k}. One can show that ∂θ
∂c

> 0, i.e., θ, hence age,

is an increasing function of c. Thus, in the optimal policy,

in order to minimize the average age, c must be equal to zero.

However, choosing c = 0 leads to
∑k

i=1 2−ℓ(xi) < 1− 2−c =
0. Since the sum on the left cannot be negative, we reach a

contradiction. Thus, the optimal codeword lengths must satisfy
∑k

i=1 2−ℓ(xi) = 1 − 2−c. �

Thus, for the age-optimal codeword lengths, we have
∑k

i=1 2−ℓ(xi) = 1 − 2−c and β ≥ 0 from (37). By sum-

ming (36) over all i and using Lemma 2 we find

E[L|X ′
k 6= xe] =

θ + β log 2(1 − 2−c) − 2â

3
. (39)

From (36), we obtain

−`(xi) +
β log 2

PXk
(xi)

2−ℓ(xi) =2E[L|X ′
k 6= xe]+2â−θ. (40)

Thus, we find the unique solution for `(xi) as

`(xi) = −
log

(

PXk
(xi)

β(log 2)2 W
(

β(log 2)2

PXk
(xi)

2
−θ+2β log 2(1−2−c)+2â

3

))

log 2
,

(41)
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for i ∈ {1, . . . , k}. To determine the age-optimal codeword

lengths `(xi) for i ∈ {1, . . . , k}, we then employ the algorithm

described in Section IV.

We note that the average age achieved at the receiver

depends on `(xe). In Section VII, we provide numerical results

where we vary `(xe) over all possible values and choose

the one that yields the least average age for given arbitrary

PMFs.

B. When the Empty Symbol Resets the Age

In this subsection, we consider the case where the empty

symbol resets the age as it carries partial status informa-

tion as in [28], [61]. In other words, each update which

arrives when the transmitter idles is accepted as a successful

update.

Theorem 3 determines the average age Δe when the empty

symbol resets the age.

Theorem 3: When the empty status update xe resets the

age, the average age under the highest k selective encoding

scheme at the receiver is given by

Δe =
E[L2]+2 1

λ
E[L]+ 2

λ2

2(E[L]+ 1
λ)

+ E[L]. (42)

Proof: Different from the previous sections, the moments

for the waiting time are equal to E[W ] = 1
λ

and E[W 2] =
2
λ2 as each successful symbol is able to reset the age. Thus,

substituting E[W ] and E[W 2] in (8) and noting that E[S] =
E[L] yields the result. �

Next, we formulate the age minimization problem as

min
{ℓ(xi),ℓ(xe)}

E[L2] + 2ãE[L] + 2ã2

2(E[L] + ã)
+ E[L]

s.t. 2−ℓ(xe) +

k
∑

i=1

2−ℓ(xi) ≤ 1

`(xi) ∈ R
+, i ∈ {1, . . . , k, e}, (43)

where ã = 1
λ

. We follow a similar solution technique to that

given in Section IV to get

`(xi) = −
log

(

PX (xi)
β(log 2)2 W

(

β(log 2)2

PX (xi)
2
−θ+2β log 2+2ã

3

))

log 2
, (44)

for i ∈ {1, . . . , k, e}.

The value of k affects `(xe) such that when k is close

to n, the probability of the empty symbol becomes small

which leads to a longer `(xe), whereas when k is small,

the probability of the empty symbol becomes large which

results in a shorter `(xe). In Section VII, we numerically

determine the optimal k selection which achieves the lowest

average age for a given arbitrary distribution.

VII. NUMERICAL RESULTS

In this section, we provide numerical results for the optimal

encoding policies that are discussed in Sections IV, V, and VI.

In the first two numerical results, we perform simulations to

characterize optimal k values that minimize the average age

with the highest k selective encoding scheme in Section IV.

Fig. 4. The average age values with the age-optimal codeword lengths for
λ ∈ {0.3, 0.5, 1} for the PMF provided in (45) with the parameters n = 100,
s = 0.4. We apply the highest k selective encoding scheme and vary k from
1 to n and indicate k that minimizes the average age for each λ with an
arrow.

Fig. 5. The average age values with the age-optimal codeword lengths for
λ ∈ {2, 10} for the PMF provided in (45) with the parameters n = 100,
s = 0.4. We apply the highest k selective encoding scheme and vary k from
1 to n and observe that choosing k = 1 under the relatively high arrival rates
(λ = 10) minimizes the average age.

For these simulations, we use Zipf(n, s) distribution with the

following PMF for n = 100, s = 0.4,

PX(xi) =
i−s

∑n

j=1 j−s
, 1 ≤ i ≤ n. (45)

In Fig. 4, we show the effect of sending the most probable

k realizations when the update packets arrive at the trans-

mitter node rather infrequently, i.e., the arrival rate is low.

We consider the cases in which the arrival rate is equal to

λ = 0.3, 0.5, 1. For each arrival rate, we plot the average age as

a function of k = 1, 2, . . . , n. We see that increasing the arrival

rate reduces the average age as expected. In this case, optimal

k is not equal to 1 since the effective arrival rate is small.

In other words, the transmitter node wants to encode more

updates as opposed to idly waiting for the next update arrival

when the arrivals are rather infrequent. Choosing k close to n

is also not optimal as the service times of the status updates

with low probabilities are longer which hurts the overall age
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Fig. 6. The average age values with the age-optimal codeword lengths for
different α values with the PMF provided in (45) with n = 100, s = 0.2 for
k = 70 and λ = 0.6, 1.2 when randomized highest k selective encoding is
implemented.

performance. Indeed, in Fig. 4, where update arrival rates are

relatively small, it is optimal to choose k = 76 for λ = 0.3,

k = 37 for λ = 0.5, and k = 15 for λ = 1.

In Fig. 5, we consider a similar setting as in Fig. 4 but

here update arrival rates are larger which means that updates

arrive more frequently at the transmitter node. We observe that

when λ = 2, the optimal k is still not equal to 1 (it is equal to

6 in Fig. 5) as the updates are not frequent enough. However,

once updates become more available to the transmitter node,

i.e., the case with λ = 10 in Fig. 5, we observe that the

transmitter node chooses to only encode the realization with

the highest probability, i.e., k = 1, and wait for the next update

arrival instead of encoding more and more realizations which

increases the overall codeword lengths thereby increasing the

transmission times. We also observe that the average age

decreases as the update arrival rate increases as in Fig. 4.

We note that when the arrival rate is high as in Fig. 5 when

λ = 10, we observe that the age is an increasing function of

k since under this arrival profile codeword lengths dominate

the performance which in turn increase as k increases. On the

other hand, when the arrival rate is low as in λ = 2 in Fig. 5

and λ = 0.3, 0.5, 1 in Fig. 4, we observe that initially the age

is a decreasing function of k as the waiting time in between

two successive encoded updates dominates the performance.

However, when we continue to increase k, we observe that

both of these opposing trends are in play and the age starts to

increase with k.

For the third numerical result shown in Fig. 6, we simulate

the randomized highest k selective encoding policy described

in Section V with Zipf distribution in (45) with parameters

n = 100, s = 0.2. In Fig. 6, we observe two different

trends depending on the update arrival frequency at the source

node, even though in either case, randomization results in

a higher age at the receiver node than selective encoding,

i.e., α = 0 case. When the arrival rate is high, λ = 1.2
in Fig. 6, we observe that age monotonically increases with α

as randomization increases average codeword length, i.e., ser-

vice times. Although increasing α results in a higher age at

the receiver node, previously discarded n− k realizations can

Fig. 7. Average age with the age-optimal codeword lengths with respect to
`(xe) with the PMF in (46) for n = 10 and λ = 5 when the empty symbol
does not reset the age. Arrows indicate the age-optimal `(xe) values. We also
provide the optimal age without sending the empty symbol for k = 2 and
k = 8.

be received under this randomized selective encoding policy.

Interestingly, when the arrival rate is smaller, λ = 0.6 in Fig. 6,

we observe that age initially increases with α and then starts to

decrease because of the decreasing waiting times as opposed

to increasing codeword lengths such that when α is larger than

0.3, it is better to select α = 1, i.e., encoding every realization.

That is, when α grows beyond 0.3, encoding and sending every

single realization yields a lower average age.

In the fourth and fifth numerical results, we find the optimal

real-valued codeword lengths and k values that minimize the

average age Δe with the highest k selective encoding scheme

with an empty symbol, as discussed in Section VI. For these

numerical results, we use the following PMF

PX(xi) =

{

2−i, i = 1, . . . , n − 1

2−n+1, i = n.
(46)

In the fourth numerical result, we consider the PMF in (46)

for n = 10 and take λ = 5. We find the optimal codeword

length of the empty symbol, `(xe), when the empty symbol

does not reset the age (see Fig. 7). We observe that when k is

small, the probability of sending the empty symbol becomes

large so that a shorter codeword is preferable for xe. For

example, we observe in Fig. 7 that choosing `(xe) = 2 when

k = 2 and `(xe) = 3 when k = 4 is optimal. Similarly, when

k is larger, a longer codeword is desirable for xe. We observe

in Fig. 7 that choosing `(xe) = 5 when k = 6 and `(xe) = 7
when k = 8 is optimal. Further, we note in Fig. 7 that the

average age increases when we send the empty symbol in the

case of the remaining n− k realizations as the empty symbol

increases the total waiting time for the next successful arrival

as well as the codeword lengths for the encoded k realizations.

For smaller k values, i.e., when k = 2, this effect is significant

as the empty symbol has a large probability whereas when k

is larger, i.e., when k = 8, sending an empty status update

increases the age slightly (especially when `(xe) is high) as

the empty symbol has a small probability.

In the fifth numerical result shown in Fig. 8, we consider the

case when the empty symbol xe resets the age. We observe
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Fig. 8. Average age with the age-optimal codeword lengths for varying k
with the PMF in (46) for n = 20 and λ = 0.5, 1, 1.5 when the empty symbol
resets the age.

that the minimum age is achieved when k = 1, i.e., only

the most probable realization is encoded. This is because the

overall waiting time is independent of k and larger k values

result in larger codewords which in turn increases transmission

times. Thus, in this case, only the most probable realization

is received separately since all others are embedded into the

empty symbol. We note that this selection results in signif-

icant information loss at the receiver which is not captured

by the age metric alone. This problem can be addressed

by introducing a distortion constraint which measures the

information loss together with the age metric which measures

freshness [61].

In the sixth numerical result shown in Fig. 9, we compare

the performance of the age-optimal code that we developed

in Section IV with well-known codes that minimize aver-

age codeword length. For this purpose, we choose Huff-

man code6 which takes integer-valued codeword lengths and

Shannon∗ code7 which takes real-valued codeword lengths.

We use the PMF in (45) with n = 10 and s = 0, 3, 4
for λ = 1.

We note that when s = 0, the distribution in (45) becomes

a uniform distribution. We see in Fig. 9(a) that for the uniform

distribution, the age-optimal real-valued codeword lengths are

equivalent to Shannon∗ code. This result has been observed

in [48] as well. When k is equal to a power of 2 such as

k = 2, 4, 8 in Fig. 9(a), Huffman code becomes the same as

Shannon∗ code as the codeword lengths of Shannon∗ code,

i.e., − log2(PXk
(xi)), take integer values. For the remaining

k values Huffman code performs worse than Shannon∗ code

and the age-optimal code. When s = 3, we see in Fig. 9(b)

that the age-optimal code achieves a smaller age than Huffman

and Shannon∗ codes. When k < 7, we see in Fig. 9(b)

that Shannon∗ code achieves a lower age than Huffman code

whereas when k ≥ 7, Huffman code achieves a lower age

6We acknowledge the feedback from one of the anonymous Reviewers who
suggested that we compare our age-optimal code with Huffman codes.

7We note that codeword lengths of a Shannon code are equal to
⌈− log

2
(PXk

(xi))⌉ which take integer values [56]. However, in this paper,
we neglect the ceiling operator and consider real-valued codeword lengths as
− log

2
(PXk

(xi)) which we denote as a Shannon∗ code.

than Shannon code. When s = 4, we see in Fig. 9(c) that the

age-optimal code achieves the lowest age whereas Huffman

code performs the worst.

Thus, we observe that when the distribution is close to

a uniform distribution, i.e., when s is small, Huffman and

Shannon∗ codes perform similar to the age-optimal code

(when the distribution is equal to uniform distribution, we see

that Shannon∗ code is equivalent to the age-optimal code).

However, when the distribution is more polarized, i.e., when s

is high, we see that the age-optimal code performs significantly

better than Shannon∗ and Huffman codes.

VIII. ON THE OPTIMALITY OF THE HIGHEST

k SELECTIVE ENCODING

So far, we have considered only the case where the most

probable k realizations are encoded and sent through the

channel. Based on this selection, we found the average age

and determined the age-optimal k and codeword lengths.

We observed that this highest k selective encoding policy

results in a lower average age than encoding every realization.

However, we note that there are
(

n
k

)

selections for encoding

and in this section, we discuss the optimality of the highest k

selective encoding among all these different selections. We see

that the average age expression in Proposition 1 depends on

the PMF of X which affects the optimal codeword lengths, and

the effective arrival rate. In this section, we denote the effective

arrival rate as λe given by λe = λ
∑

x∈Xs
PX(x) where Xs

is the set of arbitrarily selected k updates for encoding. Here,

by choosing a different set of k realizations to encode and

send, instead of the most probable k realizations, we change

the effective arrival rate and codeword lengths which in turn

yields a different age performance.

When the arrival rate is relatively low, we see in Fig. 4

that the average age is dominated mainly by the effective

arrival rate. Thus, choosing the realizations with the highest

probabilities may be desirable as this selection achieves the

highest possible effective arrival rate. However, when the

arrival rate is relatively high, the average age is mainly

determined by the moments of the codeword lengths.

In Table I, we find the age-optimal update selections for

given PMFs and arrival rates for k = 5. We use the in (46) with

n = 10 and Zipf distribution in (45) with parameters n = 10,

s = 0.2. In both PMFs, the updates are in decreasing order

with respect to their probabilities, i.e., PX(xi) ≥ PX(xj) if

i ≤ j. When the arrival rate is relatively small, i.e., λ = 0.1
for the first PMF and λ = 0.5 for the second PMF, we observe

that choosing the realizations with the highest probabilities for

encoding is optimal as this selection increases the effective

arrival rate the most which is the dominating factor for the

age performance when the arrivals are infrequent at the source

node. That is, the optimal selection is {1, 2, 3, 4, 5} when

λ = 0.1 for the first PMF and when λ = 0.5 for the second

PMF. However, when the arrival rate is high, the optimal policy

is to encode the realization with the highest probability and

k − 1 realizations with the lowest probabilities such that the

optimal set is {1, 7, 8, 9, 10} as this selection helps to keep

the moments of codewords lengths at appropriate levels which
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Fig. 9. The average age under Huffman code, Shannon∗ code and the age-optimal code for λ = 1 and the PMF in (45) with the parameters n = 10,
(a) s = 0, (b) s = 3 and (c) s = 4. We vary k from 2 to n.

TABLE I

AGE-OPTIMAL UPDATE SELECTION FOR FIXED k = 5 WITH DIFFERENT ARRIVAL RATES, λ

are the dominating factors for the age performance when the

arrivals are frequent at the source node. We see that this

selection is optimal when λ = 1 for the first PMF and when

λ = 2 for the second PMF. From these, we observe that the

optimal update selection strategy is to keep the effective arrival

rate as high as possible while maintaining the moments of the

codeword lengths at the desired levels. We see this structure

when λ = 0.5 for the first PMF and λ = 1 for the second PMF

where the optimal selection is to choose the most probable

two and the least probable three realizations, i.e., the optimal

selection is {1, 2, 8, 9, 10}.

Thus, even though the highest k selective encoding policy

improves the age performance as shown in Section VII, this

selection may not necessarily be optimal for a given PMF

and arrival rate among all other possible selections. In fact,

in Table I we observe that, the highest k selection is optimal

when the arrival rate is low. When the arrival rate is high,

however, a different k selection should be implemented to get

a better age performance as shown in Table I. The theoretical

analysis for the optimality of the highest k selective encoding

remains as a future work. Further, in some cases the realiza-

tions with lower probabilities may carry important information
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that cannot be ignored. In these scenarios, an importance

metric can be assigned to each realization and the encoded

k realizations can be selected considering both the importance

metric and the realization probabilities. We leave this problem

for future work.

IX. CONCLUSION AND DISCUSSION

We considered a status updating system in which an infor-

mation source generates independent and identically distrib-

uted update packets based on an observed random variable X

which takes n values based on a known PMF. We studied three

different encoding schemes for the transmitter node to send the

realizations to the receiver node. In all these schemes, the most

probable k update realizations are always encoded. For the

remaining less probable n − k realizations, we considered

the case in which these realizations are completely discarded,

i.e., the highest k selective encoding scheme. Next, we con-

sidered the case in which the remaining previously discarded

n − k realizations are encoded into codewords randomly to

further inform the receiver, i.e., randomized selective encoding

scheme. Lastly, we examined the case where the remaining

less probable realizations are mapped into an empty symbol

to partially inform the receiver node, i.e., highest k selective

encoding scheme with an empty symbol. We derived the

average age for all these encoding schemes and determined the

age-optimal codeword lengths. Through numerical results we

showed that the proposed selective encoding scheme achieves

a lower average age than encoding all the realizations, and

determined the age-optimal k values for arbitrary PMFs.

We investigated the optimality of the highest k selective

encoding and showed through simulations that it is opti-

mal when the arrival rate is low. We remark that, for a

fixed k and given update arrival profile λ, selecting k out

of n realizations for which the transmitter should send an

update, and designing age-optimal integer codeword lengths

for selected realizations, remain as open problems. Further,

in our model we assume that the status updates arrive at the

source node exogenously as a Poisson process. For future

work, one can consider age-optimal sampling at the source

instead of exogenously arriving updates at the source without

any control. We remark that one can further study age along

with a distortion metric that captures the information loss

to design systems that assign importance to freshly gen-

erated updates without neglecting the distortion caused by

skipped transmission opportunities under selective encoding

mechanisms.
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