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PrintsGAN: Synthetic Fingerprint Generator
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Abstract—A major impediment to researchers working in the area of fingerprint recognition is the lack of publicly available, large-scale,
fingerprint datasets. The publicly available datasets that do exist contain very few identities and impressions per finger. This limits
research on a number of topics, including e.g., using deep networks to learn fixed length fingerprint embeddings. Therefore, we
propose PrintsGAN, a synthetic fingerprint generator capable of generating unique fingerprints along with multiple impressions for a
given fingerprint. Using PrintsGAN, we synthesize a database of 525K fingerprints (35K distinct fingers, each with 15 impressions).
Next, we show the utility of the PrintsGAN generated dataset by training a deep network to extract a fixed-length embedding from a
fingerprint. In particular, an embedding model trained on our synthetic fingerprints and fine-tuned on a small number of publicly
available real fingerprints (25K prints from NIST SD302) obtains a TAR of 87.03% @ FAR=0.01% on the NIST SD4 database (a boost
from TAR=73.37% when only trained on NIST SD302). Prevailing synthetic fingerprint generation methods do not enable such
performance gains due to i) lack of realism or ii) inability to generate multiple impressions per finger. We plan to release our database
of synthetic fingerprints to the public.

Index Terms—Fingerprint Synthesis, Synthetic Fingerprints, Deep Networks, Synthetic Training Data, Fixed-Length Fingerprint
Representations, Fingerprint Embeddings
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1 INTRODUCTION

O VER the past several decades, automated fingerprint
recognition systems have proliferated into many dif-

ferent facets of our day to day lives including mobile
authentication and payments, border crossings and immi-
gration, and various access control terminals [1]. Although
fingerprint recognition technology has significantly matured
in recent years (now obtaining a False Non-Match Rate of
only 0.626% at a False Match Rate of 0.01% on the FVC-
ongoing 1:1 hard benchmark [2]), there remain unsolved
problems which need to be addressed. One of the main ob-
stacles preventing researchers from adequately addressing
these problems is the lack of publicly available fingerprint
datasets. In particular, large-scale datasets of fingerprints
(with many fingers and multiple fingerprint impressions per
finger) are a necessity for i) training the parameters of the
various algorithms in the fingerprint recognition pipeline
and ii) evaluating the efficacy and speed of the respective
algorithms.

For example, in [3], the authors used a subset of 455K
fingerprints of 38K fingers from a privately held, operational,
forensic database to train a deep network, called Deep-
Print, to extract highly discriminative fixed-length (192D)
fingerprint representations, or embeddings. In contrast to
the prevailing variable length, unordered minutiae rep-
resentation (Fig. 1), the DeepPrint representation can be
matched at orders of magnitude faster speed (useful for
large-scale search) and can be matched in the encrypted
domain (using a fully homomorphic encryption scheme) in
a timely manner and with minuscule loss of accuracy [4].
To date, relatively few works [5], [6], [7], [8] have pursued
developing deep networks, like DeepPrint, to extract fixed-
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Fig. 1. Example of a rolled fingerprint synthesized by PrintsGAN and
overlaid with its minutiae representation. Minutiae are automatically
annotated with the Verifinger v12 SDK. The fingerprint here qualitatively
shows the realism of the fingerprints generated by PrintsGAN.

length fingerprint representations, despite the incredible
promise of these networks to speed up large scale, accurate
fingerprint search and encrypted fingerprint matching [3].
We posit that the main reason for this is the lack of pub-
licly available fingerprint data (similar to the privately-held
forensic dataset used in [3]) to train such models. Note,
nearly all state-of-the-art face recognition systems are now
extracting deep face representations due in large part to
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TABLE 1
Examples of publicly available fingerprint datasets.

Dataset FVC 2002
DB1 A1 LivDet 20192 NIST SD302

(N2N)3

Unique
Fingers 100 N.A. 2,000

Total
Fingerprints 800 6,029 25,093

1 Other FVC datasets are of similar size.
2 Earlier LivDet datasets are smaller in size.
3 The count of fingerprints in the N2N dataset after cleaning
latent / palm slaps and aggregating the data from the
individual fingerprint readers.

the plethora of face data which has been historically, easily
downloaded and aggregated for free from the internet and
subsequently used to adequately train deep face networks 1.

In addition to being limited in algorithm development
and training by the lack of publicly available fingerprint
training data, researchers are also unable to properly eval-
uate their algorithms, particularly their large-scale search
capability (retrieval accuracy and speed with million or
billion scale backgrounds or distractors). Validating the
performance of fingerprint search algorithms on large-scale
galleries is of significant importance given the integration of
fingerprint search algorithms into several real world appli-
cations including (i) India’s Aadhaar (gallery of≈ 1.3 billion
ten-prints 2) and (ii) the FBI’s Next Generation Identification
system (NGI) (gallery of 145.3 million ten-prints 3).

While some well-known, publicly available fingerprint
data is accessible including the FVC datasets [14], [15], the
LivDet datasets [16], and the NIST N2N dataset (NIST SD
302 [13]), they are limited in the following ways:

• The datasets have a limited number of unique iden-
tities (fingers). Of the datasets available, the largest
(N2N dataset) has fingerprints from only 2, 000
unique fingers.

• There is a limited number of impressions per identity
(e.g only 5-10 impressions per finger).

• There is no guarantee that the data will remain
available to academic researchers. In fact, the widely
utilized NIST SD4 [17], NIST SD14 [18], and NIST
SD27 [19] datasets have all been removed by NIST
from their website due to privacy regulations.

Tables 1 and 2 demonstrate the large divide that stands
between the amount of publicly available fingerprint data
and face data, respectively. In addition to the millions of face
images enumerated in Table 2, the authors in [35] demon-
strated the ability to develop a web-crawler to download 80
million face images to benchmark the search performance
of automated face matchers at scale. This vast quantity of

1. Presently, even these face datasets are under considerable criticism
for violating user privacy as defined in GDPR and other regulations
which prohibit use of biometric data without user consent. As a result,
many of the previously available face recognition datasets are no longer
available for download. This has prompted efforts to generate synthetic
faces, see e.g., [9], [10], [11].

2. https://uidai.gov.in/aadhaar dashboard/india.php
3. https://www.fbi.gov/file-repository/ngi-monthly-fact-sheet/

view

TABLE 2
Examples of publicly available face datasets.

Dataset WebFace260M [32] MS-Celeb [33] VGGFace2 [34]

Number of
Identities 4 Million 100K 9,131

Total
Face Images 260 Million 10 Million 3.3 Million

accessible face data has opened up a plethora of promising
research directions within the face recognition community
and that lamentably remain elusive to fingerprint recogni-
tion researchers.

To address the lack of publicly available fingerprint data,
numerous studies have been published which describe algo-
rithms to generate synthetic fingerprint images. These fin-
gerprints purportedly do not belong to any real person, and
therefore, they do not come attached with stringent Institu-
tional Review Board (IRB) and other privacy regulations 4.
However, to date, synthetic fingerprint generators [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31] continue to
have limited utility for training and evaluating algorithms
for the following main reasons:

• The fingerprints lack realism. Qualitatively speaking,
a human observer can easily differentiate between a
synthetic fingerprint and a real fingerprint. In other
words there exists a large domain gap between real
and synthetic fingerprints (see Fig 3).

• Many of the approaches [28], [29], [30], [31] which at-
tempt to improve the realism of the synthetic finger-
prints via advancements in Generative Adversarial
Networks (GAN) cannot generate multiple impres-
sions for a given finger or identity. They can only
generate unique fingerprint impressions and do not
model intra-class variations for a given finger.

To address these limitations inherent to prevailing syn-
thetic fingerprint generators, we propose PrintsGAN. Prints-
GAN utilizes multiple generative adversarial networks
(GANs) combined with a style transfer and warping module
to generate highly realistic fingerprints. Furthermore, Prints-
GAN is able to generate a large variety (distortion, moisture,
pressure) of impressions for a given finger. We show quali-
tatively via a crowd-source evaluation (amongst researchers
within the field of fingerprint recognition) that synthetic
fingerprints from PrintsGAN are much more similar to
real fingerprints than synthetic fingerprints from current
methods. We also show this more quantitatively through
i) the distribution of minutiae of our synthetic fingerprints
compared to real fingerprints, ii) match scores from two
state-of-the-art fingerprint matchers (Verifinger v12 SDK
and DeepPrint), and iii) NFIQ 2.0 quality scores [39].

After demonstrating the realism of the PrintsGAN syn-
thetic fingerprints, we show how the synthetic data from

4. Some studies [36], [37], [38] suggest that information from the
training set may be leaked by Generative Adversarial Networks. In
this study, we match our synthetically generated fingerprints against
our training set of real fingerprints to verify that no biometric identities
from our training set of real fingers are inadvertently leaked.

https://uidai.gov.in/aadhaar_dashboard/india.php
https://www.fbi.gov/file-repository/ngi-monthly-fact-sheet/view
https://www.fbi.gov/file-repository/ngi-monthly-fact-sheet/view
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Fig. 2. Examples of real fingerprints taken from an operational forensic database (a, b, c) [12] and the publicly available NIST SD302 database
(d, e) [13]. These fingerprints provide a reference point for qualitatively determining the realism of the synthetic fingerprints shown throughout the
paper.

PrintsGAN can be used to train a deep network to ex-
tract a fixed-length fingerprint representation useful for
improving the search speed against large-scale galleries.
In particular, we show that by initializing a deep network
with a database of 525, 000 PrintsGAN fingerprints (35, 000
fingers, 15 impressions per finger) and then fine-tuning on
the publicly available NIST SD302 database (2, 000 fingers,
approximately 12 impressions per finger) we can obtain a
True Accept Rate (TAR) on several real fingerprint evalua-
tion datasets which is substantially higher than if we had
trained on just real data (NIST SD302) alone or when pre-
training on synthetic fingerprints generated by the previous
baseline methods. By showing the ability to train a network
on synthetic fingerprints and then perform well on real
fingerprints in several additional datasets, we demonstrate
that our synthetic fingerprints model the intra-class and
inter-class variations of real fingerprints much better than
existing synthetic fingerprint generation methods. We also
open the door for an entire new research direction within the
fingerprint recognition community, namely, to leverage our
synthetic data to learn highly discriminative fixed-length
fingerprint representations similar to DeepPrint in [3].

More concisely, the contributions of this research are as
follows:

• A synthetic fingerprint generator capable of gener-
ating significantly more realistic fingerprints than
state-of-the-art methods. We demonstrate this via a
crowdsourced study and several quantitative met-
rics.

• The learning of a discriminative fixed-length rep-
resentation using our synthetic fingerprints. More
specifically, we demonstrate that a deep network
like [3] trained on our synthetic fingerprints can
be used to search against real fingerprints. Existing
synthetic fingerprint generators do not adequately
model the inter-class variations and intra-class vari-
ations needed to enable learning such discriminative
representations.

• The creation of a benchmark for learning discrimi-
native fixed-length fingerprint representations using
our synthetic fingerprints as training data. To this
end, we will release a database of 35k synthetic
fingerprint identities with 15 impressions each gen-
erated from PrintsGAN.

• Matching experiments demonstrating that no iden-
tity information is “leaked” from the training
database of our synthetic fingerprint generator. This
enables us to safely share our synthetic fingerprints
with interested researchers to pursue new avenues
which were previously inhibited by lack of large-
scale public fingerprint datasets.

2 RELATED WORK

Many studies have been conducted over the past several
decades in an attempt to generate realistic synthetic finger-
prints to address the paucity of publicly available finger-
print datasets. These approaches can be broadly categorized
into i) “hand-crafted” or engineered approaches [20], [21],
[22], and ii) learning-based approaches [23], [24], [25], [26],
[27], [28], [29], [30], [31].

While these approaches certainly made seminal contri-
butions and tremendous strides towards realistic synthetic
fingerprint datasets, they are also limited in a number of
different ways. Qualitatively speaking, most of the existing
synthetic fingerprint generators are not capable of generat-
ing fingerprints which are visually indistinguishable from
real fingerprints. This can be seen by comparing the real
fingerprints shown in Figure 2 with the various synthetic
fingerprints in Figure 3. This domain gap between real
fingerprints and synthetic fingerprints renders the synthetic
fingerprints of limited utility for both training deep net-
works and evaluation of fingerprint recognition systems.

Many of the “hand-crafted” approaches are also limited
via certain assumptions or restrictions imparted via the
model chosen. For example:

• The models used to generate orientation fields (Zero
Pole [40]), ridge-structure (AM/FM models [41] or
Gabor Filters [42]) and minutiae points are assumed
to be independent, creating unrealistic friction ridge
patterns.

• Fixed fingerprint ridge widths are often assumed.
However, real fingerprints have varying ridge
widths. In fact, the authors in [43] showed that ridge
width could be used to almost perfectly classify
between real and synthetic fingerprints.

• Common local minutiae configurations are not mod-
eled, again enabling classification between real vs.
synthetic fingerprints [44].
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Fig. 3. Example images taken from prior fingerprint synthesis algorithms; (a) [20], (b) [21], (c) [22], (d) [23], (e) [24], (f) [25], (g) [26], (h) [27], (i) [28],
(j) [29], (k) [30], (l) [31]. Existing synthesis algorithms are limited by a lack of realism (domain gap between real and synthetic fingerprints), e.g.,
(a-i). GAN based synthesis methods generate more realistic fingerprints e.g., (j-l), however, they are not able to generate multiple impressions
for a given fingerprint (they only generate unique fingerprints). Our proposed PrintsGAN generates more realistic fingerprints than the baselines
(via a crowd-source evaluation) and is also capable of generating multiple impressions per finger. This enables us to train a CNN on top of our
synthetically generated fingerprints to learn a discriminative fingerprint representation for fingerprint matching.

More recent approaches to fingerprint synthesis aim to
alleviate the shortcomings of some of the “handcrafted”
approaches by utilizing Generative Adversarial Networks
(GANs) to learn the mapping from random noise to syn-
thetic fingerprints without introducing some of the afore-
mentioned assumptions. This has significantly improved the
realism of synthetic fingerprints (Figure 3), however, it has
introduced new limitations including:

• Many GAN based approaches focus on synthesizing
small patches of fingerprints rather than full finger-
prints to stabilize the training of the GAN.

• The GANs are only capable of generating unique
fingerprints. None of the existing GAN methods can
generate multiple, full fingerprint impressions for a
given fingerprint or model the intra-class variations.

• A lack of training data results in some of the GAN
based methods producing fingerprints which are
even more dissimilar from real fingerprints than the

‘hand-crafted” approaches are capable of synthesiz-
ing.

• GANs are naively utilized off-the-shelf without con-
sideration of any fingerprint domain knowledge
which can aid in improving the realism of the syn-
thetic fingerprints.

Like previous learning based synthesis methods [23],
[24], [25], [26], [27], [28], [29], [30], [31], PrintsGAN also
utilizes several GANs to generate synthetic fingerprints
which are more realistic than their handcrafted counterparts
(Figure 4). However, PrintsGAN makes several key changes
to the existing learning based synthesis pipeline in order to
rectify their shortcomings. First, PrintsGAN utilizes domain
knowledge during the synthesis process in a manner in
which existing GAN based methods do not. Rather than
naively learning a mapping directly from a random noise to
a fingerprint via a single GAN, PrintsGAN breaks the syn-
thesis process out into a series of steps each of which aims to
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Fig. 4. Schematic of PrintsGAN. PrintsGAN operates in two stages. In the first stage, a Master-Print, or a new identity is generated. A Master-Print is
a binarized friction ridge pattern at 250 ppi. After synthesizing a Master-Print, it is passed to a non-linear warping and cropping module to simulate
the effects of pressing the finger against a fingerprint reader platen at different roll, pitch, yaw, and degree of pressure. Finally, this warped and
cropped Master-Print is passed to the second stage of the synthesis process where it is rendered with realistic textural details at 500 ppi. By passing
different identity noise zID , distortion noise zdistort, and texture noise (ztexture), PrintsGAN is able to generate many fingerprint identities as well
as impressions per identity. In this manner, PrintsGAN models both the inter-class and intra-class variance of a large fingerprint database, making
it useful for training deep networks to extract representations for matching.

model either inter-class variations or intra class variations.
In particular, PrintsGAN uses one GAN GI(z) to generate a
Master-Print (similar to the Master-Print generation used in
hand-crafted approaches [20]). Next PrintsGAN generates a
non-linear warping and cropping of the Master-Print via a
GAN DW (EW (I)) to simulate the effects of pressing a fin-
ger against a fingerprint reader platen at different roll, pitch,
and yaw. Finally, PrintsGAN adds textural details to the
warped and cropped Master-Print via a GAN RD(RE(I)).

By using GANs to synthesize fingerprints, we leverage
their ability to generate more realistic fingerprints than ex-
isting handcrafted methods. However, by utilizing domain
knowledge from existing hand-crafted approaches via a se-
ries of synthesis steps that begin with a Master-Print, we are
able to impart additional realism to our method and also the
ability to control our GAN to generate multiple impressions
for a given finger (something existing GAN-based finger-
print synthesis methods cannot do). In short, PrintsGAN
aims to leverage the advantages of both the existing hand-
crafted approaches as well as the more recent learning based
approaches in order to address the limitations that both of
them currently face when not synergistically tied together
into a single algorithm like PrintsGAN.

As an addendum, we note that a plethora of work has

been conducted in the realm of face recognition to generate
synthetic faces via GANs, e.g., [9], [10], [11]. These meth-
ods generate highly realistic face images. Furthermore, the
authors in [9] impart explicit control over various facial at-
tributes into the synthesis algorithm. Thus high quality faces
and intra-class variations of the same face can be generated.
However, such high quality synthetic full-image fingerprint
GANs (with the ability to model intra-class variations) have
not yet been proposed. We also note that work has been
conducted to train face recognition models on synthetic
face data [45], [46], [47]. To the best of our knowledge, no
such work has yet been conducted successfully within the
field of fingerprint recognition where the motivation of such
experimentation is much higher given the dearth of real
fingerprint data in comparison to face data.

3 APPROACH

PrintsGAN synthesizes fingerprints via a series of steps.
First, a binary Master-Print IID ∈ {0, 1}256×256 is gen-
erated via a random noise vector zID ∈ R512, where z
is drawn from a continuous uniform distribution U(0, 1)
to create a new fingerprint identity. An example Master-
Print can be seen in Figure 4. Next, IID along with a
warping noise vector zdistort ∈ R16 is passed to a non-linear
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Fig. 5. An example of a synthetic fingerprint identity, with five different impressions, generated by PrintsGAN. The top row shows the binary Master-
Print with various warpings and croppings. The bottom row shows each of those Master-Print warps after a textural rendering.

TPS warping module and cropping GAN DW (EW (IID)) to
produce a warped Master-Print Iw. Finally, Iw is passed to
a renderer RD(RE(Iw)) along with a texture noise vector
ztexture ∈ R128 to impart textural details to the final
fingerprint Ir . Thus, by selecting different zID , we can
generate many unique fingerprints. Likewise, by fixing zID ,
and selecting different zdistort and ztexture, we can generate
different impressions of the same fingerprint. Each of these
steps are elaborated upon in the subsections below.

3.1 Master-Print Synthesis

The first step in the synthesis process requires learning
a mapping from zID ∈ R512 to a binary Master-Print
IID ∈ {0, 1}256×256. To perform this mapping, we uti-
lize the BigGAN architecture [48] due to its demonstrated
ability to produce a large variety of images (we want our
fingerprint identities to be unique). The goal of the BigGAN
generator is to generate a synthetic binary fingerprint. The
discriminator must then try to distinguish between the syn-
thetic binary fingerprint and a real binary fingerprint taken
from an operational fingerprint database. More formally, the
GAN is trained in accordance with the classic adversarial
loss:

Ladv(GI , D) = Ex [logD(x)] + Ez [log(1−D(GI(z)))] (1)

where x is a binary fingerprint extracted from a real finger-
print.

For training the generator GI and the discriminator D in
Equation 1, we utilize 282K unique fingerprints taken from
the MSP longitudinal database used in [12] and [3]. Prior to
training, we extract binary fingerprint images from each of
the 282K “raw (grayscale) fingerprint images”. To do this,
we utilized a commercial fingerprint SDK (Verifinger v12
SDK) to first extract binary images from a subset of 10K raw
fingerprint images. Then, we train an auto-encoder to learn
the mapping from a raw fingerprint to a binary fingerprint
using these 10K ground-truth binary fingerprints. More

Fig. 6. A rolled fingerprint from [12] is binarized via our trained grayscale
fingerprint-to-binary auto-encoder.

formally, given a raw fingerprint Iraw, we use an auto-
encoder R(.) to learn a mapping from Iraw to a ground-
truth binarized fingerprint Ibinary via an L-2 loss function5:

Lrecon = |R(Iraw)− Ibinary|22 (2)

We note that we could directly use the commercial SDK
to extract binary images from all 282K raw images, however,
we specifically train R(.) for this task for the following rea-
sons. First, the commercial SDK is relatively slow, whereas
R enables us to quickly extract binary images for the full
282K database rather quickly, but more importantly, R(.) is
a differentiable binarization method and we intend to use it
later on in a subsequent step as part of a loss function. An
example of the binarization of R(.) can be seen in Figure 6.

3.2 Warping and Cropping

After training GID , we are able to generate binary Master-
Prints. Each generated Master-Print comprises a new iden-
tity. The next step after generating each Master-Print is to

5. We also experimented with using a cross-entropy loss for this task
since the output is a 0, 1 image, however, in practice, we found that the
L-2 loss converged much more quickly and smoothly.
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Fig. 7. Examples of genuine pairs (top row) and imposter pairs (bottom row) synthesized by PrintsGAN. The minutiae matching score of Verifinger
v12 SDK are displayed (below each pair) to show that i) PrintsGAN can generate unique fingerprints (low imposter pair scores) and ii) PrintsGAN
can generate multiple impressions per finger (high genuine pair scores). Note, the matching threshold for Verifinger v12 for a False Acceptance
Rate of 0.01% is a match score of 48.

impart a non-linear distortion and cropping to it to simulate
the effects of placing a finger at different positions and
pressures on a platen. For this step, we again utilize a GAN
Gw comprised of a content encoder Ew, a decoder Dw,
and a warping encoder Lw. The content encoder encodes
the Master-Print IID into feature maps, while the warping
encoder encodes a warping noise vector zdistort ∈ R16 into
a set of warping parameters Θ. These warping parameters
are then used to compute a Thin Plate Spline (TPS) warping
transformation via F(I; Θ). The decoder Dw finally com-
putes a segmentation mask S ∈ {0, 1}256×256. The warped
Master-Print is then computed via F(I; Θ) · S.

Since the TPS warping module is differentiable, this
entire process is trained via an adversarial loss (Equation 1)
where x is a pair of real binary images from different
impression of the same finger. Thus for the generator to fool
the discriminator, it must generate realistic TPS distortions
and croppings of the input Master-Prints to mimic the
distortions and croppings between a pair of real binary
fingerprints derived from the same finger. Examples of dif-
ferent warpings and croppings of a Master-Print are shown
in the top row of Figure 5.

3.3 Renderer

Finally, after warping and cropping different portions of a
Master-Print into Iw, we pass it through one final GAN, Gr

to add realistic textural details. For the GAN architecture we
again utilize the BigGAN6 architecture due to the realism it
imparts to high resolution images [48]. However, in order to
impart different textural details to different impressions of
the same finger, we add a texture encoder to the BigGAN
architecture. In particular, we add as input, a texture noise
vector ztexture ∈ R128. This noise vector is then encoded

6. We also experimented with StyleGAN [11] for the renderer, but
found it more difficult to maintain the identity.

to a γ and β for performing instance normalization on the
BigGAN feature maps [49]. As was shown in [49], instance
normalization can be used in GANs to modulate between
different styles in GAN images. In our case, modulating
these styles results in different types of impression noise
between each impression of an input fingerprint. To ensure
that we maintain identity after rendering, we pass our
rendered images, Ir through the trained binarization auto-
encoder R. We then make sure that the binary image of
the rendered image is the same as the original input binary
image, Iw, via an L2 loss, i.e., we minimize |R(Ir) − Iw|22.
This ensures that we do not introduce any new friction
ridge patterns during the rendering step. To ensure that
the rendered fingerprint looks realistic, we again utilize an
adversarial loss (Eq. 1). Examples of these different textural
renderings of an input Master-Print can be seen in the
bottom row of Figure 5.

4 EXPERIMENTAL RESULTS

4.1 Qualitative Results
Qualitatively, the fingerprint impressions generated by
PrintsGAN are both highly realistic and discriminative. As
seen in the bottom row of Figure 7, PrintsGAN is able to
generate unique fingerprints that yield low imposter scores
with a SOTA commercial fingerprint matcher, Verifinger
v12. Besides generating high quality impressions of multiple
fingerprint identities, PrintsGAN is also able to simulate
realistic intra-class variation between impressions of the
same fingerprint identity via its texture and style render-
ing stage, while achieving high similarity between genuine
impressions of the same finger (top row of Figure 7).

4.2 CrowdSource Evaluation
To validate the realism of the fingerprint images generated
by PrintsGAN, we performed a crowdsourcing experiment
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Fig. 8. Example prompt from experiment 1 of the expert survey on synthetic fingerprint realism. Participants were asked to rank the six synthesis
methods in order of realism on a scale from 1-6, 1 being the most realistic to 6 being the least realistic.

where sixteen fingerprint domain researchers visually as-
sessed the quality of our synthetic fingerprints. In particular,
we designed experiments to test 1) how our fingerprints
look with respect to existing baseline methods and 2) how
well PrintsGAN fingerprints mimic real fingerprints.

For experiment 1, experts were presented with images
from six different synthetic fingerprint generators ( [20],
[28], [29], [31], [50], and PrintsGAN) and asked to order
each fingerprint from most realistic (1) to least realistic
(6) on a scale from 1-67. The experiment consisted of 15
different trials which consisted of a random selection of
images from each method presented in a randomly assigned
order where each trial was kept the same for each expert.
An example of one of these trials is given in Figure 8.
The mean and standard deviation of the ratings for each
method are presented in Table 3. Out of the three rolled
fingerprint synthesis methods, PrintsGAN obtains the best
average realism rating of 2.45 ± 1.47, which is a signifi-
cant improvement compared to the next best method by
Mistry et al. [29] that attained a score of 3.70 ± 1.61. For
the plain print methods, CFG [31] scores the best overall
ranking of 2.27± 1.41; however, unlike PrintsGAN, CFG is
unable to generate impressions of specific identities, which
limits its utility in both training and evaluating fingerprint
recognition algorithms. Furthermore, it should also be noted
that generating a rolled fingerprint is more challenging
than plain fingerprints because of its larger surface area,
distortion and number of minutiae points.

For experiment 2, participants were presented (one at a
time) a total of 130 synthetic and real fingerprint images
and asked whether each individual fingerprint was real
or fake. An example prompt for one of these 130 trials is
presented in Figure 9. An interesting observation from this
study is that the standard deviation among plain methods
(both synthetic and real) is typically much larger compared

7. These 6 methods were chosen because of their visual realism and
ability to synthesize full fingerprint impressions. Note, some methods,
e.g., L3-SF [30], despite being very realistic, were not chosen because
they do not generate full fingerprint images.

TABLE 3
Results for Expert Crowdsourcing Experiment 1: Rate Each Fingerprint

from Most Realistic to Least Realistic (1 = most realistic, 6 = least
realistic).

Type Average Realism Rating Std. Dev
Sfinge [20] Plain 3.67 1.61
IBG Novetta [50] Plain 3.19 1.48
CFG [31] Plain 2.27 1.41
Kai et al. [28] Rolled 4.33 1.43
Mistry et al. [29] Rolled 3.70 1.61
PrintsGAN Rolled 2.45 1.47

TABLE 4
Results for Expert Crowdsourcing Experiment 2: Rate Each

Fingerprints as Real or Fake.

Percentage Classified as Real per Dataset (Mean ± Std. Dev.)
Plain Prints Rolled Prints

Sfinge [20] 37.74 ± 39.13 Kai et al. [28] 19.58 ± 21.70
IBG Novetta [50] 40.51 ± 30.62 Mistry et al. [29] 35.83 ± 22.56
CFG [31] 84.07 ± 21.14 PrintsGAN 66.67 ± 20.22
Real Plain 67.50 ± 36.61 Real Rolled 72.04 ± 18.81

to the rolled fingerprint methods. This seems to suggest
that it is more difficult for experts to distinguish between
synthetic and real plain prints compared to rolled prints.
Furthermore, CFG was the most successful in passing as
real among plain print methods, achieving an impressive
84.07 ± 21.14% classification rate as real. In comparison,
that is surprisingly higher than the classification rate of
the real plain fingerprint database sampled from the FVC
2002 DB1-A dataset [51]. Similarly, PrintsGAN was the most
successful of the rolled fingerprint methods, achieving a
66.67± 20.22% real classification rate, which is much closer
to the real rolled database (sampled from [12]) classification
rate of 72.04± 18.81% compared to the baseline methods.

4.3 Quantitative Evaluation
In line with previous research on synthetic fingerprint gen-
eration, we have chosen to evaluate PrintsGAN in terms
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TABLE 5
Fingerprint metrics for real (DB-1) and PrintsGAN (DB-2) fingerprints. Minutiae quality and NFIQ2 scores both have a

range of [0, 100].

DB-1 (Real) DB-2 (PrintsGAN)
Measure Mean Std. Dev. Mean Std. Dev.
Total Minutiae Count 92.70 24.16 79.30 16.59
Ridge Ending Minutiae Count 49.98 16.06 43.00 10.14
Ridge Bifurcation Minutiae Count 42.71 13.36 36.30 9.37
Quality of Minutiae 73.50 15.07 72.14 16.05
Fingerprint Area (Megapixels) 0.179 0.038 0.171 0.019
Fingerprint Image Quality (NFIQ2) 54.21 22.73 63.63 21.38

Fig. 9. Example prompt for experiment 2 of the expert survey on syn-
thetic fingerprint realism. Experts were asked to chose between real or
fake when presented with a fingerprint image.

of several quantitative metrics, including the distribution
of minutiae count, type, and quality extracted from Prints-
GAN generated fingerprints compared to the real finger-
print training set, the distribution of genuine and imposter
match scores from two SOTA fingerprint matchers, NFIQ2
quality scores, and closed-set identification experiments. In
particular, let us denote the first database of 282k real rolled
fingerprints images from the training database [12] as DB-
1 and the database of synthetic rolled fingerprints from
PrintsGAN as DB-2. DB-2 consists of 35, 000 synthetic fin-
gers, each with 15 impressions per finger, totaling 525, 000
fingerprint images. Let DB-3 denote a third real, rolled
fingerprint database from NIST Special Database 4 [17]
as an additional reference database to compare with the
PrintsGAN generated database. DB-3 contains 2, 000 unique
fingerprints with 2 impressions per finger.

4.3.1 Fingerprint Metrics
First, we have computed some fingerprint metrics from the
distribution of real fingerprints (DB-1) and synthetic finger-
prints from PrintsGAN (DB-2). The metrics regarding minu-
tiae (total number of minutiae, number of minutiae ridge

endings, number of minutiae bifurcations, and minutiae
quality) were computed using the Verifinger v12 SDK and
the mean and standard deviation for each are given in Ta-
ble 5. Additionally, the average fingerprint area and NFIQ2
quality scores were computed for each database. PrintsGAN
is able to generate a diverse set of fingerprint identities,
which is supported by the large standard deviation across
all these metrics. It is also able to generate fingerprints
which resemble the real, rolled training database in terms
of fingerprint area, minutiae statistics, and NFIQ2 scores;
albeit, the number of minutiae detected in PrintsGAN fin-
gerprints is, on average, slightly less compared to the real
fingerprint database. This is in part due to the slightly
smaller fingerprint area generated by PrintsGAN along with
the higher average NFIQ2 scores, which results in less
spurious minutiae. Quantitatively, PrintsGAN fingerprints
give a higher Goodness Index (GI) [52] compared to the real
fingerprint database (0.00058 vs −0.00084), which can be
attributed to the decrease in spurious minutiae.

4.3.2 Imposter Distributions
Next, we have computed several distributions of imposter
scores to 1) detect identity leakage from the real fingerprint
training database in the synthetic fingerprints generated
from PrintsGAN and 2) evaluate the uniqueness of finger-
print identities being generated by PrintsGAN. To detect
leakage in the generated fingerprints, we have computed
match scores between each of the 282k training fingerprint
identities in real DB-1 to each unique fingerprint identity
in PrintsGAN DB-2. In total, the number of comparisons
would be 148 billion (35, 000 × 15 × 282000), instead we
randomly select one impression per the 35, 000 fingers from
DB-2 and compute 9.87 billion match scores. The match
scores are computed in a 2-step process in line with the 2-
stage search procedure implemented in [3] to significantly
reduce the computational time required to perform 9.87 bil-
lion matches. In the first stage, DeepPrint [3] is used to filter
out the matches which obtained a match score lower than
0.83 (these are obvious non-matches), a threshold which
was empirically obtained for a 0.01% False Acceptance Rate
on the NIST Special Database 4 [17]. This stage yielded
32, 182 pairs which were then subjected to the Verifinger
v12 ISO minutiae-matcher operating at a match threshold of
48 set by Neurotechnology for a FAR of 0.01%. As a result,
out of the 35, 000 unique fingers in DB-2, only a mere 15
(0.04% of the database) had Verifinger match scores above
48 with any of the 282k unique fingers in the real training
database, DB-1. Furthermore, each of these 15 fingers just
barely exceeded the threshold of 48 for genuine matches, of
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which the maximum score recorded was a score of 65. Even
so, we acknowledge that this is still some degree of risk and
information leakage, and so we have removed these images
from the training set before releasing it to the public.

To investigate the uniqueness of fingerprint identities
being generated by PrintsGAN, we have computed several
distributions of imposter scores: i) imposter scores within
DB-1, ii) imposter scores within DB-2, and iii) imposter
scores between DB-1 v. DB-2. In particular, we have ran-
domly sampled 35k unique fingerprints from DB-1 and one
impression from each of the 35k unique fingerprints in DB-
2 to perform the comparisons. Within each histogram, there
are a total of 1.225 billion imposter matches computed, from
which we randomly sample 35 million scores. Figure 10
shows the histograms as well as the Cumulative Distribu-
tion Function (CDF) for each of the three histograms.

Next, we computed the non-parametric independent
samples Kolmogorov-Smirnov (KS) test between the em-
pirical imposter distributions to confirm the distinctness of
the synthetic fingerprints, similar to [31]. The KS test is
computed between the empirical imposter distribution of
DB-1 and the empirical imposter distribution between DB-
2 v. DB-1 with an alternative hypothesis that the imposter
distribution between DB-2 v. DB-1 is greater than the dis-
tribution within DB-1. Note, that the alternative hypothesis
describes the CDFs of the imposter distributions; thus, sup-
pose if x1 F and x2 G, then F (x) is greater thanG(x) would
indicate that the values in x1 tend to be less than those in
x2. In this case, our experiment yielded a KS statistic of
0.0462 and a p-value of 0.0, which indicates rejecting the
null hypothesis in favor of the alternative hypothesis. Since
the distribution of DB-2 v. DB-1 imposter scores is greater
than the distribution of imposter scores within DB-1, we
conclude that the imposter scores between DB-2 v DB-1
tend to be less than the imposter scores within DB-1. Thus,
the synthetic fingerprints generated by the PrintsGAN are
distinct from real samples in DB-1.

To further show that the distribution of fingerprints
generated by PrintsGAN follow what we would expect from
a distribution of real, rolled fingerprints, we have computed
genuine and imposter matches with Verifinger for both DB-
3 and DB-2. The score histograms are shown in Figure 11,
showing similar distributions for both DB-2 and DB-3 as
well as excellent separation between mated and non-mated
scores. The distribution of genuine scores for DB-2 is slightly
shifted to the right compared to DB-3, which correlates
with the slightly higher NFIQ2 scores computed for DB-
2 compared to DB-3. Thus, PrintsGAN tends to generate
fewer samples of very poor NFIQ2 quality compared to
what we might expect in a real, operational fingerprint
dataset.

4.4 Training Deep Networks

A significant motivation in designing PrintsGAN to be able
to synthesize a large-scale database of many fingerprint
identities with sufficient number of impressions per identity
is to facilitate both the training and evaluation of deep
networks for fixed-length fingerprint representations. To the
best of our knowledge, the two methods in the open aca-
demic literature with the capability of synthesizing multiple

(a)

(b)

Fig. 10. Histograms (a) and CDFs (b) for imposter score distributions.

Fig. 11. Match score distributions for DB-1 (real) and DB-2 (PrintsGAN),
computed with the Verifinger v12 SDK.
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TABLE 6
Authentication Accuracy. The first two rows correspond to training a deep network with just synthetic prints, the third row corresponds to training on

N2N alone, and the final two rows correspond to pretraining with synthetic and then finetuning on N2N [13].

Dataset NIST SD4 [17] FVC 2002 DB1 A [14] FVC 2004 DB1 A [15]
TAR @ 0.01% FAR TAR @ 0.01% FAR TAR @ 0.01% FAR

Sfinge‡ 10.78± 0.88% 12.57± 3.08% 20.80± 0.48%
PrintsGAN‡ 52.65± 2.33% 59.59± 5.13% 22.35± 4.89%

N2N† 73.37± 3.15% 79.68± 3.67% 65.99± 8.27%
N2N† + Sfinge‡ 54.70± 2.83% 56.68± 7.42% 62.68± 1.06%
N2N† + PrintsGAN‡ 87.03± 0.33% 89.74± 0.22% 90.22± 1.19%
†(2k IDs, 10 impressions), ‡(35k IDs, 15 impressions)

impressions of a particular fingerprint identity, L3-SF [30]
and Sfinge [20], either only synthesize partial fingerprints
or lack sufficient realism to be effective for this purpose.

To benchmark the effectiveness of PrintsGAN compared
to the existing methods in improving the training of deep
network-based fingerprint representation algorithms, we
have compared the performance of multiple DeepPrint
models [3] trained on PrintsGAN generated fingerprints and
the baseline synthetic fingerprint method Sfinge in terms
of True Acceptance Rate (TAR) on test databases of real
fingerprints8. It is the goal that deep network models, like
DeepPrint, pretrained on synthethic fingerprint datasets and
finetuned on the publicly available, real fingerprint data,
will outperform the same deep network model trained on
only the limited set of publicly available, real fingerprint
data.

One of the largest publicly available, real fingerprint
training database is the NIST Special Database 302 (i.e.,
N2N Database), which contains 25k total fingerprints from
2, 000 distinct fingers. As a benchmark for this experiment,
we trained a DeepPrint model on the N2N database alone
and evaluated its performance on three real fingerprint
databases, NIST SD4 [17], FVC 2002 DB1-A [14], and FVC
2004 DB1-A [15]. Recall that NIST SD4 is comprised of rolled
fingerprints whereas FVC databases are comprised of plain
fingerprints. Then, to observe the utility of incorporating
synthetic fingerprint data to augment the training of deep
network fingerprint recognition models, we performed a
procedure of pretraining on synthetic data and finetuning
on the real, NIST N2N data. The utility of the synthetic fin-
gerprints is then measured in the performance improvement
of these finetuned models over the model trained on real
data alone.

For our experiments, we trained on equal amounts of
synthetic fingerprints from both our method and from
Sfinge (35, 000 unique fingerprint identities with 15 impres-
sions each). The performance of these models trained on
synthetic data, along with the model trained on NIST N2N
only, are given in Table 6. We trained each model three
times and reported the mean and standard deviation of
the performance across the three test datasets. We notice
that the performance of the model trained only on 35k
PrintsGAN identities exceeds that of the models trained on
Sfinge data on all three datasets. More importantly, when

8. We chose not to benchmark against L3-SF since L3-SF does not
generate full fingerprint impressions.

Fig. 12. Closed-set identification accuracy of DeepPrint models trained
on N2N data only vs. N2N + PrintsGAN data. The various curves shown
are comparing the search performance of these two models on i.) SD4,
ii.) SD4 augmented with 100k Real fingerprint images, and iii.) SD4
augmented with 100k PrintsGAN fingerprints. Best viewed in color.

finetuning the model pretrained on PrintsGAN data on the
N2N dataset, the performance exceeds that of the model
trained on N2N from scratch, demonstrating the utility of
PrintsGAN synthetic fingerprints to boost the performance
of deep network-based models beyond what is attainable
training on the limited amount of real fingerprint datasets
alone. Furthermore, the performance improvement on both
rolled (NIST SD4) and plain print (FVC) datasets shows that
the rolled fingerprints generated by PrintsGAN are even
useful for improving the performance of DeepPrint on plain
fingerprints.

4.5 Search Experiments
In addition to improving the authentication performance of
deep network models via augmenting the training datasets
with synthetic fingerprints from PrintsGAN, the identifica-
tion accuracy also shows a similar improvement - which
happens to be an application which greatly benefits from
fixed-length representations due to the drastically improved
search speed. Figure 12 compares the closed-set identi-
fication accuracy of a DeepPrint model trained on only
N2N data vs. the DeepPrint model which was pretrained
on PrintsGAN images and finetuned on N2N. The search
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results on SD4 show considerable improvement for the
model trained on both N2N + PrintsGAN data, with a
rank 1 identification rate of 92.05% compared to 85.90% for
training on N2N alone. Further augmenting the gallery with
100k real fingers from [12] shows a similar improvement
(86.80% vs. 73.20%). Instead of augmenting the gallery with
100k real fingers, we can use 100k fingers generated from
PrintsGAN to augment the gallery. In doing so, the identi-
fication performance is similar to the performance obtained
by augmenting the gallery with real fingerprints (comparing
the green vs. purple curves in Figure 12), demonstrating that
our synthetic prints generated by PrintsGAN can be used
for benchmarking large-scale identification of fingerprint
recognition systems.

4.6 Computational Efficiency

DeepPrint models and PrintsGAN training code are imple-
mented in Tensorflow 1.14.0. All models were trained across
2 NVIDIA GeForce RTX 2080 Ti GPUs. Since PrintsGAN in-
volves a multi-stage generation process, the time required to
synthesize a fingerprint by PrintsGAN is an aggregation of
the time required by each of the three stages: i.) master print
synthesis (20.0ms), ii.) warping and cropping (36.5ms), and
iii.) textural rendering (42.7ms). Thus, the total time required
to synthesis one fingerprint is approximately 99.2ms. As a
future improvement to speed up the generation time, these
three stages could be condensed into a single network.

Each fingerprint generated by PrintsGAN is a 512× 512
8-bit grayscale image requiring about 256KB of storage.
Thus, storage requirements for such a large dataset may
quickly become a concern. However, since PrintsGAN is
deep network which is fully implemented in Tensorflow,
instead of generating a large database beforehand, one could
elect to generate fingerprint samples on the fly during the
training of a deep network-based fingerprint recognition
system (e.g., DeepPrint).

5 CONCLUSION

In this work, we developed a GAN-based fingerprint syn-
thesis method, PrintsGAN, that is capable of generating
high-quality, 512 × 512 resolution, rolled fingerprints that
closely resemble the minutiae quantity, type, and quality
distributions of an operational, real fingerprint database
on which the method was trained. Further experiments
validate the capability of PrintsGAN to synthesize diverse
and unique fingerprint identities with realistic intra-class
variation. PrintsGAN is able to achieve both improved
realism (supported by survey results from domain-experts
in fingerprint biometrics) and control over the synthesis
process through a synergy of traditional domain-knowledge
synthesis methods and state-of-the-art GAN methods. Most
importantly, the utility of PrintsGAN generated fingerprints
was demonstrated through improved recognition perfor-
mance (when training on synthetic data) beyond what was
achievable for a similar deep network model architecture
on the paucity of publicly available, real fingerprint data.
Furthermore, experimental results show that PrintsGAN
does not leak any significant information from the database
of real training images, permitting us to publicly release a

large-scale dataset of synthetically generated samples from
PrintsGAN, without the privacy concerns that restrict the
release of current databases of real fingerprints.
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