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Clustered Gossip Networks
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Abstract—We consider a network consisting of a single source
and n receiver nodes that are grouped into equal-sized clus-
ters. Each cluster corresponds to a distinct community such
that nodes that belong to different communities cannot exchange
information. We use dedicated cluster heads in each cluster to
facilitate communication between the source and the nodes within
that cluster. Inside clusters, nodes are connected to each other
according to a given network topology. Based on the connectivity
levels within clusters, each node relays its current stored version
of the source update to its neighboring nodes by local gossip-
ing. We consider disconnected, ring, and fully connected network
topologies for each cluster. For each of these network topologies,
we characterize the average version age at each node and find the
average version age scaling as a function of the network size n.
Next, by allowing gossiping among the cluster heads, we improve
the version age scaling at the receiver nodes. Then, focusing on
a ring network topology in each cluster, we introduce hierarchy
to the considered clustered gossip network model without using
dedicated cluster heads. Finally, we find the version age-optimum
cluster sizes as a function of the source, cluster head, and node
update rates through numerical evaluations.

Index Terms—Age of information, version age, information
freshness, gossip networks, clustered networks, scaling laws.

I. INTRODUCTION

T
HE AGE of information metric has been introduced

in [2] to measure information timeliness in real-time

status updating systems and has a wide range of promising

applications in emerging time-critical technologies includ-

ing next-generation holographic communications, autonomous

systems, and smart factories. Age of information metric stud-

ies lie at the intersection of information, communication,

networking, and queueing theory fields [3]–[5].

The original age metric measures the time passed since

the most recent information at the monitor was generated

at the source node. This age metric increases linearly in time

in the absence of update deliveries at the monitor. When

an update is received, the age value drops to the age of

the received update. This evolution in time demonstrates the
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fundamental limitation of the original age metric, which is the

assumption that the age at the monitor continues to increase

as time passes irrespective of any changes at the source side

in the underlying source process. That is, even if the source

information does not change and the monitor has the most

up-to-date information, as time passes, the original age metric

deems monitor’s knowledge about the source process stale.

This may not necessarily be the case in many applications,

including content delivery services and surveillance systems.

To overcome this inherent challenge, in the age of information

literature, several variants of the original age metric have been

proposed. A common feature of these recently proposed age

variants is the fact that the age of the monitor stays the same

until the information at the source changes even if no updates

are received at the monitor. Among these are binary fresh-

ness metric [6]–[11], age of synchronization [12], and age of

incorrect information [13]–[15].

Similar in spirit, recently, a new age metric called ver-

sion age has appeared in the literature [16], [17]. In the

version age context, each update at the source is considered

a version change so that the version age counts how many

versions out-of-date the information at the monitor is, com-

pared to the version at the source. Unlike the original age

metric, the version age has discrete steps such that the version

age of a monitor increases by one when the source gener-

ates a newer version, i.e., fresher information. In between

version changes at the source, version age of the monitor

stays the same indicating that the monitor still has the most

recent information. A predecessor of version age has appeared

in [18], which considers timely tracking of Poisson count-

ing processes by minimizing the count difference, i.e., version

difference, between the process and its estimate.

Recently, [16] has used the version age metric to charac-

terize timeliness in memoryless gossip networks composed

of n arbitrarily connected nodes. In [16], the source sends

information to the receiver nodes by implementing a Poisson

updating mechanism, i.e., with exponential inter-update times

at each receiver node. Similar Poisson updating schemes have

been investigated in the age literature in the context of social

networks [19], timely tracking [18], [20], and timely cache

updating [8]–[10]. In addition to source delivering updates to

the receiver nodes, each node in [16] relays their stored ver-

sion of the source information to their neighboring nodes. Also

referred to as gossiping, this additional information exchange

among the nodes improves the age scaling at the nodes since

each node can receive updates from its neighbors as well as

from the source node. As a result of this gossiping, [16] shows
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Fig. 1. Tiered network model where blue node at the center represents the
source, yellow nodes represent the cluster heads, and green nodes represent
the end users. Here, nodes in each cluster form a bi-directional ring network.
Other possible network topologies within a cluster are shown in Fig. 2.

that the average version age scales as O(
√

n) in a bi-directional

ring network and as O(log n) in a fully connected network,

where n is the number of nodes; note that the average version

age would scale as O(n) without gossiping, i.e., if the network

is disconnected.

There have been significant efforts in the age literature to char-

acterize and improve the average age scaling in large networks

considering the classical age metric with possibly many source-

destination pairs. Recent works have achieved O(1) scaling in

multicast networks [21]–[25] using a centralized transmission

scheme administered by the source, and O(log n) scaling in dis-

tributed peer-to-peer communication networks [26], [27] using

a hierarchical local cooperation scheme.

Inspired by these, in this work, our aim is to study version

age scaling in more general gossip network models which

exhibit a community structure; see Fig. 1. In our model,

there is a single source node that generates updates follow-

ing a Poisson process. Each such update constitutes a newer

version of the underlying information process. The source

updates multiple distinct communities regarding the underly-

ing process. In our work, a community represents a set of

receiver nodes clustered together which can only interact with

each other. Each cluster has a dedicated cluster head, which

serves that particular cluster. Akin to base stations in a cellular

network, cluster heads act as gateways between the source and

the receiver nodes in each cluster. Unlike the model in [16],

the source cannot directly deliver updates to receiver nodes

in our model. Instead, source updates need to go through the

corresponding cluster head to reach the receiver nodes in each

cluster. There can be various degrees of gossip in each clus-

ter, which we model by disconnected, uni-directional ring,

bi-directional ring, and fully connected network topologies;

see Fig. 2. Based on the underlying connectivity within clus-

ters, we characterize the version age experienced by each node.

In doing that, we employ the stochastic hybrid systems (SHS)

approach [28]–[33] to develop recursive formulas that enable

us to characterize the version age in arbitrarily connected

clustered gossip networks.1

1Even though, in our work, we study the scaling of version age of
information in clustered gossip networks, results of our work apply to the
original age of information metric as well when the exogenous update rate at
the source is equal to the unit time as recently shown in [34].

Fig. 2. Different network topologies that can be used within each cluster:
(a) disconnected, (b) uni-directional ring, (c) bi-directional ring, and (d) fully
connected. Fig. 1 uses the one in (c). In this figure, cluster size is k = 6.

The additional hop constituted by the cluster heads between

the source and the end-nodes presents us with opportunities

to optimize the average version age scaling by carefully tun-

ing the number of clusters and the cluster size. Specifically,

our results indicate that even if the nodes within each commu-

nity forego gossiping, i.e., disconnected networks within each

cluster, we can achieve O(
√

n) scaling as opposed to O(n). In

addition, we obtain the same O(log n) scaling in the case of

fully connected communities using fewer connections within

clusters than [16], and further reduce the scaling result in ring

networks to O(n
1
3 ) from O(

√
n) in [16].

So far, the cluster heads do not participate in gossiping, i.e.,

cluster heads among themselves form a disconnected topol-

ogy. To further improve the version age at the receiver nodes,

next, we characterize the average version age and its scaling

when the cluster heads form a ring network among themselves

and exchange information. In that case, each cluster head uses

some of its update rate to relay updates to its neighboring

cluster heads while its remaining update rate is used to relay

updates to the receiver nodes within its cluster. Thanks to the

increased communication among the cluster heads, we can fur-

ther improve the version age scaling to O(n
1
3 ) for disconnected

networks within each cluster; to O(n
1
4 ) in the case of ring

networks within each cluster. For the setup with a ring network

in each cluster, we find the version age optimal update rate

allocation at each cluster head. Interestingly, in the case of

fully connected networks within each cluster, we find that the

additional information exchange due to the gossip among the

cluster heads does not improve the version age scaling. That

is, the version age of an end user still scales as O(log n) even

though cluster heads participate in gossip.

Motivated by the tiered structure in the clustered network

model, next, we introduce hierarchy to our clustered network

model. In this case, we forego cluster heads, and carefully

place clusters of nodes in a hierarchical manner. That is, each

node in a particular hierarchy level acts as a cluster head to

a distinct cluster of nodes in the next hierarchy level. At the

first level of hierarchy, we have a single cluster of k1 nodes,

each of which have a single cluster of k2 nodes at the second
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TABLE I
THE SUMMARY OF THE SCALING OF VERSION AGE IN GOSSIP NETWORKS

level, and so on. Within the context of hierarchical clustered

gossip networks, we consider a ring network in each cluster

and show that the O(
√

n) scaling result of [16] and our clus-

ter head-aided scaling result of O(n
1
3 ) for ring networks can

be improved to O(n
1
2h ) without the use of dedicated cluster

heads, where h denotes the number of hierarchy levels. For

convenience, we provide the summary of all scaling results

for version age in Table I. Finally, through numerical evalua-

tions, we determine the version-age optimum cluster sizes for

varying update rates employed by the source, cluster heads,

and the nodes within each cluster.

The rest of this paper is organized as follows: In Section II,

we present our clustered gossip network model and the ver-

sion age metric. In Section III, we characterize the average

version age in clustered gossip networks considering discon-

nected, ring and fully connected network topologies in each

cluster, and determine the corresponding version age scaling

at a particular receiver node. In Section IV, we investigate the

version age scaling improvement when the cluster heads are

allowed to exchange information among themselves. Section V

introduces the hierarchy concept into the considered clustered

gossip network model to further improve the average version

age performance and Section VI finds the optimal number of

clusters and cluster sizes through numerical simulations as a

function of the update rates at the source, cluster heads and

nodes. Finally, we conclude this paper in Section VII with a

summary of the main results along with a discussion of some

future directions.

II. SYSTEM MODEL AND THE AGE METRIC

We consider a system where a network of n nodes is divided

into m clusters, each consisting of k nodes such that n = mk

with k, m ∈ Z; see Fig. 1. Each cluster is served by a distinct

cluster head, which takes updates from the source and dis-

tributes them across that cluster. The source process is updated

as a rate λe Poisson process. The source has a total update

injection rate of λs, which is uniformly distributed across clus-

ter heads such that each cluster head is updated as a rate λs

m
Poisson process. From each cluster head to its corresponding

cluster, the total update injection rate is λc and this rate is

uniformly allocated across the nodes in that cluster. That is,

each node i receives an update from its cluster head as a rate
λc

k
Poisson process with i ∈ N � {1, . . . , n}.

Nodes in each cluster are connected to each other based on

a connection graph. We consider varying levels of connectiv-

ity among nodes within each cluster. These are disconnected,

uni-directional ring, bi-directional ring, and fully connected

networks, which are shown in Fig. 2 for a cluster of k = 6

nodes. Updates received from the cluster head associated with

each cluster are distributed across that cluster by utilizing the

connections between the nodes. A node i updates another node

j as a rate λij Poisson process. Each node i in this system has

a total update rate of λ =
∑

j∈N λij, which is uniformly allo-

cated to its neighboring nodes.2 That is, in the uni-directional

ring, each node updates its neighbor node as a rate λ Poisson

process, whereas in bi-directional ring, each node has two

neighboring nodes, each of which is updated as a rate λ
2

Poisson process. In the fully connected cluster, each node has

k−1 neighbors each of which is updated as a rate λ
k−1

Poisson

process. As a result of these local connections within a clus-

ter, a node can receive different versions of the source update

from its neighboring nodes in addition to the source updates

received via its cluster head.

To model the age at each node, we use the version age met-

ric [16], [17]. We denote the version of the update at the source

as Vs(t), at cluster head c as Vc(t), with c ∈ C � {1, . . . , m},
and at node i as Vi(t), with i ∈ N , at time t. The version age at

node i is given by �i(t) = Vs(t)−Vi(t). Similarly, the version

age at cluster head c is �c(t) = Vs(t)−Vc(t). When node i has

the same version as the source, its version age becomes zero,

i.e., �i(t) = 0. When the information at the source is updated,

version ages at the cluster heads and the nodes increase by 1,

e.g., �′
c(t) = �c(t) + 1. Each node i can get updates either

from its cluster head or the other nodes that it is connected to

within its cluster. When node i gets an update from its cluster

head, its version age becomes

�′
i(t) = min{�c(t),�i(t)} = �c(t). (1)

Last equality in (1) follows since nodes in a cluster receive

source updates through their cluster head so that they have

either the same version or older versions of the information

compared to their cluster head. When node i receives an update

from node j, its version age becomes

�′
i(t) = min

{

�i(t),�j(t)
}

. (2)

That is, node i’s version age is updated only if node j has

a newer version of the source information. Otherwise, the

version age at node i is not updated.

III. VERSION AGE WITH COMMUNITY STRUCTURE

In this section, we characterize the limiting version age of

each node i, denoted by

�i = lim
t→∞

E[�i(t)], i ∈ {1, . . . , n}, (3)

2If node j is not a neighbor of node i, then λij = 0, i.e., node i does not
update node j.
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considering various network topologies for the clusters. Since

the network model in each cluster is identical and within each

cluster the network is symmetric for each of the network

topologies, age processes �i(t) of all users are statistically

identical. Thus, in the ensuing analysis, we focus on a single

cluster c ∈ C and find the average version age of a node from

that cluster. For this, we follow the construction in [16] and

express �i in terms of �S, which denotes the average version

age of an arbitrary subset S of the nodes in cluster c, where

�S(t) � min
j∈S

�j(t). (4)

We recall the following definitions from [16]: λi(S) denotes

the total update rate at which a node i from cluster c updates

the nodes in set S. We have

λi(S) =
{∑

j∈S λij, i /∈ S

0, i ∈ S.
(5)

Further, λc(S) denotes the total update rate of the cluster head

of a particular cluster into the set S. Finally, set of updating

neighbors of a set S in cluster c is

Nc(S) = {i ∈ N : λi(S) > 0}. (6)

That is, the set Nc(S) includes all updating neighbors of set S

in cluster c excluding the cluster head. The total set of updating

neighbors of set S is given by N(S) = c ∪ Nc(S).

With these definitions, next, in Theorem 1 below we give

the resulting version age in our clustered system model as a

specialization of [16, Th. 1].

Theorem 1: When the total network of n nodes is divided

into m clusters, each of which consisting of a single clus-

ter head and k nodes with n = mk, the average version age

of subset S that is composed of nodes within a cluster c is

given by

�S =
λe + λc(S)�c +

∑

i∈Nc(S) λi(S)�S∪{i}

λc(S) +
∑

i∈Nc(S) λi(S)
, (7)

with �c = mλe

λs
.

Proof of Theorem 1 follows by applying [16, Th. 1] to our

clustered network model and noting that updates arrive at the

nodes through designated cluster heads. For completeness, we

show the key steps of the proof below.

In our system, whenever there is an update being forwarded,

a state transition occurs. We first present possible state transi-

tions. We use L to denote the set of possible state transitions.

Then, we have

L = {(s, s)} ∪ {(s, c) : c ∈ C}
∪{(c, i) : c ∈ C, i ∈ N } ∪ {(i, j) : i, j ∈ N }, (8)

where the first transition occurs when the source generates

a new update, the second set of transitions occur when the

source node updates a cluster head c ∈ C. The third set of

transitions occur when a cluster head c updates a node in

its cluster and finally the last set of transitions occur when an

end user updates another end user from its cluster. In clustered

gossip networks, as a result of transition (i, j), the version age

of an end user evolves as

�′
k =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�k + 1, i = j = s, k ∈ N ,

�c, i = c, j = k ∈ N ,

min
(

�i,�j

)

, i ∈ N , j = k ∈ N ,

�k, otherwise,

(9)

where �′
k is the version age of node k after the transition.

In (9), the version age of node k increases by one when the

source generates a new update and becomes equal to the ver-

sion age of its cluster head when node k receives an update

from its cluster head as explained in (1). When node k receives

an update from another node in its cluster, its version age is

updated only if the updating node has a newer version of the

source information as shown in (2).

Considering an arbitrary subset S of nodes within a cluster

with the version age evolution described in (9), we deduce that

after the (s, s) transition, the version age of set S is increased

by one. For all other transitions (i, j) with j ∈ S, we have

�′
S = min

k∈S
�′

k = min
k∈S∪{i}

�k = �S∪{i}. (10)

When i = c, from (10), we have �′
S = mink∈S∪{i} �k = �c.

If j /∈ S, the version age of set S is not affected by transition

(i, j), i.e., �′
S = �S. Using (9) and (10) and following similar

steps as in [16] yields the result in Theorem 1.

We note that the recursion in Theorem 1 is valid for

any arbitrarily connected clustered gossip network. In what

follows, under a symmetry assumption in the network, we

study the version age scaling of a single node in specifically

structured clustered gossip networks.

A. Version Age in Clustered Disconnected Networks

Nodes in a cluster are not connected to each other. Thus, the

network is a two-hop multicast network, where the first hop

is from the source to m cluster heads, and the second hop is

from each cluster head to k nodes. This model can viewed as a

combination of Fig. 1 with Fig. 2(a).3 Multihop networks have

been studied in [21]–[25] considering the classical age metric,

where the source keeps sending update packets until they are

received by a certain number of nodes at each hop. We do not

consider such centralized management of updates, but let the

source update the cluster heads as Poisson processes, and let

cluster heads forward these packets to the nodes within their

clusters as further Poisson processes.

Let S1 denote an arbitrary 1-node subset of a cluster. Subset

S1 is only connected to the cluster head, i.e., Nc(S1) = ∅ and

λc(S1) = λc

k
. Using the recursion given in (7), we find

�S1
= �c + k

λe

λc

= m
λe

λs

+ k
λe

λc

, (11)

where �S1
denotes the version age of a single node from the

cluster. When the network consists of two-hops, version age

is additive, in that the first term in (11) corresponds to the

first hop and is equal to the version age at the cluster head,

3When we have disconnected network topology in each cluster, the resulting
two-hop network is also known as a depth-2 tree network, where the nodes,
i.e., children, with the same parent are called a cluster.
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whereas the second term in (11) corresponds to the version

age at the second hop between the cluster head and a node.

Theorem 2: In a clustered network of disconnected users,

the version age of a single user scales as O(
√

n).

Theorem 2 follows by selecting k = √
n with m = n

k
=√

n in (11) for fixed λe, λs, λc, which do not depend on n.

Theorem 2 indicates that when nodes are grouped into
√

n

clusters, an age scaling of O(
√

n) is achievable even though

users forego gossiping. With the absence of cluster heads, i.e.,

when the source is uniformly connected to each of the n users,

the version age scaling of each disconnected user would be

O(n). By utilizing clusters, we incur an additional hop, but

significantly improve the scaling result from O(n) to O(
√

n).

B. Version Age in Clustered Ring Networks

Nodes in each cluster form a ring network. We consider

two types of ring clusters: uni-directional ring as shown in

Fig. 2(b) and bi-directional ring as shown in Fig. 2(c).

First, we consider the uni-directional ring and observe that

an arbitrary subset of j adjacent nodes Sj has a single neighbor

node that sends updates with rate λ for j ≤ k − 1. Each such

subset Sj receives updates from the cluster head with a total

rate of jλc

k
. Next, we use the recursion in (7) to write

�Sj =
λe + jλc

k
�c + λ�Sj+1

jλc

k
+ λ

, (12)

for j ≤ k − 1 where �c is the version age at the cluster head.

We note that when j = k the network becomes a simple two-

hop network similar to that of Section III-A and we find �Sk
=

mλe

λs
+ λe

λc
.

Next, we consider the bi-directional ring and observe that

an arbitrary subset Sj that consists of any adjacent j nodes has

two neighbor nodes, each with an incoming update rate of λ
2

for j < k−1. When j = k−1, Sj has a single neighboring node

that sends updates with a total rate 2λ
2

= λ. For j ≤ k − 1, the

cluster head sends updates to subset Sj with a total rate of jλc

k
.

With all these, when we apply the recursion in (7), we obtain

exactly the same formula given in (12).

Lemma 1: Both uni-directional and bi-directional ring clus-

ter models yield the same version age for a single node when

each node in a cluster has a total update rate of λ.

Lemma 1 follows from the fact that either type of ring clus-

ter induces the same recursion for an arbitrary subset of any

adjacent j nodes within a cluster as long as the total update

rate per node λ is the same. Thus, in the remainder of this

paper, we only consider the bi-directional ring cluster model.

Before focusing on age scaling in a clustered network with

a ring topology in each cluster, we revisit the ring network

in [16], and provide a proof of the 1.25
√

n age scaling result

observed therein as a numerical result. We show that the

approximate theoretical coefficient is
√

π
2

= 1.2533.

Lemma 2: For the ring network model considered in [16],

the version age of a user scales as �S1
≈

√

π
2

λe

λ

√
n.

Proof: From recursive application of [16, eq. (17)], we

obtain

�S1
= λe

λ

(

n−1
∑

i=1

a
(n)
i + a

(n)
n−1

)

, (13)

where a
(n)
i is given for i = 1, . . . , n − 1 as

a
(n)
i =

i
∏

j=1

1

1 + j
n

. (14)

We note that a
(n)
i decays fast in i, and consider i = o(n),

− log
(

a
(n)
i

)

=
i

∑

j=1

log

(

1 + j

n

)

≈
i

∑

j=1

j

n
= i(i + 1)

2n
≈ i2

2n
,

(15)

where we used log(1 + x) ≈ x for small x, and ignored the

i term relative to i2. Thus, for small i, we have a
(n)
i ≈ e− i2

2n .

For large i, a
(n)
i converges quickly to zero due to multiplicative

terms in
∏i

j=1
1

1+j/n
, and this approximation still holds. Thus,

we have
∑n−1

i=1 a
(n)
i ≈

∑n−1
i=1 e− i2

2n . For large n, by using

Riemann sum approximation with steps 1√
n
, we obtain

1√
n

n−1
∑

i=1

a
(n)
i ≈ 1√

n

n−1
∑

i=1

e− i2

2n =
∫ ∞

0

e− t2

2 dt =
√

π

2
. (16)

Thus, we get
∑n−1

i=1 a
(n)
i ≈

√

π
2

√
n. By inserting this in (13),

we obtain the age scaling of a user as �S1
≈

√

π
2

λe

λ

√
n.

Next, we focus on age scaling in a clustered network with

a ring topology in each cluster. From recursive application

of (12) along with �Sk
, we obtain

�S1
= λe

λ

(

k−1
∑

i=1

b
(k)
i

)

+ �c

(

1 − b
(k)
k−1

)

+ �Sk
b
(k)
k−1, (17)

where similar to (14), b
(k)
i is given for i = 1, . . . , k − 1 as

b
(k)
i =

i
∏

j=1

1

1 + j
k

λc

λ

. (18)

When k is large, b
(k)
k−1 goes to zero, and �S1

in (17) becomes

�S1
≈ λe

λ

(

k−1
∑

i=1

b
(k)
i

)

+ �c ≈
√

π

2

λe√
λλc

√
k + m

λe

λs

, (19)

where the second approximation follows as in the proof of

Lemma 2. Terms in (19) are O(
√

k) and O(m), respectively.

In [16], there is a single cluster, i.e., m = 1 and k = n,

and thus, the version age scaling is O(
√

n). In our model, by

carefully adjusting the number of clusters and the cluster sizes,

we can improve this O(
√

n) scaling result to O(n
1
3 ).

Theorem 3: In a clustered network with a ring topology in

each cluster, the version age of a single user scales as O(n
1
3 ).

Theorem 3 follows by selecting m = n
1
3 with k = n

m
= n

2
3

in (19) for fixed λe, λs, λc, λ, which do not depend on n.

C. Version Age in Clustered Fully Connected Networks

Nodes in each cluster form a fully connected network where

each node is connected to all the other nodes within its cluster

with rate λ
k−1

. We find the version age for a subset of j nodes

Sj in a cluster. Each such subset j has k − j neighbor nodes
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in addition to the cluster head associated with their cluster.

Using the recursion given in (7), we find

�Sj =
λe + jλc

k
�c + j(k−j)λ

k−1
�Sj+1

jλc

k
+ j(k−j)λ

k−1

, (20)

for j ≤ k − 1, where �c is equal to mλe

λs
. The average version

age of the whole cluster is �Sk
= �c + λe

λc
= mλe

λs
+ λe

λc
.

Next, we present bounds for �S1
.

Lemma 3: When λc = λ, in a clustered network with fully

connected topology in each cluster, the version age of a single

node satisfies

(k − 1)2 + k

k2
�c + λe

λ

(

k − 1

k

k−1
∑

ℓ=1

1

ℓ
+ 1

k

)

≤ �S1
≤ �c + λe

λ

(

k
∑

ℓ=1

1

ℓ

)

. (21)

Proof: We use steps similar to those in the proof of

[16, Th. 2] and also consider the additional hop from the

source to the cluster heads. For λc = λ, we take j = k − ℓ

and (20) becomes

�Sk−ℓ
=

1
k−ℓ

λe

λ
+ 1

k
�c + ℓ

k−1
�Sk−ℓ+1

1
k

+ ℓ
k−1

, (22)

for ℓ ≤ k − 1 and �Sk
= �c + λe

λ
, where �c is the age at the

cluster head. Defining �̂Sℓ
� �Sk−ℓ+1

, we get

�̂Sℓ+1
=

1
k−ℓ

λe

λ
+ 1

k
�c + ℓ

k−1
�̂Sℓ

1
k

+ ℓ
k−1

. (23)

Next, one can show that �̂Sℓ+1
satisfies the following

�̂Sℓ+1
≤

1
k−ℓ

λe

λ
+ 1

k
�c + ℓ

k
�̂Sℓ

1
k

+ ℓ
k

. (24)

Defining �̃Sℓ
� ℓ

k
�̂Sℓ

and plugging it in (24), we get

�̃Sℓ+1
= ℓ + 1

k
�̂Sℓ

≤ 1

k − ℓ

λe

λ
+ 1

k
�c + �̃Sℓ

. (25)

Noting that �̃S1
= �̂S1

k
= �Sk

k
= 1

k
(�c + λe

λ
), we write

�̃Sk
≤ �c + λe

λ

(

k
∑

ℓ=1

1

ℓ

)

. (26)

Since �̃Sk
= �̂Sk

= �S1
, (26) presents an upper bound to the

version age of a single node. For the lower bound, we start

with (23) and observe that we have

�̂Sℓ+1
≥ k − 1

ℓ + 1

(

1

k − ℓ

λe

λ
+ 1

k
�c + ℓ

k − 1
�̂Sℓ

)

. (27)

Defining �̄Sℓ
� ℓ

k−1
�̂Sℓ

and using it in (27) gives

�̄Sℓ+1
= ℓ + 1

k − 1
�̂Sℓ+1

≥ 1

k − ℓ

λe

λ
+ 1

k
�c + �̄Sℓ

. (28)

Starting with the fact that �̄S1
= 1

k−1
�̂S1

= m+1
k−1

λe

λ
, the

recursion in (28) yields

�S1
≥ (k − 1)2 + k

k2
�c + λe

λ

(

k − 1

k

k−1
∑

ℓ=1

1

ℓ
+ 1

k

)

, (29)

upon noting that �S1
= k−1

k
�̄Sk

, which concludes the proof

of the lemma.

From (21), we see that for large n with λc = λ, the version

age of a single node �S1
satisfies

�S1
≈ m

λe

λs

+ λe

λ
log k. (30)

Theorem 4: In a clustered network with a fully connected

topology in each cluster, the version age of a single user scales

as O(log n).

Theorem 4 follows in multiple different ways. For instance,

it follows by selecting m = 1 and k = n
m

= n. That is, we

have a single fully connected network of n users as in [16].

Theorem 4 also follows by selecting m = log n and k = n
m

=
n

log n
. That is, we have log(n) fully connected clusters with

n
log n

users in each cluster. Thus, version age obtained under

a smaller cluster size with less connections is the same as

that obtained when all nodes are connected to each other. In

particular, in our model with m = log n, each node has O( n
log n

)

connections in comparison to O(n) in [16].

Finally, we note that, a recurring theme in the analysis of

clustered networks is the fact that the version age at an end-

node �S1
is almost additive in the version age at the cluster

head �c as seen in (11), (17), and (21). It is exactly additive

in the case of disconnected clusters in (11).

IV. VERSION AGE WITH COMMUNITY STRUCTURE

UNDER CONNECTED CLUSTER HEADS

So far, we have studied the cases in which the cluster heads

are disconnected among themselves, and consequently, they

do not exchange information with each other. In this section,

we model the connectivity among the cluster heads with a bi-

directional ring (see Fig. 3).4,5 Thus, in this section, at the

first tier, we have a ring network of m cluster heads, each of

which is serving its own cluster. Nodes in each cluster form

a disconnected, ring, or fully connected network. Our aim in

this section, is to analyze the effect of additional information

exchange among the cluster heads on the average version age

experienced by the end nodes.

When there is no information exchange among the clus-

ter heads, i.e., disconnected cluster heads, each cluster head

updates its cluster with a total rate of λc. In the case of

information exchange among the cluster heads, a cluster head

updates its neighboring cluster heads as a rate λca Poisson

process and updates its cluster with a total rate of λcb, where

λca + λcb = λc. Thus, when the cluster heads are connected,

each cluster head receives source information with a larger

rate but updates its cluster with a smaller rate.

4The model studied in Section III corresponds to the case in which the
cluster heads form a disconnected topology.

5In addition to the bi-directional ring topology, one can study the version
age considering fully connected cluster heads, which is omitted here to keep
the discussion focused.
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Fig. 3. Tiered network model where blue node represents the source, yellow
nodes represent the cluster heads c1, . . . , c6, and green nodes represent the
end users. Here, cluster heads form a bi-directional ring network with m = 6.
Each cluster is associated with a cluster of k = 6 nodes. Here, only one such
cluster is shown. Nodes in each cluster form a bi-directional ring network.
Other possible network topologies within a cluster are shown in Fig. 2.

The average version age of a subset S that is composed of

nodes within a cluster c is still given by (1) when the cluster

heads exchange information in our clustered network topology.

This is because when the cluster heads exchange information

among themselves, the network topology within a cluster does

not change, i.e., the Nc(S) stays the same, and the nodes in a

cluster still cannot have a lower version age than their cluster

head.

The only change in (1) compared to Section III is the aver-

age version age of a particular cluster head c, �c. As shown in

Fig. 3, even though cluster heads are connected to the nodes

in their respective clusters, each cluster head can be updated

by the source node or its neighboring cluster heads. That is, to

find �c, we only need to look at the first tier of the network,

which is the ring gossiping network presented in [16]. Thus,

using Lemma 2, or following a similar derivation steps of the

first term in (19), we find the average version age of a single

cluster head when the cluster heads form a ring network as

�c ≈
√

π

2

λe√
λsλca

√
m. (31)

We note that in (31), we have
√

λsλca in the denominator

unlike [16] as λs and λca are not necessarily equal in our

model. We observe in (31) that a single cluster head’s aver-

age version age approximately scales as O(
√

m) as opposed

to O(m) in Theorem 1 since cluster heads now form a ring

network. With that, in what follows, we analyze the average

version age scaling for different cluster topologies when the

cluster heads form a ring network.

A. Version Age in Clustered Disconnected Networks With

Connected Cluster Heads

The network model in this case is as in Section III-A except

that the cluster heads form a ring network in the first hop.

Nodes within a cluster are disconnected, i.e., Nc(S1) = ∅. By

invoking Theorem 1, we use the recursion in (7) and find the

average version age of a single node as

�S1
= �c + k

λe

λcb

≈
√

π

2

λe√
λsλca

√
m + k

λe

λcb

, (32)

where the approximation follows from (31).

Theorem 5: In a clustered network of disconnected users

when the cluster heads form a ring network, the average

version age of a single user scales as O(n
1
3 ).

Theorem 5 follows by selecting, k = n
1
3 with m = n

k
= n

2
3

in (32) for fixed λe, λs, λca and λcb that do not depend on

n. Theorem 5 implies that even though nodes in clusters do

not gossip, by utilizing the information exchange at the cluster

head level, the average version age scaling of an end user can

be improved to O(n
1
3 ) from O(

√
n) in Theorem 2.

Another interesting observation is the parallelism

between (32) and (19) due to the almost additive struc-

ture of the average version age in clustered gossip networks.

In the case of (19), cluster heads are disconnected and nodes

in each cluster form a ring network whereas in the case

of (32) the network is reversed, i.e., ring network in cluster

heads, disconnected network within clusters. Since, we have

n = mk, both (32) and (19) yield the same O(n
1
3 ) average

version age scaling at the end users indicating that gossiping

equally helps improving the average version age scaling at

the end users whether it occurs at the cluster head level or

within clusters at the end user level even though possibly

newer versions of the source information is exchanged at the

cluster head level as cluster heads are directly connected to

the source node.

B. Version Age in Clustered Ring Networks With Connected

Cluster Heads

Ring networks are formed both at the cluster head level and

within clusters at the end user level. By invoking Theorem 1,

we use the recursion in (7) and after following similar steps

as in Section III-B, we find

�S1
≈

√

π

2

λe√
λsλca

√
m +

√

π

2

λe√
λλcb

√
k. (33)

We note that (33) is the counterpart of (19) where the addi-

tional ring network topology at the cluster head level is

considered.

Theorem 6: In a clustered network with a ring topology in

each cluster when the cluster heads form a ring network, the

average version age of a single user scales as O(n
1
4 ).

Theorem 6 follows by selecting m = √
n with k = n

m
= √

n

in (33) for fixed λe, λs, λca, and λcb. Here, we note that,

when gossiping is employed both at the cluster head level and

at the end user level within clusters through a ring topology,

the average version age scaling at the end users is improved

from O(n
1
3 ) in Theorem 1 to O(n

1
4 ) in Theorem 6.

Another interesting observation is the fact that since the

network topology is symmetric at both levels in this case, and

the average version age at the end users is almost additive
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in the average version age at the cluster heads, the average

version age scaling optimal m and k values are identical.

We can also note that the selection of the update rates at

the cluster heads, i.e., λca and λcb in (33) is critical. After the

optimal selection of m = k = √
n, next, we optimize update

rates at the cluster heads, i.e., λca and λcb, to further minimize

the version age in (33). After selecting m = k = √
n, �S1

in (33) becomes

�S1
≈

√

π

2
λen

1
4

(

1√
λsλca

+ 1√
λλcb

)

. (34)

The minimization of �S1
in (34) is equivalent to solving

the following optimization problem

min
{λca,λcb}

1√
λsλca

+ 1√
λλcb

s.t. λca + λcb = λc

λca ≥ 0, λcb ≥ 0. (35)

We write the Lagrangian for the optimization problem

in (35) as,

L = 1√
λsλca

+ 1√
λλcb

+ β(λca + λcb − λc) − θ1λca − θ2λcb, (36)

where θ1 ≥ 0, θ2 ≥ 0, and β can be any real number. We note

that the problem in (35) is jointly convex with respect to λca

and λcb. Thus, by analyzing the KKT conditions we can find

the optimal solution. We write the KKT conditions as,

∂L

∂λca

= − 1

2λs

λ
− 3

2
ca + β − θ1 = 0, (37)

∂L

∂λcb

= − 1

2λ
λ

− 3
2

cb + β − θ2 = 0. (38)

Then, by using the KKT conditions in (37) and (38), we find

the optimal λca and λcb as

λca = λcλ
1
3

λ
1
3 + λ

1
3
s

, (39)

λcb = λcλ
1
3
s

λ
1
3 + λ

1
3
s

. (40)

We observe from (39) and (40) that when the cluster heads

also form a ring network, it is optimal to choose the update

rates among the cluster heads, i.e., λca, proportional to the 1
3

-

power of the update rate of the end users, i.e., λ
1
3 . Similarly,

the total update rate allocated by cluster heads to their own

clusters should be proportional to the 1
3
-power of the update

rate of the source, i.e., λ
1
3
s .6

6Similar optimization problems can be formulated for the clustered dis-
connected networks in Section IV-A, and for the clustered fully connected
networks in Section IV-C. In order to avoid repetitive arguments, we skip the
update rate optimizations of the cluster heads for these parts and provide the
analysis only for the clustered ring networks.

C. Version Age in Clustered Fully Connected Networks With

Connected Cluster Heads

In this case, nodes within a cluster form a fully connected

network whereas each cluster head is only connected to its

adjacent neighbors in a ring topology. By invoking Theorem 1,

we use the recursion in (7) and after following similar steps

as in Section III-C, we find

�S1
≈

√

π

2

λe√
λsλca

√
m + λe

λ
log k, (41)

for large n, with λcb = λ. We note that (41) is analogous

to (30) when the cluster heads form a ring network.

Theorem 7: In a clustered network with a fully connected

topology in each cluster when the cluster heads form a ring

network, the average version age of a single user scales as

O(log n).

Theorem 7 follows by noting that since k = n
m

we cannot get

rid of the log k term in (41), which yields a log n contribution

to the version age in (41). There are multiple (m, k) pairs that

result in the same O(log n) scaling. For example, when m = 1

and k = n
m

= n, we obtain O(log n) scaling. This implies

that having a single cluster of n users as in [16]. In addition,

selecting m = log2 n and k = n
m

= n

log2 n
yields Theorem 7 as

well, parallel to the discussion after Theorem 4.

An interesting observation from Theorem 7 is the fact that

additional communication at the cluster head level does not

improve the average version age scaling at the end users. In

a similar fashion, one can show that, even if the cluster heads

form a fully connected network among themselves while the

nodes in each cluster also form a fully connected network,

the average version age at the end users scales as O(log n).

This is due to the fact that the number of clusters m (hence

the number of cluster heads) and the number of nodes in each

cluster k are such that n = mk. Since the level of gossip, i.e.,

the connectivity among the cluster heads and the nodes in each

cluster, cannot be increased beyond fully connected networks,

one can conclude that the average version age scaling cannot

be improved further than O(log n) in the considered clustered

gossip networks.

We note that once the cluster heads exchange information

among themselves, essentially, what we end up with is a hier-

archical gossip networks, where in the first level of hierarchy

we have m cluster heads, and in the second level of hier-

archy we have mk end nodes clustered into m clusters of k

nodes each. Inspired by this structure, in the next section, we

forego cluster heads and study the version age in hierarchical

clustered gossip networks.

V. VERSION AGE IN HIERARCHICAL CLUSTERED

GOSSIP NETWORKS

In this section, we consider a hierarchical clustered gossip

network, where at the first level of hierarchy there is a single

cluster of k1 nodes. Each node in the first level is directly

updated by the source node as a rate λs

k1
Poisson process. Total

update rate of each node is λ. Each node spends λa portion of

this total rate to update its neighbors within the same cluster at

the same hierarchical level and spends λb portion of the total λ

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 20,2022 at 19:54:10 UTC from IEEE Xplore.  Restrictions apply. 



BUYUKATES et al.: VERSION AGE OF INFORMATION IN CLUSTERED GOSSIP NETWORKS 93

Fig. 4. Two-level hierarchical network model where blue node represents the
source and green nodes represent the end users. Here, nodes in each cluster
form a bi-directional ring network of k1 = k2 = 6 nodes. We have a single
cluster in the first level and k1 = 6 clusters in the second level. Here, only
one such second level cluster is shown. Other possible network topologies
within a cluster are shown in Fig. 2.

rate to update its neighbors in the next hierarchical level such

that λa + λb = λ. Each node in the first level is associated

with a cluster of k2 nodes in the second level. That is, in the

second level, we have k2 clusters and a total of k1k2 nodes. In

Fig. 4, we show the network model for a two hierarchy levels.

We note that at the last level of the network, e.g., the second

level in the case of Fig. 4, nodes use all of their update rate

λ to update their neighbors within the same cluster.

Within the scope of this section, we assume that nodes in

each cluster at every hierarchical level form a bi-directional

ring network.7 Let h denote the number of hierarchy levels in

the network. Then, at level ℓ, with ℓ ≤ h−1, each node updates

each of its two neighbors at level ℓ as a Poisson process with

rate λa

2
, whereas it updates each of its kℓ+1 child nodes at

level ℓ + 1 as a rate
λb

kℓ+1
Poisson process. We have a total

of
∏ℓ

j=1 kj nodes at level ℓ that are grouped into equal-sized

clusters of kℓ for ℓ ≥ 2.

Due to the symmetry in the network model, individual nodes

in each hierarchy level ℓ have statistically identical version age

processes �ℓ
S1

. In what follows, we find the average version

age expressions of a single node at each hierarchical level.

Theorem 8: When the total network of n nodes is grouped

into h levels of hierarchical clusters with kℓ nodes in each

cluster at the ℓth hierarchy level such that
∑h

ℓ=1

∏ℓ
j=1 kj = n,

the average version age of subset S that is composed of nodes

within a cluster c at the ℓth hierarchical level is given by

�ℓ
S =

λe + λℓ−1(S)�ℓ−1
S1

+
∑

j∈Nc(S) λj(S)�ℓ
S∪{j}

λℓ−1(S) +
∑

j∈Nc(S) λj(S)
, (42)

7One can consider disconnected or fully connected networks within each
cluster at each level as well. In our model, since the average version age under
fully connected networks cannot be improved beyond O(log n) as discussed
in Section IV and we want to keep our discussion focused, we limit ourselves
with a ring network in each cluster at every level.

where λℓ−1(S) denotes the total update rate at which cluster

c’s parent node in level ℓ − 1 updates the nodes in set S and

λj(S) denotes the update rate at which a neighboring node j

at the same level, i.e., level ℓ, updates the nodes in set S.

The proof of Theorem 8 follows from that of Theorem 1

by noting that the version age of a node in level ℓ cannot be

smaller than that of its parent node in level ℓ−1. That is, from

the perspective of a node in level ℓ, its cluster head in the case

of Theorem 1 corresponds to its parent node in level ℓ − 1.

We first present the results for h = 3 levels of hierarchy

to showcase the version age behavior in the hierarchical gos-

sip networks and then generalize our results to h levels of

hierarchy.8

A. Version Age for h = 3 Hierarchy Levels

In this case, we have a single cluster of k1 nodes in the first

level, k1 clusters of k2 nodes each in the second level, and

k2 clusters of k3 nodes in each in the third level of hierarchy

so that n = k1 + k1k2 + k1k2k3. By using the recursion in

Theorem 8 and noting that at the first level of hierarchy we

have the ring network model in [16], we find

�1
S1

≈
√

π

2

λe√
λsλa

√

k1, (43)

�2
S1

≈
√

π

2

λe√
λsλa

√

k1 +
√

π

2

λe√
λaλb

√

k2, (44)

�3
S1

≈
√

π

2

λe√
λsλa

√

k1 +
√

π

2

λe√
λaλb

√

k2

+
√

π

2

λe√
λλb

√

k3. (45)

Theorem 9: In a hierarchical clustered network with h = 3

hierarchy levels and a ring network in each cluster, the average

version age of a single user scales as O(n
1
6 ) at every hierarchy

level.

Theorem 9 follows by observing that n = k1 + k1k2 +
k1k2k3 = k1(1 + k2(1 + k3)) ≈ k1k2k3 for large n. That is,

when the number of nodes in the network gets large, order-

wise majority of the nodes are located at the final hierarchy

level. From the symmetry of the cluster topologies at each hier-

archy level and the additive structure observed in (43)-(45), we

select k1 = k2 = k3 = O(n
1
3 ), which yields an average version

age scaling of O(n
1
6 ) for all three hierarchical levels.

We note that taking n ≈ k1k2k3 is as if we assume all the

nodes are located at the last hierarchical level of the network so

that the O(n
1
6 ) scaling we find in Theorem 9 represents a worst

case scenario since nodes located at the first two hierarchy

levels surely have smaller average version age than the nodes

located at the last level of the hierarchy.

Theorem 9 shows that by implementing a three-level hierar-

chical clustered gossip network structure, we can improve the

8For h = 2 hierarchy levels, the resulting average version age expressions
are in the same format as those in Section IV-B and correspondingly yield

an O(n
1
4 ) scaling at an end user. This is because the cluster heads forming

a ring network at the first tier in Section IV-B can essentially be thought of
as the first level of hierarchy in the context of hierarchical clustered gossip
networks analyzed in this section.
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Fig. 5. Version age of a node with fully connected, ring, and disconnected cluster models with n = 120, (a) λe = 1, λs = 1, λc = 1, and λ = 1, (b) λe = 1,
λs = 10, λc = 1, and λ = 1, (c) λe = 1, λs = 10, λc = 10, and λ = 1, (d) λe = 1, λs = 10, λc = 1, and λ = 2.

average version age of a single end-user in our model com-

pared to O(n
1
2 ) in [16], O(n

1
3 ) in Section III-B, and O(n

1
4 ) in

Section IV-B. The improvement in Section III-B compared

to the model in [16] originates from the use of m cluster

heads with smaller ring networks under each cluster head com-

pared to the single ring network of n nodes in [16]. When the

cluster heads participate in gossip in Section IV-B, end users

have better average version age scaling due to the additional

information exchange at the cluster heads. Finally, in this sec-

tion, through hierarchical placement of clusters, we obtain the

same scaling as in Section IV-B with h = 2 levels without get-

ting help from any dedicated cluster heads and further improve

the scaling result when we employ h = 3 hierarchy levels. That

is, by carefully placing all n nodes into hierarchical clusters

of ring networks, we get the best average version age scaling

at an end user compared all these network models discussed

so far.9

B. Version Age for h > 3 Hierarchy Levels

In a hierarchical clustered gossip network with h hierarchy

levels and a ring network topology in each cluster at every hier-

archy level, the average version age of a single node located

9We note that average version age scaling of an end node is improved
through hierarchical clustering at the expense of increased number of con-
nections in the network, which may incur additional operational cost to the
service provider. This aspect will be discussed in Section VII.

in hierarchy level ℓ is

�ℓ
S1

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√

π
2

λe√
λsλa

√
ki, ℓ = 1,

�1
S1

+
√

π
2

λe√
λaλb

∑ℓ
j=2

√

kj, 1 < ℓ < h,

�ℓ−1
S1

+
√

π
2

λe√
λλb

√
kℓ, ℓ = h.

(46)

Theorem 10: In a hierarchical clustered network with h

hierarchy levels and a ring network in each cluster, the average

version age of a single user scales as O(n
1
2h ) at every hierarchy

level.

Theorem 10 follows by approximating n ≈
∏h

ℓ=1 kℓ for

large n and taking kℓ = n
1
h for ℓ ∈ 1, . . . , h.

VI. NUMERICAL RESULTS

We have seen in Sections III-V that the version age depends

on update rates λe, λs, λc, and λ. In this section, we explore

the effects of these rates on the version age via numerical

results. In the first four simulations, we consider the model

described in Section III.

First, we take λe = 1, λs = 1, λc = 1, λ = 1, and n = 120.

We plot the version age of a node for the considered clus-

ter models with respect to k. We see in Fig. 5(a) that for the

fully connected cluster model, the version age decreases with

k and thus, the version age-optimal cluster size is k∗ = 120,

i.e., all n nodes are grouped in a single cluster. In the ring

cluster model, the version age is minimized when k∗ = 30. In

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 20,2022 at 19:54:10 UTC from IEEE Xplore.  Restrictions apply. 



BUYUKATES et al.: VERSION AGE OF INFORMATION IN CLUSTERED GOSSIP NETWORKS 95

TABLE II
COMPARISON OF THE (�∗

S1
, k∗) PAIRS WITH (AS IN SECTION IV) AND WITHOUT (AS IN SECTION III) GOSSIP AT THE CLUSTER HEADS

the disconnected cluster model, the version age is minimized

when we have k∗ = 10 (or equivalently k∗ = 12). From these,

we deduce that when the topology has less connectivity in a

cluster, the optimal cluster size is smaller. Further, a topol-

ogy with larger connectivity within a cluster achieves a lower

version age.

Second, we consider the same setting as in Fig. 5(a) but

take λs = 10 in Fig. 5(b). Here, the version age decreases

with increasing k at first due to increasing number of con-

nections within a cluster and the increase in the update rate

between the source and each cluster head (as the number of

clusters decreases with increasing k). However, as k continues

to increase, the decrease in the update rate from the clus-

ter head to the nodes starts to dominate and the version age

increases for all cluster models. In Fig. 5(b), we see that the

optimal cluster size is k∗ = 12 in fully connected clusters,

k∗ = 8 in ring clusters, k∗ = 3 and k∗ = 4 in disconnected

clusters.

Third, we increase the update rate of the cluster heads and

take λc = 10. We see in Fig. 5(c) that the optimum value of

k increases compared to the second case when cluster heads

have a larger update rate in all the cluster models. We find

k∗ = 20 in fully connected clusters, k∗ = 15 in ring clusters,

and k∗ = 10 or k∗ = 12 in disconnected clusters.

Fourth, we study the effect of update rates among the nodes.

For this, we take λc = 10, λe = 1, λs = 1, λ = 2. We see in

Fig. 5(d) that as the communication rate between the nodes

increases, the optimal cluster size increases, and it is equal

to k∗ = 24 in fully connected clusters, and k∗ = 10 in ring

clusters. As there is no connection between nodes in the case

of disconnected clusters, the optimum cluster size remains the

same, i.e., k∗ = 3 or k∗ = 4, compared to Fig. 5(b).

Next, we look at the version age when the cluster heads

form a ring network as in Section IV. For this simulation, we

use the setup of Fig. 5(c) and take λca = 4 and λcb = 6. We

see in Fig. 6 for all network types within clusters, i.e., discon-

nected, ring, and fully connected networks, that version age of

a single end node improves when the cluster heads exchange

information among themselves. In addition, we observe that

with the additional gossip at the cluster heads, the version age

optimal cluster size for each case is now smaller. Comparison

of the optimal cluster size and the corresponding minimum

version age achieved for each type of network is given in

Table II with and without gossip at the cluster heads. In

Table II, we observe that the biggest version age improve-

ment is obtained in the case of disconnected clusters, as the

additional communication at the cluster heads is more valuable

when nodes within clusters are not connected at all.

In our last numerical result, we look at the version age in

hierarchical clustered gossip networks as in Section V with

Fig. 6. Version age of a node with fully connected, ring, and disconnected
cluster models with n = 120, λe = 1, λs = 10, λca = 4, λcb = 6, and λ = 1
when cluster heads form a ring network among themselves.

TABLE III
AVERAGE VERSION AGE OF A SINGLE NODE AT THE THIRD HIERARCHY

LEVEL, �3
S1

, WITH h = 3, n = 120, λe = 1, λs = 1, AND λa + λb = 5.

FOR GIVEN (λa, λb) PAIRS, WE FIND THE OPTIMUM k1 , k2 ,

AND k3 VALUES THAT MINIMIZE �3
S1

h = 3 hierarchy levels. Here, we consider the number of

nodes n = 120, and take λe = 1, λs = 1, and total update

rate of a node as λ = 5. In this simulation, we consider dif-

ferent (λa, λb) pairs, and find the optimal cluster sizes at each

hierarchical level k1, k2, and k3 that minimize the version age

of a node at the last hierarchical level as these nodes expe-

rience the highest version age in the network. We note that

the selection of the (λa, λb) is important. While choosing a

large λa increases the connectivity between the nodes within

clusters, and thus can lower the version age of the nodes at

the same hierarchical level, it may also increase the version

age of the nodes at the higher hierarchical levels. For this rea-

son, among the (λa, λb) pairs given in Table III, we see that

choosing λa = 2, and λb = 3 achieves the lowest version age

with the optimum cluster sizes equal to k1 = 3, k2 = 13, and

k3 = 2. We also note that when λa is relatively small, i.e.,

λa = 1, most of the nodes are placed at the third hierarchi-

cal level, i.e., out of n = 120 nodes, k1k2k3 = 78 nodes are

placed at the third hierarchical level whereas k1 = 3 nodes

and k1k2 = 39 nodes are placed in the first and the second

hierarchical levels, respectively. As we increase the connectiv-

ity among the nodes within the same level (λa), we see that

the number of nodes at the upper hierarchical levels increases.
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TABLE IV
THE SUMMARY OF THE NUMBER OF CONNECTIONS IN GOSSIP NETWORKS

VII. DISCUSSION AND CONCLUSION

We considered a system where there is a single source

and n receiver nodes that are grouped into distinct equal-

sized clusters. Nodes in each cluster participate in gossiping to

relay their stored versions of the source information to their

neighbors. We considered four different types of connectiv-

ity among the nodes within the same cluster: disconnected,

uni-directional ring, bi-directional ring, and fully connected.

First, we considered the use of dedicated cluster heads in

each cluster that facilitate communication between the source

and the receiver nodes. For each of these network models, we

found the average version age and its scaling as a function of

the network size n. In particular, we showed that an average

version age scaling of O(
√

n), O(n
1
3 ), and O(log n) is achiev-

able per user in disconnected, ring, and fully connected cluster

topologies. We then allowed information exchange among the

cluster heads and showed that the version age scaling in the

case of disconnected and ring networks in each cluster can

be improved to O(n
1
3 ) and O(n

1
4 ), respectively, when the

cluster heads also participate in gossiping through a ring for-

mation. Interestingly, we observed that the increased gossip

among the cluster heads does not improve the version age

scaling when the nodes in each cluster form a fully connected

network. Finally, we implemented a hierarchical clustered gos-

sip structure and showed that per user average version scaling

of O(n
1
2h ) is achievable in the case of ring networks in each

cluster, where h denotes the number of hierarchy levels, even

without the aid of the dedicated cluster heads. We numerically

determined the optimum cluster sizes that minimize the ver-

sion age for varying update rates at the source, cluster heads,

and the nodes.

Here, the version age scaling improvement from the model

in [16] to our hierarchical clustered gossip network design

comes at the expense of increased number of connections at

the network. For example, considering a ring network in each

cluster, the O(
√

n) scaling result of [16] is obtained by 3n con-

nections whereas our cluster head-aided O(n
1
3 ) scaling result

is achieved as a result of a total 3n + n
1
3 connections in the

network. When the cluster heads also form a ring network

this number increases to 3n + 3
√

n to achieve an O(n
1
4 ) scal-

ing result. Finally, in the case of hierarchical clustered gossip

networks with h levels, we have a total of 3
∑h

i=1 n
i
h connec-

tions in the network which yield a per node average version

age scaling of O(n
1
2h ). We provide the rest of the total num-

ber of connections in Table IV. Considering the operational

cost of each such connection, service providers can design the

network structure, i.e., the use of cluster heads, number of

hierarchy levels along with the level of connectivity in each

cluster, based on the operational budget to obtain the desired

level of information freshness at the receiver nodes.

As a future direction, one may study the case with hetero-

geneous clusters which may have different network topologies

and/or different numbers of nodes. In such a problem, if the

total transmission rates of the cluster heads and the source

node are constrained, one may consider the optimization of

the update rates at the cluster heads and at the source by tak-

ing the topology of the clusters and the number of nodes in

each cluster into consideration.

We note that the SHS method is particularly useful to analyze

the version age (or in general, age of information) in arbitrarily

connected networks such as gossip networks, and networks

with both serial and parallel connections. If the gossiping

mechanism was not Poisson, the SHS approach which is used

to characterize the recursive equations to find the version age

in this work, would not be applicable. In such a case, one

needs to find a different solution method to study the version

age in arbitrarily connected gossip networks. Developing such

a general solution method that can characterize the version

age for arbitrary updating mechanisms is a promising future

research direction.

Finally, we want to note that the studied network model in

this work can pave the way for more interesting and previously

unexplored connections between the age scaling and the use

of network/communication resources. Each physical edge in

the connection graph in our model can denote a channel such

that the update rate at that edge stands for the allocated band-

width to that channel. In a similar fashion, one might model

the power constraints of the users through their total update

rates so that a user with more power resources can afford to

gossip more than the rest. Another interpretation of our model

is to consider mobile social network users as in [19] so that

each edge represents the contact process between two users,

i.e., whether or not they can meet and exchange information.

In this case, if an edge has a higher weight, i.e., update rate, it

implies that that particular user is more social (active). One can

study gossip networks and age scaling in such contexts to gain

further insights on the relationship between information time-

liness and the allocation of network/communication resources

in the design of next generation communication systems with

large number of users.
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