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Abstract—We consider a network consisting of a single source
and n receiver nodes that are grouped into m equal size
communities, i.e., clusters, where each cluster includes k nodes
and is served by a dedicated cluster head. The source node
keeps versions of an observed process and updates each cluster
through the associated cluster head. Nodes within each cluster are
connected to each other according to a given network topology.
Based on this topology, each node relays its current update to
its neighboring nodes by local gossiping. We use the version age
metric to quantify information timeliness at the receiver nodes.
We consider disconnected, ring, and fully connected network
topologies for each cluster. For each of these network topologies,
we characterize the average version age at each node and find the
version age scaling as a function of the network size n. Our results

indicate that per node version age scalings of O(
√

n), O(n
1
3 ),

and O(log n) are achievable in disconnected, ring, and fully
connected cluster models, respectively. Finally, through numerical
evaluations, we determine the version age-optimum (m, k) pairs
as a function of the source, cluster head, and node update rates.

I. INTRODUCTION

Introduced in [1] to quantify timeliness in real-time status

updating systems, the age of information metric has received

significant attention across information, communication, net-

working, and queueing theory fields [2], [3]. The classical age

metric increases linearly in time in the absence of any updates

and drops to a smaller value when an update is received.

Thus, even if the information at the source does not change,

the classical age at the receiver continues to increase as time

passes, because of the underlying assumption that updates get

stale with time. This may not necessarily be the case in many

applications, including content delivery services. To remedy

this, several variants of the classical age metric have been

proposed in the literature, in which the age stays the same

until the information at the source changes even if no updates

are received. Among these are binary freshness metric [4], age

of synchronization [5], and age of incorrect information [6].

Similar in spirit, recently, a new age metric named version

age has appeared in the literature [7], [8]. Considering each

update at the source as a version change, the version age counts

how many versions out-of-date the information at a particular

receiver is, compared to the version at the source. Version age

increases by one when the source obtains fresher information,

i.e., newer version. A predecessor of version age has appeared
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Fig. 1. Tiered network model where blue node at the center represents the
source, yellow nodes represent the cluster heads, and green nodes represent
the end users. Here, nodes in each cluster form a bi-directional ring network.
Other possible network topologies within a cluster are shown in Fig. 2.

in [9], which considers timely tracking of Poisson counting

processes, that entails minimizing the count difference, i.e.,

version difference, between the process and its estimate.

Reference [7] characterizes the version age in memoryless

gossip networks composed of n arbitrarily connected nodes.

To deliver information to the receiver nodes, the source in [7]

employs a Poisson updating scheme (exponential inter-update

times), as has been done previously in the context of social

networks [10], timely tracking [9], [11], and timely cache

updating [12]–[14]. In addition to the updates arriving directly

from the source, in [7], nodes relay their update versions to

each other. Also referred to as gossiping, this network activity

improves the age scaling since each node can receive updates

from each other as well as from the source. In particular, [7]

shows that the version age scales as O(
√
n) in a bi-directional

ring network and as O(log n) in a fully connected network,

where n is the number of nodes. Earlier works on age scaling

have considered the classical age metric and achieved O(1)
scaling in multicast networks [15]–[19] using a centralized

transmission scheme administered by the source, and O(log n)
scaling in distributed peer-to-peer communication networks

[20] using a hierarchical local cooperation scheme.

Motivated by these, in this work, our aim is to investigate

version age scaling in more general gossip network models

which exhibit a community structure; see Fig. 1. In our model,

as in [7], there is a single source that has an information

which is updated following a Poisson process. Each such

update at the source produces a newer version of the source

information. The source node sends update packets regarding
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Fig. 2. Different network topologies that can be used within each cluster:
(a) disconnected, (b) uni-directional ring, (c) bi-directional ring, and (d) fully
connected. Fig. 1 uses the one in (c). In this figure, cluster size is k = 6.

the source information to multiple communities. In our work,

a community refers to a set of receiver nodes that are clustered

together and can only interact with each other. Each cluster is

served by a cluster head, which facilitates the communication

with the source node. That is, cluster heads act as gateways

between the source and the end-nodes within their clusters,

akin to base stations in a cellular network. Unlike the model in

[7], in our model, the source cannot directly update individual

nodes and updates arriving from the source go through the

cluster heads. To model the various degrees of gossip within

each cluster, we use disconnected, uni-directional ring, bi-

directional ring, and fully connected network topologies; see

Fig. 2. Based on the underlying connectivity within clusters,

we characterize the version age experienced by each node.

We observe that the additional hop constituted by the cluster

heads between the source and the end-nodes presents us with

opportunities to optimize the version age scaling by carefully

tuning the number of clusters and the cluster size. Specifically,

our results indicate that even if the nodes within each com-

munity forego gossiping, i.e., disconnected networks within

each cluster, we can achieve O(
√
n) scaling as opposed to

O(n). In addition, we obtain the same O(log n) scaling in the

case of fully connected communities using fewer connections

within clusters than [7], and further reduce the scaling result in

ring networks to O(n
1
3 ) from O(

√
n) in [7]. Finally, through

numerical evaluations, we determine the version-age optimum

cluster sizes for varying update rates employed by the source,

cluster heads, and the nodes within each cluster.

II. SYSTEM MODEL AND THE AGE METRIC

We consider a system where a network of n nodes is divided

into m clusters, each consisting of k nodes such that n =
mk with k,m ∈ Z; see Fig. 1. Each cluster is served by

a distinct cluster head, which takes updates from the source

and distributes them across that cluster. The source process is

updated exogenously as a rate λe Poisson process. The source

has a total update injection rate of λs, which is uniformly

distributed across cluster heads such that each cluster head is

updated as a rate λs

m Poisson process. From each cluster head

to its corresponding cluster, the total update injection rate is

λc and this rate is uniformly allocated across the nodes in that

cluster. That is, each node i receives an update from its cluster

head as a rate λc

k Poisson process with i ∈ N = {1, . . . , n}.

Nodes in each cluster are connected to each other based on

a connection graph. We consider varying levels of connectivity

among nodes within each cluster. These are disconnected,

uni-directional ring, bi-directional ring, and fully connected

networks, which are shown in Fig. 2 for a cluster of k = 6
nodes. Updates received from the cluster head associated with

each cluster are distributed across that cluster by utilizing the

connections between the nodes. A node i updates another node

j as a rate λij Poisson process. Each node in this system has

a total update rate of λ, which is uniformly allocated to its

neighboring nodes. That is, in the uni-directional ring, each

node updates its neighbor node as a rate λ Poisson process,

whereas in bi-directional ring, each node has two neighboring

nodes, each of which is updated as a rate λ
2 Poisson process.

In the fully connected cluster, each node has k− 1 neighbors

each of which is updated as a rate λ
k−1 Poisson process. As a

result of these local connections within a cluster, a node can

receive different versions of the source update.

To model the age at each node, we use the version age met-

ric [7], [8]. We denote the version of the update at the source

as Ns(t), at cluster head c as Nc(t), with c ∈ C = {1, . . . ,m},

and at node i as Ni(t), with i ∈ N , at time t. The version

age at node i is given by ∆i(t) = Ns(t) − Ni(t). Similarly,

the version age at cluster head c is ∆c(t) = Ns(t) − Nc(t).
When node i has the same version as the source, its version

age becomes zero, i.e., ∆i(t) = 0. When the information

at the source is updated, version ages at the cluster heads

and the nodes increase by 1, e.g., ∆′
c(t) = ∆c(t) + 1. Each

node i can get updates either from its cluster head or the

other nodes that it is connected to within its cluster. When

node i gets an update from its cluster head, its version age

becomes ∆′
i(t) = min{∆c(t),∆i(t)} = ∆c(t). Last equality

here follows since nodes in a cluster receive the source updates

through their cluster head so that they have either the same

version or older versions of the information compared to their

cluster head. When node i receives an update from node j,

its version age becomes ∆′
i(t) = min{∆i(t),∆j(t)}. We

note that if node j does not have a fresher version of the

information, the version age at node i is not updated.

III. VERSION AGE WITH COMMUNITY STRUCTURE

In this section, we characterize the limiting version age

of each node i, denoted by ∆i = limt→∞ E[∆i(t)], i ∈
{1, . . . , n} considering various network topologies for the

clusters. Since the network model in each cluster is identical

and within each cluster the network is symmetric for each of

the network topologies, age processes ∆i(t) of all users are

statistically identical. Thus, in the ensuing analysis, we focus

on a single cluster c ∈ C and find the average version age of a

node from that cluster. For this, we follow the construction in

[7] and express ∆i in terms of ∆S , which denotes the average

version age of subset S, where ∆S(t) , minj∈S ∆j(t).
We recall the following definitions from [7]: λi(S) denotes

the total update rate at which a node i updates the nodes in set



S. We have λi(S) =
∑

j∈S λij when i /∈ S. Similarly, λc(S)
denotes the total update rate of the cluster head of a particular

cluster into the set S. Finally, set of updating neighbors of a

set S is N(S) = {i ∈ {1, . . . , n} : λi(S) > 0}.

With these definitions, next, in Theorem 1 below we give

the resulting version age in our clustered system model as a

specialization of [7, Thm. 1].

Theorem 1 When the total network of n nodes is divided into

m clusters, each of which consisting of a single cluster head

and k nodes with n = mk, the average version age of subset

S that is composed of nodes within a cluster is given by

∆S =
λe + λc(S)∆c +

∑

i∈N(S) λi(S)∆S∪{i}

λc(S) +
∑

i∈N(S) λi(S)
, (1)

with ∆c = mλe

λs
.

Proof of Theorem 1 follows by applying [7, Thm. 1] to our

clustered network model and noting that updates arrive at the

nodes through designated cluster heads.

A. Version Age in Clustered Disconnected Networks

Nodes in a cluster are not connected to each other. Thus, the

network is a two-hop multicast network, where the first hop is

from the source to m cluster heads, and the second hop is from

each cluster head to k nodes; combine Fig. 1 with Fig. 2(a).

Multihop networks have been studied in [15]–[19] considering

the classical age metric, where the source keeps sending update

packets until they are received by a certain number of nodes at

each hop. We do not consider such centralized management of

updates, but let the source update the cluster heads as Poisson

processes, and let cluster heads forward these packets to the

nodes within their clusters as further Poisson processes.

Let S1 denote an arbitrary 1-node subset of a cluster. Subset

S1 is only connected to the cluster head, i.e., N(S1) = ∅.

Using the recursion given in (1), we find

∆S1
= ∆c + k

λe

λc
= m

λe

λs
+ k

λe

λc
, (2)

where ∆S1
denotes the version age of a single node from the

cluster. When the network consists of two-hops, version age

is additive, in that the first term in (2) corresponds to the first

hop and equals to the version age at the cluster head, whereas

the second term in (2) corresponds to the version age at the

second hop between the cluster head and a node.

Theorem 2 In a clustered network of disconnected users, the

version age of a single user scales as O(
√
n).

Theorem 2 follows by selecting k =
√
n with m = n

k =√
n in (2) for fixed λe, λs, λc, which do not depend on n.

Theorem 2 indicates that when nodes are grouped into
√
n

clusters, an age scaling of O(
√
n) is achievable even though

users forego gossiping. With the absence of cluster heads, i.e.,

when the source is uniformly connected to each of the n users,

the version age scaling of each disconnected user would be

O(n). By utilizing clusters, we incur an additional hop, but

significantly improve the scaling result from O(n) to O(
√
n).

B. Version Age in Clustered Ring Networks

Nodes in each cluster form a ring network. We consider

two types of ring clusters: uni-directional ring as shown in

Fig. 2(b) and bi-directional ring as shown in Fig. 2(c).

First, we consider the uni-directional ring and observe that

an arbitrary subset of j adjacent nodes Sj has a single neighbor

node that sends updates with rate λ for j ≤ k− 1. Each such

subset Sj receives updates from the cluster head with a total

rate of j λc

k . Next, we use the recursion in (1) to write

∆Sj
=

λe + j λc

k ∆c + λ∆Sj+1

j λc

k + λ
, (3)

for j ≤ k − 1 where ∆c is the version age at the cluster

head. We note that when j = k the network becomes a simple

two-hop network similar to that of Section III-A and we find

∆Sk
= mλe

λs
+ λe

λc
.

Next, we consider the bi-directional ring and observe that

an arbitrary subset Sj that consists of any adjacent j nodes

has two neighbor nodes, each with an incoming update rate of
λ
2 for j < k−1. When j = k−1, Sj has a single neighboring

node that sends updates with a total rate 2λ
2 = λ. For j ≤ k−1,

the cluster head sends updates to subset Sj with a total rate

of j λc

k . With all these, when we apply the recursion in (1),

we obtain exactly the same formula given in (3).

Lemma 1 Both uni-directional and bi-directional ring cluster

models yield the same version age for a single node when each

node in a cluster has a total update rate of λ.

Lemma 1 follows from the fact that either type of ring

cluster induces the same recursion for an arbitrary subset of

any adjacent j nodes within a cluster as long as the total update

rate per node λ is the same. Thus, in the remainder of this

paper, we only consider the bi-directional ring cluster model.

Before focusing on age scaling in a clustered network with a

ring topology in each cluster, we revisit the ring network in [7],

and provide a proof of the 1.25
√
n age scaling result observed

therein as a numerical result. We show that the approximate

theoretical coefficient is
√

π
2 = 1.2533.

Lemma 2 For the ring network model considered in [7], the

version age of a user scales as ∆S1
≈
√

π
2
λe

λ

√
n.

Proof: From recursive application of [7, Eqn. (17)], we obtain

∆S1
=

λe

λ

(

n−1
∑

i=1

a
(n)
i + a

(n)
n−1

)

, (4)

where a
(n)
i is given for i = 1, . . . , n− 1 as

a
(n)
i =

i
∏

j=1

1

1 + j
n

. (5)

We note that a
(n)
i decays fast in i, and consider i = o(n),

− log(a
(n)
i ) =

i
∑

j=1

log

(

1 +
j

n

)

≈
i
∑

j=1

j

n
=

i(i+ 1)

2n
≈ i2

n
(6)



where we used log(1 + x) ≈ x for small x, and ignored the i

term relative to i2. Thus, for small i, we have a
(n)
i ≈ e−

i2

2n . For

large i, a
(n)
i converges quickly to zero due to multiplicative

terms in
∏i

j=1
1

1+j/n , and this approximation still holds. Thus,

we have
∑n−1

i=1 a
(n)
i ≈ ∑n−1

i=1 e−
i2

2n . For large n, by using

Riemann sum approximation with steps 1√
n

, we obtain

1√
n

n−1
∑

i=1

a
(n)
i ≈ 1√

n

n−1
∑

i=1

e−
i2

2n =

∫ ∞

0

e−
t2

2 dt =

√

π

2
. (7)

Thus, we get
∑n−1

i=1 a
(n)
i ≈

√

π
2

√
n. By inserting this in (4),

we obtain the age scaling of a user as ∆S1
≈
√

π
2
λe

λ

√
n. �

Next, we focus on age scaling in a clustered network with

a ring topology in each cluster. From recursive application of

(3) along with ∆Sk
, we obtain

∆S1
=
λe

λ

(

k−1
∑

i=1

b
(k)
i

)

+∆c

(

1− b
(k)
k−1

)

+∆Sk
b
(k)
k−1, (8)

where similar to (5), b
(k)
i is given for i = 1, . . . , k − 1 as

b
(k)
i =

i
∏

j=1

1

1 + j
k
λc

λ

. (9)

When k is large, b
(k)
k−1 goes to zero, and ∆S1

in (8) becomes

∆S1
≈ λe

λ

(

k−1
∑

i=1

b
(k)
i

)

+∆c≈
√

π

2

λe√
λλc

√
k +m

λe

λs
, (10)

where the second approximation follows as in the proof of

Lemma 2. Terms in (10) are O(
√
k) and O(m), respectively.

In [7], there is a single cluster, i.e., m = 1 and k = n, and thus,

the version age scaling is O(
√
n). In our model, by carefully

adjusting the number of clusters and the cluster sizes, we can

improve this O(
√
n) scaling result to O(n

1
3 ).

Theorem 3 In a clustered network with a ring topology in

each cluster, the version age of a single user scales as O(n
1
3 ).

Theorem 3 follows by selecting m = n
1
3 with k = n

m = n
2
3

in (10) for fixed λe, λs, λc, λ, which do not depend on n.

C. Version Age in Clustered Fully Connected Networks

Nodes in each cluster form a fully connected network where

each node is connected to all the other nodes within its cluster

with rate λ
k−1 . We find the version age for a subset of j nodes

Sj in a cluster. Each such subset j has k − j neighbor nodes

in addition to the cluster head associated with their cluster.

Using the recursion given in (1), we find

∆Sj
=

λe +
jλc

k ∆c +
j(k−j)λ

k−1 ∆Sj+1

jλc

k + j(k−j)λ
k−1

, (11)

for j ≤ k−1, where ∆c is equal to mλe

λs
. The average version

age of the whole cluster is ∆Sk
= ∆c +

λe

λc
= mλe

λs
+ λe

λc
.

Next, we present bounds for ∆S1
.

Lemma 3 When λc = λ, in a clustered network with fully

connected topology in each cluster, the version age of a single

node satisfies

(k − 1)2 + k

k2
∆c +

λe

λ

(

k − 1

k

k−1
∑

ℓ=1

1

ℓ
+

1

k

)

≤ ∆S1
≤ ∆c +

λe

λ

(

k
∑

ℓ=1

1

ℓ

)

. (12)

Proof: We use steps similar to those in the proof of [7, Thm. 2]

and also consider the additional hop from the source to the

cluster heads. For λc = λ, we take j = k−ℓ and (11) becomes

∆Sk−ℓ
=

1
k−ℓ

λe

λ + 1
k∆c +

ℓ
k−1∆Sk−ℓ+1

1
k + ℓ

k−1

, (13)

for ℓ ≤ k − 1 and ∆Sk
= ∆c +

λe

λ , where ∆c is the age at

the cluster head. Defining ∆̂Sℓ
, ∆Sk−ℓ+1

, we get

∆̂Sℓ+1
=

1
k−ℓ

λe

λ + 1
k∆c +

ℓ
k−1∆̂Sℓ

1
k + ℓ

k−1

. (14)

Next, one can show that ∆̂Sℓ+1
satisfies the following

∆̂Sℓ+1
≤

1
k−ℓ

λe

λ + 1
k∆c +

ℓ
k ∆̂Sℓ

1
k + ℓ

k

. (15)

Defining ∆̃Sℓ
, ℓ

k ∆̂Sℓ
and plugging it in (15), we get

∆̃Sℓ+1
=

ℓ+ 1

k
∆̂Sℓ

≤ 1

k − ℓ

λe

λ
+

1

k
∆c + ∆̃Sℓ

. (16)

Noting that ∆̃S1
=

∆̂S1

k =
∆Sk

k = 1
k

(

∆c +
λe

λ

)

, we write

∆̃Sk
≤ ∆c +

λe

λ

(

k
∑

ℓ=1

1

ℓ

)

. (17)

Since ∆̃Sk
= ∆̂Sk

= ∆S1
, (17) presents an upper bound to the

version age of a single node. For the lower bound, we follow

similar steps starting from (14). Detailed steps are omitted here

due to space limitations. �

From (12), we see that for large n with λc = λ, the version

age of a single node ∆S1
satisfies

∆S1
≈ m

λe

λs
+

λe

λ
log k. (18)

Theorem 4 In a clustered network with a fully connected

topology in each cluster, the version age of a single user scales

as O(log n).

Theorem 4 follows in multiple different ways. For instance,

it follows by selecting m = 1 and k = n
m = n. That is,

we have a single fully connected network of n users as in

[7]. Theorem 4 also follows by selecting m = log n and k =
n
m = n

logn . That is, we have log(n) fully connected clusters

with n
logn users in each cluster. Thus, version age obtained

under a smaller cluster size with less connections is the same
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Fig. 3. Version age of a node with fully connected, ring, and disconnected
cluster models with n = 120, (a) λe = 1, λs = 1, λc = 1, and λ = 1, (b)
λe = 1, λs = 10, λc = 1, and λ = 1, (c) λe = 1, λs = 10, λc = 10, and
λ = 1, (d) λe = 1, λs = 10, λc = 1, and λ = 2.

as that obtained when all nodes are connected to each other.

In particular, in our model with m = log n, each node has

O( n
logn ) connections in comparison to O(n) in [7].

Finally, we note that, a recurring theme in the analysis of

clustered networks is the fact that the version age at an end-

node ∆S1
is almost additive in the version age at the cluster

head ∆c as seen in (2), (8), and (12). It is exactly additive in

the case of disconnected clusters in (2).

IV. NUMERICAL RESULTS

We have seen in Section III that the version age depends

on update rates λe, λs, λc, and λ. In this section, we explore

the effects of these rates on the age via numerical results.

First, we take λe = 1, λs = 1, λc = 1, λ = 1, and n = 120.

We plot the version age of a node for the considered cluster

models with respect to k. We see in Fig. 3(a) that for the

fully connected cluster model, the version age decreases with

k and thus, the version age-optimal cluster size is k∗ = 120,

i.e., all n nodes are grouped in a single cluster. In the ring

cluster model, the version age is minimized when k∗ = 30. In

the disconnected cluster model, the version age is minimized

when we have k∗ = 10 or k∗ = 12. From these, we deduce

that when the topology has less connectivity in a cluster, the

optimal cluster size is smaller. Further, a topology with larger

connectivity within a cluster achieves a lower version age.

Second, we consider the same setting as in Fig. 3(a) but

take λs = 10 in Fig. 3(b). Here, the version age decreases with

increasing k at first due to increasing number of connections

within a cluster and the increase in the update rate between

the source and each cluster head (as the number of clusters

decreases with increasing k). However, as k continues to

increase, the decrease in the update rate from the cluster head

to the nodes starts to dominate and the version age increases

for all cluster models. In Fig. 3(b), we see that the optimal

cluster size is k∗ = 12 in fully connected clusters, k∗ = 8 in

ring clusters, k∗ = 3 and k∗ = 4 in disconnected clusters.

Third, we increase the update rate of the cluster heads and

take λc = 10. We see in Fig. 3(c) that the optimum value of

k increases compared to the second case when cluster heads

have a larger update rate in all the cluster models. We find

k∗ = 20 in fully connected clusters, k∗ = 15 in ring clusters,

and k∗ = 10 or k∗ = 12 in disconnected clusters.

Fourth, we study the effect of update rates among the nodes.

For this, we take λc = 10, λe = 1, λs = 1, λ = 2. We see

in Fig. 3(d) that as the communication rate between the nodes

increases, the optimal cluster size increases, and it is equal

to k∗ = 24 in fully connected clusters, and k∗ = 10 in ring

clusters. As there is no connection between nodes in the case

of disconnected clusters, the optimum cluster size remains the

same, i.e., k∗ = 3 or k∗ = 4, compared to Fig. 3(b).
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