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a b s t r a c t 

We propose a new output event-triggered control design for linear discrete-time systems with constant 

arbitrarily long input delays, using delay compensating subpredictors. We prove input-to-state stability of 

the closed loop system, using framers and the theory of positive systems. A novel feature of our approach 

is our use of matrices of absolute values, instead of Euclidean norms, in our discrete-time event triggers 

for our delay compensating control design. We illustrate our approach using a model of the BlueROV2 

marine vehicle, where our new event triggers lead to a smaller number of control recomputation times 

as compared with standard event triggers that were based on Euclidean norms, without sacrificing on 

settling times or on other performance metrics. 
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. Introduction 

This work continues our development (which we started in 

17–20] ) of event-triggered control methods for discrete- and 

ontinuous-time systems using positive systems and interval ob- 

ervers. While [17] provided event-triggered subpredictor-based 

pproaches to compensate for input delays in continuous-time 

ystems, and [18,19] covered time-varying continuous-time event- 

riggered systems with uncertain vector fields or state delays, and 

20] covered undelayed discrete-time linear systems with outputs, 

ere we solve a complementary problem of compensating for input 

elays in event-triggered discrete-time linear systems. 

As in [17–20] , a key innovation is our use of triggers which 

re based on matrices of absolute values instead of standard Eu- 

lidean norms. As in [20] , such triggers can lead to less conser- 

ative lower bounds on the intersample times as compared with 

he corresponding triggers that would arise from using standard 

uclidean norms; see Section 5 . This is advantageous for applica- 

ions that call for taking communication constraints into account, 
� ’Recommended by’ Prof. T Parisini. 
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y reducing the number of time instants when control values are 

hanged. 

The need to reduce the number of times when control val- 

es are changed has led to a large literature on event-triggered 

egimes that address the computational challenges that are cre- 

ted by controls whose values are changed unnecessarily often; 

ee, e.g., the survey [8] . Other notable and significant works in- 

lude [1,5,9,13,14,22,26] . Designing event-triggered control mecha- 

isms entails the co-design of feedback controls and event trig- 

ering rules that indicate which events call for changing control 

alues. In both discrete- and continuous-time cases, these events 

re usually specified as times when a measurement enters a spec- 

fied region of the measurement space that is defined in terms of 

he usual Euclidean norm. This differs from standard zero-order 

old controls whose control recomputation times are independent 

f the measurements from the systems. 

Another main ingredient of our approach is positive systems, 

hich are dynamics for which the nonnegative orthant is posi- 

ively invariant. The literature on positive systems provided new 

ontrol methods to help overcome technical challenges of using 

tandard Lyapunov functionals for time delay systems. Positive sys- 

ems have been used in conjunction with interval observers (as 

efined, e.g., in [7,24] ), which yield intervals containing values of 

nknown states when the inequalities are viewed as being com- 

onentwise; see [15] . Dynamical systems theory based on inter- 

al observers and positive systems has led to notable contributions 
rved. 

https://doi.org/10.1016/j.ejcon.2022.100664
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http://www.elsevier.com/locate/ejcon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2022.100664&domain=pdf
mailto:frederic.mazenc@l2s.centralesupelec.fr
mailto:malisoff@lsu.edu
mailto:cbarbalata@lsu.edu
mailto:zjiang@nyu.edu
https://doi.org/10.1016/j.ejcon.2022.100664


F. Mazenc, M. Malisoff, C. Barbalata et al. European Journal of Control 68 (2022) 100664 

i

t

d

i

s

I

p

t

i

t

b

e

c

n

[

i  

p

c

r

u

c

[

t

e

s

t

e

i

s

t

f

2

s

b

t  

a  

a

t  

d  

A

i  

w  

a  

(  

c

0  

f

{

w  

i  

k

s

t

w

l

T

A

H

i

H

i

A  

s

A

e

s  

a  

t⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
w

u

w

σ

σ

S

t

x

I

e

w

T

C

a  

c  

l

(

|

f

R

F

p  

A

i

P  
n aerospace engineering, mathematical biology, and other applica- 

ions. 

By providing a new design for event-triggered control for linear 

iscrete-time systems with outputs and arbitrarily long constant 

nput delays, we believe that this work is the first to use positive 

ystems and interval observers to prove input-to-state stability (or 

SS) for discrete-time systems with outputs whose delays are com- 

ensated by subpredictors. In particular, our work is novel relative 

o notable works on predictors that did not involve event trigger- 

ng, such as [2–4,21] . For discrete-time systems, we do not have 

o rule out the possibility of Zeno’s phenomenon. Hence, it may 

e worth discretizing a continuous time system and to next use 

vent triggered control, instead of using event triggered control for 

ontinuous-time systems. Our method uses the structure of our dy- 

amics to provide an alternative to small-gain methods (e.g., from 

10,11] ) and so can lead to less frequent control computations. 

After presenting our definitions and notation and new theorem 

n Section 2 , followed by our main lemmas in Section 3 and the

roof of our theorem in Section 4, Section 5 illustrates how dis- 

retized continuous time systems are amenable to our new theo- 

em. Section 5 also applies our work to a model of the BlueROV2 

nderwater vehicle, where our input delay compensation results 

omplement our results for this dynamics in undelayed cases in 

20] . The example illustrates how our new event triggers can lead 

o fewer control recomputation times, compared with standard 

vent triggers that were based on the Euclidean norm, without 

acrificing the settling times or other performance metrics. Since 

he BlueROV2 is widely used for the study of corals and for other 

nvironmental surveys, this illustrates the value of our approach 

n a significant example from ecological robotics, where there is 

trong motivation for reducing the number of control recomputa- 

ion times. We close in Section 6 with a summary and our ideas 

or follow up research. 

. Definitions, notation, and main result 

We use standard notation, which we simplify when no confu- 

ion would arise. The dimensions of our Euclidean spaces are ar- 

itrary, unless we indicate otherwise. We omit arguments of func- 

ions when no confusion would arise. We set Z 0 = { 0 , 1 , 2 , . . . } . For
 matrix G = [ g i j ] ∈ R 

r×s , we set | G | = [ | g i j | ] , so the entries of | G |
re the absolute values of the corresponding entries g i j of the ma- 

rix G . We use || · || to denote the usual Euclidean norm. By G 
+ , we

enote the matrix whose entries are max { 0 , g i j } and G 
− = G 

+ − G .

 square matrix is called Schur stable provided its spectral radius 

s in [0 , 1) . For matrices D = [ d i j ] and E = [ e i j ] of the same size,

e write D < E (resp., D ≤ E) provided d i j < e i j (resp., d i j ≤ e i j ) for

ll i and j. We also use D � E to mean that there is a pair

i, j) such that d i j > e i j . We adopt similar notation for vectors. We

all a matrix S positive (resp., nonnegative) provided 0 < S (resp., 

 ≤ S), where 0 is the zero matrix. We use standard notions of ISS

or discrete-time systems [12] , and I is the identity matrix. 

We consider the system with outputs 

x k +1 = Ax k + Bu k −r + δk 
y k = Cx k 

(1) 

ith k ∈ Z 0 , x valued in R 
n , the control u (that we will specify

n our theorem) valued in R 
p , the output y valued in R 

q , the un-

nown sequence δk ∈ R 
n representing a disturbance, and the con- 

tant integer r ≥ 1 representing an input delay that will arise in 

he measurements that enter the control u . A key feature of our 

ork is that we allow r to be any positive integer. This arbitrarily 

ong input delay is compensated for by our chain of subpredictors. 

hroughout this work, we make these three assumptions: 
2

ssumption 1. There is a matrix K ∈ R 
p×n such that 

 = A + BK (2) 

s nonnegative. There is a matrix � ∈ R 
n ×n such that 

 + | BK| � (3) 

s Schur stable and such that � > 0 . 

ssumption 2. There is a matrix L ∈ R 
n ×q such that A + LC is Schur

table. 

ssumption 3. The matrix A is invertible. 

See Remark 1 for the motivation for Assumptions 1 –3 and the 

ase with which we can often check that they are satisfied. To 

pecify u , fix matrices K, L , and � satisfying Assumptions 1 –2 and

 matrix R ∈ R 
n ×n such that A + R is Schur stable (e.g., R = −A ). We

hen use the r subpredictors 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

z 1 ,k +1 = Az 1 ,k + Bu k −r+1 + ALCA −1 z 1 ,k 

−ALy k − ALCA −1 Bu k −r 

z 2 ,k +1 = Az 2 ,k + Bu k −r+2 

+ R 
(
z 2 ,k − Az 1 ,k − Bu k −r+1 

)
. . . 

z r,k +1 = Az r,k + Bu k 

+ R 
(
z r,k − Az r−1 ,k − Bu k −1 

)
(4) 

here each z i,k is valued in R 
n . We also use the control law 

 k −r = Kz r,σ (k ) −r (5) 

ith K in Assumption 1 and σ : Z 0 → Z 0 defined by 

σ (0) = 0 

( j + 1) = j + 1 if 

| z r, j+1 −r − z r,σ ( j) −r | � �| z r, j+1 −r | 
( j + 1) = σ ( j) if 

| z r, j+1 −r − z r,σ ( j) −r | ≤ �| z r, j+1 −r | . (6) 

ee Remark 3 for the motivation for our triggering rule (6) . Then 

he corresponding closed-loop system is 

 k +1 = Ax k + BKz r,σ (k ) −r + δk . (7) 

n terms of the notation 

 i,k = z i,k − z i −1 ,k +1 for i = 1 , . . . , r, 

E k = 

[
e 1 ,k , . . . , e r,k 

]� 
, and z 0 ,k = x k , (8) 

here the z i,k ’s are the states of (4) , our main result is: 

heorem 1. Let (1) be such that Assumptions 1 –3 are satisfied. 

hoose any matrices K, L , and � that satisfy our assumptions, and 

ny matrix R such that A + R is Schur stable. Then we can find real

onstants c̄ i > 0 for i = 1 , 2 , 3 such that all solutions of the closed-

oop system (7) with the control (5) –(6) defined by the subpredictors 

4) satisfy 

| x k || ≤ c̄ 1 e 
−c̄ 2 (k −k 0 ) 

(|| x k 0 || + || E k 0 −r || 
)

c̄ 3 sup 
q ∈{ k 0 −r, ... ,k −1 } 

|| δq || (9) 

or all k 0 > r and all integers k ≥ k 0 . 

emark 1. Assumptions 1 –3 are easily checked in many cases. 

or instance, Assumption 1 is not very restrictive. Indeed, when a 

air (A a , B a ) is controllable, we can choose a matrix K a such that

 a + B a K a is Schur stable, having distinct real eigenvalues on the 

nterval (0,1). Then, there is an invertible matrix P ∈ R 
n ×n such that 

 (A a + B a K a ) P 
−1 is Schur stable and nonnegative (by diagonalizing
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 a + B a K a ). Consequently, if we consider Z k +1 = A a Z k + B a u + δa,k ,
hen the change of coordinates X k = P Z k gives 

 k +1 = AX k + Bu + P δa,k , (10) 

ith A = PA a P 
−1 and B = P B a , and (10) satisfies Assumption 1 , be-

ause the choice K = K a P 
−1 gives 

 + BK = PA a P 
−1 + P B a K a P 

−1 

= P (A a + B a K a ) P 
−1 (11) 

hich is both Schur stable and nonnegative, and because when the 

atrix H is Schur stable, there always exists a positive matrix � > 

 such that H + | BK| � is Schur stable, by choosing � so its entries

re small enough. 

Assumption 2 is satisfied when the pair (A, C) is observable, 

hich is a standard observability condition. Assumption 3 is a 

echnical assumption, and holds in the following generic sense. The 

nvertibility of A can be viewed as the requirement that a real an- 

lytic function defined on R 
n 2 takes a nonzero value, namely, the 

eterminant of A viewed as a function of the n 2 entries of A . It

ollows from a standard analytic continuation argument that the 

et of all invertible n × n matrices form an open and dense sub- 

et of R 
n ×n . Hence, invertibility of A is generic, in the same sense

f genericity that controllable pairs (and so also observable pairs) 

orm a generic set; see, e.g., [25] . 

emark 2. By contrast with the subsequential observer of [16] , 

4) depends on y k , and not on y k +1 . This is the reason why we

ave to assume that A is invertible. 

emark 3. Since our focus is on the state of the dynamics (1) , we

id not include the actuator state on the left side of (9) . Our choice

f the triggering rule (6) was made because (as we show in our 

roof of our theorem) it ensures that 

 z r,σ (k ) −r − z r,k −r | ≤ �| z r,k −r | (12) 

olds for all integers k ≥ 0 . The preceding inequality plays an es- 

ential role in our stability analysis for our closed-loop system. It 

ontrasts with the trigger requirement 

| z r,σ (k ) −r − z r,k −r || ≤ σ∗|| z r,k −r || (13) 

hat would arise from using the usual Euclidean norm || · || and 
 constant σ∗. In fact, the largest σ∗ > 0 such that all pairs 

z r,σ (k ) −r , z r,k −r ) satisfying (13) also satisfy (12) is σ∗ = min i j �i j , 

.e., the smallest entry of � = [�i j ] . This property of the minimum 

ntry of � was shown in our study [20] of the undelayed case, 

nd the same reasoning applies in the delayed case that we con- 

ider here. In Section 5.2 , we illustrate how using our new condi- 

ion (12) can lead to fewer event triggers on given time horizons 

s compared to the number of event triggers that we would have 

equired if we had instead used the traditional trigger (13) with 

he corresponding least conservative choice σ∗ = min i j �i j . 

. Key lemmas to prove Theorem 1 

Our first lemma is: 

emma 1. With the preceding assumptions and notation, we can 

onstruct matrices � and � such that the equality 

 a + b = �b E a + 

b−1 ∑ 

p=0 

�b−p−1 �

[
δa + p 

δa + p+1 

]
(14) 

s satisfied for all integers a > 0 and b > 0 . 

roof. First, let us observe that 

Ly k + ALCA −1 Bu k −r = ALC 
(
x k +A −1 Bu k −r 

)
= F (x k +1 − δk ) , (15) 
3 
here F = ALCA −1 . Here and in the sequel, all equalities are for all

 ∈ Z 0 , unless otherwise indicated. It follows that z 1 ,k +1 = Az 1 ,k +
u k −r+1 + F z 1 ,k − F x k +1 + F δk , which can be rewritten as 

 1 ,k +1 = Az 1 ,k + Bu k −r+1 + F e 1 ,k + F δk . (16) 

ext, consider the z 2 -subsystem of (4) . Since (16) gives −Az 1 ,k −
u k −r+1 = −z 1 ,k +1 + F e 1 ,k + F δk , we have 

 2 ,k +1 = Az 2 ,k + Bu k −r+2 + Re 2 ,k + RF e 1 ,k + RF δk . (17)

imilarly, we can prove (by induction on a ) that 

 a,k +1 = Az a,k + Bu k −r+ a + Re a,k 

+ R 2 e a −1 ,k + . . . . + R a −1 e 2 ,k 

+ R a −1 F e 1 ,k + R a −1 F δk (18) 

or a = 2 to r. Hence, from (16) , we deduce that 

 1 ,k +1 = Az 1 ,k + Bu k −r+1 + F e 1 ,k + F δk 

− [ Ax k +1 + Bu k −r+1 + δk +1 ] 

= ( A + F ) e 1 ,k + F δk − δk +1 

= Me 1 ,k + F δk − δk +1 , (19) 

here M = A (A + LC) A −1 . 

Therefore, from (16) to (17) , we deduce that 

 2 ,k +1 = A (z 2 ,k − z 1 ,k +1 ) + Re 2 ,k + RF e 1 ,k 

+ RF δk − F e 1 ,k +1 − F δk +1 

= (A + R ) e 2 ,k + RF e 1 ,k − F e 1 ,k +1 

+ RF δk − F δk +1 

= (A + R ) e 2 ,k + (RF − F M) e 1 ,k 

+ (RF − F 2 ) δk . (20) 

hen (18) gives 

 a,k +1 = z a,k +1 − z a −1 ,k +2 

= (A + R ) e a,k + R 2 e a −1 ,k + . . . . 

+ R a −1 e 2 ,k + R a −1 F e 1 ,k + R a −1 F δk 

−
(
Re a −1 ,k +1 + R 2 e a −2 ,k +1 + . . . . 

+ R a −2 e 2 ,k +1 + R a −2 F e 1 ,k +1 

+ R a −2 F δk +1 

)
(21) 

or a = 3 to r, and so also 

 a,k +1 = (A + R ) e a,k + R 2 e a −1 ,k + . . . . 

+ R a −1 e 2 ,k + R a −1 F e 1 ,k −
(
Re a −1 ,k +1 

+ R 2 e a −2 ,k +1 + . . . . + R a −2 e 2 ,k +1 

)
−R a −2 F 

(
Me 1 ,k + F δk − δk +1 

)
+ R a −1 F δk − R a −2 F δk +1 (22) 

or a = 3 to r, where the last equality is a consequence of the last

quality in (19) . We deduce that 

 a,k +1 = (A + R ) e a,k + R 2 e a −1 ,k + . . . . 

+ R a −1 e 2 ,k + R a −1 F e 1 ,k 

−
(
Re a −1 ,k +1 + R 2 e a −2 ,k +1 + . . . . 

+ R a −2 e 2 ,k +1 

)
−R a −2 F Me 1 ,k + (R a −1 − R a −2 F ) F δk . (23) 
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t now follows from (19), (20) and (23) that there is a matrix � of

he form 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

M 0 . . . . . . 0 

� A + R 
. . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 0 

� . . . . . . � A + R 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (24) 

nd a matrix � such that 

 k +1 = �E k + �

[
δk 

δk +1 

]
(25) 

ith E j defined in (8) . Therefore, for all integers a and b such that

 > 0 and b > 0 , we can argue by induction on b to show that the

quality (14) is satisfied. �

Using our definitions (8) of the e i,k ’s and the formulas (8) for 

he E k ’s, we can also prove the following: 

emma 2. With the preceding notation with � and � satisfying the 

equirements from Lemma 1 , we have 

 r,k = x k + r + ξk , where ξk = 

r−1 ∑ 

j=0 

e r− j,k + j (26) 

or all k ≥ 0 . Also, if we let V i ∈ R 
n ×(rn ) denote the matrix

 V (i, 1) , . . . , V (i,r) ] where V (i, j) = 0 ∈ R 
n ×n if j � = i and V (i,i ) = I ∈ R 

n ×n ,

nd if we choose 

 = 

r−1 ∑ 

j=0 

V r− j �
j , (27) 

hen the following holds for all k ≥ 1 : 

k = W E k 

+ 

r−1 ∑ 

j=1 

V r− j 

j−1 ∑ 

p=0 

� j−p−1 �

[
δk + p 

δk + p+1 

]
(28) 

f r > 1 and 

k = V 1 E k (29) 

f r = 1 . 

roof. Condition (26) follows from a telescoping sum argument. 

lso, we can rewrite the ξk formula in (26) as 

k = 

r−1 ∑ 

j=0 

V r− j E k + j . (30) 

t follows from (14) and our choice (27) of W that 

k = V r E k + 

r−1 ∑ 

j=1 

V r− j 

(
� j E k 

+ 

j−1 ∑ 

p=0 

� j−p−1 �

[
δk + p 

δk + p+1 

]) 

= W E k + 

r−1 ∑ 

j=1 

V r− j 

j−1 ∑ 

p=0 

� j−p−1 �

[
δk + p 

δk + p+1 

]
(31) 

f r > 1 , and that (29) holds if r = 1 . �

. Proof of theorem 

We now use the preceding two lemmas to prove Theorem 1 . 

he proof has three parts. In the first part, we provide a new rep-

esentation of the closed-loop system, to facilitate our analysis. In 
4 
he second part, we build a framer for the state of the closed-loop 

ystem. In the final part, we use the framer to provide a stability 

nalysis to prove the ISS result. 

First Part: New Representation of Closed-Loop System. The system 

7) can be rewritten as 

 k +1 = Ax k + BKz r,k −r 

+ BK 
(
z r,σ (k ) −r − z r,k −r 

)
+ δk . (32) 

rom the equality (26) , we deduce that 

 k +1 = Ax k + BK(x k + ξk −r ) 

+ BK(z r,σ (k ) −r − z r,k −r ) + δk (33) 

or all k ≥ r. Then, with H defined in (2) , the representation 

 k +1 = Hx k + BK 
(
z r,σ (k ) −r − z r,k −r 

)
+ BKξk −r + δk (34) 

s obtained. 

Second Part: Framer Construction. With a view to the stability 

nalysis of the closed-loop system, and using our notation from 

ection 2 , we introduce the dynamic extension 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

x k +1 = H x k + (BK) + (z r,σ (k ) −r − z r,k −r ) 
+ 

+(BK) −(z r,σ (k ) −r − z r,k −r ) 
−

+(BKξk −r ) 
+ + δ+ 

k 

x k +1 = H x k − (BK) + (z r,σ (k ) −r − z r,k −r ) 
−

−(BK) −(z r,σ (k ) −r − z r,k −r ) 
+ 

−(BKξk −r ) 
− − δ−

k 

(35) 

ith k ≥ r. Let k 0 > r. We have 

 k +1 = Hx k + (BK) + (z r,σ (k ) −r − z r,k −r ) 
+ 

+(BK) −(z r,σ (k ) −r − z r,k −r ) 
−

−(BK) + (z r,σ (k ) −r − z r,k −r ) 
−

−(BK) −(z r,σ (k ) −r − z r,k −r ) 
+ 

+(BKξk −r ) 
+ −(BKξk −r ) 

− + δ+ 
k 

− δ−
k 
. (36) 

t follows that 

 k +1 − x k +1 = H( x k − x k ) 

+(BK) + (z r,σ (k ) −r − z r,k −r ) 
−

+(BK) −(z r,σ (k ) −r − z r,k −r ) 
+ 

+(BKξk −r ) 
− + δ−

k 

 k +1 − x k +1 = H(x k − x k ) 

+(BK) + (z r,σ (k ) −r − z r,k −r ) 
+ 

+(BK) −(z r,σ (k ) −r − z r,k −r ) 
−

+(BKξk −r ) 
+ + δ+ 

k 
. (37) 

ince the matrix H is nonnegative, using (37) , one can prove by 

nduction that if x k 0 − x k 0 and x k 0 − x k 0 ≥ 0 , then x k − x k ≥ 0 and 

 k − x k ≥ 0 for all k ≥ k 0 . Thus 

 k ≤ x k ≤ x k for all k ≥ k 0 . (38) 

imilarly, if x k 0 ≥ 0 and x k 0 ≤ 0 then 

 k ≥ 0 and x k ≤ 0 (39) 

or all k ≥ k 0 , again by induction. It follows that (35) satisfies the

equirements to be a framer for (34) . The framer (35) is inspired 

y those constructed, e.g., in [6] . 

Third Part: Stability Analysis. We use the interval observer (35) to 

stablish stability properties for (34) . Let us introduce 

˜  k = x k − x k . (40) 
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e deduce from (38) and (39) that 

 x k | ≤ ˜ x k (41) 

or all k ≥ k 0 . On the other hand, (35) gives 

˜  k +1 = H ̃  x k + | BK|| z r,σ (k ) −r − z r,k −r | (42) 

+ | BKξk −r | + | δk | . (42) 

lso, by (41) , we have ˜ x k ≥ 0 for all k ≥ k 0 . Also, we deduce from

he definition of σ in (6) that 

˜  k +1 ≤ H ̃  x k + | BK| �| z r,k −r | + | BKξk −r | + | δk | (43)

or all k ≥ r. To see why, notice that if | z r,σ (k ) −r − z r,k −r | � �| z r,k −r | ,
hen σ (k ) � = k , so the definition of σ gives σ (k ) = σ (k − 1) , so

 z r,σ (k −1) −r − z r,k −r | � �| z r,k −r | , so (6) with the choice j = k − 1

ives σ (k ) = k , which is a contradiction. 

Let us take k 0 > r. Again using (26) , we obtain 

˜  k +1 ≤ H ̃  x k + | BK| �| x k + ξk −r | 
+ | BKξk −r | + | δk | 

≤ H ̃  x k + | BK| �| x k | + | BK| �| ξk −r | 
+ | BKξk −r | + | δk | (44) 

or all k ≥ k 0 , by (43) . From (41) , we deduce that 

˜  k +1 ≤ (H + | BK| �) ̃  x k + | BK| �| ξk −r | 
+ | BKξk −r | + | δk | 

≤ κ1 ̃  x k + κ2 | ξk −r | + | δk | , (45) 

here κ1 = H + | BK| � and κ2 = | BK| (� + I) . On the other hand,

rom (28) , it follows that 

ξk −r = W E k −r 

+ 

r−1 ∑ 

j=1 

V r− j 

j−1 ∑ 

p=0 

� j−p−1 �

[
δk −r+ p 

δk −r+ p+1 

]
(46) 

hen k ≥ k 0 and r > 1 . Hence, 

˜  k +1 ≤ κ1 ̃  x k + κ2 | W || E k −r | + | δk | 

+ κ2 

∣∣∣∣∣
r−1 ∑ 

j=1 

V r− j 

j−1 ∑ 

p=0 

� j−p−1 �

[
δk −r+ p 

δk −r+ p+1 

]∣∣∣∣∣ (47) 

hen r > 1 . Thus, when k ≥ k 0 , we have: 

˜ x k +1 ≤ κ1 ̃  x k + κ2 | W || E k −r | + | δk | 

+ κ2 

∣∣∣∣∣
r−1 ∑ 

j=1 

V r− j 

j−1 ∑ 

p=0 

� j−p−1 �

[
δk −r+ p 

δk −r+ p+1 

]∣∣∣∣∣
 k −r+1 = �E k −r + �

[
δk −r 

δk −r+1 

]
. (48) 

hese equalities can be written in the compact form 

˜ x k +1 | E k −r+1 

]
≤ ϒ

[
˜ x k | E k −r 

]
+ �(δk −r , . . . , δk ) , (49) 

here ϒ = 

[
κ1 κ2 | W | 
0 �

]
and �(δk −r , . . . , δk ) 

= 

⎡ 

⎢ ⎢ ⎣ 

κ2 

∣∣∣∣r−1 ∑ 

j=1 

V r− j 

j−1 ∑ 

p=0 

� j−p−1 �

[
δk −r+ p 

δk −r+ p+1 

]∣∣∣∣ + | δk | 

�

[ | δk −r | δk −r+1 

]
⎤ 

⎥ ⎥ ⎦ 

(50) 

hen k > r > 1 . Hence, when k > l > r, we have 

˜ x k | E k −r 

]
≤ ϒk −l 

[
˜ x l | E l−r 

]

5 
+ 

k −l−1 ∑ 

p=0 

ϒk −l−p−1 �
(
δl−r+ p , . . . , δl+ p 

)
, (51) 

y an induction argument that is similar to the one that gave (14) .

ssumption 1 ensures that κ1 is Schur stable. The matrix � is 

chur stable too because A + R and A + LC are Schur stable (by As-

umption 2 ). 

It follows that the matrix ϒ is Schur stable. Therefore there are 

onstants βi > 0 such that || ϒ
 || ≤ β1 e 
−β2 
 for all integers 
 ≥ 0 .

hen, we deduce from (51) that ∣∣∣∣
∣∣∣∣
[

˜ x k 
E k −r 

]∣∣∣∣
∣∣∣∣ ≤ β1 e 

−β2 (k −l) 

∣∣∣∣
∣∣∣∣
[

˜ x l 
E l−r 

]∣∣∣∣
∣∣∣∣

+ 

k −l−1 ∑ 

p=0 

β1 e 
−β2 (k −l−p−1) || �(

δl−r+ p , . . . , δl+ p 
)|| . (52) 

We deduce there is a constant β3 > 0 such that, Thus, ∣∣∣∣
∣∣∣∣
[

˜ x k 
E k −r 

]∣∣∣∣
∣∣∣∣ ≤ β1 e 

−β2 (k −l) 

∣∣∣∣
∣∣∣∣
[

˜ x l 
E l−r 

]∣∣∣∣
∣∣∣∣

+ β3 sup 
q ∈{ l−r, ... ,k −1 } 

|| δq || . (53) 

From (41) , it follows that 
 || x k || 2 + || E k −r || 2 ≤ β1 e 

−β2 (k −l) 
√ || ̃  x l || 2 + || E l−r || 2 

+ β3 sup 
q ∈{ l−r, ... ,k −1 } 

|| δq || . (54) 

his, (41) , and the subadditivity of the square root allow us to 

onclude when r > 1 , since we can assume that x̄ k ≤ 2 | x k | and
¯ k ≥ −2 | x k | for all k ≤ k 0 to get || ̃ x k 0 || ≤ 4 || x k 0 || . The case r = 1 is

imilar. This concludes the proof. 

. Illustrations 

.1. Discretization of continuous time systems 

Starting from a continuous time system of the form 

˙  (t) = F x (t) + Gu (t − τ ) + γ (t) (55) 

here x is valued in R 
n , u is valued in R 

p , the components of γ are

iecewise continuous bounded functions representing uncertainty, 

nd τ > 0 is a constant representing a delay, we can often obtain 

 discretized system that is amenable to Theorem 1 . To see how, 

e select constants r and ν > 0 such that τ = rν , and introduce 
he sequence s i = iν for all i ∈ Z 0 ; our choice τ = rν is motivated

y the fact that we found it to be useful for modeling our ma- 

ine robotic dynamics below. We restrict our attention to piece- 

ise constant feedbacks that are defined by u (t − τ ) = u (s i −r ) if

 i ≤ t < s i +1 . Then we can apply the method of variation of param-

ters to ˙ x (t) = F x (t) + Gu (s i −r ) + γ (t) on the interval [ s i , s i +1 ) to

btain 

 (s i +1 ) = e νF x (s i ) + 

∫ s i +1 

s i 

e F (s i +1 −
 ) d 
Gu (s i −r ) 

+ 

∫ s i +1 

s i 

e F (s i +1 −
 ) γ (
 )d 
 (56) 

or all i ∈ Z 0 . Thus, we obtain the discrete-time system 

 (s i +1 ) = A νx (s i ) + B νu (s i −r ) + �i where 

A ν = e νF , B ν = 

∫ ν

0 

e F 
 d 
G, and 

�i = 

∫ s i +1 

s i 

e F (s i +1 −
 ) γ (
 )d 
. (57) 

e can then apply Theorem 1 to (57) , provided (i) (F , G ) is a con-

rollable pair, (ii) the coefficient matrix C of the output is such that 
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Fig. 1. Simulation for depth and pitch control of BlueROV2 with sampling rate s̄ = 

0 . 5 and delay r = 3 . 

Fig. 2. Simulation for depth and pitch control of BlueROV2 with sampling rate s̄ = 

0 . 05 and delay r = 5 . 
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A ν , C) is observable, (iii) there are no eigenvalues λ and μ of A ν
uch that ν(λ − μ) is a nonzero integer multiple of 2 π , and (iv) A ν
s invertible, possibly after a change of coordinates as in Remark 1 . 

his follows from the Kalman-Ho-Narendra conditions, e.g., from 

25] . That way, we get a stabilizing event triggered control law for 

he discrete-time system (57) , and this feedback also ensures ISS 

f the system (55) . As we illustrate in the next section, our use

f event triggers that are based on vectors of absolute values in- 

tead of standard Euclidean norms can reduce the number of con- 

rol computations without increasing oscillations or settling times, 

nd thereby offer computational advantages. 

.2. BlueROV2 marine vehicle 

We apply Theorem 1 to underwater robotic vehicles that we 

tudied in the undelayed case in [20] . The dynamics are for the 

ontrol of the depth and pitch degrees-of-freedom (or DOF) of 

he BlueROV2 vehicle, which is widely used to study corals and 

ther ecosystems, but similar reasoning applies to similar under- 

ater vehicles. Following [20] , we assume that the vehicle has a 

oppler Velocity Logger (or DVL) for estimating the vehicle’s ve- 

ocity. When close to the sea floor, the DVL typically experiences 

ottom lock, making it impractical to continuously change the con- 

rol values, and producing an input delay. Therefore, build a control 

or the depth plane, using a more practical event-triggered delay- 

ompensating sample data subpredictor approach. 

As noted in [23] , after linearization and assuming that the ve- 

icle is neutrally buoyant, we obtain the following linearized dy- 

amics in the depth plane: 

(m − X ˙ w (t) ) ˙ w (t) − (mx g + Z ˙ q ) ̇ q (t) 

−Z w w (t) − (mU + z q ) q (t) = Z γs 
u Z 

and (mx g + M ˙ w (t)) ˙ w (t) + (I yy − M ˙ q ) ̇ q (t) 

−M w w (t) + (mx g U − M q ) q (t) − M θ θ = M γs 
u M (58) 

hose parameters were obtained experimentally computed and 

eported in [23] . We assume that the nominal surge velocity is 

 = 0 . 1 m/s. This produces a two state system, whose states are the

epth and pitch velocity x = [ w, q ] � , and the control inputs u Z and
 M 

are the force and moment required to produce motion of the 

ehicle. Using the parameter values and controller from [23] , the 

ystem (58) takes the form ˙ x (t) = F x (t) + Gu with 

 = 

[
−0 . 17742 −0 . 3027 
0 . 5394 −1 . 4685 

]
and G = 

[
−0 . 2063 
−0 . 7629 

]
(59) 

nd so is amenable to the method from Section 5.1 . Hence, we as-

ume that the control is piecewise constant with a constant sample 

ate s̄ , to convert the dynamics into 

 k +1 = A a Z k + B a u, where 

A a = e s̄ F and B a = 

∫ s̄ 
0 

e F 
 d 
G. (60) 

his conversion to a discrete time system is strongly motivated 

y the fact that when implementing robotic controllers using the 

obot Operating System (ROS) for any robot, the implementation 

ust be done in discrete time. 

We next show how to satisfy our Assumptions 1 –3 of 

heorem 1 , after a change of coordinates, by finding the required 

atrices �, K, and L , where C = [1 , 1] . Following our analysis of

he undelayed case in [20] , we choose s̄ = 0 . 5 , and a matrix K a 
uch that H a = A a + B a K a has the eigenvalues 0.25 and 0.5 to obtain

he required Schur stability condition on H a , by using the com- 

and StateFeedbackGains in the Mathematica program. We can 

hen diagonalize H a to obtain a new matrix P (A a + B a K a ) P −1 = H

hat is both Schur stable and nonnegative. It follows that with 

he choices A = PA a P 
−1 , B = P B a , L = −[1 . 5 , 0] � , and all entries
6

f � being small enough positive constants, the requirements of 

heorem 1 all hold. 

We found that the event triggers from Theorem 1 produced 

ewer control recomputation times t i , as compared with the corre- 

ponding event-trigger || z r,k −r − z r,σ (k ) −r || ≤ σ∗|| z r,k −r || with σ∗ be- 

ng the smallest entry of �; see Remark 3 above. We illustrate this 

n Fig. 1 , which shows our MATLAB simulations for the depth-pitch 

ontroller of the AUV using the delay-compensating positive sys- 

em subpredictor approach from Theorem 1 with r = 3 . Our fig- 

re shows results for different initial states. Our simulations used 

he K and L from the preceding paragraphs, and 

= 

[
0 . 015 0 . 045 

0 . 15 0 . 15 

]
, (61) 

hich satisfied our requirements from Assumption 1 with the pre- 

eding choices of K and L . For our simulations on the time horizon 

f [0 , 15] seconds, the event trigger from Theorem 1 produced 

n average of 28 trigger times t i . In Fig. 2 , the behavior of the

lueROV2 is presented when the sampling rate is instead s̄ = 0 . 05 

, and � is 

= 

[
0 . 015 0 . 045 

1 . 95 1 . 95 

]
(62) 

ith K and L as before and with the larger delay value r = 5 .

n this case, the event triggered 16 times for our simulation. By 

omparison, using the Euclidean norm in the event trigger with 

he same initial conditions, over the same time horizon and with 

∗ = 0 . 015 being the smallest element of �, the event triggered 40 

imes on average in our simulations. Hence, our event trigger from 
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[

[

ur theorem produced a reduction of 60% in the number of trigger- 

ng times in this case. Both event triggers produced similar settling 

imes. Therefore, this illustrates the value of our approach for de- 

reasing the numbers of event triggers, without adversely affecting 

he control performance, and with larger delays. 

. Conclusions 

We proposed a new triggered control design for discrete-time 

ystems with input delays and outputs. Relative to previous meth- 

ds, key novel features were our use of subpredictors, which made 

t possible to achieve an ISS-like result under an arbitrarily long 

onstant input delay, and our event triggers that were based on 

atrices of absolute values instead of Euclidean norms. We hope 

o develop analogs for nonconstant delays, which could entail gen- 

ralizing [21] (which did not allow event-triggering) to have the 

hoice of the subpredictor in the control depend on the value of 

he delay, instead of choosing the last subpredictor in the control. 

xtensions to time-varying systems are also expected. 
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