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1. Introduction

This work continues our development (which we started in
[17-20]) of event-triggered control methods for discrete- and
continuous-time systems using positive systems and interval ob-
servers. While [17] provided event-triggered subpredictor-based
approaches to compensate for input delays in continuous-time
systems, and [18,19] covered time-varying continuous-time event-
triggered systems with uncertain vector fields or state delays, and
[20] covered undelayed discrete-time linear systems with outputs,
here we solve a complementary problem of compensating for input
delays in event-triggered discrete-time linear systems.

As in [17-20], a key innovation is our use of triggers which
are based on matrices of absolute values instead of standard Eu-
clidean norms. As in [20], such triggers can lead to less conser-
vative lower bounds on the intersample times as compared with
the corresponding triggers that would arise from using standard
Euclidean norms; see Section 5. This is advantageous for applica-
tions that call for taking communication constraints into account,
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by reducing the number of time instants when control values are
changed.

The need to reduce the number of times when control val-
ues are changed has led to a large literature on event-triggered
regimes that address the computational challenges that are cre-
ated by controls whose values are changed unnecessarily often;
see, e.g., the survey [8]. Other notable and significant works in-
clude [1,5,9,13,14,22,26]. Designing event-triggered control mecha-
nisms entails the co-design of feedback controls and event trig-
gering rules that indicate which events call for changing control
values. In both discrete- and continuous-time cases, these events
are usually specified as times when a measurement enters a spec-
ified region of the measurement space that is defined in terms of
the usual Euclidean norm. This differs from standard zero-order
hold controls whose control recomputation times are independent
of the measurements from the systems.

Another main ingredient of our approach is positive systems,
which are dynamics for which the nonnegative orthant is posi-
tively invariant. The literature on positive systems provided new
control methods to help overcome technical challenges of using
standard Lyapunov functionals for time delay systems. Positive sys-
tems have been used in conjunction with interval observers (as
defined, e.g., in [7,24]), which yield intervals containing values of
unknown states when the inequalities are viewed as being com-
ponentwise; see [15]. Dynamical systems theory based on inter-
val observers and positive systems has led to notable contributions
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in aerospace engineering, mathematical biology, and other applica-
tions.

By providing a new design for event-triggered control for linear
discrete-time systems with outputs and arbitrarily long constant
input delays, we believe that this work is the first to use positive
systems and interval observers to prove input-to-state stability (or
ISS) for discrete-time systems with outputs whose delays are com-
pensated by subpredictors. In particular, our work is novel relative
to notable works on predictors that did not involve event trigger-
ing, such as [2-4,21]. For discrete-time systems, we do not have
to rule out the possibility of Zeno’s phenomenon. Hence, it may
be worth discretizing a continuous time system and to next use
event triggered control, instead of using event triggered control for
continuous-time systems. Our method uses the structure of our dy-
namics to provide an alternative to small-gain methods (e.g., from
[10,11]) and so can lead to less frequent control computations.

After presenting our definitions and notation and new theorem
in Section 2, followed by our main lemmas in Section 3 and the
proof of our theorem in Section 4, Section 5 illustrates how dis-
cretized continuous time systems are amenable to our new theo-
rem. Section 5 also applies our work to a model of the BlueROV2
underwater vehicle, where our input delay compensation results
complement our results for this dynamics in undelayed cases in
[20]. The example illustrates how our new event triggers can lead
to fewer control recomputation times, compared with standard
event triggers that were based on the Euclidean norm, without
sacrificing the settling times or other performance metrics. Since
the BlueROV2 is widely used for the study of corals and for other
environmental surveys, this illustrates the value of our approach
in a significant example from ecological robotics, where there is
strong motivation for reducing the number of control recomputa-
tion times. We close in Section 6 with a summary and our ideas
for follow up research.

2. Definitions, notation, and main result

We use standard notation, which we simplify when no confu-
sion would arise. The dimensions of our Euclidean spaces are ar-
bitrary, unless we indicate otherwise. We omit arguments of func-
tions when no confusion would arise. We set Zy = {0, 1, 2, ...}. For
a matrix G = [g;;] € R™, we set |G| = [|g;;|], so the entries of |G]
are the absolute values of the corresponding entries g;; of the ma-
trix G. We use || - || to denote the usual Euclidean norm. By G*, we
denote the matrix whose entries are max{0, g;;} and G- =G* - G.
A square matrix is called Schur stable provided its spectral radius
is in [0, 1). For matrices D = [d;;] and E = [e;;] of the same size,
we write D < E (resp., D < E) provided d;; < e;; (resp., d;; < e;;) for
all i and j. We also use D¢ E to mean that there is a pair
(i, j) such that d;; > e;;. We adopt similar notation for vectors. We
call a matrix S positive (resp., nonnegative) provided 0 < S (resp.,
0 < S), where 0 is the zero matrix. We use standard notions of ISS
for discrete-time systems [12], and I is the identity matrix.

We consider the system with outputs

X1 = Axg+Bug + 6 (1)
Yk = Ox
with k € Zg, x valued in R", the control u (that we will specify
in our theorem) valued in RP, the output y valued in RY, the un-
known sequence §; € R" representing a disturbance, and the con-
stant integer r > 1 representing an input delay that will arise in
the measurements that enter the control u. A key feature of our
work is that we allow r to be any positive integer. This arbitrarily
long input delay is compensated for by our chain of subpredictors.
Throughout this work, we make these three assumptions:

European Journal of Control 68 (2022) 100664

Assumption 1. There is a matrix K € RP*" such that

H=A+BK (2)
is nonnegative. There is a matrix I' ¢ R™" such that
H + |BK|T (3)

is Schur stable and such that I" > 0.

Assumption 2. There is a matrix L € R™4 such that A + LC is Schur
stable.

Assumption 3. The matrix A is invertible.

See Remark 1 for the motivation for Assumptions 1-3 and the
ease with which we can often check that they are satisfied. To
specify u, fix matrices K, L, and I' satisfying Assumptions 1-2 and
a matrix R € R™" such that A + R is Schur stable (e.g., R = —A). We
then use the r subpredictors

Ziker = AZyg+ B g +ALCAT 24

— ALy, — ALCA~'Bu,_,
Lk = Az +Bug

+R(z2 — Az1 k — Bj_ri1) (4)
Zegyr = Azrg+Buy

+R(zek — AZr_y k — Buy_q)

where each z; is valued in R". We also use the control law
Up—r = K2Z; 5 (1)1 (5)
with K in Assumption 1 and o : Zg — Z, defined by
c(0)=0
o(j+1)=j+1 if
11 jr1-r = Zro (jy—r| £ Tz j1—r
o(j+1) =0(j) if
1Zr jv1-r — Zro(y—r| < Tlzr jya—rl- (6)

See Remark 3 for the motivation for our triggering rule (6). Then
the corresponding closed-loop system is

Xr1 = Axk + BKZr,a(k)—r + 8k. (7)
In terms of the notation
Cik = Zik — Zi-1.k+1 fori= ], P X
T
Ey = [erx - enx] . and zop = X, (8)

where the z;,’s are the states of (4), our main result is:

Theorem 1. Let (1) be such that Assumptions 1-3 are satisfied.
Choose any matrices K, L, and I that satisfy our assumptions, and
any matrix R such that A+ R is Schur stable. Then we can find real
constants ¢; > 0 for i=1,2,3 such that all solutions of the closed-
loop system (7) with the control (5)-(6) defined by the subpredictors
(4) satisfy

[l | < e %) ({1, ] + |1 Egy 1)

¢ sup 5] (9)

qefko—r,....k—1}
for all kg > r and all integers k > k.

Remark 1. Assumptions 1-3 are easily checked in many cases.
For instance, Assumption 1 is not very restrictive. Indeed, when a
pair (Aq, Bg) is controllable, we can choose a matrix K; such that
Aq + BgKy is Schur stable, having distinct real eigenvalues on the
interval (0,1). Then, there is an invertible matrix P € R™" such that
P(Aq + BoK;)P~1 is Schur stable and nonnegative (by diagonalizing
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Aq + BaKg). Consequently, if we consider Zy,q = AgZy + Baut + 8,
then the change of coordinates X, = PZ; gives

Xk+l =AX]<+BU+P(Sa’k, (10)

with A = PA;P~! and B = PB,, and (10) satisfies Assumption 1, be-
cause the choice K = K;P~! gives

A+ BK = PAP~" + PB.K,P~!
= P(Aq + BqKq)P! (11)

which is both Schur stable and nonnegative, and because when the
matrix H is Schur stable, there always exists a positive matrix I" >
0 such that H + |BK|I" is Schur stable, by choosing I' so its entries
are small enough.

Assumption 2 is satisfied when the pair (A,C) is observable,
which is a standard observability condition. Assumption 3 is a
technical assumption, and holds in the following generic sense. The
invertibility of A can be viewed as the requirement that a real an-
alytic function defined on R™ takes a nonzero value, namely, the
determinant of A viewed as a function of the n? entries of A. It
follows from a standard analytic continuation argument that the
set of all invertible n x n matrices form an open and dense sub-
set of R™", Hence, invertibility of A is generic, in the same sense
of genericity that controllable pairs (and so also observable pairs)
form a generic set; see, e.g., [25].

Remark 2. By contrast with the subsequential observer of [16],
(4) depends on y,, and not on y;, . This is the reason why we
have to assume that A is invertible.

Remark 3. Since our focus is on the state of the dynamics (1), we
did not include the actuator state on the left side of (9). Our choice
of the triggering rule (6) was made because (as we show in our
proof of our theorem) it ensures that

|Zr.o(k)—r - Zr,k—r| = F|zr.l<—r| (12)

holds for all integers k > 0. The preceding inequality plays an es-
sential role in our stability analysis for our closed-loop system. It
contrasts with the trigger requirement

||Zr.a(k)—r - Zr,k—r” = O—*Hzr.k—r” (13)

that would arise from using the usual Euclidean norm ||- || and
a constant o,. In fact, the largest o, >0 such that all pairs
(1.6 (k)—r» Zrk—r) satisfying (13) also satisfy (12) is 0. = min;; ['y;,
i.e., the smallest entry of I = [I';;]. This property of the minimum
entry of I' was shown in our study [20] of the undelayed case,
and the same reasoning applies in the delayed case that we con-
sider here. In Section 5.2, we illustrate how using our new condi-
tion (12) can lead to fewer event triggers on given time horizons
as compared to the number of event triggers that we would have
required if we had instead used the traditional trigger (13) with
the corresponding least conservative choice o, = min;; I';;.

3. Key lemmas to prove Theorem 1

Our first lemma is:

Lemma 1. With the preceding assumptions and notation, we can
construct matrices 2 and A such that the equality

Eqip = QPE, + :é Q'H”A[ f:i] ] (14)
is satisfied for all integers a > 0 and b > 0.
Proof. First, let us observe that
ALyy + ALCA™'Buy_, = ALC(x,+A~"Buy_;)
= F(X1 — &), (15)
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where F = ALCA~!. Here and in the sequel, all equalities are for all
k € Zy, unless otherwise indicated. It follows that z; ;1 = Az j +
Buy_y,1 + Fzy x — Fxgq + Fdy, which can be rewritten as

Zy k41 = Az g + Buy_rq + Fey  + Foy. (16)

Next, consider the z,-subsystem of (4). Since (16) gives —Az; ) —
Buy_,.1 = —2Zq 41 + Fey y + Fé;, we have

Zy k1 = AZy i + BUy_r 5 + Rey i + RFey j + RF§y. (17)
Similarly, we can prove (by induction on a) that

Za k41 = Aza,k + BukfrJru + Rea.k
+R%e 14 .... + R Tey,,
+R%'Fe; , + R 1F§, (18)

for a = 2 to r. Hence, from (16), we deduce that

€11 = AZy  + Buy_r 1 + Feq g+ Fy
— [AXpy1 + Bug_riq1 + 1]
= (A+F)ey+ Fdi — i
= Meq +F8k_6k+1~ (19)

where M = A(A + [C)A™1.
Therefore, from (16) to (17), we deduce that

k1 = AZak — Z1 k1) + Reg + RFeq
+RF&) — Feq g1 — Fdiyq
= (A+R)ey + RFeq  — Feq g
+RF8 — Fdy 4
= (A+R)ey i+ (RF —FM)ey
+ (RF — F?)§. (20)

Then (18) gives

€ak+1 = Zak+1 — Za—1,k+2
= (A+Reg +Req+....
+R% ey + R 1Fe; 4+ RFS,
—(Req-1r1+ RP€q g g1+
+R2ey 11 + R2Feq 44
+RO2F8y.q) (21)

for a =3 to r, and so also

aks1 = A+R)e +RPeqqp+....

+R" ey + R Fey j — (Reg_q ka1

+R%€q 241+ - + RO e2401)

—RO72F(Mey k + F& — Sxs1)

+RFS, — R2F 8 4 (22)
for a =3 to r, where the last equality is a consequence of the last
equality in (19). We deduce that
aikr1 = A+R)eg, +RPeq 1+ ...

+R% ey + R 'Fey

—(Req-1es1 + RP€q g g1 + ...

+R2eg411)

—R“2FMe,  + (R*! — R"2F)F§,. (23)
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It now follows from (19), (20) and (23) that there is a matrix 2 of
the form

M 0 0 7
x A+R . 0
Q= : : . (24)
0
L * ... * A+4+R]
and a matrix A such that
Ex1 = QEk+A|:83k } (25)
k+1

with E; defined in (8). Therefore, for all integers a and b such that
a> 0 and b > 0, we can argue by induction on b to show that the
equality (14) is satisfied. O

Using our definitions (8) of the e;;’s and the formulas (8) for
the E;’s, we can also prove the following:

Lemma 2. With the preceding notation with Q and A satisfying the
requirements from Lemma 1, we have

r—1
Zej = Xgpr + &, where & = Y er_ji. (26)
i

for all k>0. Also, if we let V; e R"™(" denote the matrix

[V(,'»]), ey V(zr)] where V(LJ) =0 e R™" lf] 75 i and V(,"j) =Jle Rnxn,
and if we choose
r—1 X
W=73V_;Ql (27)
j=0
then the following holds for all k > 1:
sk = WEk
r-1 j-1 5
+ Y W Y QIPA| kP 28
jgl: § ]g |:8k+p+1 ( )
ifr>1 and
& =ViEy (29)
ifr=1.

Proof. Condition (26) follows from a telescoping sum argument.
Also, we can rewrite the &, formula in (26) as

r—1
sk = Zvr—jEkﬂ" (30)
j=0

It follows from (14) and our choice (27) of W that

r—1

& = ViE, + ZVH' (QjEk

j=1
j-1 5
+ Qi-p-1A k+p
PX:(:) |:3k+p+l
r-1 j-1 s
=WE + ) V) QITPIA| kP 31
k E T Jpg(:) |:5k+p+1 ( )

if r> 1, and that (29) holds if r=1. O
4. Proof of theorem
We now use the preceding two lemmas to prove Theorem 1.

The proof has three parts. In the first part, we provide a new rep-
resentation of the closed-loop system, to facilitate our analysis. In
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the second part, we build a framer for the state of the closed-loop
system. In the final part, we use the framer to provide a stability
analysis to prove the ISS result.

First Part: New Representation of Closed-Loop System. The system
(7) can be rewritten as
Xip1 = AX + BKZr,k—r

+BK(Zr,<r(k)—r - Zr,k—r) + Sk- (32)

From the equality (26), we deduce that

X1 = Ay + BK (X + &_r)
+ BK(Zr,a(k)—r - Zr.k—r) + 5k (33)

for all k > r. Then, with H defined in (2), the representation

Xkr1 = Hxy + BK(Zr,a(k)—r - Zr,k—r)
+ BKEk—r + (Sk (34)

is obtained.

Second Part: Framer Construction. With a view to the stability
analysis of the closed-loop system, and using our notation from
Section 2, we introduce the dynamic extension

X1 = Hxe+ B (Zroqy—r — Zrkr) ™

+(BK) ™ (21,6 (k)=r — Zrk=r) "~

+OKG 4 5 35)
X1 = Hxy — B (216 o—r — Zrie—r) ™

—(BK)™ (Zto (=1 — Zrae—r) ™

—(BK& ;)™ =&

with k > r. Let kg > r. We have

X1 = Hx + BK) " (216 ) — Zrir)©

+(BK)™ (Zro (k) —r — Zrk—r)~

—(BK)" (21, (k-1 — Zrk—r)~

—(BK) ™ (Zr.0 (k-1 — Zrk—r) ™

+(BK&;_;)* —(BK& )~ + 6, — 6, . (36)
It follows that

Xip1 — X1 = HX — Xp)

+(BK) (215 (ky—r — Zrie—r)~

+(BK) ™ (Zr.o (k) —r — Zrk—r)*

+(BKE_r)™ + 8,
Xip1 — X1 = HXe — %)

+BK) (210 (k) —r — Zrk-r)*

+(BK) ™ (2.0 (k)=r — Zrk—r)~

+(BK&_)* + 6} 37)
Since the matrix H is nonnegative, using (37), one can prove by

induction that if X, —x, and X, —x; >0, then x; —x, >0 and
X, — X, > 0 for all k > ko. Thus

X, < X < X, for all k > k. (38)
Similarly, if X,) > 0 and x <0 then
X,>0 and x, <0 (39)

for all k > kg, again by induction. It follows that (35) satisfies the
requirements to be a framer for (34). The framer (35) is inspired
by those constructed, e.g., in [6].

Third Part: Stability Analysis. We use the interval observer (35) to
establish stability properties for (34). Let us introduce

)?k Zik — X- (40)
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We deduce from (38) and (39) that

x| < % (41)

for all k > kq. On the other hand, (35) gives

)zk-f—] = Hk’k + |BK| |Zr,0(k)—r - Zr,k—r| (42)
+ |BK&)_;| + 8| (42)

Also, by (41), we have %, > 0 for all k > kq. Also, we deduce from
the definition of o in (6) that

)zk+l = ka + |BK|F|zr.k—r| + |BK$k—r| + |8k| (43)

for all k > r. To see why, notice that if |z 5 4)—r — Zrk—r| £ Tl2ri—rl,
then o (k) #k, so the definition of o gives o (k) =0(k—1), so
1Zr o (k1) —r = Zrie—r| £ T1Zrk—rl, so (6) with the choice j=k-1
gives o (k) = k, which is a contradiction.

Let us take ko > r. Again using (26), we obtain

Rir1 < HR A+ |BK|T X + &

+IBKE | + [3k]

< HX + |BK|T|x,| + [BK|T'|&k |

+IBKE | + 13k ] (44)
for all k > kg, by (43). From (41), we deduce that
(H + |BK|T")&, + |BK|T"|&._;]
+IBKE | + 13k ]
1%+ K2 [Err| + 8k, (45)

where xy =H+ |BK|I" and «; = |BK|(I" +I). On the other hand,
from (28), it follows that

IA

Xk+1

IA

sk—r = WE, ) _
+ T_X:lvr,j Ji QI-P-1A 8k—r+p (46)
j=1 p=0 k=r+p+1 ]

when k > kg and r > 1. Hence,

K1 < k1% + 12|W|Eg_p| + |l

r—1 j-1 ) s
Su yarstal der | (a7)
j=1 p=0

+ K
k—r+p+1

when r > 1. Thus, when k > kg, we have:

X1 = kX + ko [W[Exr| + (81|

r—1 Jj-1 S
j—p-1 k—
Vi Y Qi A[S fﬂ?]

+ K2
= p=0 k—r+p+

O

Ex i1 = QEcr + A|:8 e ] (48)
k—r+1

These equalities can be written in the compact form

Xt Lo M L @S 80, (49)
|E—ri1 |Ex—r

where T

i w
/B] Kzé2 |] and O (8_,,....0)

r—1 j-1 .
K2 3 Veoj 3 QITPTTA 35k_r+p + (8]
_ j=1 p=0 k—r+p+1 (50)
A |8k—r
|8k—r+1

when k > r > 1. Hence, when k > | > r, we have

X | oopket| X
|:|Ekri| - |:|Elri|
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k—1-1

+ Z Yk-t=p-1 ®(alfr+p’ s 81+P)’ 1)

p=0

by an induction argument that is similar to the one that gave (14).
Assumption 1 ensures that kq is Schur stable. The matrix € is
Schur stable too because A+ R and A + LC are Schur stable (by As-
sumption 2).

It follows that the matrix Y is Schur stable. Therefore there are
constants f8; > 0 such that ||Y¢|| < Bye~F2¢ for all integers ¢ > 0.
Then, we deduce from (51) that

Xy X
Ek—r El—r

k—1-1
We deduce there is a constant 83 > 0 such that, Thus,

< Bre-PrtkD

+ Z ﬁle_ﬂZ(k_l_p_])l|®(51—r+ps s 81+p) | | (52)

p=0

X < Be-Pk-0||| Fi
+B3  sup |8l (53)
qefl-r,...k—1}

From (41), it follows that

VIR +1Eer 12 < Bre7PEDN1R112 + [ 1E |2
+Bs  sup  |[54]l. (54)
qgef{l-r,...k—1}
This, (41), and the subadditivity of the square root allow us to
conclude when r > 1, since we can assume that x, <2|x,| and
X = =2|x,| for all k < ko to get ||, || < 4][x,||. The case r=1is
similar. This concludes the proof.

5. Illustrations
5.1. Discretization of continuous time systems

Starting from a continuous time system of the form
X(t) =Fx(t) +Gu(t —t)+y(t) (55)

where x is valued in R", u is valued in RP, the components of y are
piecewise continuous bounded functions representing uncertainty,
and 7 > 0 is a constant representing a delay, we can often obtain
a discretized system that is amenable to Theorem 1. To see how,
we select constants r and v > 0 such that 7 =rv, and introduce
the sequence s; = iv for all i € Zg; our choice T =rv is motivated
by the fact that we found it to be useful for modeling our ma-
rine robotic dynamics below. We restrict our attention to piece-
wise constant feedbacks that are defined by u(t —t) = u(s;_,) if
S; <t < sj;1. Then we can apply the method of variation of param-
eters to x(t) = Fx(t) + Gu(s;_,) + y (t) on the interval [s;,s;,;) to
obtain

Sit1
X(siy1) = e"x(s;) + / eFem=deGu(s;_,)

Si
Sit1
+ / eF6m-0y (0)de (56)
Si
for all i € Zg. Thus, we obtain the discrete-time system

X(Sit1) = Avx(s;) + Byu(si_;) + A; where
v
A, =e'f, B, =/ eftdeG, and
0

Sit1
A= / eF =0y (p)de. (57)
Si
We can then apply Theorem 1 to (57), provided (i) (F, G) is a con-
trollable pair, (ii) the coefficient matrix C of the output is such that



F. Mazenc, M. Malisoff, C. Barbalata et al.

(Ay,C) is observable, (iii) there are no eigenvalues A and u of A,
such that v(A — w) is a nonzero integer multiple of 27, and (iv) A,
is invertible, possibly after a change of coordinates as in Remark 1.
This follows from the Kalman-Ho-Narendra conditions, e.g., from
[25]. That way, we get a stabilizing event triggered control law for
the discrete-time system (57), and this feedback also ensures ISS
of the system (55). As we illustrate in the next section, our use
of event triggers that are based on vectors of absolute values in-
stead of standard Euclidean norms can reduce the number of con-
trol computations without increasing oscillations or settling times,
and thereby offer computational advantages.

5.2. BlueROV2 marine vehicle

We apply Theorem 1 to underwater robotic vehicles that we
studied in the undelayed case in [20]. The dynamics are for the
control of the depth and pitch degrees-of-freedom (or DOF) of
the BlueROV2 vehicle, which is widely used to study corals and
other ecosystems, but similar reasoning applies to similar under-
water vehicles. Following [20], we assume that the vehicle has a
Doppler Velocity Logger (or DVL) for estimating the vehicle’s ve-
locity. When close to the sea floor, the DVL typically experiences
bottom lock, making it impractical to continuously change the con-
trol values, and producing an input delay. Therefore, build a control
for the depth plane, using a more practical event-triggered delay-
compensating sample data subpredictor approach.

As noted in [23], after linearization and assuming that the ve-
hicle is neutrally buoyant, we obtain the following linearized dy-
namics in the depth plane:

(m — Xy )W(t) — (mxg + Z;)q(t)
~ZuW(t) — (MU +2)q(t) = Zy,uz
and (mxg + My, (0)W(t) + (Iy — My)q(t)
—Myw(t) + (mxgU — Mg)q(t) — Mg8 = M, uy (58)

whose parameters were obtained experimentally computed and
reported in [23]. We assume that the nominal surge velocity is
U = 0.1m/s. This produces a two state system, whose states are the
depth and pitch velocity x = [w, q]', and the control inputs u; and
uy are the force and moment required to produce motion of the
vehicle. Using the parameter values and controller from [23], the
system (58) takes the form x(t) = Fx(t) + Gu with

—0.17742 —0.3027 —0.2063
F= [ 0.5394 —1.4685i| and G= [—0.7629] (59)

and so is amenable to the method from Section 5.1. Hence, we as-
sume that the control is piecewise constant with a constant sample
rate $, to convert the dynamics into

Zi41 = AaZy + Bqu, where

S
Aqs = € and B, =/ eftdeG. (60)
0
This conversion to a discrete time system is strongly motivated
by the fact that when implementing robotic controllers using the
Robot Operating System (ROS) for any robot, the implementation
must be done in discrete time.

We next show how to satisfy our Assumptions 1-3 of
Theorem 1, after a change of coordinates, by finding the required
matrices I', K, and L, where C =[1, 1]. Following our analysis of
the undelayed case in [20], we choose s = 0.5, and a matrix K;
such that H; = Ag + BqK; has the eigenvalues 0.25 and 0.5 to obtain
the required Schur stability condition on H,, by using the com-
mand StateFeedbackGains in the Mathematica program. We can
then diagonalize H, to obtain a new matrix P(Aq + BaKs)P~! = H
that is both Schur stable and nonnegative. It follows that with
the choices A =PAGP~', B=PB,, L=—[1.5,0]", and all entries
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Fig. 1. Simulation for depth and pitch control of BlueROV2 with sampling rate § =
0.5 and delay r = 3.
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State
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Time [s]

Fig. 2. Simulation for depth and pitch control of BlueROV2 with sampling rate § =
0.05 and delay r = 5.

of I" being small enough positive constants, the requirements of
Theorem 1 all hold.

We found that the event triggers from Theorem 1 produced
fewer control recomputation times t;, as compared with the corre-
sponding event-trigger ||z, x_r — Z 5 (k)—r|| < 0x|1Zr k|| With o be-
ing the smallest entry of I'; see Remark 3 above. We illustrate this
in Fig. 1, which shows our MATLAB simulations for the depth-pitch
controller of the AUV using the delay-compensating positive sys-
tem subpredictor approach from Theorem 1 with r = 3. Our fig-
ure shows results for different initial states. Our simulations used
the K and L from the preceding paragraphs, and

r_ [0.015 0.045]’ (61)

0.15 0.15
which satisfied our requirements from Assumption 1 with the pre-
ceding choices of K and L. For our simulations on the time horizon
of [0, 15] seconds, the event trigger from Theorem 1 produced
an average of 28 trigger times t;. In Fig. 2, the behavior of the
BlueROV2 is presented when the sampling rate is instead § = 0.05
s,and I' is

r_ [0.015 0.045] 62)

1.95 1.95
with K and L as before and with the larger delay value r =5.
In this case, the event triggered 16 times for our simulation. By
comparison, using the Euclidean norm in the event trigger with
the same initial conditions, over the same time horizon and with
o, = 0.015 being the smallest element of I', the event triggered 40
times on average in our simulations. Hence, our event trigger from
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our theorem produced a reduction of 60% in the number of trigger-
ing times in this case. Both event triggers produced similar settling
times. Therefore, this illustrates the value of our approach for de-
creasing the numbers of event triggers, without adversely affecting
the control performance, and with larger delays.

6. Conclusions

We proposed a new triggered control design for discrete-time
systems with input delays and outputs. Relative to previous meth-
ods, key novel features were our use of subpredictors, which made
it possible to achieve an ISS-like result under an arbitrarily long
constant input delay, and our event triggers that were based on
matrices of absolute values instead of Euclidean norms. We hope
to develop analogs for nonconstant delays, which could entail gen-
eralizing [21] (which did not allow event-triggering) to have the
choice of the subpredictor in the control depend on the value of
the delay, instead of choosing the last subpredictor in the control.
Extensions to time-varying systems are also expected.
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