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a b s t r a c t 

Halanay’s inequality is a powerful and widely used tool to prove asymptotic convergence properties of 

functions that arise in the study of systems with delays or continuous-discrete features. In its standard 

form, it applies to scalar valued functions that satisfy decay conditions, with overshoots depending on 

suprema of the functions over suitable intervals. Then it provides an exponential decay estimate on the 

scalar functions. Here, we provide vector versions of Halanay’s inequality, and of the so-called trajectory 

based approach, both yielding input-to-state stability (or ISS) inequalities. Our proofs of the inequalities 

use the theory of positive systems. We apply our results to prove ISS for interval observers and other 

cases. 

© 2022 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Halanay’s inequality result, which was introduced in [7] , is 

 well-known powerful tool for the stability analysis of systems 

ith delays [4, Chapter 4] . It has been used in many papers. In

he last three decades, it has been revisited in some works, no- 

ably in the context of time-varying inequalities; see for instance 

2,8,9,14,18,20,22] . In its basic form, it assumes that w is a nonneg- 

tive valued C 1 real valued scalar function that admits constants 

 > 0 , c > 0 (called a decay rate), and d ∈ (0 , c) (called a gain) such

hat ˙ w (t) ≤ −cw (t) + d sup t−T ≤� ≤t w (� ) holds for all t ≥ 0 . Then the

sual conclusion is that w satisfies an exponential decay condition. 

ore general versions with time dependent functions c and d al- 

ow values t where d(t) > c(t) . 

The recent ‘trajectory based approach’ is another stability anal- 

sis technique. It is efficient for analyzing complex interconnected 

ystems, notably systems with delay and continuous-discrete fea- 

ures. It was developed in works such as [13,16,17] . The trajec- 

ory based approach applies to continuous nonnegative valued 

calar valued functions w that are assumed to admit constants 

∈ (0 , 1) (called the contractivity constant) and T > 0 such that
� Recommended by T. Parisini 
∗ Corresponding author. 

E-mail addresses: frederic.mazenc@l2s.centralesupelec.fr (F. Mazenc), 
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 (t) ≤ ρ sup � ∈ [ t −T,t ] w (� ) for all t ≥ T . Then the usual conclusion is

hat w exponentially converges to zero as t → + ∞ . 

On the other hand, it is well-known that the notion of input- 

o-state-stability (or ISS), introduced by E. Sontag, has been ex- 

eptionally fruitful for control design and stability analysis of dy- 

amical systems; see, e.g., [21] . The ISS property was developed in 

any contributions and has been used to solve many theoretical 

s well as applied problems. ISS inequalities are especially useful 

hen one analyzes the stability of interconnected systems [17] and 

hen one wants to estimate the impact of disturbances. 

Only a few papers on Halanay’s inequality and the trajectory 

ased approach propose results of ISS type. In [16] and [18] , ISS 

nequalities are established, but these results do not directly ex- 

end to vector inequalities. In [15] , we provided necessary and suf- 

cient stability conditions for functions satisfying vector inequali- 

ies of Halanay’s type. However, the proofs in [15] do not lead to 

SS inequalities when additive disturbances are present. In [1] , a 

ector version of the trajectory-based approach is developed, but 

o ISS inequality is given under additive disturbances. This is a 

hortcoming of these theories because vector inequalities arise in 

any circumstances, so there is a strong motivation to cover them. 

These remarks motivate the present paper. In a first part, we 

etermine an ISS inequality for functions satisfying a vector ver- 

ion of Halanay’s inequality. The first part uses methods from the 

econd part, where we consider vector inequalities enabling us to 

pply the trajectory based approach, and where we determine ISS 

nequalities when additive disturbances are present. These results 

omplement [1,15] and [16, Lemma 1] . Our proofs of the main re- 
rved. 

https://doi.org/10.1016/j.ejcon.2022.100665
http://www.ScienceDirect.com
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ults use the theory of positive systems, to obtain explicit construc- 

ions of the comparison functions in the ISS estimates. 

We use standard notation, which is simplified when no con- 

usion would arise, and where the dimensions of our Euclidean 

paces are arbitrary, and the entries of our matrices are real val- 

es. Let || · || be the usual Euclidean norm of matrices and vectors, 

 is the zero matrix, and I is the identity matrix. Inequalities be- 

ween matrices are meant entry-wise, so M 1 ≤ M 2 (resp. M 1 < M 2 ) 

or matrices M 1 and M 2 of the same size means each entry of M 1 

s at most (resp. strictly less than) the corresponding entry of M 2 . 

et μ(M) denote the spectral radius of a square matrix M. A square 

atrix M is called Schur stable provided μ(M) < 1 . A square ma- 

rix is called Metzler provided all of its off-diagonal entries are 

onnegative. A function f : R → R 
n is called nondecreasing pro- 

ided each of its components f i for i = 1 , . . . , n are nondecreasing.

e write diag { s 1 , . . . , s n } to denote an n × n diagonal matrix whose

rguments give its diagonal elements starting from its upper left 

ntry s 1 . 

In the next section, we state our main theorems that produce 

SS results under vector Halanany’s and vector trajectory-based in- 

qualities. We defer their proofs to Section 4 . Their proofs are 

ased on key lemmas from Section 3 . We illustrate the value of our

ew approaches in Section 5 . Possible extensions are suggested in 

ection 6 . 

. Statement of main results 

.1. Vector Halanay’s inequality with ISS 

Given real constants τ > 0 and h > 0 , a diagonal matrix D ∈
 
n ×n whose diagonal entries are all positive, a matrix P ∈ R 

n ×n 

uch that P > 0 , and δ : [ −τ − h, + ∞ ) → [0 , + ∞ ) n whose compo-

ents δi are piecewise continuous, let W : [ −τ, + ∞ ) → [0 , + ∞ ) n 

e a C 1 function such that 

˙ 
 (t) ≤ −DW (t) + δ(t) 

+ P 

[
sup 

� ∈ [ t −τ,t ] 

w 1 (� ) , . . . , sup 
� ∈ [ t −τ,t ] 

w n (� ) 

]� 
(1) 

or all t ≥ 0 , where w i is the i th component of W for all i (but

ee Section 5.2 for an illustration of how we can relax the require- 

ent that the matrix D is diagonal). In (1) and other places in 

his work, we use the sup notation instead of the S(w t ) notation 

rom [15] to indicate the interval over which the sup is computed 

which will sometimes be different intervals later in this paper). 

lso, for our fixed choice of h , we assume without loss of general-

ty that the δi ’s are nondecreasing and such that δ(t) = δ(0) for all

 ∈ [ −τ − h, 0] . We consider the case where the matrix −D + P is

urwitz. This condition is imposed because it is necessary for the 

AS of (1) when δ = 0 and when (1) holds with equality; see [15,

heorem 1] . When −D + P is Hurwitz, the main result of [15] en-

ures that W exponentially converges to the origin when δ is not 

resent. We also use 

 = e −Dh + 

∫ 0 
−h e 

D� d �P. (2) 

ince the matrix M satisfies M > 0 , the Perron-Frobenius theorem 

10] provides a vector U ∈ [1 , + ∞ ) n such that 

U = cU (3) 

here c = μ(M) . In the next section, we will prove that M is Schur

table. Using this fact, it follows that c ∈ (0 , 1) . Let us introduce the

unction χ : [ −τ, + ∞ ) → R 
n defined by 

χ(t) = −(−I+M) −1 D 
−1 

(
I−e −Dh 

)
⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ t −h,t ] 

δ1 (� ) 

. . . 
sup 

� ∈ [ t −h,t ] 

δn (� ) 

⎤ 

⎥ ⎥ ⎦ 

(4) 
2

hich is well-defined because the entries of D are positive and M

s Schur stable; see below. Our first main result is: 

heorem 1. With the preceding definitions and notation, 

 (t) ≤ e −
ln (c) 
τ+ h h 

n ∑ 

j=1 

sup 
� ∈ [ −τ,h ] 

w j (� ) e 
ln (c) 
τ+ h t U + χ(t) (5) 

s satisfied for all t ≥ h . 

For a proof of the preceding theorem, see Section 4.1 . 

emark 1. Note that (5) provides an N ∈ R 
n ×n such that 

 (t) ≤ e −
ln (c) 
τ+ h h 

n ∑ 

j=1 

sup 
� ∈ [ −τ,h ] 

w j (� ) e 
ln (c) 
τ+ h t U 

+ N 

[
sup 

� ∈ [0 ,t] 
δ1 (� ) , . . . , sup 

� ∈ [0 ,t] 

]� (6) 

or all t ≥ h . From this inequality, we can deduce that 

| W (t) || ≤ e −
ln (c) 
τ+ h h n || U|| e ln (c) τ+ h t sup 

� ∈ [ −τ,h ] 

|| W (� ) || 
+ || N|| n sup 

� ∈ [0 ,t] 
|| δ(� ) || (7) 

olds for all t ≥ 0 , which is the desired ISS property. 

.2. Vector trajectory-Based ISS result 

Our proof of Theorem 1 in Section 4.1 uses the theorem of 

his section, which is of independent interest. It provides a vec- 

or trajectory-based ISS estimate for a continuous function ω : 

 −T , + ∞ ) → [0 , + ∞ ) n that we assume satisfies 

(t) ≤ S 

⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ t −T,t ] 

ω 1 (� ) 

. . . 
sup 

� ∈ [ t −T,t ] 

ω n (� ) 

⎤ 

⎥ ⎥ ⎦ 

+ �(t) , (8) 

or all t ≥ 0 , where T > 0 is a given constant, each component �i 

or i = 1 , . . . , n of � is piecewise continuous, and the matrix S > 0

s Schur stable. Without loss of generality, we assume that each 

unction �i (t) is nondecreasing. Moreover, we let � be defined 

ver [ −T , + ∞ ) by �(t) = �(0) for all t ∈ [ −T , 0] . 

By again using the Perron-Frobenius Theorem [10] , we can fix a 

ector V ∈ R 
n and a constant q ∈ (0 , 1) such that 

V = qV, (9) 

ith each entry of V in [1 , + ∞ ) , and we will see below that −I + S

s invertible. In terms of the vector valued function 

(t) = −(−I + S) −1 �(t) , (10) 

ur vector valued ISS trajectory-based result is: 

heorem 2. With the preceding definitions and notation, 

(t) ≤
n ∑ 

j=1 

sup 
� ∈ [ −T, 0] 

ω j (� ) e 
ln (q ) 
T t V + ρ(t) (11) 

olds for all t ≥ 0 . 

For a proof of the preceding theorem, see Section 4 . 

emark 2. The inequality (11) implies that 

| ω(t) || ≤ n || V || sup 
� ∈ [ −T, 0] 

|| ω(� ) || e ln (q ) T t 

+ || (−I + S) −1 |||| �(t) || (12) 
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hich gives 

| ω(t) || ≤ n || V || sup 
� ∈ [ −T, 0] 

|| ω(� ) || e ln (q ) T t 

+ || (−I + S) −1 || sup 
� ∈ [0 ,t] 

|| �(� ) || , (13) 

hich is our desired ISS estimate. 

In the next section, we provide key lemmas that we will use to 

rove our theorems. 

. Key lemmas 

We first recall the following well known equivalences, e.g, from 

19 , Proposition 1]: 

emma 1. Let M ∈ R 
n ×n be a Metzler matrix. Then the following 

hree statements are equivalent: (i) M is Hurwitz, (ii) M V < 0 for

ome vector V > 0 , and (iii) M is invertible and M 
−1 ≤ 0 . 

We also use: 

emma 2. Let P ∈ R 
n ×n satisfy P > 0 , and D ∈ R 

n ×n be a diagonal

atrix whose diagonal entries are all positive. Let h > 0 be a given

ositive real value. If the matrix 

D + P (14) 

s Hurwitz, then the matrix (2) is Schur stable. 

roof. Assume that −D + P is Hurwitz. Let d > 0 be such that dI −
 + P > 0 . The Perron-Frobenius theorem [10] ensures that there 

re V > 0 and k > 0 such that 

dI − D + P ) V = kV. (15) 

t follows that with the choice c = d − k , we have 

−D + P ) V = −cV. (16) 

ince −D + P is Hurwitz, necessarily c > 0 . Since the diagonal en-

ries of D are positive, one can prove easily that the matrix M in 

2) can be written as 

 = I + D 
−1 

(
I − e −Dh 

)
(−D + P ) . (17) 

his equality and (16) give 

V = 

[
I − cD 

−1 
(
I − e −Dh 

)]
V. (18) 

ince −cD 
−1 

(
I − e −Dh 

)
is diagonal with negative diagonal entries, 

here is a constant p ∈ (0 , 1) such that MV ≤ pV . Since the matrix

is nonnegative, the lemma now follows from [6, Chapter 2, The- 

rem 2.22] . �

The next lemma follows from (9) , because q ∈ (0 , 1) , and is in-

luded for reference because it is key for our analysis: 

emma 3. Let T > 0 be a given real value, and the matrix S > 0 , the

ector V > 0 , and the constant q ∈ (0 , 1) be such that (9) holds. Then

 

ln (q ) 
T t V = e 

ln (q ) 
T (t−T ) SV = S sup 

m ∈ [ t −T,t ] 

(
e 

ln (q ) 
T m 

)
V (19) 

olds for all t ≥ 0 . 

We also use: 

emma 4. Let S > 0 be a Schur stable matrix in R 
n ×n and T > 0 be a

onstant. Let � : [ −T , + ∞ ) → [0 , + ∞ ) n be such that each of its com- 

onents �i for i = 1 , . . . , n is piecewise continuous. Then the function

: [ −T , + ∞ ) → R 
n given by (10) is nonnegative valued and nonde-

reasing, and it satisfies 

(t) = Sρ(t) + �(t) (20) 
3 
or all t ≥ −T . 

roof. Since S > 0 , the matrix −I + S is Metzler. Also, by the

erron-Frobenius theorem, there are V > 0 and q ∈ (0 , 1) such that

V ≤ qV because S is positive and Schur stable. It follows that 

−I + S) V ≤ (q − 1) V . Since −I + S is Metzler, this inequality im- 

lies that −I + S is Hurwitz, by Lemma 1 . Then, according to 

emma 1 , (−I + S) −1 ≤ 0 . Consequently, the function ρ is well- 

efined nonnegative and nondecreasing. Then, one can prove easily 

hat (20) holds. �

Our final lemma is as follows: 

emma 5. Consider a Schur stable matrix S > 0 , a constant T > 0 ,

nd a continuous function 	 : [ −T , + ∞ ) → [0 , + ∞ ) n such that 

(t) ≤ S 

⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ t −T,t ] 

	1 (� ) 

. . . 
sup 

� ∈ [ t −T,t ] 

	n (� ) 

⎤ 

⎥ ⎥ ⎦ 

, (21) 

or all t ≥ 0 . Let q ∈ (0 , 1) and V ∈ [1 , + ∞ ) n be such that SV = qV .

hoose the functions 

0 (t) = κ0 e 
ln (q ) 
T t V (22) 

nd 

0 = 

n ∑ 

j=1 

sup 
� ∈ [ −T, 0] 

	 j (� ) . (23) 

hen 

(t) ≤ β0 (t) (24) 

olds for all t ≥ −T . 

roof. Let us introduce the functions 

ε (t) = κεe 
ln (q ) 
T t V, (25) 

here 

ε = κ0 + ε, (26) 

nd where ε > 0 is any positive constant. Since ln (q ) < 0 , 

ε (m ) ≥ (κ0 + ε) V (27) 

or all m ∈ [ −T , 0] . We deduce that the inequality 

(m ) ≤ k 0 V < βε(m ) (28) 

olds for all m ∈ [ −T , 0] , since V ∈ [1 , ∞ ) n . Bearing in mind that 	

s continuous, we proceed by contradiction: we assume that there 

s a t c > 0 such that 

(t) < βε(t) (29) 

or all t ∈ [0 , t c ) and 	(t c ) ≮ βε(t c ) . Then the continuity of 	 en-

ures that there is an i ∈ { 1 , . . . , n } such that 
i (t c ) = βε,i (t c ) . (30) 

rom Lemma 3 , we deduce that 

ε (t) = S 

⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ t −T,t ] 

βε, 1 (� ) 

. . . 
sup 

� ∈ [ t −T,t ] 

βε,n (� ) 

⎤ 

⎥ ⎥ ⎦ 

(31) 

or all t ≥ 0 . Then, with S = [ s i j ] , condition (21) and (30) - (31) give

n ∑ 

j=1 

s i, j sup 
� ∈ [ t c −T,t c ] 

βε, j (� ) = 	i (t c ) ≤
n ∑ 

j=1 

s i, j sup 
� ∈ [ t c −T,t c ] 

	 j (� ) . (32) 
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he last inequality is equivalent to 

n 
 

j=1 

s i, j 

(
sup 

� ∈ [ t c −T,t c ] 

βε, j (� ) − sup 
� ∈ [ t c −T,t c ] 

	 j (� ) 

)
≤ 0 . (33) 

n the other hand, the definition of t c implies that for all j ∈
 1 , . . . , n } , we have 

sup 
 ∈ [ t c −T,t c ] 

βε, j (� ) − sup 
� ∈ [ t c −T,t c ] 

	 j (� ) ≥ 0 . (34) 

ince S > 0 , we deduce from (33) - (34) that 

sup 
 ∈ [ t c −T,t c ] 

βε, j (� ) = sup 
� ∈ [ t c −T,t c ] 

	 j (� ) (35) 

or j = 1 , . . . , n . Since each function βε, j is nonincreasing, these

qualities are equivalent to 

ε, j (t c − T ) = sup 
� ∈ [ t c −T,t c ] 

	 j (� ) (36) 

or all j ∈ { 1 , . . . , n } . Since 	 is continuous, for any j ∈ { 1 , . . . , n } ,
here is t j,
 ∈ [ t c − T , t c ] such that 

sup 
 ∈ [ t c −T,t c ] 

	 j (� ) = 	 j (t j,
 ) . (37) 

t follows that 

ε, j (t c − T ) = 	 j (t j,
 ) . (38) 

ccording to the definition of t c , the inequality βε, j (t c − T ) > 

j (t c − T ) is satisfied. Therefore (38) implies that t j,
 ∈ (t c − T , t c ] .

e deduce from (38) that 

ε, j (t j,
 ) < βε, j (t c − T ) = 	 j (t j,
 ) . (39) 

owever according to the definition of t c and the fact that t j,
 ∈ 

 t c − T , t c ] , the inequality βε, j (t j,
 ) ≥ 	 j (t j,
 ) is satisfied. This yields

 contradiction. We conclude that 	(t) < βε(t) for all t ≥ −T . By

ontinuity of βε as a function of ε, we deduce that (24) holds for 

ll t ≥ −T . �

emark 3. Notice that [1, Lemma 1] ensures that under the as- 

umptions of the preceding lemma, 	 exponentially goes to the 

rigin. The preceding lemma complements [1] by determining an 

pper bounding function which exponentially converges to the ori- 

in. 

. Proofs of Theorems 1 –2 

.1. Proof of Theorem 1 

A variation of parameters argument and the nonnegtivity of 

 
−Dt give 

 (t) ≤ e −Dh W (t − h ) 

+ 

∫ t 
t−h 

e −D (t−� ) d �P 

⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ t −τ−h,t ] 

w 1 (� ) 

. . . 
sup 

� ∈ [ t −τ−h,t ] 

w n (� ) 

⎤ 

⎥ ⎥ ⎦ 

+ 

∫ t 
t−h 

e −D (t−� ) d � 

⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ t −h,t ] 

δ1 (� ) 

. . . 
sup 

� ∈ [ t −h,t ] 

δn (� ) 

⎤ 

⎥ ⎥ ⎦ 

, 

(40) 
4 
or all t ≥ h . It follows from our choice of M in (2) that 

 (t) ≤ M 

⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ t −τ−h,t ] 

w 1 (� ) 

. . . 
sup 

� ∈ [ t −τ−h,t ] 

w n (� ) 

⎤ 

⎥ ⎥ ⎦ 

+ D 
−1 

(
I − e −Dh 

)
⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ t −h,t ] 

δ1 (� ) 

. . . 
sup 

� ∈ [ t −h,t ] 

δn (� ) 

⎤ 

⎥ ⎥ ⎦ 

(41) 

or all t ≥ h . Let W 	 (s ) = W (s + h ) . Then (41) ensures that for all

 ≥ 0 , 

 	 (s ) ≤ M 

⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ s −τ−h,s ] 

w 	 , 1 (� ) 

. . . 
sup 

� ∈ [ s −τ−h,s ] 

w 	 ,n (� ) 

⎤ 

⎥ ⎥ ⎦ 

+ D 
−1 

(
I − e −Dh 

)
⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ s,s + h ] 

δ1 (� ) 

. . . 
sup 

� ∈ [ s,s + h ] 
δn (� ) 

⎤ 

⎥ ⎥ ⎦ 

. 

(42) 

y Lemma 2 , M is Schur stable. Moreover, M > 0 . Then we can ap-

ly Theorem 2 to W 	 and obtain: 

 	 (s ) ≤
n ∑ 

j=1 

sup 
� ∈ [ −τ−h, 0] 

ω 	 , j (� ) e 
ln (c) 
τ+ h s U + χ(s + h ) . (43)

hus 

 (s + h ) ≤
n ∑ 

j=1 

sup 
� ∈ [ −τ,h ] 

ω j (� ) e 
ln (c) 
τ+ h s U + χ(s + h ) . (44)

aking t = s + h , 

 (t) ≤
n ∑ 

j=1 

sup 
� ∈ [ −τ,h ] 

ω j (� ) e 
ln (c) 
τ+ h (t−h ) U + χ(t) (45) 

hich is (5) . 

.2. Proof of Theorem 2 

We use the function ˜ ω : [ −T , + ∞ ) → [0 , + ∞ ) n that is defined

y 

˜  (t) = 

⎡ 

⎣ 

max { 0 , ω 1 (t) − ρ1 (t) } 
. . . 

max { 0 , ω n (t) − ρn (t) } 

⎤ 

⎦ . (46) 

et � : R → R be the function defined by �(m ) = 1 if m > 0 and

(m ) = 0 if m ≤ 0 . Then 

˜  (t) = �(t ) 

⎡ 

⎣ 

ω 1 (t ) − ρ1 (t) 
. . . 

ω n (t ) − ρn (t) 

⎤ 

⎦ (47) 

ith 

(t) = diag 
{
�(ω 1 (t) − ρ1 (t )) , . . . ., �(ω n (t ) − ρn (t)) 

}
. (48)
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n the other hand, (8) and Lemma 4 imply that 

(t) − ρ(t) ≤ S 

⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ t −T,t ] 

ω 1 (� ) 

. . . 
sup 

� ∈ [ t −T,t ] 

ω n (� ) 

⎤ 

⎥ ⎥ ⎦ 

+ �(t) 

−Sρ(t) − �(t) 

= S 

⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ t −T,t ] 

ω 1 (� ) 

. . . 
sup 

� ∈ [ t −T,t ] 

ω n (� ) 

⎤ 

⎥ ⎥ ⎦ 

− Sρ(t) 

(49) 

or all t ≥ 0 . Since S ≥ 0 , it follows that 

(t) − ρ(t) ≤ S 

⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ t −T,t ] 

(ω 1 (� ) − ρ1 (� ) + ρ1 (� )) − ρ1 (t) 

. . . 
sup 

� ∈ [ t −T,t ] 

(ω n (� ) − ρn (� ) + ρn (� )) − ρn (t) 

⎤ 

⎥ ⎥ ⎦ 

≤ S 

⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ t −T,t ] 

(ω 1 (� ) − ρ1 (� )) + sup 
� ∈ [ t −T,t ] 

ρ1 (� ) − ρ1 (t) 

. . . 
sup 

� ∈ [ t −T,t ] 

(ω n (� ) − ρn (� )) + sup 
� ∈ [ t −T,t ] 

ρn (� ) − ρn (t) 

⎤
⎥⎥⎦

or all t ≥ 0 . Since Lemma 4 implies that ρ is nondecreasing, we 

educe that 

(t) − ρ(t) ≤ S 

⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ t −T,t ] 

(ω 1 (� ) − ρ1 (� )) 

. . . 
sup 

� ∈ [ t −T,t ] 

(ω n (� ) − ρn (� )) 

⎤ 

⎥ ⎥ ⎦ 

. (50) 

ince � is nonnegative, bearing in mind (47) , we can left multiply 

50) through by �(t) and obtain 

˜  (t) ≤ �(t) S 

⎡ 

⎢ ⎢ ⎣ 

sup 
� ∈ [ t −T,t ] 

(ω 1 (� ) − ρ1 (� )) 

. . . 
sup 

� ∈ [ t −T,t ] 

(ω n (� ) − ρn (� )) 

⎤ 

⎥ ⎥ ⎦ 

(51) 

or all t ≥ 0 . As an immediate consequence of (46) , we get 

˜  (t) ≤ �(t ) S ̃  ω 
� (t ) (52) 

or all t ≥ 0 , where the R 
n -valued function ˜ ω 

� is defined by 

˜  � (t) = [ sup � ∈ [ t −T,t ] ˜ ω 1 (� ) , . . . , sup � ∈ [ t −T,t ] ˜ ω n (� )] � . Since �(t) ≤ I

olds for all t ≥ −T , we deduce that 

˜  (t) ≤ S ̃  ω 
� (t) . (53) 

ince S is Schur stable and positive and since ˜ ω (t) ≥ 0 for all t ≥
T , Lemma 5 implies that with the choice 

= 

n ∑ 

j=1 

sup 
� ∈ [ −T, 0] 

max { 0 , ω j (� ) − ρ j (� ) } , (54) 

e have 

˜  (t) ≤ νe 
ln (q ) 
T t V (55) 

or all t ≥ −T . This inequality can be rewritten as 
 

 

max { 0 , ω 1 (t) − ρ1 (t) } 
. . . 

max { 0 , ω n (t) − ρn (t) } 

⎤ 

⎦ ≤ νe 
ln (q ) 
T t V. (56) 

s an immediate consequence, 
 

 

ω 1 (t) − ρ1 (t) 
. . . 

ω n (t) − ρn (t) 

⎤ 

⎦ ≤ νe 
ln (q ) 
T t V. (57) 
5 
his inequality can be rewritten as: 

(t) ≤ ρ(t) + 

n ∑ 

j=1 

sup 
� ∈ [ −T, 0] 

max { 0 , ω j (� ) −ρ j (� ) } e ln (q ) T t V. 

ext, note that max { 0 , ω j (� ) − ρ j (� ) } ≤ max { 0 , ω j (� ) } = ω j (� ) be-

ause both ρ and ω are nonnegative, by Lemma 4 . 

We deduce that 

(t) ≤ ρ(t) + 

n ∑ 

j=1 

sup 
� ∈ [ −T, 0] 

ω j (� ) e 
ln (q ) 
T t V. (58) 

his concludes the proof of Theorem 2 . 

. Illustrations 

We next apply the new approach from the preceding sections to 

he two main examples from [15] . Unlike [15] , where the vector 

alanay’s inequalities did not lend themselves to proving ISS esti- 

ates, here we establish ISS results and therefore improve on pre- 

iously reported results. 

.1. Dynamics from [3] 

We revisit the first illustration of the contribution [15] by ad- 

ressing the case where an additive disturbance is present. We 

onsider the n -dimensional dynamics 
 

 
 
 
 
 

 
 
 
 
 

˙ z 1 (t) = −r 1 z 1 (t) + z 2 (t − τ1 ) + δ1 (t) 
˙ z 2 (t) = −r 2 z 2 (t) + z 3 (t − τ2 ) + δ2 (t) 

. . . 
˙ z n −1 (t) = −r n −1 z n −1 (t) + z n (t − τn −1 ) + δn −1 (t) 
˙ z n (t) = −r n z n (t) + χ(t) + δn (t) 

(59) 

ith the input χ , which occurs in [3, Lemma 2] (in the context 

f stabilizing linear strict-feedback systems having delayed inte- 

rators), where the constants r i and τi are positive for all i . We 

ave added nonnegative and nondecreasing functions δi , which 

ay represent disturbances, and which are assumed to be piece- 

ise continuous. As in [15] , we assume that χ takes the form 

(t) = g 1 z 1 (t − τn 1 ) + . . . + g n z n (t − τnn ) (60) 

or constants τi j ≥ 0 and g i > 0 for i = 1 , 2 , . . . , n . For such a func-

ion χ , the system (59) is nonnegative (by [5, Proposition 3.1] ). 

ence, we focus our attention on the nonnegative solutions of (59) , 

ut an extension of the result below to the general case can easily 

e obtained. 

Choosing any τ > max { τ1 , . . . , τn −1 , τn 1 , . . . , τnn } , it follows that 

ll C 1 solutions Z : [ −τ, + ∞ ) → [0 , + ∞ ) n of (59) satisfy (1) with

 = diag { r 1 , . . . , r n } and 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 1 0 . . . 0 0 
0 0 1 . . . 0 0 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 0 . . . 0 1 
g 1 g 2 g 3 . . . g n −1 g n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(61) 

ith w i = z i for all i . Then we can find conditions on the r i ’s and

 i ’s to ensure that the corresponding matrix −D + P is Hurwitz. 

hen Theorem 1 can be applied. 

For the sake of illustration, let us consider the special case 

here n = 2 with g 1 = 1 , g 2 = 2 , r 1 = 4 , and r 2 = 6 . Then one can

asily check that the matrix −D + P is Hurwitz. Next, for any h > 0 ,

he corresponding matrix M is 

 = I + D 
−1 

(
I − e −Dh 

)
(−D + P ) 

= I + diag 

{
1 − e −4 h 

4 
, 
1 − e −6 h 

6 

}[
−4 1 
1 −4 

]
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⎪⎪⎪⎪⎪⎪⎪⎪⎩
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
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(

n

Z

s

Z

S

Z
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f  
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w

p

= 

[
e −4 h 1 −e −4 h 

4 
1 −e −6 h 

6 
1+2 e −6 h 

3 

]
, (62) 

y our formula (17) for M. Choose h = 
ln (2) 
2 . Then 

 = 

[
1 
4 

3 
16 

7 
48 

5 
12 

]
(63) 

hose larger eigenvalue is 1 3 + 

√ 

79 
48 . Simple calculations give 

 

[
1 

4+ √ 

79 
9 

]
= 

[
1 

3 
+ 

√ 

79 

48 

][
1 

4+ √ 

79 
9 

]
. (64) 

hen Theorem 1 ensures that 

Z(t) ≤ χ(t) + e 

ln 

(
1 
3 

+ 
√ 
79 
48 

)

τ+ ln (2) 
2 

(t−h ) 2 ∑ 

j=1 

sup 
� ∈ [ −τ, 

ln (2) 
2 ] 

z j (� ) 

[
1 

4+ √ 

79 
9 

]
(65) 

olds for all t ≥ h , where 

(t) = −(−I + M) −1 D 
−1 

(
I − e −Dh 

)
δ� (t) 

= −
[− 3 

4 
3 
16 

7 
48 

− 7 
12 

]−1 

diag 

{
1 − e −4h 

4 
, 
1 − e −6h 

6 

}
δ� (t) 

= 

1 

15 

[
4 1 
1 4 

]
δ� (t) 

nd 

� (t) = 

[
sup 

� ∈ [ t −h,t ] 

δ1 (� ) , sup 
� ∈ [ t −h,t ] 

δ2 (� ) 

]� 
. (66) 

.2. Interval observer design 

Consider the system 

˙ 
 (t) = AX (t) + 

p ∑ 

i =1 

B i X (t − τi (t)) + δ(t) (67) 

hose state X is valued in R 
n , where A and the B i ’s are constant

atrices, p is any positive integer, A is Hurwitz (but not necessar- 

ly Metzler), and τi : [0 , + ∞ ) → [0 , τ ] for all i are piecewise con-

inuous delays having a known bound τ̄ > 0 for which solutions 

f (67) are uniquely defined on [0 , + ∞ ) for each initial condition.

his agrees with the dynamics from [15] , except we added the un- 

nown bounded function δ having piecewise continuous compo- 

ents and representing uncertainty. This provides challenges be- 

ause the stability conditions for (67) in [15] were not based on 

tandard Lyapunov function conditions. We provide conditions that 

re independent of the delays τi ’s which ensure that one can build 

n interval observer whose existence implies that (67) is ISS; see 

12] for background on interval observers. 

Our analysis is more complex than standard treatments of lin- 

ar systems, and is called for because of the mildness of our re- 

uirements on the coefficient matrices and on the delays. How- 

ver, as in [15] , a key ingredient will be the proof of [11, Theo-

em 2] which provides a time-varying change of variables formula 

or linear systems having Hurwitz matrices A in their drift term, 

hich is defined by a bounded C 1 function Q : [0 , + ∞ ) → R 
n ×n 

aving a bounded inverse and a constant Metzler matrix M 0 such 

hat 

˙ 
 (t) Q(t) −1 + Q(t) AQ(t) −1 = M 0 (68) 

or all t ≥ 0 , and such that all diagonal elements of M 0 are negative

eal values. 
6 
Fixing a Q that satisfies the requirements of the preceding para- 

raph, it follows that Z(t) = Q(t ) X(t ) satisfies 

˙ 
 (t) = M 0 Z(t) + 

p ∑ 

i =1 

L i (t) Z(t − τi (t)) + Q(t ) δ(t ) , (69)

here L i (t) = Q (t) B i Q (t − τi (t)) 
−1 for all i and t ≥ τ̄ . Our analysis

ill use the interval observer 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

˙ Z (t) = M 0 Z (t) + 

p ∑ 

i =1 

(L i (t)) 
+ Z (t − τi (t)) 

−
p ∑ 

i =1 

(L i (t)) 
−Z (t − τi (t)) + (Q(t) δ(t)) + 

˙ Z (t) = M 0 Z (t) + 

p ∑ 

i =1 

(L i (t)) 
+ Z (t − τi (t)) 

−
p ∑ 

i =1 

(L i (t)) 
−Z (t − τi (t)) − (Q(t) δ(t)) −

(70) 

here C + = [ max { c i, j , 0 } ] and C − = C + −C for matrices C = [ c i, j ] .

he change of coordinates Z ‡ (t) = −Z (t) yields 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

˙ Z (t) = M 0 Z (t) + 

p ∑ 

i =1 

(L i (t)) 
+ Z (t − τi (t)) 

+ 

p ∑ 

i =1 

(L i (t)) 
−Z ‡ (t − τi (t)) + (Q(t) δ(t)) + 

˙ Z ‡ (t) = M 0 Z ‡ (t) + 

p ∑ 

i =1 

(L i (t)) 
+ Z ‡ (t − τi (t)) 

+ 

p ∑ 

i =1 

(L i (t)) 
−Z (t − τi (t)) + (Q(t) δ(t)) −. 

(71) 

hen (71) is cooperative, because M 0 is Metzler, by the reasoning 

sed in [15] , implies ISS of (71) if all positive valued solutions of 

71) satisfy an ISS estimate. 

We therefore focus on positive solutions of (71) . To this end, 

otice that the variable 

˜ 
 (t) = Z (t) + Z ‡ (t) (72) 

atisfies 

˙ ˜ (t) = M 0 ̃
 Z (t) + 

p ∑ 

i =1 

[ L i (t) 
+ + L i (t) 

−] ̃  Z (t − τi (t)) + | Q(t) δ(t) | . 
(73) 

etting S τ̄ ( ̃  Z t ) = sup � ∈ [ t −τ̄ ,t ] ̃
 Z (� ) , we then have 

˙ ˜ (t) ≤ M 0 ̃
 Z (t) + 

p ∑ 

i =1 

[ L i (t) 
+ + L i (t) 

−] S ̄τ ( ̃  Z t ) + | Q(t ) δ(t ) | 
≤ D M 0 ̃

 Z (t) + L S ̄τ ( ̃  Z t ) + | Q(t ) δ(t ) | (74) 

here D M 0 
is diagonal matrix whose entries are the diagonal ele- 

ents of M 0 , and the matrix L > 0 is such that 

p ∑ 

 =1 

[ L i (t) 
+ + L i (t) 

−] + M 0 − D M 0 
≤ L (75) 

or all t ≥ 0 . By choosing the diagonal matrix D = −D M 0 
(whose

ntries are all positive, by our choice of M 0 ), it follows that, if 

e can choose L such that D M 0 
+ L is Hurwitz, then we can ap- 

ly Theorem 1 to conclude that the solutions of (73) satisfy an ISS 
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stimate. Using the facts that Z and Z ‡ are nonnegative valued, it 

ow follows from (72) that the positive solutions of (71) satisfy an 

SS estimate. 

Moreover, the formulas L i = L + 
i 

− L −
i 

for each i and the argu- 

ent we used in our proof of cooperativity of (71) imply that co- 

perativity of the dynamics for (Z + , Z −) = ( Z − Z, Z − Z ) . This im-

lies that Z (t) ≥ Z(t) ≥ Z (t) for all t ≥ 0 provided we choose our 

nitial functions for Z and Z such that Z (t) ≥ Z(t) ≥ Z (t ) , Z (t ) > 0 ,

nd Z (t) < 0 for all t ∈ [ −τ̄ , 0] . Hence, (70) provides an interval ob-

erver for (69) which gives the ISS property of the Z(t) dynam- 

cs. Finally, the bounds | X(t) | ≤ | Q(t ) −1 || Z(t ) | for all t ≥ 0 and the

oundedness of Q(t) −1 let us conclude that the X dynamics satisfy 

SS. 

emark 4. Our sufficient condition for the ISS of (67) is the same 

s the sufficient condition for global exponential stability to 0 for 

he δ = 0 case in [15] . As noted in [15] , we can often take Q to

e constant, e.g., when all eigenvalues of A are real, by choosing 

such that QAQ 
−1 = M 0 is A ’s Jordan canonical form. When A is

etzler, we can choose Q = I and then our sufficient condition says 

hat A + 

∑ p 
i =1 

[ B + 
i 

+ B −
i 
] is Hurwitz. See [11, Section 4.3] for an ex-

mple of a Hurwitz matrix A having a conjugate pair of complex 

nonreal) eigenvalues that calls for a nonconstant choice of the ma- 

rix valued function Q . 

. Conclusion 

We developed the theories of the Halanay’s inequality and 

he trajectory based approaches, by providing ISS inequalities 

hen vector inequalities are satisfied and additive disturbances are 

resent. This overcame an obstacle to proving ISS analogs of works 

ike [15] with respect to additive uncertainties. Our main tools en- 

ailed positive systems methods, based on novel applications of 

chur stable and positive matrices. We illustrated our method in an 

nterval observer design with unknown delays. Extensions to cases 

here the coefficient matrices in our inequalities are time varying 

re expected. 
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