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form, it applies to scalar valued functions that satisfy decay conditions, with overshoots depending on
suprema of the functions over suitable intervals. Then it provides an exponential decay estimate on the

Recommended by Prof. T Parisini scalar functions. Here, we provide vector versions of Halanay’s inequality, and of the so-called trajectory

based approach, both yielding input-to-state stability (or ISS) inequalities. Our proofs of the inequalities

gf:;ivgtrgS: use the theory of positive systems. We apply our results to prove ISS for interval observers and other
Delay cases.
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Halanay’s inequality

1. Introduction

Halanay’s inequality result, which was introduced in [7], is
a well-known powerful tool for the stability analysis of systems
with delays [4, Chapter 4]. It has been used in many papers. In
the last three decades, it has been revisited in some works, no-
tably in the context of time-varying inequalities; see for instance
[2,8,9,14,18,20,22]. In its basic form, it assumes that w is a nonneg-
ative valued C! real valued scalar function that admits constants
T > 0, ¢ > 0 (called a decay rate), and d € (0, ¢) (called a gain) such
that w(t) < —cw(t) + d sup;_t,, w(¢) holds for all t > 0. Then the
usual conclusion is that w satisfies an exponential decay condition.
More general versions with time dependent functions ¢ and d al-
low values t where d(t) > c(t).

The recent ‘trajectory based approach’ is another stability anal-
ysis technique. It is efficient for analyzing complex interconnected
systems, notably systems with delay and continuous-discrete fea-
tures. It was developed in works such as [13,16,17]. The trajec-
tory based approach applies to continuous nonnegative valued
scalar valued functions w that are assumed to admit constants
p € (0,1) (called the contractivity constant) and T > 0 such that
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w(t) < psupyepe_1,gw(e) for all t > T. Then the usual conclusion is
that w exponentially converges to zero as t — +ooc.

On the other hand, it is well-known that the notion of input-
to-state-stability (or ISS), introduced by E. Sontag, has been ex-
ceptionally fruitful for control design and stability analysis of dy-
namical systems; see, e.g., [21]. The ISS property was developed in
many contributions and has been used to solve many theoretical
as well as applied problems. ISS inequalities are especially useful
when one analyzes the stability of interconnected systems [17] and
when one wants to estimate the impact of disturbances.

Only a few papers on Halanay’s inequality and the trajectory
based approach propose results of ISS type. In [16] and [18], ISS
inequalities are established, but these results do not directly ex-
tend to vector inequalities. In [15], we provided necessary and suf-
ficient stability conditions for functions satisfying vector inequali-
ties of Halanay’s type. However, the proofs in [15] do not lead to
ISS inequalities when additive disturbances are present. In [1], a
vector version of the trajectory-based approach is developed, but
no ISS inequality is given under additive disturbances. This is a
shortcoming of these theories because vector inequalities arise in
many circumstances, so there is a strong motivation to cover them.

These remarks motivate the present paper. In a first part, we
determine an ISS inequality for functions satisfying a vector ver-
sion of Halanay’s inequality. The first part uses methods from the
second part, where we consider vector inequalities enabling us to
apply the trajectory based approach, and where we determine ISS
inequalities when additive disturbances are present. These results
complement [1,15] and [16, Lemma 1]. Our proofs of the main re-

0947-3580/© 2022 European Control Association. Published by Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.ejcon.2022.100665
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejcon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2022.100665&domain=pdf
mailto:frederic.mazenc@l2s.centralesupelec.fr
mailto:malisoff@lsu.edu
https://doi.org/10.13039/100000001
https://doi.org/10.1016/j.ejcon.2022.100665

E. Mazenc and M. Malisoff

sults use the theory of positive systems, to obtain explicit construc-
tions of the comparison functions in the ISS estimates.

We use standard notation, which is simplified when no con-
fusion would arise, and where the dimensions of our Euclidean
spaces are arbitrary, and the entries of our matrices are real val-
ues. Let || - || be the usual Euclidean norm of matrices and vectors,
0 is the zero matrix, and I is the identity matrix. Inequalities be-
tween matrices are meant entry-wise, so M; < M, (resp. M; < My)
for matrices My and M, of the same size means each entry of M,
is at most (resp. strictly less than) the corresponding entry of M.
Let w(M) denote the spectral radius of a square matrix M. A square
matrix M is called Schur stable provided ©(M) < 1. A square ma-
trix is called Metzler provided all of its off-diagonal entries are
nonnegative. A function f:R — R" is called nondecreasing pro-
vided each of its components f; for i = 1,...,n are nondecreasing.
We write diag{sy, ..., sn} to denote an n x n diagonal matrix whose
arguments give its diagonal elements starting from its upper left
entry sj.

In the next section, we state our main theorems that produce
ISS results under vector Halanany’s and vector trajectory-based in-
equalities. We defer their proofs to Section 4. Their proofs are
based on key lemmas from Section 3. We illustrate the value of our
new approaches in Section 5. Possible extensions are suggested in
Section 6.

2. Statement of main results
2.1. Vector Halanay’s inequality with ISS

Given real constants 7 >0 and h > 0, a diagonal matrix D e
R™" whose diagonal entries are all positive, a matrix P € R™"
such that P> 0, and § : [-7 — h, +00) — [0, +00)" whose compo-
nents §; are piecewise continuous, let W :[—t, +00) — [0, +00)"
be a C! function such that

W(t) < —DW(t) +8(t)

sup w,,(@)] (1)

te[t—1.t]

+P[ sup wq(€), ...,
re[t—1.t]

for all t >0, where w; is the ith component of W for all i (but
see Section 5.2 for an illustration of how we can relax the require-
ment that the matrix D is diagonal). In (1) and other places in
this work, we use the sup notation instead of the S(w;) notation
from [15] to indicate the interval over which the sup is computed
(which will sometimes be different intervals later in this paper).
Also, for our fixed choice of h, we assume without loss of general-
ity that the §;’s are nondecreasing and such that §(t) = §(0) for all
t € [-t — h,0]. We consider the case where the matrix —D + P is
Hurwitz. This condition is imposed because it is necessary for the
GAS of (1) when § =0 and when (1) holds with equality; see [15,
Theorem 1]. When —D + P is Hurwitz, the main result of [15] en-
sures that W exponentially converges to the origin when § is not
present. We also use

M = ePh 4 [ ePtdeP. )
Since the matrix M satisfies M > 0, the Perron-Frobenius theorem
[10] provides a vector U € [1, +00)" such that

MU = cU 3)
where ¢ = u(M). In the next section, we will prove that M is Schur

stable. Using this fact, it follows that c € (0, 1). Let us introduce the
function x : [-T, +00) — R" defined by

sup 8 (¢)

te[t—ht]
x(t) = —(=I+M)~'D1(I—ePh) :
sup 8 ()

telt—h.t]
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which is well-defined because the entries of D are positive and M
is Schur stable; see below. Our first main result is:

Theorem 1. With the preceding definitions and notation,

n
W(t) < e~ wih Z sup wj(z)e%fU + x(b) (5)

j=1 te[—1,h]
is satisfied for all t > h.
For a proof of the preceding theorem, see Section 4.1.

Remark 1. Note that (5) provides an N € R™" such that

In(c)

n
W(t) < e‘%“z sup w;(¢)ei'U

el
+N[ sup & (¢)..... sup |" (6)
£€[0,t] £e[0,t]

for all t > h. From this inequality, we can deduce that
W] < e #itn[[U]le=5* sup [IW ()]
h

te[—1,h]

+|IN[[n sup [|5(0)]] (7)
¢e[0,t]
holds for all t > 0, which is the desired ISS property.

2.2. Vector trajectory-Based ISS result

Our proof of Theorem 1 in Section 4.1 uses the theorem of
this section, which is of independent interest. It provides a vec-
tor trajectory-based ISS estimate for a continuous function w :
[=T, +00) — [0, +0c0)™ that we assume satisfies

sup w1 (¢€)
Le[t—T.t]
o) <S : + A(t), (8)
sup wn(¢)
te[t-T,t]

for all ¢t > 0, where T > 0 is a given constant, each component A;
fori=1,...,n of A is piecewise continuous, and the matrix S > 0
is Schur stable. Without loss of generality, we assume that each
function A;(t) is nondecreasing. Moreover, we let A be defined
over [T, +o00) by A(t) = A(0) for all t € [-T, 0].

By again using the Perron-Frobenius Theorem [10], we can fix a
vector V € R" and a constant q € (0, 1) such that

SV=gqv, 9)
with each entry of V in [1, +00), and we will see below that —[+ S
is invertible. In terms of the vector valued function

p(t) ==(=1+S)"TA(), (10)
our vector valued ISS trajectory-based result is:

Theorem 2. With the preceding definitions and notation,

n

o) <Y sup w;j(©)e TV +p(t) (11)
j=1 Le[-T,0]

holds for all t > 0.
For a proof of the preceding theorem, see Section 4.

Remark 2. The inequality (11) implies that

In(@)

llo(®[] < nl|V]] sup [lw(e)|le ™
Le[-T,0]

I+ A (12)
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which gives

In(q)
(] < nlV]| sup |lw(e)|le”r
Le[-T,0]

+|[(=I+5)" (13)

which is our desired ISS estimate.

In the next section, we provide key lemmas that we will use to
prove our theorems.
3. Key lemmas

We first recall the following well known equivalences, e.g, from
[19, Proposition 1]:

Lemma 1. Let M € R™" be a Metzler matrix. Then the following
three statements are equivalent: (i) M is Hurwitz, (ii) MV <O for
some vector V > 0, and (iii) M is invertible and M~1 < 0.

We also use:

Lemma 2. Let P € R™" satisfy P> 0, and D € R™" be a diagonal
matrix whose diagonal entries are all positive. Let h > 0 be a given
positive real value. If the matrix

-D+P (14)
is Hurwitz, then the matrix (2) is Schur stable.

Proof. Assume that —D + P is Hurwitz. Let d > 0 be such that dI —
D+ P > 0. The Perron-Frobenius theorem [10] ensures that there
are V > 0 and k > 0 such that

(dlI-D+P)V =kV. (15)
It follows that with the choice c = d — k, we have
(-D+P)V = —cV. (16)

Since —D + P is Hurwitz, necessarily ¢ > 0. Since the diagonal en-
tries of D are positive, one can prove easily that the matrix M in
(2) can be written as

M=I1+D""(I-eP)(-D+P). (17)
This equality and (16) give

MV = [I—cD7'(I—eP)]v. (18)
Since —cD~'(I—e~Ph) is diagonal with negative diagonal entries,
there is a constant p € (0, 1) such that MV < pV. Since the matrix

M is nonnegative, the lemma now follows from [6, Chapter 2, The-
orem 2.22]. O

The next lemma follows from (9), because q € (0, 1), and is in-
cluded for reference because it is key for our analysis:

Lemma 3. Let T > 0 be a given real value, and the matrix S > 0, the
vector V > 0, and the constant q € (0, 1) be such that (9) holds. Then

(e@m)v (19)

ln(q) ln(q)

ty = -y =S sup

me[t-T,t]
holds for all t > 0.
We also use:

Lemma 4. Let S > 0 be a Schur stable matrix in R"™" and T > 0 be a
constant. Let A : [T, +o0) — [0, +00)™ be such that each of its com-
ponents A; fori=1,...,n is piecewise continuous. Then the function
p :[-T, +00) — R" given by (10) is nonnegative valued and nonde-
creasing, and it satisfies

p(t) =Sp(t) + A(t) (20)
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forallt > -T.

Proof. Since S > 0, the matrix —I+S is Metzler. Also, by the
Perron-Frobenius theorem, there are V > 0 and q € (0, 1) such that
SV < qV because S is positive and Schur stable. It follows that
(=I+S)V < (q—1)V. Since —I+S is Metzler, this inequality im-
plies that —I+S is Hurwitz, by Lemma 1. Then, according to
Lemma 1, (-=I+S)~! < 0. Consequently, the function p is well-
defined nonnegative and nondecreasing. Then, one can prove easily
that (20) holds. O

Our final lemma is as follows:

Lemma 5. Consider a Schur stable matrix S > 0, a constant T > 0,
and a continuous function Q : [-T, +00) — [0, +00)" such that

sup 21(¢)
Le[t-T.t)
Q) <S : , (21)
sup 2(€)

te[t—T,t]

for all t >0. Let g€ (0,1) and V € [1, +00)" be such that SV = qV.
Choose the functions

Bo(t) = koe TtV (22)

and

ko= sup (6. (23)
j=1¢e[-T,0]

Then

Q(t) < fo(t) (24)

holds for all t > —T.

Proof. Let us introduce the functions

Be(t) = ke 1V, (25)
where

Ke =Ko + €, (26)
and where € > 0 is any positive constant. Since In(q) < 0,

Be(m) = (ko + €)V (27)
for all m e [-T, 0]. We deduce that the inequality

Q(m) < koV < Be(m) (28)

holds for all m € [T, 0], since V € [1, co)". Bearing in mind that
is continuous, we proceed by contradiction: we assume that there
is a t¢ > 0 such that

Q(t) < Be(t) (29)
for all t €[0,t:) and Q2(t;) ¢ Be(t;). Then the continuity of Q en-
sures that there is anie {1,..., n} such that
Qi(te) = Be.i(te). (30)
From Lemma 3, we deduce that
sup fe1(0)
Le[t—T.t]
Be(t)=$ : (31)
Sup ,Be,n (E)
te[t-T,t]

for all ¢ > 0. Then, with S = [s;;], condition (21) and (30)-(31) give

ZSU sup /961(4)—52(&)<Zsl, sup Qj(0).  (32)

j=1 Lelte—T,tc] j=1 Lelte—T,tc]
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The last inequality is equivalent to

n
Zsu(
j=1

On the other hand, the definition of t. implies that for all j e
{1,...,n}, we have

sup ,Be.j(e) -

tefte—T.t]

sup  Bej(0) —

Lete—T,tc)

sup Qj(6)> <0. (33)

Lefte—T.tc)

sup Q;(¢) = 0. (34)

ee[te—T.t]

Since S > 0, we deduce from (33)-(34) that

sup B j(0) = sup £2;(¢) (35)
Lefte—T.tc) Le[te—T,tc]
for j=1,...,n. Since each function B ; is nonincreasing, these
equalities are equivalent to
Bejte =T) = sup £;(¢) (36)
te[te—T.tc]
for all je({1,...,n}. Since Q is continuous, for any j e {1,...,n},

there is t;, € [tc — T, t] such that

sup  Q;(£) = Q;(t;,). (37)

telte—T.tc]

It follows that
Be.j(te —T) = Q;(t;.)- (38)

According to the definition of t, the inequality B j(tc—T) >
Q;(tc —T) is satisfied. Therefore (38) implies that ¢;, € (& — T, tc].
We deduce from (38) that

Be,j(ti,) < Be jte = T) = Q(t;,). (39)

However according to the definition of ¢ and the fact that ¢;, €
[tc — T. tc], the inequality B, ;(t;,) = ;(t;,) is satisfied. This yields
a contradiction. We conclude that Q(t) < Be(t) for all t > —T. By
continuity of B¢ as a function of €, we deduce that (24) holds for
allt > -T. O

Remark 3. Notice that [1, Lemma 1] ensures that under the as-
sumptions of the preceding lemma, 2 exponentially goes to the
origin. The preceding lemma complements [1] by determining an
upper bounding function which exponentially converges to the ori-
gin.

4. Proofs of Theorems 1-2
4.1. Proof of Theorem 1

A variation of parameters argument and the nonnegtivity of
e Dt give

W(t) < e Phw(t — h)
sup  wq(¢)
. telt—t—h.t]
+/ e Pt-Odep
t—h :
su wp (£
le[t—rI—)h,t] (&) (40)
sup 81 (¢)

eelt—h.t]

+ / " e Ding : ,
_h .
t sup 8, (0)

Le[t—h,t]
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for all t > h. It follows from our choice of M in (2) that

sup  wi(¢)
te[t—Tt—h,t]

W(t) <M :
sup  wn(¢)

te[t—T—h,t]
sup 8,(0) (41
Lelt—h,t]

+D1 (l - e*Dh) :
sup 8q(¢)

celt—h.t]

for all t > h. Let Wx(s) = W(s+h). Then (41) ensures that for all
s>0,
sup - wa1(¢0)
Le[s—t—h.s]
Wa(s) <M :
sup  Wan ()
Le[s—t—h,s]
sup 81(0) (42)
tefs,s+h]
+D~1(I—e-Dh) :
sup dn(¢)
Lels,s+h]

By Lemma 2, M is Schur stable. Moreover, M > 0. Then we can ap-
ply Theorem 2 to W, and obtain:

n

Wi (s) < Z sup a)A,j(Z)elrn%sU + x(s+h). (43)
I telt-h0]
Thus
" In(c)
W(s+h) <> sup w;(@)e U+ x(s+h). (44)
el

Taking t = s + h,

n

W(t) <Y sup (et MU 4 x(b) (45)
0 tel-t.h]

which is (5).

4.2. Proof of Theorem 2

We use the function & : [T, +00) — [0, +00)™ that is defined
by
max{0, w; (t) — p1(6)}
o(t) = : (46)
max{0, wy(t) — pa(t)}
Let ¥ : R — R be the function defined by ¥ (m) =1 if m > 0 and
W (m) =0 if m <0. Then

w1 (t) — p1(t)

o(t) = A(t) : (47)

wn(t) — pn(t)
with

A(t) = diag{W (@1 (t) — p1(1)), ... W(@n(t) — pa(t))}.  (48)
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On the other hand, (8) and Lemma 4 imply that

M sup @1(0)7]
telt-Tit]

o) —pt)<S + A(t)

sup s (£)
Leelt—T.t] _
Sp(t) — A(t) (49)
r sup wi ()7

Le[t-T,t]

=5 : ~Sp()

sup s (£)
Leelt—T.t] _
for all t > 0. Since S > 0, it follows that

rosup (w1(€) — p1(€) + p1(€)) — p1(t)

e[t-T.t]
() - p) < :
sup (wn(€) — () + Pn(£)) — pn(t)
Lce[t-T,t]
osup (w1(€) —p1(€)) + sup p1(€) — p1(t)
eeft-T.t] teft-T.t]
<S :
sup (wn(€) — pn(€)) + sup pn(€) — pn(t)
Lee[t-T.t] e[t-T.t]

for all t > 0. Since Lemma 4 implies that p is nondecreasing, we
deduce that

sup (w1(€) — p1(£))
Le[t-T,t]

o) —p) <S : : (50)

SUp (wn(E) — pa(0))
te[t-T.t]

Since A is nonnegative, bearing in mind (47), we can left multiply
(50) through by A(t) and obtain

sup (w1(€) — p1(0))
te[t—Tit]

@) < AD)S : (51)
sup (wn(€) — pn(£))

Le[t—T,t]

for all t > 0. As an immediate consequence of (46), we get

o(t) < A(t)Sa"(t) (52)
for all t >0, where the R"-valued function @ is defined by
@ (t) = [Supyefr_1,¢) @1(£), - .., SUDcr_T1] @n (0)]T. Since A(t) <I
holds for all t > —T, we deduce that

@(t) < S (t). (53)

Since S is Schur stable and positive and since @(t) > 0 for all t >
—T, Lemma 5 implies that with the choice

n

V= Z sup max{0, w;(¢) — p; ()}, (54)
j=1 Le[-T,0]

we have

&(t) < ve' "ty (55)

for all t > —T. This inequality can be rewritten as
[max{0, wi (t) — p1(£)}

In(q)

: <ve V. (56)
| max{0, wn(t) — pn(t)}
As an immediate consequence,
[w1(t) — pa ()

In(q)

<ve TV, (57)

L on(t) — pu0)
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This inequality can be rewritten as:

n n
wt) < p(t)+ Y sup max{0, wj(z)—,oj(e)}eHTQ)tV.
Jj=1¢€[-T,0]
Next, note that max{0, w;(¢) — p;(£)} < max{0, w;(€)} = w;(¢) be-
cause both p and w are nonnegative, by Lemma 4.
We deduce that

w(t) <p(t)+)  sup wj(z)e'"(T”tV. (58)

j=1 te[-T,0]

This concludes the proof of Theorem 2.
5. Illustrations

We next apply the new approach from the preceding sections to
the two main examples from [15]. Unlike [15], where the vector
Halanay’s inequalities did not lend themselves to proving ISS esti-
mates, here we establish ISS results and therefore improve on pre-
viously reported results.

5.1. Dynamics from [3]

We revisit the first illustration of the contribution [15] by ad-
dressing the case where an additive disturbance is present. We
consider the n-dimensional dynamics

z1(t) =-1rz1(t) + 2o(t — 1) + 81 (F)
2(t) =-nz(t)+z3(t— 1)+ 8,(t)

(59)

It () = —TurZu1 (6) + 2t — Tur) + 1 ()
() = —Taza(t) + X (6) + 8n(t)

with the input y, which occurs in [3, Lemma 2] (in the context
of stabilizing linear strict-feedback systems having delayed inte-
grators), where the constants r; and 1; are positive for all i. We
have added nonnegative and nondecreasing functions §;, which
may represent disturbances, and which are assumed to be piece-
wise continuous. As in [15], we assume that x takes the form

X)) =g1z1(t — ) + ... + &nZu(t — Ton) (60)

for constants 7;; > 0 and g; > 0 for i=1,2, ..., n. For such a func-
tion x, the system (59) is nonnegative (by [5, Proposition 3.1]).
Hence, we focus our attention on the nonnegative solutions of (59),
but an extension of the result below to the general case can easily
be obtained.

Choosing any t > max{ry,..., Tne1> Tnls - - - » Tnn}, it follows that
all C! solutions Z: [—T, +00) — [0, +00)" of (59) satisfy (1) with

D = diag{ry,...,m} and
0 1 0o ... 0 0
0 0 1 0 0
P=l: o oin (61)
o 0 o0 ... 0 1
& & & ... &1 &n

with w; = z; for all i. Then we can find conditions on the r;’s and
gi’s to ensure that the corresponding matrix —D + P is Hurwitz.
Then Theorem 1 can be applied.

For the sake of illustration, let us consider the special case
where n =2 with gy =1, g, =2, r; =4, and r, = 6. Then one can
easily check that the matrix —D + P is Hurwitz. Next, for any h > 0,
the corresponding matrix M is

M=1+D"(I-eP)(-D+P)

1—e 1-ebM)[_4 1
i 6 1 -4

= I+diag{
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[ p—4h 1—e~4h
= | 1_¢-6h 1+2176n 5 (62)
L 6 3

by our formula (17) for M. Choose h = l“(% Then

ERRC
m=[1 5] (63)
L3812
whose larger eigenvalue is % + 4589. Simple calculations give
1 1 V79 1
Megn] =[5+ [ im) .
Then Theorem 1 ensures that
]n(%+%)(t—h) 2

ZM <x@®) +e =" Y sup

1
50|aim|
=1 e[-7, 2] 9
holds for all t > h, where
X(O==(=I+M)"'D" (I - e P")8%(¢)
-1

3 3
-7 15 . 1—e4h 1 _¢6h .
=_|:7 7:| dlag{4,6 S%(t)

13 2.
C1fa 1],
and
.
8”(t)=[ sup 81(¢), sup 82(6)] ) (66)
teft—h.t] teft—h.t]

5.2. Interval observer design
Consider the system

. P
X(t) =AX(t) + Y BX(t — 7;(t)) + 6(t) (67)
i=1

whose state X is valued in R", where A and the B;’s are constant
matrices, p is any positive integer, A is Hurwitz (but not necessar-
ily Metzler), and t; : [0, +o00) — [0, T] for all i are piecewise con-
tinuous delays having a known bound 7 > 0 for which solutions
of (67) are uniquely defined on [0, +o0) for each initial condition.
This agrees with the dynamics from [15], except we added the un-
known bounded function § having piecewise continuous compo-
nents and representing uncertainty. This provides challenges be-
cause the stability conditions for (67) in [15] were not based on
standard Lyapunov function conditions. We provide conditions that
are independent of the delays t;’s which ensure that one can build
an interval observer whose existence implies that (67) is ISS; see
[12] for background on interval observers.

Our analysis is more complex than standard treatments of lin-
ear systems, and is called for because of the mildness of our re-
quirements on the coefficient matrices and on the delays. How-
ever, as in [15], a key ingredient will be the proof of [11, Theo-
rem 2| which provides a time-varying change of variables formula
for linear systems having Hurwitz matrices A in their drift term,
which is defined by a bounded C! function Q : [0, +00) — R™"
having a bounded inverse and a constant Metzler matrix My such
that

QMM +QM)AQ() ™ =My (68)

for all t > 0, and such that all diagonal elements of M are negative
real values.
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Fixing a Q that satisfies the requirements of the preceding para-
graph, it follows that Z(t) = Q(t)X (t) satisfies

2(t) = MoZ(t) + fl LOZ(E - 1i(t)) + QOS(0), (69)

where Li(t) = Q(t)B;Q(t — 7;(t))~! for all i and t > . Our analysis
will use the interval observer

Z(0) = MoZ(©) + - (L(©) Z(t - 1)

i=1

- é(Li(t))_Z(t - 5i(0) + Q)8 (1)*

2(6) = MoZ(6) + 3 (L(0)Z(E - ()

i=1

- é(h(t))?(t = 7i(t) = (Q)8(1))~

where C* =[max{c; ;,0}] and C~ =C* —C for matrices C =[c; ;.
The change of coordinates Z;(t) = —Z(t) yields

Z(t) = MoZ(t) + é(um)?(t )

T f](u(r)fzi(r S n(0) + QM)
. i= (71)
Zi(t) = MoZy(t) + é(h(ﬂﬁ%&(f - 5i(t))

+ é([.,(t))’f(t — ‘Ci(t)) + (Q(t)a(t)),

Then (71) is cooperative, because My is Metzler, by the reasoning
used in [15], implies ISS of (71) if all positive valued solutions of
(71) satisfy an ISS estimate.

We therefore focus on positive solutions of (71). To this end,
notice that the variable

Z(t) = Z(t) + Zy(t) (72)

satisfies

2(t) = MoZ(t) + élli(tﬁ +Li(O)TJZ(t - T() +1QOS(©))].

(73)
Setting Sz (Zt) =Sup,c(r_z. Z(¢), we then have
Z(t) < MoZ(t) + é [Li()* + Li(t)~]Sz (Z) + 1Q(6)8(1)]
< D Z(t) + LSz (Z) + 1Q ()8 (1) | (74)

where Dy, is diagonal matrix whose entries are the diagonal ele-
ments of My, and the matrix L > 0 is such that

L) +Li(t) ]+ My — Dy, <L (75)
i=1

for all t > 0. By choosing the diagonal matrix D = —Dy;, (whose
entries are all positive, by our choice of M), it follows that, if
we can choose L such that Dy, +L is Hurwitz, then we can ap-
ply Theorem 1 to conclude that the solutions of (73) satisfy an ISS
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estimate. Using the facts that Z and Z; are nonnegative valued, it
now follows from (72) that the positive solutions of (71) satisfy an
ISS estimate.

Moreover, the formulas L; = L} — L for each i and the argu-
ment we used in our proof of cooperativity of (71) imply that co-
operativity of the dynamics for (Z,,Z_) = (Z—Z,Z — Z). This im-
plies that Z(t) > Z(t) > Z(t) for all t > 0 provided we choose our
initial functions for Z and Z such that Z(t) > Z(t) > Z(t), Z(t) > 0,
and Z(t) < 0 for all t € [T, 0]. Hence, (70) provides an interval ob-
server for (69) which gives the ISS property of the Z(t) dynam-
ics. Finally, the bounds |X(t)| < |Q(t)~!||Z(t)| for all t > 0 and the
boundedness of Q(t)~! let us conclude that the X dynamics satisfy
ISS.

Remark 4. Our sufficient condition for the ISS of (67) is the same
as the sufficient condition for global exponential stability to 0 for
the § =0 case in [15]. As noted in [15], we can often take Q to
be constant, e.g., when all eigenvalues of A are real, by choosing
Q such that QAQ~! = My is A’s Jordan canonical form. When A is
Metzler, we can choose Q = I and then our sufficient condition says
that A+ Zf;l[Bi+ + B;"] is Hurwitz. See [11, Section 4.3] for an ex-
ample of a Hurwitz matrix A having a conjugate pair of complex
(nonreal) eigenvalues that calls for a nonconstant choice of the ma-
trix valued function Q.

6. Conclusion

We developed the theories of the Halanay’s inequality and
the trajectory based approaches, by providing ISS inequalities
when vector inequalities are satisfied and additive disturbances are
present. This overcame an obstacle to proving ISS analogs of works
like [15] with respect to additive uncertainties. Our main tools en-
tailed positive systems methods, based on novel applications of
Schur stable and positive matrices. We illustrated our method in an
interval observer design with unknown delays. Extensions to cases
where the coefficient matrices in our inequalities are time varying
are expected.
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