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several recent methods
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Subject clustering (i.e., the use of measured features to cluster subjects, such as
patients or cells, into multiple groups) is a problem of significant interest. In recent
years, many approaches have been proposed, among which unsupervised deep
learning (UDL) has received much attention. Two interesting questions are 1) how
to combine the strengths of UDL and other approaches and 2) how these
approaches compare to each other. We combine the variational auto-encoder
(VAE), a popular UDL approach, with the recent idea of influential feature-principal
component analysis (IF-PCA) and propose IF-VAE as a new method for subject
clustering. We study IF-VAE and compare it with several other methods (including
IF-PCA, VAE, Seurat, and SC3) on 10 gene microarray data sets and eight single-
cell RNA-seq data sets. We find that IF-VAE shows significant improvement over
VAE, but still underperforms compared to IF-PCA. We also find that IF-PCA is quite
competitive, slightly outperforming Seurat and SC3 over the eight single-cell data
sets. IF-PCA is conceptually simple and permits delicate analysis. We demonstrate
that IF-PCA is capable of achieving phase transition in a rare/weak model.
Comparatively, Seurat and SC3 are more complex and theoretically difficult to
analyze (for these reasons, their optimality remains unclear).

KEYWORDS

gene microarray, feature selection, higher criticism threshold, PCA, ScCRNA-seq, sparsity,
subject clustering, variational

1 Introduction

We are interested in the problem of high-dimensional clustering or subject clustering.
Suppose we have a group of n subjects (e.g., patients or cells) measured on the same set of p
features (e.g., genes). The subjects come from K different classes or groups (e.g., normal
group and diseased group), but unfortunately, the class labels are unknown. In such a case,
we say the data are unlabeled. For 1 < i < n, we denote the class label of subject i by Y; and
denote the p-dimensional measured feature vector of subject i by X;. It is important to note
that Y; takes values from {1, 2, . . ., K}. The class labels are unknown, and the goal is to predict
them using the measured features X;, X5, ..., X,

High-dimensional clustering is an unsupervised learning problem. It is especially
interesting in the big data era: although the volume of available scientific data increases
rapidly, a significant fraction of them are unlabeled. In some cases, it is simply hard to label
each individual sample [e.g., action unit recognition (Wu et al., 2015)]. In some other cases,
labeling each individual sample is not hard, but due to the large sample size, it takes a
substantial amount of time and effort to label the whole data set [e.g., ImageNet (Deng et al,,
2009)]. In other instances (e.g., cancer diagnosis), we may have a preliminary opinion on
how to label the data, but we are unsure of the labels’ accuracy, so we would like a second,
preferably independent, opinion. In all these cases, we seek an effective and user-friendly
clustering method.
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In recent years, the area of high-dimensional clustering has
witnessed exciting advancements in several directions. First, many
new types of data sets (e.g., single-cell data) have emerged and
become increasingly more accessible. Second, remarkable successes
have been made in non-linear modeling for high-dimensional data,
and several unsupervised deep learning (UDL) approaches have
been proposed (Fan et al., 2021), including, but not limited to, the
variational auto-encoder (VAE) and generative adversarial network
(GAN). Finally, several clustering methods for single-cell data [e.g.,
Seurat (Satija et al., 2015) and SC3 (Kiselev et al., 2017)] have been
proposed and become popular.

In this paper, we are primarily interested in influential feature-
principal component analysis (IF-PCA), a clustering algorithm
proposed by Jin and Wang (2016). As in many recent works in
high-dimensional data analysis (e.g., Abramovich et al., 2006; Paul,
2007), we assume

ep>»>n>»1
o Out of all p measured features, only a small fraction of them
are relevant to the clustering decision.

IF-PCA is easy-to-use and does not have tuning parameters. It is
conceptually simple and (on a high level) contains two steps as
follows:

o IF step. A feature selection step that selects a small fraction of
measured features, which we believe to be influential or
significant to the clustering decision.

o Clustering step. A clustering step in which PCA (as a spectral
clustering approach) is applied to all retained features.

Instead of viewing IF-PCA as a specific clustering algorithm, we
can view it as a generic two-step clustering approach: for each of the
two steps, we can choose methods that may vary from occasion to
occasion in order to best suit the nature of the data. We anticipate
that IF-PCA will adapt and develop over time as new data sets and
tasks emerge.

Jin and Wang (2016) compared IF-PCA to a number of
clustering  algorithms [including the classical k-means
(MacQueen, 1967), k-means++ (Arthur and Vassilvitskii, 2007),
Spectral-Gem (Lee et al., 2010b), hierarchical clustering (Hastie
et al, 2009), and sparse PCA (Zou et al, 2006)] using
They found that IF-PCA was
competitive in clustering accuracy. Later, Jin et al. (2017)

10 microarray data sets.
developed a theoretical framework for clustering and showed that
IF-PCA is optimal in the rare/weak signal model [a frequently used
model in high-dimensional data analysis (Donoho and Jin, 2004;
Donoho and Jin, 2015)].

These appealing properties of IF-PCA motivate a revisit of this
method. Specifically, we are interested in the two questions listed
below.

o There are many recent clustering algorithms specifically
designed for single-cell data, such as Seurat (Satija et al,
2015), SC3 (Kiselev et al, 2017), RacelD (Griin et al,
2015), ActioNet (Mohammadi et al, 2020), Monocle 3
(Trapnell et al.,, 2014), and SINCERA (Guo et al, 2015). In
addition, many UDL algorithms have been proposed and
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become well-known in recent years. An interesting question
is how IF-PCA compares with these popular algorithms.

Jin and Wang (2016) only examined IF-PCA with gene
microarray data. The single-cell RNA-seq data are similar to gene
microarray data in some aspects but also have some distinguished
characteristics [e.g., single-cell RNA-sequencing provides an
unbiased view of all transcripts and is, therefore, reliable for
accurately measuring gene expression level changes (Zhao et al,
2014)]. How IF-PCA compares to other popular methods for subject
clustering with single-cell data is an intriguing question.

o The PCA employed in the clustering step of IF-PCA is a linear
method. Although we believe that the associations between
class labels and measured features may be non-linear, the
significance of the non-linear effects is unclear. To investigate
this, we may consider a variant of IF-PCA, in which PCA is
replaced by some non-linear UDL methods in the clustering
step. An interesting question is how this variant compares to
IF-PCA and standard UDL methods (which has no IF step). It
helps us understand how significant the non-linear effects are.

To answer these questions, first, we propose a new approach, IF-
VAE, which combines the main idea of IF-PCA with the VAE
(Kingma and Welling, 2013) (one of the most popular UDL
approaches in recent literature).

Second, we compare the IF-VAE with several methods,
including VAE, IF-PCA, Spectral-Gem (Lee et al., 2010b), and
classical k-means, using the 10 microarray data sets in Jin and
Wang (2016). We find that

» Somewhat surprisingly, the VAE underperforms compared to
most other methods, including the classical k-means.

o IF-VAE, which combines the VAE with the IF step of IF-PCA,
significantly outperforms the VAE.

o The performance of IF-PCA and IF-VAE is comparable for
approximately half of the data sets, whereas IF-VAE
significantly underperforms compared to IF-PCA for the
remaining half of the data sets.

These results suggest the following:

o (a) The idea of combining the IF step in the IF-PCA with the
VAE is valuable.

o (b) Deep neural network methods do not appear to have a
clear advantage for this type of data set.

For (b), one possible reason is that the associations between
class labels and measured features are not highly non-linear.
Another possible reason is that existing deep neural network
approaches need further improvements in order to perform
satisfactorily on these data sets. Since IF-PCA and IF-VAE use
the same IF step, the unsatisfactory performance of IF-VAE is
largely attributable to the VAE step, and not the IF step. To see
this, we observe that Spectral-Gem is essentially the classical PCA
clustering method (see Section 2.2). The VAE does not show an
advantage over Spectral-Gem, explaining why IF-VAE cannot
outperform IF-PCA.
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Last, we compare the IF-VAE with IF-PCA, Seurat, and SC3 on
eight single-cell RNA-seq data sets. We observe that

o IF-VAE continues to underperform compared to other
methods on the eight single-cell data sets, but similar as
previously mentioned; the unsatisfactory performance is
largely attributable to the VAE step and not the IF step.

o IF-PCA outperforms SC3 slightly and outperforms Seurat
more significantly.

At the same time, we observe that

o Seurat has four tuning parameters and is the method that has
the shortest execution time.

o The idea of SC3 is quite similar to that of IF-PCA, except that
SC3 has a “consensus voting” step that aggregates the
strengths of many clustering results. With consensus
voting, SC3 may empirically perform more satisfactorily,
but it is also more complex internally. Regarding the
computational cost, it runs much slower than IF-PCA due
to the consensus voting step.

Moreover, IF-PCA is conceptually simple and permits fine-
grained analysis. In Section 4, we develop a theoretical
framework and show that IF-PCA achieves the optimal phase
transition in a rare/weak signal setting. Especially, we show in
the region of interest (where successful subject clustering is

possible),

« if the signals are less sparse, signals may be individually weak.
In this case, PCA is optimal (and [F-PCA reduces to PCA if we
choose the IF step properly).

« Ifthe signals are sparser, the signals need to be relatively strong
(so successful clustering is possible). In this case, feature
selection is necessary and IF-PCA is optimal. However,
PCA may be non-optimal as it does not use a feature
selection step.

In comparison, other popular methods are difficult to analyze
theoretically; hence, their optimality is unclear. We note that hard-
to-analyze methods will also be hard to improve in the future.

In conclusion, IF-PCA is quite competitive compared to the
recently popular subject clustering methods, both for gene
microarray data and single-cell data. It is worthwhile to study
IF-PCA both theoretically and in (a variety of) applications. IF-
VAE is a significant improvement over VAE, but it is still inferior
to other prevalent methods in this area (the underperformance is
largely due to the VAE step, not the IF step). It is desirable to
further improve IF-VAE (especially the VAE step) to make it
more competitive.

2 Models and methods

As before, suppose we have measurements on the same set of p
features for n samples. We denote the data matrix by X € R™? and
write
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X=[X,X,....X,) = [xl)x2:~--)xp]a (1)

where X; € R? denotes the measured feature vector for sample i,
1 <i < n. From time to time, we may want to normalize the data
matrix before we implement any approaches. For 1 < j < p, let
X(j) and ¢(j) be the empirical mean and standard deviation
associated with feature j (column j of X), respectively. We
normalize each column of X and denote the resultant matrix
by W, where

W = [wl,wZ,. .

W (j) = [X: () - X(j) /6 (j). ©)

.,wp] =[W,W,,...W,]' e R*”, and

In Section 2.1, we introduce two models for X; then in Sections
2.2,2.3,2.4,2.5, 2.6, we describe the clustering methods considered
in this paper, some of which (e.g., IF-VAE, IF-VAE(X), and IF-
PCA(X)) are new.

2.1 Two models

A reasonable model is as follows. We encode the class label Y; as
a K-dimensional vector m;, where 7; = e if and only if sample i
belongs to class k, and ey is the kth standard Euclidean basis vector of
RK,lsksK.LetM:[yl,yz,.,.
vector for class k. We assume

, tix], where y; € R? is the mean

E[X;] = y, if and only if subject i belongs to class k,
orequivalently E[X;] = M. (3)

Let IT = [y, 72, . . ., )" be the matrix of encoded class labels.

We can rewrite (3) as

X =E[X] + (X - E[X])

= “signal matrix” + “noise matrix”,
E[X] =IIM'. (4)

In addition, it is reasonable to assume that out of many
measured features, only a small fraction of them are useful in the
clustering decision. Therefore, letting i = (1/K)¥ 5,4, we assume

Uy Hys - - - » g arelinearly independent and
Yy — 4 issparse foreach 1<k <K. (5)

It follows that the n x p signal matrix E[X] has a rank K.

We recall that W is the normalized data matrix. Similar to (5),
we may decompose W as the sum of a signal matrix and a noise
matrix. However, due to the normalization, the rank of the signal
matrix is reduced to (K — 1).

In Models (3)-(5), E[X;] = Mm;, which is a linear function of
the encoded class label vectors 7;. For this reason, we may view
Models (3)-(5) as linear models. In many modern applications,
linear models may be inadequate, and we may prefer to use a non-
linear model.

The recent idea of neural network modeling provides a wide
class of non-linear models, which may be useful for our setting. As
an alternative to Models (3)-(5), we may consider a neural network
model as follows. In this model, we assume

Yi= f(X50), i=1,2...n (©)

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1166404

Chen et al.

where f (x, 0) belongs to a class of non-linear functions. For example,
we may assume f (x, ) belongs to the class of functions (without loss
of generality, x always includes a constant feature):

{f(x, 0): f(x,0) = AL(sLAL 1 - .. 52 (Azs (A1 )0 = {A}, A, . .. xAL}}>

where A, A, ..
are some nonlinear functions. Similar to Models (3)-(5), we can

., Ay are matrices of certain sizes and sy, 55, ..., 5.

impose some sparsity conditions on Model (6). See Fan et al. (2021)
for example.

2.2 The PCA clustering approach and
Spectral-Gem

PCA is a classical spectral clustering approach, which is
especially appropriate for linear models like those in (3-5) when
the relevant features are non-sparse (see the following text for
discussions on the case when the relevant features are sparse).
The PCA clustering approach contains two simple steps as
follows. Input: normalized data matrix X and number of clusters
K. Output: predicted class label vector Y=(Y,Ys....Y,).

« We obtain the n x K matrix H = (75 - - > fig ], where 77, is the
kth left singular vector of X (associated with the kth largest
singular value of X).

« We cluster the n rows of H to K groups by applying the
classical k-means assuming there are <K classes. Let Y; be the
estimated class label of subject i. Output Y,V

From time to time, we choose to apply the PCA clustering
approach to the normalized data matrix W. As explained before,
we can similarly write W as the sum of a “signal” matrix and a
“noise” matrix as in (5), but due to the normalization, the rank of
the “signal” matrix under Model (3) is reduced from K to (K - 1).
In such a case, we replace the n x K matrix H by the n x (K - 1)
matrix

B= [fubnbe)

where, similarly, fk is the kth left singular vector of W.

The PCA clustering approach has many modern variants,
including, but not limited to, Spectral-Gem (Lee et al., 2010b)
and SCORE (Jin, 2015; Ke and Jin, 2023). In this paper, we
consider Spectral-Gem but skip the discussion on SCORE
(SCORE was motivated by unsupervised learning in network
and text data and shown to be effective on those types of data; it
is unclear whether SCORE is also effective for genetic and
genomic data). Instead of applying PCA clustering to the data
matrix X (or W) directly, Spectral-Gem constructs an n x n
symmetric matrix M, where M(i, j) can be viewed as a similarity
metric between subject 7 and subject j. The remaining part of the
algorithm has many small steps, but the essence is to apply the
PCA clustering approach to the Laplacian normalized graph
induced by M.

The PCA spectral clustering approach is based on two important
assumptions.

o The signal matrix E[X] is a linear function of class labels.
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« Itishard to exploit sparsity in the data: either the data are non-
sparse (such as the classical setting of p < n) or how the
sparsity can be exploited is unclear.

In many modern settings, these assumptions are not satisfied:
the relationship between the signal matrix E[X] and class labels
may be non-linear, and it is highly desirable to exploit sparsity by
adding a feature selection before conducting PCA clustering.
In such cases, we need an alternative approach. We address the
non-linearity by the VAE and feature selection by IF-PCA as
follows.

2.3 The variational autoencoder and VAE(X)
clustering approaches

Given an n x p data matrix X and an integer d < rank(X), the
essence of the PCA spectral clustering approach is to obtain a rank-d
approximation of X to use singular value decomposition (SVD),

d
X = z okukvk'.
k=1

Here, oy is the kth smallest singular value of X, and u; and vy are the
corresponding left and right singular vectors of X, respectively. The
VAE can be viewed as an extension of SVD, which obtains a rank-d
approximation of X from training a neural network. The classical
SVD is a linear method, but the neural network approach can be
highly non-linear.

The VAE was first introduced by Kingma and Welling (2013)
and has been successfully applied to many areas [e.g., image
processing (Razavi et al., 2019), computer vision (Goodfellow
et al, 2020), and text mining (Serban et al., 2017)]. The VAE
consists of an encoder, a decoder, and a loss function. Given a
data matrix X € R™P, the encoder embeds X into a matrix 7 e R™
(usually d < p), and the decoder maps Z back to the original data
space and outputs a matrix X € R™, which can be viewed as a rank-
d approximation of X. Different from classical SVD, X is obtained in
a non-linear fashion by minimizing an objective that measures the
information loss between X and X.

A popular way to use the VAE for subject clustering is as follows
(Wang and Gu, 2018). Input:
W= [w,wy,...,wp] = [W,W,,..
and dimension of the latent space d (typically much smaller than
min{n, ph. label
vector Y = (Y,Y5,..

normalized data matrix

., W,]', number of classes K,
Output: class
LY.

predicted

« (Dimension reduction by the VAE). We train the VAE and use
the trained encoder to obtain an n x d matrix Z.

o (Clustering). We cluster all n subjects into K classes by
applying k-means to the rows of Z. Let Y be the predicted
label vector.

Except for using a non-linear approach to dimension reduction,
the VAE is similar to the PCA approach in clustering. We can apply
the VAE either to the normalized data matrix W or the
unnormalized data matrix X. We call them VAE(W) and
VAE(X), respectively. In the context of using these notations, it
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is unnecessary to use (W) and (X) at the same time, so we write
VAE(W) as VAE for short (and to avoid confusion, we still write
VAE(X) as VAE(X)).

2.4 The orthodox IF-PCA and its variant IF-
PCA(X)

For many genomic and genetic data, Models (3)-(5) are already
We recall that under these models, the
normalized data matrix can be approximately written as

reasonable models.

W =Q+ (W - Q) = “signal matrix” + “noise matrix”,
where, approximately,
Q=T[u, —fhphy = fhs- .., — ] € R™P,

and is sparse (in the sense that only a small fraction of the columns
of Q have a large ¢£>-norm; the £*>-norm of other columns is small or
0). In such a setting, it is appropriate to conduct feature selection,
which removes a substantial amount of noise while keeping most
non-zero columns of Q.

Such observations motivate the (orthodox) IF-PCA. The IF-
PCA was first proposed in Jin and Wang (2016) and has been shown
to have appealing clustering results with 10 gene microarray data
sets. In Jin et al. (2017), it was shown that IF-PCA is optimal in high-
dimensional clustering. IF-PCA contains an IF step and a PCA step,
and the IF step contains two important components introduced as
follows.

The first component of the IF step is the use of the
Kolmogorov-Smirnov (KS) test for feature selection. Suppose we
have n (univariate) samples z;, z,, ... , z, from a cumulative
distribution function (CDF) denoted by F. We introduce the
empirical CDF by

Fu(t) = (Um) Y 1z <t} )

Letz = (21, 23, . .-
¢ (2) =
In the IF-PCA given as follows, we take F to be the theoretical

CDF of (z; — z)/a6, where ziiiiiN(O, 1); 1 <i<m;and Z and ¢ are the
empirical mean and standard deviation of z;, z,, . . .

, Zn). The KS testing score is then

Vasup {[|F, (t) = F ()]} (8)

, Zy, Tespectively.

The second component of the IF step is the higher criticism
threshold (HCT). Higher criticism (HC) was initially introduced by
Donoho and Jin (2004) (see also Jager and Wellner, 2007; Hall and
Jin, 2010; Donoho and Jin, 2015; Verzelen and Arias-Castro, 2017)
as a method for global testing. It has been recently applied to genetic
data (e.g., Barnett et al,, 2017). HCT adapts HC to a data-driven
threshold choice (Jin and Wang, 2016). It takes as input p marginal
p-values, one for a feature, and outputs a threshold for feature
selection. Suppose we have p-values 7y, 75, . ..
the ascending order:

» 7Ty We sort them in

Ty <o)< ... <7T(P).

We  define  the  feature-wise @~ HC  score by

HC,; = B (jlp- ﬂ(j))/\/max{\/ﬁ (jlp - 7(;), 0} + jIp. The
HCT is then
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the = (i) where j = argmax {

HC,;t.

¥ ”(z)>1°gp/p,j<p/z}{ p,J}
)
IF-PCA runs as follows. Input: normalized feature vectors W =

~>wp] = [W1>W2,~-~,W I
Output: predicted class label vector Y =

»]" and number of classes K.
(Yla YZ) R :Yn)l'

[wy, ws, ..

o (IF step). For each 1 <j < p, we compute a KS score for feature j
by applying (7, 8) with z = w;. We denote the KS scores by ¢,
(w1), -
standard deviation, respectively. Let v} = [¢, (w;) — p*]/0*.
We compute the p-values by 77; = 1 — F(y7), where F is the
same CDF used in (8). We obtain the HCT by applying (9) to

, . We retain feature j if 77; < frc and remove it

¢, (W) and let y* and o be their empirical mean and

Tys T2 -
otherwise.
(Clustering step). Let W™ be the n x m sub-matrix of W
consisting of columns of W corresponding to the retained

features only [m is the numl%er of retained features in (a)]. For
any 1 <k < min{m, n}, let §, be the left singular vector of W™
correspondmg toFthe kth largest singular value of W™. Let
g’ [fl yet EK ] e RP we cluster all n subjects by
applying the k means to the # rows of £, assuming there are
K clusters. Let Y = (Y,Y5,...,Y,) be the predicted class
labels.

In the IF step, the normalization of 1(/;‘ = [¢, (w)) —p*]/o* is
called Efron’s null correction (Efron, 2004), a simple idea that is
proven to be both necessary and effective for analyzing genomic and
genetic data (Jin et al., 2015). We remark that although IF-PCA is
motivated by the linear model in (5), it is not tied to (5) and is
broadly applicable. In fact, the algorithm does not require any
knowledge of Models (3)-(5).

In the (orthodox) IF-PCA, we apply both the IF step and the
clustering step to the normalized data matrix W. Seemingly, for the
IF step, applying the algorithm to W instead of the un-normalized
data matrix X is preferred. However, for the clustering step, whether
we should apply the algorithm to W or X remains unclear. We
propose a small variant of IF-PCA by applying the IF step and the
clustering step to W and X, respectively.

o (IF step). We apply exactly the same IF step to W as in the
(orthodox) IF-PCA previously mentioned.

o (Clustering step). Let X" be the n x m sub-matrix of X
consisting of columns of X corresponding to the retained
features in the IF step only. For any 1 < k < min{m, n}, let 7"
be the left singular vector of X' corresponding to the kth

lar%est singular value of X" Let
AIF ~IF RnK 1 . We cl 1 bi b
[y i) € e cluster all n subjects by

applymg the k-means to the n rows of I, assuming there are
K clusters. Let Y = (YI,YZ, . n) be the predicted class
labels.

To differentiate from the (orthodox) IF-PCA (which we call IF-
PCA as follows), we call the aforementioned variant IF-PCA(X). See
Table 1 in Section 2.7. The new variant was never proposed or
studied before. It outperforms the (orthodox) IF-PCA in several data
sets (e.g., see Section 3).
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TABLE 1 Summary of all methods discussed in this section. This table clarifies the small differences between similar methods. Take the column IF-PCA(X) for
example: “W” on row 2 means that the IF step of this method is applied to the normalized data matrix W defined in (2), and “X” on row 3 means the clustering step

is applied to the un-normalized data matrix X (NA: not applicable).

PCA VAE VAE(X)

SpecGem

IF-PCA

IF step NA NA NA NA

Clustering step Xor W ‘ NA

2.5 IF-VAE and IF-VAE(X)

Near the end of Section 2.2, we mention that the classical PCA
has two disadvantages: not exploiting sparsity in feature vectors
and not accounting for possible non-linear relationships between
the signal matrix and class labels. In Sections 2.3, 2.4, we have
seen that the VAE aims to exploit non-linear relationships and
IF-PCA aims to exploit sparsity. We may combine the VAE with
the IF step of IF-PCA for simultaneously exploiting sparsity and
non-linearity. To this end, we propose a new algorithm called
IF-VAE.

The IF-VAE contains an IF step and a clustering step and runs as
Input: normalized data
W = [wl,wz,...,wp] = [W,W,, ..., W,]’, number of classes K,
and dimension of the latent space in the VAE (denoted by d).
Output: predicted class label vector Y=(,Ys...,Y.

follows. matrix

o (IF step). We run the same IF step as in Section 2.4, and let
wWliF = [W{F . ,WﬂF 1" € R™™ be the matrix consisting of
the retained features only (same as in the IF step in IF-PCA, m
is the number of retained features).

o (Clustering step). We apply the VAE with WIF' € R™" and
obtain an # x d matrix Z , which can be viewed as an
estimation of the low-dimensional representation of W™. We
cluster the n samples into K clusters by applying the classical
k-means to Z' assuming there are K classes. Let Y be the

predicted label vector.

In the clustering step, we apply the VAE to the normalized data
matrix W. Similarly, as in Section 2.4, if we apply the VAE to the un-
normalized data matrix X, then we have a variant of IF-VAE, which
we denote by IF-VAE(X). See Table 1 in Section 2.7.

2.6 Seurat and SC3

We now introduce Seurat and SC3, two recent algorithms that
are especially popular for subject clustering with single-cell RNA-seq
data. We discuss them separately.

Seurat was proposed in Satija et al. (2015). On a high level,
Seurat is quite similar to IF-PCA, and we can view it as having only
two main steps: a feature selection step and a clustering
step. However, different from IF-PCA, Seurat uses a different
feature selection step and a much more complicated clustering
step (which combines several methods including PCA, k-nearest
neighborhood algorithm, and modularity optimization). Seurat
needs four tuning parameters: m, N, ko, §, where m is the
number of selected features in the feature selection step, and N,
ko, 0 are the clustering step, corresponding to the PCA part, the
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IF-PCA(X) IF-VAE IF-VAE(X) Seurat SC3
w w w w X X
w X w X X X

k-nearest neighborhood algorithm part, and the modularity
optimization part, respectively.

A high-level sketch for Seurat is mentioned as follows (see Satija
et al., 2015 for a more detailed description). Input: un-normalized
n x p data matrix X, number of clusters K, and tuning parameters m,
N, ko, . Output: predicted class label vectors Y=(Y,Ys....Y,).

o (IF step). We select the m features that are mostly variable. We
obtain the n x m post-selection data matrix.

(Clustering step). We normalize the post-selection data matrix
and obtain the first N left singular vectors. For each pair of
subjects, we compute how many neighbors (for each subject,
we only count the ky nearest neighbors) they share with each
other and use the results to construct a shared nearest
neighborhood (SNN) graph. We cluster the class labels by
applying a modularity optimization algorithm to the SNN
graph, where we need a resolution parameter é.

An apparent limitation of Seurat is that it needs four tuning
parameters. Following the recommendations by Hao et al. (2021),
we may take (N, ko) = (50, 20), but it remains unclear how to select
(m, 9).

SC3 was first presented by Kiselev et al. (2017). To be consistent
with many other methods we discuss in this paper, we may view
SC3 as containing two main steps: a gene-filtering step and a
clustering step. Similar to Seurat, the clustering step of SC3 is
much more complicated than that of IF-PCA, where the main
idea is to apply PCA many times (each for a different number of
leading singular vectors) and use the results to construct a matrix of
consensus. We then cluster all subjects into K groups by applying the
classical hierarchical clustering method to the consensus matrix.
SC3 uses one tuning parameter X, in the gene-filtering step and two
tuning parameters, dy and ko, in the clustering step, corresponding to
the PCA part and the hierarchical clustering part, respectively.

A high-level sketch for SC3 is given as follows (see Kiselev et al.,
2017 for a more detailed description). Input: un-normalized n x p
data matrix X, true number of clusters K, and tuning parameters xo,
dy, ko. Output: predicted class label vectors Y=(,Ys...,Y,).

o (Gene-filtering step). Removes genes/transcripts that are
either expressed (expression value is more than 2) in less
than x,% of cells or expressed (expression value is more than
0) in at least (100 — xp)% of cells. This step may reduce a
significant fraction of features, and we consider it to be more
like a feature selection step than a preprocessing step.

(Clustering step). First, we take a log-transformation of the
post-filtering data matrix and construct an n x n matrix M,
where M(i, j) is some kind of distance (e.g., Euclidean,
Pearson, and Spearman) between subject i and j. Second,
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let H = [7,,..
(or alternatively, of the normalized graph Laplacian matrix of
M). Third, for d = 1, 2, ..., dy, we cluster all n subjects to K
classes by applying the k-means to the rows of the n x d sub-

- 11y], where 7, is the kth singular vector of M

matrix of H consisting of the first d columns and use the
results to build a consensus matrix using the Cluster-based
Similarity Partitioning Algorithm (CSPA) (Strehl and Ghosh,
2002). Finally, we cluster the subjects by applying the classical
hierarchical clustering to the consensus matrix with k, levels of
hierarchy.

Following the recommendation by Kiselev et al. (2017), we set
(x0» do) = (6, 15) and take k, to be the true number of clusters K. Such
a tuning parameter choice may work effectively in some cases, but
for more general cases, we may (as partially mentioned in Kiselev
et al. (2017)] need more complicated tuning.

In summary, on a high level, we can view both Seurat and SC3 as
two-stage algorithms, which consist of a feature selection step and a
clustering step, just as in IF-PCA. However, these methods use more
complicated clustering steps, where the key is combining many
different clustering results to reach a consensus; it is important to
note that the SNN in Seurat can be viewed as a type of consensus
matrix. Such additional steps taken in Seurat and SC3 may not only
help reduce the clustering error rates but also make the algorithms
conceptually more complex, computationally more expensive, and
theoretically more difficult to analyze.

2.7 A brief summary of all the methods

We have introduced approximately 10 different methods, some
of which (e.g., IF-PCA(X), IF-VAE, and IF-VAE(X)) have never
never proposed before. Among these methods, the VAE is a popular
UDL approach, Seurat and SC3 are especially popular in clustering
with single-cell data, and IF-PCA is a conceptually simple method
that has been shown to be effective in clustering with gene
microarray data. It is important to note that some of the
methods are conceptually similar to each other, with some small
differences (though it is unclear how different their empirical
performances are). For example, many of these methods are two-
stage methods, containing an IF step and a clustering step. In the IF
step, we usually use the normalized data matrix W. In the clustering
step, we may use either W or the unnormalized data matrix X. To
summarize all these methods and especially to clarify the small
differences between similar methods, we have prepared a table given
as follows; see Table 1 for details.

3 Results

Our study consists of two parts. In Section 3.1, we compare the
IF-V AE with several other methods using 10 microarray data sets. In
Section 3.2, we compare the IF-VAE with several other methods,
including the popular approaches of Seurat and SC3, using eight
single-cell data sets. In all these data sets, the class labels are
given. However, we do not use the class labels in any of the
clustering approaches; we only use them when we evaluate the
error rates. The code for numerical results in this section can be
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TABLE 2 Ten gene microarray data sets analyzed in Section 3.1 (n: number of
subjects; p: number of genes; K: number of clusters).

# Data name Source K n p

1 Brain Pomeroy (02) 5 42 5,597
2 Breast cancer Wang et al. (05) 2 276 22,215
3 Colon cancer Alon et al. (99) 2 62 2,000
4 Leukemia Golub et al. (99) 2 72 3,571
5 Lung cancer (1) Gordon et al. (02) 2 181 12,533
6 Lung cancer (2) Bhattacharjee et al. (01) 2 203 12,600
7 Lymphoma Alizadeh et al. (00) 3 62 4,026
8 Prostate cancer Singh et al. (02) 2 102 6,033
9 SRBCT Kahn (01) 4 63 2,308
10 Su cancer Su et al. (01) 2 174 7,909

found  at  https:/github.com/ZhengTracyKe/IFPCA.  The
10 microarray data sets can be downloaded at https:/data.
the eight
RNA-seq data sets can be downloaded at https://data.mendeley.

com/drafts/nv2x6kf5rd.

mendeley.com/datasets/cdsz2ddv3t, and single-cell

3.1 Comparison of clustering approaches
with 10 microarray data sets

Table 2 tabulates 10 gene microarray data sets (alphabetically)
studied in Jin and Wang (2016). Here, data sets 1, 3, 4, 7, 8, and
9 were analyzed and cleaned in Dettling (2004) and data sets 2, 6,
and 10 were analyzed and grouped into two classes in Yousefi et al.
(2010), among which data set 10 was cleaned by Jin and Wang
(2016) in the same way as Dettling (2004). Data set 5 is obtained
from Gordon et al. (2002).

First, we compare the IF-VAE approach introduced in Section
2.5 with four existing clustering methods: 1) the classical k-means; 2)
Spectral-GEM (SpecGem) (Lee et al., 2010a), which is essentially
classical PCA combined with a Laplacian normalization; 3) the
orthodox IF-PCA (Jin and Wang, 2016), which adds a feature
selection step prior to spectral clustering (see Section 2.4 for
details); and 4) the VAE approach, which uses the VAE for
dimension reduction and then runs k-means clustering (see
Section 2.3 for details). Among these methods, SpecGem and
VAE involve dimension reduction, and IF-PCA and IF-VAE use
both dimension reduction and feature selection. For IF-PCA, VAE,
and IF-VAE, we can implement the PCA step and the VAE step to
either the original data matrix X or the normalized data matrix W.
The version of IF-PCA associated with X is called IF-PCA(X), and
the version associated with W is still called IF-PCA; similar rules
apply to the VAE and IF-VAE. A total of eight different algorithms
were obtained.

Table 3 shows the numbers of clustering errors (i.e., number of
incorrectly clustered samples, subject to a permutation of K clusters)
of these methods. The results of SpecGem and IF-PCA are copied
from Jin and Wang (2016). We implemented k-means using the
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TABLE 3 Comparison of clustering errors of different methods with the 10 microarray data sets in Table 2. IF-PCA has the smallest average rank and average regret
(boldface) and is regarded as the best on average.

Data set k-means SpecGem IF-PCA IF-PCA(X) VAE VAE(X) IF-VAE IF-VAE(X)
Brain 14 6 11 7 14 17 21 21
Breast cancer 121 121 112 91 105 130 120 118
Colon cancer 28 30 25 26 29 23 25 25
Leukemia 2 21 5 3 28 17 20 12
Lung cancer (1) 18 22 5 24 21 64 6 7
Lung cancer (2) 44 88 44 45 66 80 44 44
Lymphoma 1 14 1 18 23 22 16 10
Prostate cancer 43 43 39 44 41 45 42 41
SRBCT 28 32 28 24 33 26 30 23
Su cancer 83 85 58 57 62 60 57 57
Rank (mean) 4.3 6.1 2.65 3.9 5.7 5.8 4.3 3.25
Rank (SD) 2.07 2.20 1.18 233 2.20 2.35 1.90 1.74
Regret (mean) 0.43 0.69 0.18 0.26 0.60 0.65 0.46 0.31
Regret (SD) 0.35 0.33 0.22 0.32 0.33 0.39 0.36 0.33

TABLE 4 Clustering errors of k-means++ and hierarchical clustering with the 10 microarray data sets (the clustering errors of IF-PCA are listed for reference).

Brain Breast Colon Leuk Lung 1 Lung 2 Lymph Prostate SRBCT Su
k-means++ 18 119 29 19 35 89 20 44 33 80
Hier 22 138 24 20 32 61 29 49 34 78
IF-PCA 11 112 25 5 5 44 1 39 28 58

Python library sklearn, wrote the MATLAB code for IF-PCA(X),  error of this method and e, and e,,;;, are the maximum and
and wrote the Python code for the remaining four methods. The IF minimum clustering error, respectively, among all the methods. The
step of IF-VAE needs no tuning. In the VAE step of IF-VAE, we fix ~ average regret also measures the overall performance of a method
the latent dimension as d = 25 and use a traditional architecture in  (the smaller, the better).

which both the encoder and decoder have one hidden layer; the There are several notable observations. First, somewhat
encoder uses the ReLU activation, and the decoder uses the sigmoid ~ surprisingly, the simple and tuning-free method, IF-PCA, has the
activation; when training the encoder and decoder, we use a mini-  best overall performance. It has the lowest average rank among all
batch stochastic gradient descent with 50 batches, 100 epochs,anda  eight methods and achieves the smallest number of clustering errors
learning rate of 0.0005. The same neural network architecture and  in four out of 10 data sets. We recall that the key idea of IF-PCA is to
tuning parameters are applied to the VAE. We note that the outputs ~ add a tuning-free feature selection step prior to dimension
of these methods may have randomness due to the initialization in ~ reduction. The results in Table 2 confirm that this idea is highly
the k-means step or in the VAE step. For the VAE, IF-VAE, and IF-  effective with microarray data and hard to surpass by other methods.
VAE(X), we repeat the algorithm 10 times and report the average  Second, the VAE (either on W or on X), which combines k-means
clustering error. For k-means, we repeat it five times (because the ~ with non-linear dimension reduction, significantly improves
results are more stable); for IF-PCA(X), we repeat it 20 times. We ~ k-means on some “difficult” data sets, such as BreastCancer,
use the clustering errors to rank all eight methods for each data set; ~ ColonCancer, and SuCancer. However, for those “easy” datasets,
in the presence of ties, we assign ranks in a way such that the total ~ such as Leukemia and Lymphoma, the VAE significantly
rank sum is 36 (e.g., if two methods have the smallest error rate, we ~ underperforms compared to k-means. It suggests that the non-
rank both of them as 1.5 and rank the second-best method as 3; other ~ linear dimension reduction is useful mainly on “difficult” datasets.
cases are similar). The average rank of a method is a metric of its ~ Third, the IF-VAE (either on W or on X) improves the VAE in the
overall performance across multiple data sets. In addition to ranks,  majority of data sets. In some datasets, such as LungCancer (1), the
we also compute regrets: for each data set, the regret of a methodis  error rate of the IF-VAE is much lower than that of the VAE. This
defined to be 7 = (e — €,in)/(€pmax — €min)> Where e is the clustering  observation confirms that the IF step plays a key role in reducing the
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FIGURE 1

Clustering errors of IF-VAE(X) as a function of the number of
selected features in the IF step (data set: LungCancer (1); y-axis:
number of clustering errors; x-axis: number of selected features).

clustering errors. Jin and Wang (2016) made a similar observation
by combining the IF step with linear dimension reduction by PCA.
Our results suggest that the IF step continues to be effective when it
is combined with non-linear dimension reduction by the VAE. Last,
IF-VAE(X) achieves the lowest error rate in three out of 10 data sets,
and it has the second lowest average rank among all eight methods.
Compared with IF-PCA (the method with the lowest average rank),
IF-VAE(X) has an advantage in three data sets (BreastCancer,
SRBCT, and SuCancer) but has a similar or worse performance
in the other data sets. These two methods share the same IF step;
hence, the results imply that the non-linear dimension reduction by
the VAE has an advantage over the linear dimension reduction by
PCA only on “difficult” data sets.

Next, we study IF-VAE(X) more carefully with the LungCancer
(1) data set. We recall that the IF step ranks all the features using KS
statistics and selects the number of features by a tuning-free
procedure. We use the same feature ranking but manually change
the number of retained features. For each m, we select the m top-
ranked features, perform VAE on the unnormalized data matrix X
restricted to these m features, and report the average number of
clustering errors over five repetitions of the VAE. Figure 1 displays the
number of clustering errors as a function of m. An interesting
observation is that as m increases, the clustering error first
decreases and then increases (for a good visualization; Figure 1
only shows the results for m between 1 and 0.1p; we also tried
larger values of m and found that the number of clustering errors
continued to increase; especially, the number of errors increased
quickly when m > 4,000). A possible explanation is as follows:
when m is too small, some influential features are missed, resulting
in weak signals in the VAE step; when m is too large, too many non-
influential features are selected, resulting in large noise in the VAE
step. There is a sweet spot between 200 and 400, and the tuning-free
procedure in the IF step selects m = 251. Figure 1 explains why the IF
step benefits the subsequent VAE step. A similar phenomenon
was discovered by Jin and Wang (2016), but it is for PCA instead
of VAE.
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TABLE 5 Single-cell RNA-seq datasets investigated in this paper. (n: number of
cells; p: number of genes; K: number of cell types).

# Data set K n p

1 Campl 7 777 13,111
2 Camp2 6 734 11,233
3 Darmanis 9 466 13,400
4 Deng 6 268 16,347
5 Goolam 5 124 21,199
6 Grun 2 1,502 5,547

7 Li 9 561 25,369
8 Patel 5 430 5,948

Remark 1 (comparison with other clustering methods for
microarray): Jin and Wang (2016) reported the clustering errors
of several classical methods on these 10 microarray data sets. We
only include k-means and SpecGem in Table 3 because k-means is
the most widely used generic clustering method and SpecGem is
specially designed for microarray data. Table 4 shows the clustering
errors of other methods reported by Jin and Wang (2016), including
k-means++ (a variant of k-means with a particular initialization)
and hierarchical clustering. It suggests that these methods
significantly underperform compared to IF-PCA.

3.2 Comparison of clustering approaches
with eight single-cell RNA-seq datasets

Table 5 tabulates eight single-cell RNA-seq datasets. The data
were downloaded from the Hemberg Group at the Sanger Institute
(https://hemberg-lab.github.io/scRNA.seq.datasets). It
scRNA-seq datasets from Human and Mouse. Among them, we

contains

selected eight datasets that have a sample size between 100 and
2,000 and can be successfully downloaded and pre-processed using
the code provided by the Hemberg Group under the column
‘Scripts’. The datasets Campl, Camp2, Darmanis, Li, and Patel
come from Human, and the data sets Deng, Goolam, and Grun
come from Mouse. Each data matrix contains the log-counts of the
RNA-seq reads of different genes (features) in different cells
(samples). The cell types are used as the true cluster labels to
evaluate the performances of clustering methods. We first pre-
processed all the data using the code provided by the Hemberg
Group, then features (genes) with fractions of nonzero entries <5%
are filtered out. The resulting dimensions for all datasets areshown
in Table 5.

We compare the IF-VAE with three other existing methods: 1)
the orthodox IF-PCA (Jin and Wang, 2016), 2) Seurat (Satija et al.,
2015), and 3) SC3 (Kiselev et al., 2017). The orthodox IF-PCA was
proposed for subject clustering with microarray data. It is the first
time this method has been applied to single-cell data. Seurat and
SC3 are two popular methods clustering single-cell RNA-seq data
(see Sections 2.6 for details). As discussed in Section 2.6, Seurat and
SC3 implicitly use some feature selection ideas and some dimension
reduction ideas, but they are much more complicated than IF-PCA
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TABLE 6 Comparison of the clustering accuracies with the eight single-cell RNA-seq datasets shown in Table 5. The result for SC3 on Patel is NA because all genes
are removed in the gene-filtering step; for this reason, we exclude SC3 when calculating the rank and the regret. To resolve this issue, we also introduce a variant of
SC3 by skipping the gene-filtering step. This variant is called SC3(NGF), where ‘NGF’ stands for no gene filtering. It performs better than the original SC3. It is
important to note that IF-PCA(X) is regarded as the best on average: it has the smallest average regret (boldface) and average rank (boldface). It is also important
to note that the standard deviation (SD) of its rank is only approximately 50% of that of SC3 (NGF).

Data set Seurat SC3 SC3(NGF) IF-PCA IF-PCA(X) IF-VAE IF-VAE(X)
Campl 0.637 0.750 0.627 0.738 0.736 0.660 0.700
Camp2 0.661 0.713 0.759 0.601 0.656 0.393 0.491
Darmanis 0.682 0.826 0.867 0.635 0.747 0.406 0.617
Deng 0.530 0.590 0.754 0.791 0.588 0.607 0.687
Goolam 0.621 0.758 0.629 0.637 0.700 0.612 0.703
Grun 0.994 0.509 0.511 0.740 0.657 0.595 0.753
Li 0.934 0.938 0.980 0.889 0.968 0.848 0.853
Patel 0.898 NA 0.995 0.795 0.934 0.325 0.465
Rank (mean) 35 NA 2.75 3.0 2.75 5.38 3.63
Rank (SD) 1.7 NA 23 1.3 1.2 0.9 1.6
Regret (mean) 0.50 NA 0.37 0.40 0.28 0.90 0.53
Regret (SD) 0.4 NA 0.5 0.3 0.3 0.1 0.3

and have several tuning parameters. Seurat has four tuning
parameters, where m is the number of selected features, N is the
number of principal components in use, ko is the number of clusters
in k-nearest neighbors, and § is a ‘resolution’ parameter. We fix (m,
N, ko) = (1,000, 50, 20) for all datasets (the values of (N, k) are the
default ones; the default value of m is 2,000, but we found that m =
1,000 gives the same results with the eight data sets and is faster to
compute). We choose a separate value of § for each dataset in a way
such that the resulting number of clusters from a modularity
optimization is exactly K [details can be found in Waltman and
Van Eck (2013)]. Seurat is implemented by the R package Seurat
(Hao et al., 2021). SC3 has three tuning parameters, where x,% is a
threshold of the cell fraction used in the gene-filtering step, d, is the
number of eigenvectors in use, and k, is the level of hierarchy in the
hierarchical clustering step. We fix (xo, dy) = (10, 15) and set k, as the
number of true clusters in each dataset. SC3 is implemented using
the R package SC3 (Kiselev et al, 2017). We observed that
SC3 outputs an NA value on the Patel dataset because the gene
filtering step removed all of the genes. To resolve this issue, we
introduced a variant of SC3 by skipping the gene-filtering step. This
variant is called SC3(NGF), where NGF stands for ‘no gene filtering.’
Seurat, SC3, and SC3(NGF) can only be applied to the unnormalized
data matrix X. These methods also have randomness in the output,
but the standard deviation of the clustering error is quite small;
hence, we only run one repetition for each of them. The
implementation of IF-PCA, IF-PCA(X), IF-VAE, and IF-VAE(X)
is the same as shown in Section 3.1.

Table 6 contains the clustering accuracies (number of correctly
clustered cells divided by the total number of cells) of different
methods. For each dataset, we rank all six methods (excluding SC3)
by their clustering accuracies (the higher the accuracy, the lower the
rank). SC3 is excluded in rank calculation because it outputs NA on
the Patel data set. Instead, we include SC3 (NGF), a version of
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SC3 that resolves this issue on Patel and has better performances in
most other data sets; this gives more favor to SC3 in the comparison.
For each data set, we also compute the regret of each method (the
same as in Section 3.1). Similarly, we exclude SC3 but include
SC3(NGF) in the regret calculation. Each method has a rank and
aregret on each data set. The last four rows of Table 6 show the mean
and standard deviation of the eight ranks of each method, as well as
the mean and standard deviation of the eight regrets of each method.

We make a few comments. First, if we measure the overall
performance with eight data sets using the average rank, then IF-
PCA(X) and SC3(NGF) are the best. If we use the average regret as
the performance metric, then IF-PCA(X) is the best method. Second,
a closer look at SC3(NGF) and IF-PCA(X) suggests that their
performances have different patterns. SC3(NGF) is ranked 1 in
some data sets (e.g., Camp2 and Darmanis) but has low ranks in
some other data sets (e.g., Goolam and Grun). In contrast, IF-
PCA(X) is ranked 2 in almost all data sets. Consequently, IF-PCA(X)
has a smaller rank standard deviation, even though the two methods
have the same average rank. One possible explanation is that SC3 is a
complicated method with several tuning parameters. For some data
sets, the current tuning parameters are appropriate, and so SC3 can
achieve an extremely good accuracy; for some other data sets, the
current tuning parameters are probably inappropriate, resulting in
an unsatisfactory performance. In comparison, IF-PCA is a simple
and tuning-free method and has more stable performances across
multiple data sets. Third, IF-VAE(X) is uniformly better than the IF-
VAE; hence, we recommend applying the IF-VAE to the
unnormalized data matrix instead of the normalized one. Last,
IF-VAE(X) significantly improves IF-PCA(X) on Deng and Grun.
This suggests that the non-linear dimension reduction by the VAE is
potentially useful with these two data sets. In the other data sets, IF-
VAE(X) either underperforms compared to IF-PCA(X) or performs
similarly.
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TABLE 7 Values of the Adjusted Rand Index (ARI) for the same data sets and methods as shown in Table 6. Similarly, the average rank and regret of SC3 are denoted

as NA, for it generated NA with the Patel data set.

Data set Seurat SC3 SC3(NGF) IF-PCA IF-PCA(X) IF-VAE IF-VAE(X)
Campl 0.534 0.768 0.526 0.628 0.627 0.606 0.615
Camp2 0.443 0.577 0.502 0.410 0.493 0.162 0.304
Darmanis 0.480 0.682 0.784 0.489 0.650 0.219 0.525
Deng 0.442 0.646 0.669 0.771 0.477 0.487 0.555
Goolam 0.543 0.687 0.544 0.356 0.562 0.410 0.534
Grun 0.969 —-0.066 —-0.060 0.135 0.102 0.023 0.137
Li 0.904 0.951 0.968 0.797 0.940 0.798 0.792
Patel 0.790 NA 0.989 0.598 0.850 0.173 0.235
Rank (mean) 3.62 NA 2.50 3.50 2.50 5.00 3.88
Rank (SD) 1.60 NA 2.20 1.77 131 0.93 1.36
Regret (mean) 0.42 NA 0.30 0.51 0.29 0.84 0.59
Regret (SD) 0.37 NA 0.44 0.40 0.37 0.27 0.33

The bold values indicate the smallest value in that row.

TABLE 8 Comparison of the clustering accuracies of IF-PCA(X), IF-VAE(X), and RacelD.

Camp1 Camp2 Darmanis Deng Goolam Grun Li Patel

IF-PCA(X) 0.736 0.656 0.747 0.588 0.700 0.657 0.968 0.934
[F-VAE(X) 0.700 0.491 0.617 0.687 0.703 0.753 0.853 0.465
RaceID 0.645 0.425 0.290 0.630 0.443 0.583 0.624 0.542

In terms of computational costs, Seurat is the fastest, followed by
IF-PCA. VAE and SC3 are more time-consuming, where the main
cost of VAE arises from training the neural network, and the main
cost of SC3 arises from computing the 7 X n similarity matrix among
subjects. For a direct comparison, we report the running time of
different methods with the Campl1 data set (n =777 and p = 13,111).
IF-PCA is implemented in MATLAB and takes approximately
1.7 min. The VAE and IF-VAE are implemented in Python,
where the VAE steps are conducted using the Python library
keras. The running time of the VAE is 2.7 min, and the running
time of the IF-VAE is 1.4 min. SC3 is implemented via the package
SC3 of Bioconductor in R, and it takes 3 min. Seurat is implemented
using the R package Seurat and takes only 6 s.

Remark 2 (using ARI as the performance metric): The Adjusted
Rand Index (ARI) is another commonly used metric for clustering
performance. As shown in Table 7, we report the ARI of different
methods and recalculate the ranks and regrets. The results are quite
similar to those in Table 6.

Remark 3 (comparison with RaceID): In addition to Seurat and
SC3, there are many other clustering methods for single-cell data
(e.g., see Yuetal. (2022) for a survey). RaceID (Griin et al., 2015) is a
recent method. It runs an initial clustering, followed by an outlier
identification is based on a

identification; and the outlier

background model of combined technical and biological
variability in single-cell RNA-seq measurements. We now

compare IF-PCA(X) and IF-VAE(X) with RaceID (we used the R
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package RaceID and set all tuning parameters to be at default values
in this package). The results are shown in Table 8. We observe that
IF-PCA(X) and IF-VAE(X) outperform RaceID with most data sets.
One possible reason is that the outlier identification step in RacelD is
probably more suitable for applications with a large number of cells
(e.g., tens of thousands of cells).

Remark 4 (combining the IF step with Seurat and SC3): We
investigate whether the IF step of IF-PCA can be used to conduct
feature selection for other clustering methods. To this end, we
introduce IF-Seurat and IF-SC3(NGF), in which Seurat and
SC3(NGF) are applied, respectively, to the post-selection
unnormalized data matrix from the IF step of IF-PCA. Table 9
compares these two methods with their original versions. For Seurat,
the IF step improves the clustering accuracies on Camp1, Darmanis,
and Patel; yields similar performances on Deng, Goolam Grun, and
Li; and deteriorates the performances significantly on Camp2. For
SC3, the IF step sometimes yields a significant improvement (e.g.,
Campl) and sometimes a significant deterioration (e.g., Deng). It is
an interesting theoretical question when the current IF step is
suitable to combine with clustering methods other than PCA.

4 Phase transition for PCA and IF-PCA

Compared with VAE, Seurat, and SC3, an advantage of IF-
PCA is that it is conceptually much simpler and thus comparably
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TABLE 9 Combinations of IF-Seurat with Seurat and IF-SC3(NGF) with SC3(NGF).

10.3389/fgene.2023.1166404

Camp1 Camp2 Darmanis Deng Goolam Grun ] Patel
Seurat 0.637 0.661 0.682 0.530 0.621 0.994 0.934 0.898
IF-Seurat 0.647 0.485 0.779 0.526 0.597 0.986 0.879 0.937
SC3(NGF) 0.627 0.759 0.867 0.754 0.629 0511 0.980 0.995
IE-SC3(NGF) 0.724 0.702 0.796 0.489 0.637 0550 0.998 0.981

easier to analyze. In this section, we present some theoretical
results and show that IF-PCA is optimal in a rare/weak signal
setting.

We are interested in several intertwined questions.

o When the IF step of the IF-PCA is really necessary. As [F-PCA
reduces to classical PCA when we omit the IF step, an
equivalent question is when IF-PCA really has an

advantage over PCA.

o When IF-PCA is optimal in a minimax decision framework.

To facilitate the analysis, we consider a high-dimensional
clustering setting where K = 2, so we only have two classes. We
assume the two classes are equally likely so that the class labels satisfy

iid.

Y, ~2Bernoulli (1/2) - 1, 1<i<m (10)

extension to the case where we replace the Bernoulli parameter 1/2
by ad € (0, 1), which is comparably straightforward. We also assume
that the p-dimensional data vectors X;’s are standardized so that for a
contrast mean vector y € R” (I, standards for the p x p identity

matrix),
X;=Yu+Z,  Z"N(0,1,), 1sisa (11
As mentioned before, we write Y = (Y,Y,,...,Y,),
X =[X1, X0, Xn) = [x1, %2, ..., xp]. It follows
X=Yu +2, where similarly
Z= [ZI)ZZ; e ,Zn]l = [Zl,Zz, .. "ZP]'

For any 1 < j < p, we call feature j an “influential feature” or
“useless feature” if u(j) # 0 and a “noise” or “useless feature”
otherwise. We adopt a rare/weak model setting where (v, stands
for point mass at a)

u()E(1 =)0 + (€5 /2)ms, + (€5 )2)7r,e (12)
For fixed parameters 0 < 6, , a« < 1,
n=ny=p's e=ph  T=p" (13)

From time to time, we drop the subscript of 1, and write n = ,,.
For later use, let

Sp = pep and

Sp(u) ={1<j<p: u(j) # 0} bethe support of p. (14)

It is seen that |S,(u)|~Bernoulli (p, €,) and [S,(u)|/s, ~ 1. Models
(10)-(13) model a scenario where 1 « n < p and
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o (Signals are sparse/rare). The fraction of the influential feature
is p*, which — 0 rapidly as p — oo.

o (Signals are individually weak). The signal strength of each
influential feature may be much smaller than n "%, and the
signals are individually weak; it is non-trivial to separate the
useful features from the useless ones.

(No free lunch). Summing over X either across rows (samples)
or across columns (feature) would not provide any useful
information for clustering decisions.

The model is frequently used if we want to study the
fundamental limits and phase transition associated with a high-
dimensional statistical decision problem (e.g., classification,
clustering, and global testing). Despite the seeming simplicity, the
RW model is actually very delicate to study, for it models a setting
where the signals (i.e., useful features) are both rare and weak. See
Donoho and Jin (2004); Jager and Wellner (2007); Hall and Jin
(2010); Xie et al. (2011); Donoho and Jin (2015); Verzelen and Arias-
Castro (2017) for example.

Compared with the model in Jin and Wang (2016) (which only
considers one-sided signals, where all non-zero u(j) are positive),
our model allows the two-sided signal and so is different. In
particular, in our model, summing over X either across rows or
columns would not provide any useful information for clustering
decisions. As a result, the phase transition we derive as follows is
different from that in Jin and Wang( 2016).

We consider a clustering procedure and let Y € R" be the
predicted class label vector. It is important to note that for any
1 <i < n, both Y; (true class label) and Y; take values from { — 1, 1}.
Let IT be the set of all possible permutations on { — 1, 1}. We measure
the performance of Y by the Hamming error rate:

}, (15)

where the probability measure is with respect to the randomness of
W Y, 2).

Hammp(f’, Y) = HammP(Y, Y; B, 0)

= nlinfﬂogn{ Zn: P(Y,- * 7T0Yi)

i=1

4.1 A slightly simplified version of PCA and
IF-PCA

To facilitate analysis for Models (10)-(13), we consider a slightly
more idealized version of PCA and IF-PCA, where the main changes
are 1) we skip the normalization step (as we assume the model is for
data that are already normalized); 2) we replace feature selection by
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Kolmogorov-Smirnov statistics in IF-PCA by feature selection by
the y” statistics; 3) we remove Efron’s correction in IF-PCA (Efron’s
correction is especially useful for analyzing gene microarray data,
but is not necessary for the current model); and 4) we skip the HCT
choice (the study on HCT is quite relevant for our model, but
technically it is very long, so we skip it). It is also important to note
that the rank of the signal matrix Yz’ is 1 in Models (10)-(13), so in
both PCA and the clustering step of IF-PCA, we should apply
k-means clustering to the first singular vector of X only. Despite
these simplifications, the essences of original PCA and IF-PCA are
retained. A more detailed description of the (simplified) PCA and
IF-PCA is as follows.

In detail, to use PCA for Models (10)-(13), we run the following.

« We obtain the first singular vector of X and denote it by & (this
is simpler than &; we are misusing the notation a little bit here).
o We cluster by letting Y; = sgn(é), 1<i<n.

To be differentiable from PCA in Section 2.2, we may call the
approach the slightly simplified PCA.

In addition, to use IF-PCA for Models (1)-(4), we introduce the
normalized y’-testing scores for feature j by

v, = (IxI° =n) /Van. (16)

By elementary statistics,

v, ~ { N(\/ (n/2) T;, 1),

N(0,1),

if feature j is useful,
otherwise.

Fix a threshold

ty = \2log(p)-

The IF-PCA runs as follows.

« (IF step). We select feature j if and only if y; >17.
o (Clustering step). Let

S={i<j<py;>2t;},

and let X be the post-selection data matrix (which is a sub-matrix of
X consisting of columns in S). Let £ € R" be the first singular vector

of Xs. We cluster by letting
Y, = sgn (&), 1<i<p.

Similarly, to differentiate from the IF-PCA in Section 2.4, we call
this the slightly simplified IF-PCA.

4.2 The computational lower bound
We first discuss the computational lower bound (CLB). The
notion of CLB is an extension of the classical information lower
bound (LB) (e.g., the Cramer—Rao lower bound), and in comparison,
o Classical information LB usually claims a certain goal is not

achievable for any method (which includes methods that are
computationally NP hard).

Frontiers in Genetics

10.3389/fgene.2023.1166404

o CLB usually claims a certain goal is not achievable for any
method with a polynomial computational time.

From a computational perspective, we highly prefer to have
algorithms with a polynomial computation time. Therefore,
compared with classical information LB, CLB is practically more
relevant.

Let s, = pe,,. It is important to note that in our model, the number
of signals is Bernoulli (p, €,), which concentrates at s,. We recall that
in our calibrations, n = p’and s, = p'#, and the strength of individual
signals is 7,. We introduce the critical signal strength by

[p/(ns2)]™, iff<1/2(s0 5, vP).
5= if 1/2<p<(1-06/2)(sovn <s,<p)
s, if (1-6/2)<B<1(s0 1<s,< ).

We have the following theorem.

Theorem 4.1. [Computational lower bound)]. We fix (6, ) € (0,1)
and consider the clustering problem for Models (10)-(13). As p —
oo, if 7,/t5 — 0, then for any clustering procedure Y with a
polynomial computational time, Hamm,, (Y,Y) > (1/2 + 0(1)).

In other words, any “computable clustering procedure”
(meaning those with a polynomial computational time) fails in
this case, where the error rate is approximately the same as that
of random guess. The proof of Theorem 4.1 is long but is similar to
that of [Jin et al. (2017), Theorem 1.1], so we omit it.

Next, we study the performance of classical PCA and IF-PCA.
However, before we perform that, we present a lemma on classical
PCA in Section 4.3. We state the lemma in a setting that is more
general than Models (10)-(13), but we will come back to Models
(10)-(13) in Section 4.4.

4.3 A useful lemma on classical PCA

Suppose we have a data matrix X € RN in the form of

X=Yu +2, Y eRY, ueR™. (17)

In such a setting, we investigate when the PCA approach in
Section 4.1 is successful. We recall that & is the first singular vector of
X. By basic algebra, it is the first eigenvector of the N x N matrix XX,
or equivalently, the first eigenvector of XX' — mly. We write

XX'-mly = |ulPYY' + (Z2Z' = mIy) + (Yu'Z' + ZuY'")
= |ul? - YY' + (ZZ' — mIy) + secondary term.

In order for the PCA approach to be successful, the spectral norm of
llul?YY" should be much larger than that of (ZZ' — mly). It is
important to note that [|#[*YY” is a rank-1 matrix, where the spectral
norm is N|u|I*. In addition, by random matrix theory (Vershynin,
2012), the spectral norm of (ZZ' - mly) concentrates at
(VN + \/ﬁ)z —m = N + 2+/Nm. Therefore, the main condition
we need for the PCA approach to be successful is

Nlul?/ (N +2VNm) - o0.. (18)

We have the following lemma.
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Lemma 4.1. Here, we consider Model (8) where condition (9) holds
and that [|u]|* > log(N + m). Let & be the first left singular vector of X.
When min{N, m} — oo, with probability 1 — o(m?),

min{[|[ VN & + Y lloo, VN & = Ylloo} = 0 (1).

Lemma 4.1 is proved in the Supplementary Material. This result
connects to the recent interests of studying entry-wise large-
deviation bounds of eigenvectors (Abbe et al., 2020; Fan et al,
2022). Our proof is based on a form of Taylor expansion of
eigenvectors. Please see the Supplementary Material for details.

By Lemma 4.1, there is an error vector 7 with [|#]lo, = 0 (1) such
that

VNE=+Y +r; recall that Y; € {-1,1}.

Therefore, if we let }A’i =sgn(¢;) as in the PCA approach in
Section 4.1, then except for a small probability,

Y=2xY.

This says that the PCA approach can fully recover the true class
labels.

4.4 Achievability of classical PCA and IF-PCA

We now come back to Models (10)-(13) and study the
behavior of classical PCA and IF-PCA in our setting. The
computational limits of clustering have received extensive
interest [e.g., (Luo and Zhang, 2022)]. By the CLB (Jin et al,
2017), successful clustering by a computable algorithm is
impossible when :—g — 0, so the interesting parameter range for
PCA and IF-PCA is when

%
T,/T5 — 0.

We first discuss when feature selection by y’-test is feasible. As
mentioned before, let

;= ) (Ix1 - n),
be the feature-wise y*-testing scores and recall that approximately,

v, ~ {N(x/(n/Z) 2,1),

N(0,1),
We can view +/ (rz/z)rlf7 as the signal-to-noise ratio (SNR) for the
x*-test for a useful feature. We have two cases.

if feature j is useful,
otherwise.

o (Less sparse case of < 1/2). In this case, the number of useful
features s, is much larger than \/p and 75 <n %, and the
SNR of y; for a useful feature j may be much smaller than 1,
even though 7,/7§ — co. In such a case, feature selection by
the y*-test is not useful. Consequently, except for a negligible
probability, the IF step of IF-PCA selects all features, so IF-
PCA reduces to PCA.

o (More sparse case of § > 1/2). In this case, the number of useful
features s, is much smaller than /p and 7} >n"' If
T,/T5 — 00, then the SNR of Y — 00 if j is a useful
feature. In such a case, feature selection maybe successful
and IF-PCA is significantly different from PCA.
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Consider the first case and suppose we apply the PCA approach
in Section 4.1 directly to matrix X. Applying Lemma 4.1 with (N,
m) = (n, p) and noting that in this setting,

nllul* ~ ns, 7,
N +2VNm = p +2+/np ~ 2+/np (since n < p),
the PCA approach is successful if

nsp‘r;/xlnp — 00.
Comparing this with the definition of 7}, this is equivalent to

TP/T; — 00, as 0<f< 1/2 in the current case.

We have the following theorem.

Theorem 4.2. (Possibility Region for PCA). We fix (6, ) € (0,1)
and consider the clustering problem for Models (1)-(4). Let v be
the predicted class label vector by the PCA algorithm in Section 4.1.
As p — o0, if

0<B<1/2 (sosp/\/ﬁ —»oo)

T
L o0,
T*

p

and (19)

then Hamm,, (YPm,Y) — 0.
Consider the second case, where we may have successful feature
selection, so it is desirable to use IF-PCA. We assume

1/4

1, /13 > (41og(p))"”", (20)

which is slightly stronger than that of 7 /7, — co. By the definition
of 75, we have that in the current case (where 1/2 < g < 1)

(21)
We recall that S(u) is the true support of y and

§-= {1sjsp: y;2 \/2108(17)}>

is the set of selected features in the IF step of I[F-PCA. We recall that

v, ~ {N(x/(n/Z) 2,1),

N(0,1),
By (20, 21), for any useful feature j, the SNR is

~ \(n/2)7} 2\ (n/2) |4 log (p)n~” = \2log(p).

By elementary statistics, we have that approximately,

if feature j is useful,
otherwise.

P(S + S) =o0(1), where for short § = §(u); same below.

Therefore, except for a negligible probability,
XS =X5 = Y‘Msl +Zs,

where similar as before, ys is the sub-vector of g with all entries
restricted to S, and Xg and Zg are the sub-matrices of X and Z
respectively, with columns restricted to S. Therefore, in the
clustering step of IF-PCA, we are, in effect, applying the PCA
approach of Section 4.1 to Xs where we recall [S|/s, =~ 1.
Applying Lemma 4.1 with (N, m) = (n, |S|) and noting that

N +2VNm = n+2+n|S| ~ n+ 2./ns,,

2
nllugl ~ ns, 7},
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it follows that in order for the clustering step of IF-PCA to be
successful, we need

nsprf,/(n+2\/@) — 00,

(note that when s, <, thisis equivalentto s, T; - oo) (22)

Combining this with (22) and recalling that in the current case,
sp < +/p, IF-PCA is successful when

{ 7, >24log(p)/n,

sprz — 00,
Comparing this with the definition of 7, (23) holds if we

Tp/(\ﬂog(p) T;‘) — 00,

which is slightly stronger than that of 7,/75 — co. We have the

if \n<s,<+/p,

(23)
if s, < /n.

assume

following theorem.

Theorem 4.3. (Possibility Region for IF-PCA). We fix (6, f) € ((‘)jl)2
~if pea

and consider the clustering problem for Models (10)-(13). Let Y
be the predicted class label vector by the PCA algorithm in Section 4.
As p — oo, if

Tp

and —_
log(p)7;

1/2<B<1(sos,/\/p —0)

then, in the IF step of IF-PCA,
P(S#5S()) =o0(1).

Moreover, Hamm,, (Yifp ca, Y)— 0.

4.5 Phase transition

We recall that s, = pe, and that in Models (10)-(13),

n=n,=p’ e =p7, T, =p "
It follows
15 = p""* (‘B’G), where
(1+6-2p)/4, if 0<f<1/2,
a*(B,0) =1 6/4, if 1/2<B<1-6/2,

(1-p)/2 if (1-6/2)<p<1.

We fix 0 < 6 < 1 and consider the two-dimensional space where
the two axes are 3 and «, respectively. Combining Theorems 4.2, 4.3,
the curve a = a*(3, 0) partitions the region {(a, 8): 0 < f < 1, a > 0}
into two regions.

« Region of Impossibility {(«, §): « > a*(f3, 0), 0 < § < 1}. In this
region, the Hamming clustering error rate of any method with
polynomial computation time is bounded away from 0.

o Region of Possibility {(a, B): & < a*(f3, 0), 0 < < 1}. The region
further partitions into two parts: § < 1/2 (left) and 8 > 1/2
(right).
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FIGURE 2

Phase transition for PCA and IF-PCA (6 = 0.6). The (three-
segment) solid green line is a = a*(B, 6), which separates the whole
region into the Region of Impossibility (top) and Region of
Possibility (bottom). In the part of Region of Possibility (8 < 1/

2), feature selection is infeasible, PCA is optimal, and IF-PCA
reduces to PCA with an appropriate threshold. In the right part (8 >
1/2), it is desirable to conduct feature selection, and IF-PCA is
optimal. However, PCA is non-optimal for parameters in the
shaded green region.

o The left is the less sparse case where the number of useful
features s, > /p. For any fixed (a, f8) in this region, the
Hamming error rate of PCA is o(1), so PCA achieves the
optimal phase transition. In addition, in this case, the
signals are too weak individually and feature selection is
infeasible. Therefore, in the IF step, the best we can do is to
select all features, so IF-PCA reduces to PCA.

The right is the more sparse case, where the number of
useful features sp < +/p. For any fixed (a, f3) in this region,
the Hamming error rate of IF-PCA is o(1), so IF-PCA
achieves the optimal phase transition. In addition, in this

case, the signals are strong enough individually and feature
selection is desirable. Therefore, IF-PCA and PCA are
significantly different.

In particular, for any fixed parameters in the region {1/2 <
B<1,(1-0-2B)<a<(1-p)2} (shaded green region of
Figure 2), the Hamming clustering error rate of IF-PCA is o
(1), but that of PCA is bounded away from 0. Therefore,
PCA is non-optimal in this particular region.

See Figure 2 for details.

5 Discussion

IF-PCA is a simple and tuning-free approach to unsupervised
clustering of high-dimensional data. The main idea of IF-PCA is a
proper combination of feature selection and dimension reduction by
PCA. In this study, we make several contributions. First, we extend IF-
PCA to IF-VAE, by replacing PCA with the VAE, a popular UDL
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algorithm. Second, we study the theoretical properties of IF-PCA in a
simple clustering model and derive the phase transitions. Our results
reveal how the feature sparsity and the feature strength affect the
performance of IF-PCA and explain why IF-PCA can significantly
improve the classical PCA. Third, we investigate the performances of
IF-PCA and IF-VAE on two applications, the subject clustering with
gene microarray data and the cell clustering with single-cell RNA-seq
data, and compare them with those of some other popular methods.

We discover that IF-PCA performs
aforementioned applications. Its success with microarray data was

quite well in the

reported by Jin and Wang (2016), but it has never been applied to
single-cell data. To use IF-PCA with single-cell data, we recommend a
mild modification of the original procedure called IF-PCA(X), which
performs the PCA step on the unnormalized data matrix X instead of
the normalized data matrix W. On the eight single-cell RNA-seq data
sets considered in this paper, IF-PCA(X) has the second-best accuracy
in almost all the data sets, showing a stable performance across multiple
data sets. We think IF-PCA has significant potential for single-cell
clustering, as the method is simple, transparent, and tuning-free.
Although the current IF-PCA(X) still underperforms compared to
the state-of-the-art methods (e.g, SC3) in some data sets, it is
hopeful that a variant of IF-PCA (say, by borrowing the consensus
voting in SC3 or replacing PCA with some other embedding methods
[Cai and Ma, 2022; Ma et al., 2023]) can outperform them.

We also find that UDL algorithms do not immediately yield
improvements over classical methods with the microarray data and
the single-cell data. The IF-VAE underperforms compared to IF-
PCA in most data sets; there are only a few data sets in which the IF-
VAE slightly outperforms IF-PCA. The reason can be either that
non-linear dimension reduction has no significant advantage over
linear dimension reduction in these data sets or IF-VAE is not
optimally tuned. How to tune the deep learning algorithms in
unsupervised settings is an interesting future research direction.
Moreover, the theory on the VAE remains largely unknown (Fan
et al,, 2021). A theoretical investigation of the VAE requires an
understanding of both the deep neural network structures and the
variational inference procedure. We also leave this to future work.

The framework of IF-PCA only assumes feature sparsity but no
other particular structures on the features. It is possible that the
features are grouped (Chang et al, 2017) or have some tree
structures (Li et al., 2021). How to adapt IF-PCA to this setting
is an interesting yet open research direction.

In the real data analysis, we assume that the number of clusters,
K, is given. When K is unknown, how to estimate K is a problem of
independent interest. One approach is to use the scree plot. For
example, Ke et al. (2023) proposed a method that first computes a
threshold from the bulk eigenvalues in the scree plot and then
applies this threshold to the top eigenvalues to estimate K. Another
approach is based on global testing. Given a candidate K, we may
first apply a clustering method with this given K and then apply the
global testing methods in Jin et al. (2017) to test whether each
estimated cluster has no sub-clusters; K is set as the smallest K such
that the global null hypothesis is accepted in all estimated clusters. In
general, estimating K is an independent problem from clustering. It
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is interesting to investigate which estimators of K work best for gene
microarray data and single-cell RNA-seq data, which we leave to
future work.
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