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We study the axisymmetric impact of a rigid
sphere onto an elastic membrane theoretically and
experimentally. We derive governing equations from
first principles and impose natural kinematic and
geometric constraints for the coupled motion of
the sphere and the membrane during contact.
The free-boundary problem of finding the contact
surface, over which forces caused by the collision
act, is solved by an iterative method. This results
in a model that produces detailed predictions of
the trajectory of the sphere, the deflection of the
membrane, and the pressure distribution during
contact. Our model predictions are validated against
our direct experimental measurements. Moreover, we
identify new phenomena regarding the behaviour
of the coefficient of restitution for low impact
velocities, the possibility of multiple contacts during
a single rebound, and energy recovery on subsequent
bounces. Insight obtained from this model problem in
contact mechanics can inform ongoing efforts towards
the development of predictive models for contact
problems that arise naturally in multiple engineering
applications.

1. Introduction
Mechanical contact problems arise naturally in countless
industrial and scientific applications. Classical examples
include the study of the deformation and stress in gear
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teeth [1–3], ball bearings and ball joints [4], impact absorbers [5], propagation of stress waves
in colliding solids [6], and models of granular materials [7]. Contact problems also frequently
arise in problems relating to material characterization, where a localized indenter is used to
infer properties of solid substrates [8]. In particular, the mechanical response of elastic films and
membranes under indentation [9–11] has seen recent interest for applications in characterizing
soft polymeric and biological materials [12], or ‘two-dimensional materials’ such as graphene [13].

Several studies in contact mechanics have stemmed from the seminal works of Hertz [14,15],
in which friction effects are neglected, the shape of the contact region (in the vicinity of the
initial contact point) is approximated by a paraboloid, and the resulting contact surfaces are
elliptical. The work of Hertz covered mainly static contacts, yielding predictions that have held
remarkably well. Moreover, Hertz also considered impacts of deformable solids, working within
the framework of quasi-static approximations. In particular, waves generated by the impact were
ignored [14,16].

(a) Non-Hertzian problems
Problems that do not conform to the simplifying hypotheses of Hertz are called non-Hertzian. The
solution to contact problems of this kind involves a free-boundary problem on two-dimensional
surfaces, i.e. finding the bounding curve of the portion of the outer surface of the solids, where
contact happens. Moreover, this free-boundary problem is embedded within a three-dimensional
free-boundary problem, i.e. finding where the deformed external surfaces of the contacting solids
lie in the first place.

These nested free-boundary problems are also coupled; as the extent of the pressed surface
influences the pressure distribution, which in turn influences the shape of the solids, on whose
outer surface lies the contact surface. The coupling of these free-boundary problems brings in
nonlinearities of geometric origin, even when the partial differential equations that govern the
deformation of the solids are linear.

Non-Hertzian contact problems represent a substantial number of cases of interest in
engineering applications. Due to their complexity, analytical solutions are often unavailable and,
thus, they are typically tackled using numerical methods [17]. The nested free-boundary problems
they involve are solved using strategies that include imposing energy minimization principles
[18], and iterating on the extent of the pressed surface until the pressures obtained are all positive
and there is no superposition of the solids outside the region where the pressure is applied [19].

(b) The kinematic match
The model problem of the impact of a rigid sphere onto a deformable substrate has proven to
be very useful in studying the dynamic behaviour of deformable bodies that undergo a collision
[20–25]. Moreover, the transfer of energy to waves during contact was shown to be successfully
captured with relatively simple models in the same set-up [25]. Furthermore, in [23,25], the use
of moving meshes or variational methods, such as the finite-element method, was not strictly
necessary to solve these type of impacts (though there is, in principle, no impediment to use
them); instead, it was sufficient to use the finite difference method, which is easier to program
and, therefore, accessible to a larger community of modellers.

The kinematic match (KM) method, introduced in [23], was first developed as a fully predictive
method to solve the impact and rebound of a rigid hydrophobic sphere onto the free surface
of a bath, an application for which it has been successfully validated using experimental data
(see figs 3a and 11 in [23]; figs 5, 7 and 9 in [24]; and figs 6a and 7 in [25]), as well as direct
numerical simulations (see figs 6b, 7, 9 and 12 in [25]). However, the method has far more general
applications. In particular, the matching conditions imposed by the KM are agnostic in relation to
the type of equations that govern the motion of the impacting surfaces. This fact strongly suggests
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that the modelling of simplified impact problems with the KM can inform future work in diverse
engineering applications of significant complexity.

The KM imposes only the most natural kinematic and geometric constraints to the motion
of the impacting surfaces. Some of the conditions it imposes are common to those already
used in contact mechanics of solids; however, unlike other contact-mechanics methods, the KM
introduces a tangency condition at the boundary of the contact surface. The matching conditions
imposed yield the equations needed to solve the free-boundary problem of finding the pressed
surface and the pressure distribution supported on it. Motivated by the virtues of the KM, we here
present a first effort to apply the KM framework to the solution of non-Hertzian contact problems
of solids. The method promises to be of importance for problems where dynamic effects are
relevant; in particular, those for which the effects of waves caused by collisions are non-negligible.

(c) The model problem
In the present work, we consider the problem of a rigid sphere impacting on an elastic membrane
and we formulate its mathematical representation along the lines of the KM method. Moreover,
we improve the original form of the KM, expanding the compatibility conditions in the pressed
area, while also reducing the size of the resulting system of equations. The resulting equations are
solved numerically, yielding predictions for the contact time, trajectory of the impactor, deflection
of the membrane, coefficient of restitution of the impacting sphere, and the evolution of the
pressed surface as well as the pressure distribution supported on it.

In some cases, it is possible that a decidedly simpler quasi-static model may be appropriate to
model impacts on an elastic membrane. We anticipate this to occur when the kinetic energy of the
membrane during the impact process is negligible when compared with its elastic energy. Such
kinetic and elastic energies can be estimated to leading order by Ek ∼ μΛ2(δ/tc)2 and Ee ∼ τδ2

[21], respectively, where μ is the area density of the membrane, Λ is the membrane radius, τ is the
membrane tension and δ is the maximum deflection of the membrane during an impact occurring
over a time scale tc. By requiring Ek � Ee, we find the condition

τ t2c
μΛ2 � 1 (1.1)

that thus corresponds to the quasi-static limit.
In a tensioned membrane, the wave speed is known to be C= √

τ/μ, and thus a timescale for
wave propagation in the membrane can be defined as tp = Λ/C. Upon substitution, our quasi-
static condition (1.1) can also be reinterpreted as a ratio of time scales

t2c
t2p

� 1, (1.2)

or that the timescale of impact must be sufficiently long when compared with the time scale of
wave propagation. Finally, for a freely impacting mass m, the contact time on a membrane of
constant tension scales like tc ∼ √

m/τ [26], and thus our condition can also be rewritten as a mass
ratio:

m
μΛ2 � 1, (1.3)

or that the mass of the impactor is much greater than the total mass of the membrane. Should the
impact parameters occur outside of this limit, we expect dynamic processes to be important in
determining the subsequent dynamics, requiring a non-Hertzian model.

An experimental set-up was designed to test the predictions produced by our model against
controlled experiments. Our predictions for contact time and maximum surface deflection match
our experimental results remarkably well, while also being in line with prior experimental results
reported in [21].

Section 2 presents the rigorous mathematical formulation of the impact problem, including
the matching conditions of the KM method. Section 3 details the numerical approximations and
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A(t)

S(t)

h(t)

C(t)
L(t)

rc(t)

ψ

z = 0

Figure 1. Schematic of the impact. The elastic membrane is shown with thin grey solid lines outside the contact surface S(t),
and with a thick grey solid line inside S(t). It should be noted that, in this model S(t) is a subset of the graph of η(t), and that
the separation shown is merely for illustrative purposes. The orthogonal projection of S(t) onto the (r, θ )-plane, A(t), is shown
with a thick dark grey dashed line. Curves C(t) and L(t), which respectively bound S(t) and A(t), are seen as points in this cross
section. Variables h(t) and rc(t) correspond to the height of the centre of mass of the sphere and the radius of A(t), respectively.

schemes, as well as the iterative method used to capture the moving boundary of the contact area.
The experimental set-up and procedures are detailed in §4. Comparisons to our experimental
data, together with other predictions of the model here introduced are presented in §5. We
discuss the implications of our findings and describe ongoing directions of development in §6.
Julia, Python and MATLAB codes, used for the computational implementations of the methods
here presented are made available in a public repository, while videos of the experiments, and
animations of the results are made available as electronic supplementary material.

2. Problem formulation
We consider the case of an elastic membrane of mass per unit area μ, supported by a circular rim
of radius Λ, and subject to initial isotropic stress τ (figure 1). We introduce cylindrical coordinates
(r, θ , z) with the rim on the z= 0 plane, the origin at the centre of the rim, and gravity given by
g = −gẑ.

At time t= 0, this elastic membrane lies in equilibrium, deformed by the action of its own
weight, as the lowest point (the ‘south pole’) of a homogeneous rigid sphere of radius R and
mass m, that moves with a velocity v(t= 0) = −V0ẑ, is in imminent contact with the centre of the
mesh (i.e. the height of the south pole coincides exactly with the height of the centre of the at-rest
membrane).

We will consider only axisymmetric impacts in the present work and, therefore, we ignore all
dependence on the θ variable from here on. Non-axisymmetric impacts can also be modelled by
the methods here introduced; however, these will be the subject of a separate article.

(a) Governing equations
We take R, C= √

τ/μ and P= τ/R as the characteristic length, velocity and pressure, respectively;
and we define the following dimensionless numbers:

F := gμR
τ

, L := Λ

R
, U := V0

C
and M := μR2

m
. (2.1)
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We make the simplifying assumptions that the displacement of all points in the membrane
happens exclusively along the z-direction and that the tension on the membrane τ (r, t) is constant
everywhere and throughout the impact.

We define η(r, t) : [0,L] × [0, +∞) →R as the deflection of the membrane, and we introduce the
vertical surface velocity u(r, t) := ∂tη. Disregarding friction between the sphere and the membrane,
the effect of the impact can be modelled by a pressure distribution p= p(r, t) supported on A(t),
the orthogonal projection of the contact surface S(t) onto the (r, θ )-plane (figure 1).

We define κ = κ(η) as twice the mean curvature of membrane, i.e.

κ = ∂rrη

[1 + (∂rη)2]3/2 + ∂rη

r[1 + (∂rη)2]1/2 ; (2.2)

and thus the elevation of the membrane is governed by

∂ttη = −F + κ − p, ∀ (r, t) ∈ [0,L] × (0, ∞), (2.3)

subject to

p(r, t) = 0, ∀ r, t; r /∈A(t), (2.4)

p(r, t= 0) = 0, ∀ r ∈ [0,L] (2.5)

and η(L, t) = 0, ∀ t≥ 0, (2.6)

with the initial conditions given by

κ(η(r, t= 0)) = F, ∀ r ∈ [0,L] (2.7)

and
u(r, t= 0) = 0, ∀ r ∈ [0,L]. (2.8)

We note that equation (2.7) imposes that, as the membrane is about to be hit, it is found at its
equilibrium shape, as dictated by its own weight distribution and initial tension. See appendix A
for a summarized derivation of equation (2.3), which also applies to (2.7), as the steady state form
of (2.3).

We define h= h(t) as the z coordinate of the centre of mass of the sphere and v(t) := h′(t). By
Newton’s second law, we have

v′(t) = −F + M

∫
A(t)

pdA, ∀ t ∈ (0, ∞) (2.9)

subject to
v(t= 0) = −U (2.10)

and
h(t= 0) = 1 + η(r= 0, t= 0). (2.11)

(b) The kinematic match
Four compatibility conditions are imposed. First, on the contact area A(t), the two surfaces must
coincide, that is

η(r, t) = h(t) + s(r) ∀r, t; r ∈A(t), (2.12)

where s is given by the expression for lower hemisphere of the unit sphere centred at the origin,
that is

s(r) = −
∣∣∣∣
√

(1 − r2)
∣∣∣∣ , ∀ r ∈ [0, 1]. (2.13)

Secondly, the velocity of the membrane u must satisfy

u(r, t) = v(t), ∀ r, t; r ∈A(t). (2.14)

Here, we are implicitly assuming that the deformation of the elastic membrane is such that
the surface can be described at all times by a well-defined function of r. This assumption is

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 O

ct
ob

er
 2

02
2 



6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220340

..........................................................

extremely reasonable for the present case, though it is not strictly required by the KM formulation.
Were it violated, the conditions above could be formulated in terms of the contact surface S(t) to
allow the method to be applicable. Furthermore, we assume here that the contact surface changes
continuously.

The third condition requires that, at the boundary of the contact surface S(t) (i.e. the contact
curve C(t)), the deformable surface be differentiable. This is equivalent to

∂rη(r, t) = s′(r), ∀ r, t; r ∈ L(t), (2.15)

where L(t) is the orthogonal projection of C(t) onto the (r, θ )-plane (figure 1).
Our final compatibility condition requires that there be no superposition between the sphere

and the membrane outside of the pressed surface, which is equivalent to

η(r, t) < h(t) + s(r), ∀ r≤ 1, r /∈A(t). (2.16)

We note that, in prior formulations of the KM [23–25], the condition given by equation (2.14)
was not included. Instead, the implementation relied on including equations that satisfied this
condition approximately. The current choice is both more efficient and more accurate, besides
being more physically intuitive.

(c) Further simplifications
In the present problem, we further assume that the pressed area is simply connected; which,
within our axially symmetric configuration, is equivalent to S(t) being a spherical cap centred at
the lowest point of the sphere and, consequently, A(t) being a circle of radius rc(t).

Moreover, we note that, in the equations above, the only nonlinear term is the one given by
κ = κ(η), in equation (2.3); however, this is by no means the only nonlinearity in the problem. The
other source of nonlinearity is ‘hidden’ in the problem of finding the pressed area.

As the main focus of the present work is to present a first application to solid mechanics of a
method to solve the nonlinearity that is intrinsically embedded in this type of impact problem, we
direct the focus of our presentation to this specific nonlinearity; the solution of which, as will be
shown in §3, can be achieved by an iteration on the geometry of the contact surface. Consequently,
we choose to linearize the curvature function where needed. Otherwise, we would be forced to
use nested iterations, unnecessarily obscuring the presentation of the main ideas here considered.

We note that, inside the pressed surface (i.e. ∀ r, t; r≤ rc(t)), we do not need to linearize the
curvature operator κ , as we know that in this region κ = 2, since it is given by two times the
reciprocal of the dimensionless radius of the sphere.

We thus define

κ̌(η; rc) :=
⎧⎨
⎩

2 r≤ rc(t),

∂rrη + 1
r ∂rη r> rc(t).

(2.17)

(d) Summarized model
The axisymmetric impact of a solid sphere at the centre of a tensioned circular membrane is thus
modelled by the solution to

∂tη = u, ∀ (r, t) ∈ [0,L] × (0, ∞), (2.18)

∂tu= −F + κ̌ − p, ∀ (r, t) ∈ [0,L] × (0, ∞), (2.19)

h′(t) = v(t), ∀ t≥ 0 (2.20)

and v′(t) = −F + M

∫
A(t)

p dA, ∀ t≥ 0, (2.21)
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subject to

η(L, t) = 0, ∀ t≥ 0, (2.22)

∂rη(r= 0, t) = 0, ∀ t≥ 0, (2.23)

κ̌(η(r, t= 0)) = F, ∀r ∈ [0,L], (2.24)

u(r, t= 0) = 0, ∀ r ∈ [0,L], (2.25)

p(r, t) = 0, ∀ r, t; r> rc(t), (2.26)

p(r, t= 0) = 0, ∀ r ∈ [0,L], (2.27)

h(t= 0) = 1 + η(r= 0, t= 0), (2.28)

v(t= 0) = −U, (2.29)

η(r, t) = h(t) + s(r), ∀r, t; r≤ rc(t), (2.30)

u(r, t) = v(t), ∀ r, t; r≤ rc(t), (2.31)

∂rη(rc(t), t) = s′(rc(t)) (2.32)

and η(r, t) < h(t) + s(r), ∀ r; rc(t) < r≤ 1; (2.33)

where we are using the symmetry of the problem at the origin to define boundary conditions.
We note that, once the dimensionless numbers F, L, M and U are given, the impact problem is

completely defined.

(e) Quasi-static model
In the quasi-static limit discussed earlier, the free membrane (outside of the contact region)
satisfies Laplace’s equation ∇2η = 0 to linear order for rc ≤ r≤L (neglecting the weight of the
elastic sheet). Recall that rc = sin ψ is the radius of contact between the sphere and membrane
(figure 1), η is the deflection of the membrane, and all lengths non-dimensionalized by R. Under
these assumptions, the deformation has a known analytical solution (with the outer boundary of
the membrane fixed such that η(L) = 0),

η(r) =A0 ln
( r
L

)
. (2.34)

To determine A0, the tangency boundary condition at the point of contact is applied. In other
words,

∂rη(rc) = tan ψ . (2.35)

Thus the solution for the membrane shape becomes

η(r) = rc tan ψ ln
r
L

. (2.36)

Now, we need to determine the radius of contact, rc, that occurs when a sphere is resting statically
on the membrane and displaces the centre of the membrane by an amount δs. We can thus write

δs = −η(rc) + (1 − cos ψ) = −rc tan ψ ln
rc
L

+ (1 − cos ψ). (2.37)

This algebraic equation can be solved numerically for rc for each δs.
Furthermore, in this limit, equations (2.17) and (2.19) imply that p= 2 in the contact region,

and thus the trajectory equation for the sphere (2.21) reduces to

v′(t) = −F + 2MA(t). (2.38)

In the quasi-static model, A(t) is fully determined by the instantaneous δs at time t.
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3. Numerical implementation
We introduce a homogeneous radial mesh with nr + 1 nodes and spacing δr =L/nr. We discretize
time with an adaptive algorithm (detailed in §3b below), sampling time at nt + 1 points.
Moreover, we define the discrete approximations

ηki ≈ η(ri, tk), uki ≈ u(ri, tk), pki ≈ p(ri, tk), h
k ≈ h(tk), vk ≈ v(tk), (3.1)

for i= 1, . . . , nr + 1, and k= 1, . . . , nt + 1; where ri = (i − 1)δr and tk = ∑k
l=1 δkt , with δkt being the

k-th interval in our time mesh, and δ1
t := 0.

The pressed area is resolved to the accuracy provided by the mesh. To that end, we introduce
variable q, which takes the values of each possible number of contact points in our mesh (from 0
to the total number of points under one radius). Variable q represents the ‘candidate number of
contact points’; and, when considering a given q, we assume that the boundary of the contact area
is found exactly at the mid-point between nodes q and q + 1.

The discrete formulation requires that we pose a different system of equations for each possible
value of q; thus generating candidate solutions parameterized by q. We formulate the system for
an arbitrary q in what follows.

We define η
k+1,q
i , uk+1,q

i , pk+1,q
i , hk+1,q and vk+1,q as the candidate solutions associated with the

assumption that there are exactly q nodes in contact at time tk+1; and we use the implicit Euler
method in time and second-order finite difference approximations in space. Hence, from system
(2.18)–(2.33), we have

η
k+1,q
i − δk+1

t uk+1,q
i = ηki , uk+1,q

i − δk+1
t κ̌k+1

i (q) + δk+1
t pk+1,q

i = uki − δk+1
t F, (3.2)

for k= 1, . . . , nt and i= 1, . . . , nr, where

κ̌k+1
i (q) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2 i≤ q,

η
k+1,q
i−1 − 2η

k+1,q
i + η

k+1,q
i+1

(δr)2 + η
k+1,q
i+1 − η

k+1,q
i−1

2(i − 1)(δr)2 i> q, i> 1,

4
η
k+1,q
i+1 − η

k+1,q
i

(δr)2 q= 0, i= 1;

(3.3)

Moreover, for k= 1, . . . , nt, we have

hk+1,q − δk+1
t vk+1,q = hk, vk+1,q − δk+1

t MH(q)pk+1,q = −δk+1
t F, (3.4)

where pk+1,q = [pk+1,q
1 , pk+1,q

2 , . . . , pk+1,q
nr ]T and H(q) is the integral operator, represented by a row

vector, that interpolates the radial direction using the trapezium rule for integration in [0, rq] and
between [rq, (rq + rq+1)/2], with p= 0 for all r≥ (rq + rq+1)/2.

Furthermore; for k= 0, 1, . . . , nt, we have

η
k+1,q
nr+1 = 0, uk+1,q

nr+1 = 0; (3.5)

for i= 1, . . . , nr + 1, we have
u1
i = 0, κ̌1

i (q= 0) = F; (3.6)

for i> q, we have

pk+1,q
i = 0. (3.7)

We also have
h1 = 1 + η1

1, v1 = −U; (3.8)

and, for i≤ q, we have

η
k+1,q
i = hk+1,q

i + si, uk+1,q
i = vk+1,q, (3.9)

with
si = s(ri), for i= 1, . . . , qmax (3.10)
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where qmax is 1 plus the integer part of 1/δr. Also, we have for q< i≤ qmax

η
k+1,q
i < hk+1,q + si. (3.11)

Finally, we define mk+1, i.e. the number of nodes in contact at time tk+1, as

mk+1 := argminq

∣∣∣∣∣∣σq+ 1
2

−
η
k+1,q
q+1 − η

k+1,q
q

δr

∣∣∣∣∣∣ , (3.12)

with

σi+(1/2) = s′
(
ri + ri+1

2

)
; (3.13)

as well as

ηk+1
i = η

k+1,q
i |q=mk+1 , uk+1

i = uk+1,q
i |q=mk+1 , pk+1

i = pk+1,q
i |q=mk+1 , (3.14)

for i= 1, 2, . . . , nr + 1, and

hk+1 = hk+1,q|q=mk+1 , vk+1 = vk+1,q|q=mk+1 . (3.15)

At each time step, mk+1 is to be found using an iterative method, detailed in §3b below. We
note that, on a non-moving mesh, condition (3.13) can only be satisfied to the accuracy of δr.
An approach based on the finite-element method, using the spine method for moving meshes, is
being developed and will be detailed in a separate article.

(a) Systemmatrices
The discrete version of our impact problem can be summarized as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

I −δk+1
t I 0 0 0

δk+1
t A(q) I δk+1

t I 0 0

0 0 0 1 −δk+1
t

0 0 −δk+1
t H(q) 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ηk+1,q

uk+1,q

pk+1,q

hk+1,q

vk+1,q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ηk

uk

hk

vk

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0

U (q)

0

−δk+1
t F

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3.16)

where ηk = [ηk1, ηk2, . . . , ηknr ]
T and uk, ηk+1,q, uk+1,q, pk+1,q are defined analogously. Moreover, I

is the identity matrix of size nr × nr, A(q)i,j = 0 if i≤ q, and
∑

j A(q)i,jη
k+1,q
j = κ̌k+1

i (q), otherwise.
Moreover,

U (q) = δk+1
t (V(q) − FR), (3.17)

where R is a column vector of ones with nr entries, and Vi(q) = 2 if i≤ q, and Vi(q) = 0, otherwise.
The system above is rectangular of size (2nr + 2) × (3nr + 2), but it can be reduced to a square

system of size (2nr − q + 2) × (2nr − q + 2) by imposing our constraints. To make the process of
implementing constraints as transparent as possible, we introduce the following notation.

Given matrix B, we define [B]q as the matrix composed of the first q columns of B, and [B]q
′

as the matrix formed by all columns of B, except for the first q. An entirely analogue definition is
done with rows of B, and sub-indexes, so that

B =
[
[B]q [B]q

′] =
⎡
⎣ [B]q

[B]q′

⎤
⎦ =

⎡
⎣ [B]qq [B]q

′
q

[B]qq′ [B]q
′
q′

⎤
⎦ , (3.18)

with [B]qq := [[B]q]q and analogously for the other three blocks in the rightmost matrix above.
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Applying the constraints of the problem, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[I]q
′
q′ −δk+1

t [I]q
′
q′ 0 0 0

δk+1
t [A(q)]q

′
[I]q

′
δk+1
t [I]q X Y

0 0 0 1 −δk+1
t

0 0 −δk+1
t [H(q)]q 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ηk+1,q]q′

[uk+1,q]q′

[pk+1,q]q

hk+1,q

vk+1,q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

[ηk]q′

uk + W
hk

βk

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3.19)

where

X = δk+1
t [A(q)]q[R]q, Y =

⎡
⎣[R]q

0

⎤
⎦ , (3.20)

W = U (q) + [A(q)]q[S]q (3.21)

with
S = [s1, s2, . . . , sqmax ]T (3.22)

and
βk = vk − δk+1

t F. (3.23)

The manipulations above transform the problem of finding the solution of the next time step
to the solution of a square linear system of the form

M(q, δk+1
t )xk+1(q) = bk(q, δk+1

t ), (3.24)

with 2nr − q + 2 unknowns, under the assumption that the correct contact area for that time step
contains exactly q points. However, q itself is an unknown, and it will be found using an iterative
method. We highlight that once we solve system (3.24) for a given candidate number of contact
points q, conditions (3.11) and (3.12) are yet to be verified. These two conditions will be checked to
determine which value of q is assigned to mk+1, using equation (3.12) and following the method
presented in §3b below.

(b) An iteration on the geometry
Our assumption that the contact surface S(t) changes continuously is reflected, in our discrete
approximation, by the condition that the boundary of the contact area can move by at most one
interval of the spatial mesh per time step. To properly impose the condition, we must be able
to reduce the time step whenever this is needed to capture the velocity of the boundary of the
contact area.

The continuous dependence of the location of C(t) on time implies that, at any given time,
we only need to look for the location of the boundary in the vicinity of its previous location.
Consequently, our implementation, described in appendix B, is based on finding the closest local
minimum in tangency error (see equation (3.12)).

In practice, we only test up to five points (the previous number of contact nodes plus and
minus one and two nodes) before we decide if a reduction of the time step is needed. Once we
have calculated the tangency error for each of these five configurations (or less in some cases) we
can determine whether the local minimum in tangency error is at most δr away from the location
of the boundary of the contact area at the previous time step. If this is the case, we accept that
solution as the best approximation that our non-moving mesh can provide for the location of
L(t), and assign the value of mk+1, accordingly. Alternatively, if the local minimum is found two
points away from the previous location of the boundary, we halve the time step and repeat the
procedure.

The algorithm implemented enlarges the time step when the need for an extra fine step is
overcome. This is achieved by testing larger time steps when these do not need to be reduced.
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Nevertheless, the algorithm also includes restrictions to prevent unchecked growth of time
steps. To this end, two additional conditions are imposed to control the rate at which the time
step increases, there is a maximum allowed time-step size, explicitly prescribed, and there is a
condition to only allow a time step to be twice the prior time step at most. The latter condition is
mainly meant to have a relatively regular sampling in time. Furthermore, we ensure that every
integer multiple of the maximum allowed time step is used as one of the discrete times in our
algorithm. This allows the use of regular time samples for visualization of results.

The procedure described relies on our finding that the tangency error s′(rc(t)) − ∂rη(rc(t), t)
behaves monotonically in all cases tested. In particular, it is always found to be positive for
pressed areas that are larger than the optimal, and negative for pressed areas that are smaller
than optimal; replicating the situation found in the case of impacts on the free surface of a fluid
bath (see fig. 2 in [23]).

In the simulations presented in what follows, the spacing of the radial mesh and the maximum
allowed time step are chosen so that halving either yields a difference of less than one per cent
in contact time and maximum surface deflection. This was achieved by setting δr numerically in
such a way that, in dimensionless units, δt ≤ δr ≤ 5 × 10−3. A github repository with all the code
needed to replicate our results was made available at https://github.com/elvispy/kinematic-
match-sphere.

4. Experiments
A rendering of the experimental set-up is depicted in figure 2. In each trial, spheres were dropped
from a mechanical iris that is connected to a 2-degree-of-freedom linear stage that allows for
precise and repeatable release of the spheres. The elastic membrane is clamped to a square
holding plate with circular cut-out, which is then stretched over a hollow vertical cylinder of mean
diameter 105 mm. The membranes used in these experiments are HYTONE LS-034 natural rubber
latex sheets of thickness 0.3 mm and have a material density of 0.98 g cm−3. The top edge of the
cylinder is rounded with a 5 mm radius to ensure smooth contact with the membrane. The vertical
cylinder can be precisely levelled by adjusting three levelling spring supports. The membrane
holding plate is then securely fastened to an optical table. The vibration isolation provided by the
optical table ensured minimal disturbances on the membrane prior to impact. A Phantom Miro
LC311 camera with a Nikon Micro 200 mm lens was used for the video capture. The camera was
mounted directly on the optical table with the back edge of the camera elevated slightly for a
downward viewing angle of approximately 5◦. Images were captured at 10 000 frames per second
with an exposure time of 99.6µs. Two spheres of diameter 4.73 mm and different densities were
used in this study: one of SAE 304 stainless steel ρs = 7.93 g cm−3 and the other of Silicon Nitride
ceramic ρs = 3.25 g cm−3. Release heights were varied to achieve impact velocities from 25 to
100 cm s−1.

Spheres were released from the mechanical iris at a range of heights, beginning at
approximately one sphere diameter above the membrane. To characterize error, a minimum of
five trials were completed at each height, and spheres were routinely cleaned using isopropyl
alcohol and dried before being re-used in the experiments. After each increase in height, the
membrane was wiped using dust-free optical lens cleaning paper. The raw video data were
processed using a custom code written in MATLAB that uses a Canny edge detection. The top and
bottom edges in the image corresponding to the north and south poles of the sphere, respectively,
were then recorded. Initial contact (t= 0) was determined as the time where the actual sphere and
its reflection in the membrane first met. Due to the slight downward angle of the camera toward
the membrane, this instant was resolved in all trials. During contact, the south pole was obscured
by the membrane edge, and the trajectory of the south pole of the sphere was determined by
shifting the top trajectory down by one sphere diameter. For the range of impact speeds tested,
the top point on the sphere was resolvable for all times during contact.

To determine the membrane tension, we placed a large solid stainless steel sphere of radius
R= 15.875 mm at the centre of the membrane and measured the maximum static displacement
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maximum 
deflection

t

initial 
impact

5 mm

phantom Miro LC311

elastic membrane

back-light

translation 
stage

mechanical iris(a) (b)

(c)

Figure 2. (a) A three-dimensional rendering of the experimental set-up. (b) Ceramic sphere resting on a tensionedmembrane.
(c) A sequence of images depicting the initial stages of impact and subsequent bounce for a ceramic sphere of diameter
D= 4.73 mm. The time interval between images is 1 ms. (Online version in colour.)

δs. To relate these to the membrane tension τ , we balance the vertical forces on the sphere at
equilibrium using the static membrane solution outlined in §2e and rearrange to get

τ = 2ρsR2g

3r2
c

. (4.1)

In summary, we measured δs from a still camera image, then solved for rc numerically in equation
(2.37) and used equation (4.1) to determine the tension. Additionally, we compared the solution of
the linearized problem above to the solution including the fully nonlinear curvature term (which
yields a catenoid solution [26]) and found negligible quantitative differences for our current
experimental parameters.

In the present work, contact time, tc, is defined as the time duration from when the bottom of
the sphere touches the membrane to the time the bottom of the sphere returns to that height. Due
to the nature of visualization set-up, it was impossible to accurately determine when the spheres
lost physical contact with the membrane. Each bounce is also characterized by its coefficient of
restitution, α, which is defined here as the negative of the normal exit velocity, Ve, divided by
the normal impact velocity, V0. The exit velocity is taken to be the velocity of the top of the
sphere measured exactly at the contact time, tc. Ve and V0 are determined by fitting a quadratic
polynomial to both the incoming and outgoing trajectories in MATLAB, ensuring that at least
30 data points (frames) were used in each fit to minimize error. Additionally, we measure the
maximum membrane deflection δ as the lowest point in the bottom trajectory of the sphere. Error
bars are quantified as the standard deviation of the respective measurement over at least five
experimental trials.

5. Results
Our simulations show the sphere landing on the membrane, deforming it as the pressed surface
expands, and bouncing back as the pressed surface contracts and then vanishes (figure 3).
Simulations are run until the centre of the membrane starts to move downward, following lift-off.
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Figure 3. Simulation of impact and rebound for F= 1.648 × 10−4, M= 5.142 × 10−4, L= 10 and U= −1.944 ×
10−2. The trajectories of the centre of the membrane (black circle) and the lowest point of the sphere (white circle) are used
to define the contact time, maximum deflection and coefficient of restitution of the impact. The dashed line corresponds to
the z = 0 plane. Panels correspond to: (a) imminent impact at t = 0, (b) maximum absolute deflection, (c) imminent take-off
and (d) flight following rebound.

However, the method is able to capture repeated bounces, as shown in a video animation of
these results, which is made available as electronic supplementary material. We follow [25] and
we check that all simulations satisfy the condition |∇η(r, t)| < 1, throughout the simulation, as a
consistency check for our linear approximation of curvature outside the pressed area.

To facilitate comparisons with the experimental results, we measure tc, δ and α (as defined in
the experiments). However, it should be noted that there is no difficulty in obtaining the exact time
at which the sphere detaches from the membrane in our simulations, therefore it is also possible
to use such an instance as the basis for the definition of contact time and coefficient of restitution,
if needed.

(a) Comparisons to experiments
We compare our full simulation and corresponding quasi-static model predictions to our
experimental results for the set-up described in §4 using two different sphere densities over a
range of impact velocities. In our experiments, the non-dimensional quantity m/(μΛ2) defined
in equation (1.3) takes a value 0.22–0.54, signifying that we are outside of the quasi-static regime
for the parameters considered here. Our predictions for contact time tc and maximum surface
deflection δ are in line with our experimental results for both sphere densities used, and our
predictions for the coefficient of restitution α match the experiments for the lower sphere density
case, as can be seen in figure 4. Agreement in the coefficient of restitution is not equally good for
the larger density sphere. This error in the coefficient of restitution is, to some extent, expected in
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Figure 4. Comparison of full simulation predictions (solid lines), quasi-static model predictions (dotted lines), and
experimental measurements for contact time (a), maximum surface deflection (b), coefficient of restitution (c) and south
pole trajectory (d) for Λ = 52.5 mm, R= 2.38 mm, μ = 0.3 kg m−2 and τ = 107 N m−1 (i.e. L= 22.06, F= 6.54 ×
10−5), for both ρs = 3.25 g cm−3 (blue lines and markers) and ρs = 7.93 g cm−3 (red), (i.e.M= 9.26 × 10−3 andM=
3.79 × 10−3). Experimental values are shown with error bars using the same colour coding as solid lines that represent
model predictions. Trajectories of the south pole are compared for L= 22.06, F= 6.54 × 10−5,M= 9.26 × 10−3 and
U= 3.34 × 10−2. (Online version in colour.)

the case of heavier spheres; in which the resulting larger deformation may mean that dissipation
mechanisms and material nonlinearities, not considered in the present model, are of importance
to the rebound. The quasi-static model underpredicts the contact time and overpredicts the
maximum surface deflection for the cases studied in figure 4. Furthermore, we measure α < 1
indicative of energy transfer to the membrane during impact, an effect that is captured by the full
model but not the quasi-static model. The general trends in our data and predictions, specifically
the near independence of the contact time and coefficient of restitution with the impact velocity
and the approximate linear relationship between the maximum deformation and impact velocity,
are consistent with classical predictions of the rebound of a linear mass-spring-damper model
under weak gravity [27].

The agreement of our predictions with the experiments is not limited to the metrics mentioned
above, the full trajectory is also well predicted by our method. In figure 4d, we compare the
prediction for the trajectory of the ‘south pole’ of the sphere with the experimental measurement
of the trajectory for the same physical parameters. The corresponding prediction of the quasi-
static model is also shown, with poorer agreement to the measured trajectory. In particular,
the quasi-static model is unable to capture the asymmetry between the incoming and outgoing
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segments of the trajectory. Videos of an experiment and an animation of the simulation results for
this bounce are made available as part of the electronic supplementary material.

We also attempted a comparison of our model predictions with the results reported in [21].
Unfortunately, a direct comparison was impossible, as the membrane tension used for each
bounce was not reported. Instead, [21] reports a range of tensions used in their experiments.
Given the information provided, the best that we could do was to test whether our predictions
for that range of tensions was in line with their results. Indeed, our results for the minimum and
maximum tensions reported in [21] produced an interval of possible values for the maximum
deflection and the contact time that is consistent with the experimental results obtained in [21] for
the lighter spheres used in that work. Coefficients of restitution were not reported in [21].

(b) Further findings
One benefit of the present model is that it allows us to obtain detailed predictions for the evolution
of variables such as the pressure distribution, which is more difficult to measure experimentally.
Moreover, our model enables us to explore regimes that are challenging to experiment on, such
as the low U limit; in which, incidentally, our modelling assumptions are more readily satisfied.

(i) Coefficient of restitution

An important quality of the method here considered lies in the fact that it captures the mechanism
by which waves are generated over the contact. There are several useful implications of this virtue
of the KM. In particular, we are able to estimate the transfer of energy to the impacted surfaces.
This is reflected, for example, in the possibility to successfully predict the coefficient of restitution
that results from the impact of a rigid solid onto a complex substrate, as was shown in [25].

We highlight that one should be careful to define the coefficient of restitution on a vertical
bounce for which contact starts and ends at different heights (see the discussion in §5.3 in [25]).
If our interest is to quantify the transfer of energy during the rebound, the most adequate way to
define the coefficient of restitution is

β :=
√
Em

out
Em

in
, (5.1)

where Em = Ek + Ep, with Ek being the kinetic energy of the sphere, and Ep is the potential energy
of the sphere measured with the zero reference level taken at z= 1 + η(r= 0, t= 0), i.e. the height
of the centre of mass of the sphere when the impact starts. Moreover, the sub-indexes in Emin and
Em

out refer to the instants when landing and take-off are imminent, respectively. Note, we define
the end of contact differently for the purpose of this analysis.

It should be noted that, if the sphere never returns to the impact height (as is the case for the
lowest impact velocity with ρs = 3.25 g cm−3), the definition above yields imaginary coefficients
of restitution. To avoid imaginary numbers in the characterization of our rebounds, we will
instead use β2 as our rebound metric, with the understanding that a negative value for β2 implies
a complete transfer of the initial energy of the sphere to the membrane plus an additional transfer
to the membrane of the gravitational potential energy that the sphere had at the moment of first
contact.

We take L = 22.06 and F = 6.54 × 10−5, with M = 9.26 × 10−3 and M = 3.79 × 10−3; as in the
experiments reported in figure 4, and we explore the low U limit, going from the minimum
velocities needed to produce a rebound to the maximum velocities used in the experiments. The
dependence of β2 on U is reported in figure 5. In figure 5a, we can see that the coefficient of
restitution depends weakly on the impact velocity only for the range of impact speeds explored
in the experiments reported in figure 4. A different situation is observed in low-impact-velocity
limit, amplified in figure 5b, where there are clear changes in the fraction of energy that is
recovered by the sphere, as the impact speed approaches the minimum speed for rebound.
This behaviour is accompanied by a rise in the contact time as the minimum rebound speed is
approached. This increase in contact time is by less than a factor of 2 in every case here considered.
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Figure 5. Simulation results for the dependence of the coefficient of restitution squared on impact velocity for L= 22.06
andF= 6.54 × 10−5, withM= 9.26 × 10−3 (blue) andM= 3.79 × 10−3 (red). Impact velocities in (a) range from the
minimum velocity required to produce a rebound to themaxima of the range explored by the experiments. Panel (b) zooms into
the lowU limit. (Online version in colour.)

The behaviour of the system in this regime reflects the one observed for impacts on the free surface
of a fluid bath for low Weber numbers (see fig. 12b and 12e in [25]), thus establishing that this
phenomenon is not exclusive to impacts occurring on a fluid.

We note that the curve that corresponds to ρs = 7.93 g cm−3, in figure 5 shows some corners
of numerical origin. These follow from the fact that, on a non-moving mesh, the contact area can
only be approximated to the accuracy of the mesh, and therefore the radius of the contact area
of some slightly different impacts will differ in their approximation by a full mesh interval. In
cases of extremely weak impacts, the contact area can be so small that this error represents an
appreciable fraction of the contact radius. That is, the jumps in the prediction reflect the jump in
the approximations of the contact area. A similar effect was observed in the case of impacts on a
fluid surface in [25] (see in fig. 12.e the curve for R= 0.25 mm). This effect is reduced with the used
of a finer mesh; however, when using a uniform spatial mesh (as is the case here), this requires
refining the mesh everywhere, which comes at an inconvenient computational cost. This problem
will vanish with the introduction of a moving mesh, which is part of our ongoing work.

(ii) Contact surface and pressure distribution

The KM method also allows us to produce detailed predictions of the evolution of the contact
surface and the pressure distribution on it. Figure 6 shows the evolution of the pressed
radius as a function of time, for F = 6.54 × 10−5, L = 22.06, M = 9.26 × 10−3; with four different
experimental values of U =V0/C. The non-smooth nature of the curve shown in figure 6 is a
natural consequence of our use of a non-moving mesh. A similar behaviour can be observed in
the use of the KM for the case of impacts on fluids surfaces (see figs 8 and 9 in [23]).

The asymmetry in the curves in figure 6 is responsible for the transfer of momentum to the
membrane. Indeed, if the membrane had no mass, the impact problem would become quasi-
static, and the work done on the sphere by the membrane would be equal in magnitude, but
of opposite sign, on the way down and the way up of the sphere, thus not allowing for energy
transfer to the membrane.

Figure 7 shows the evolution of the radial distribution of pressure for a typical rebound in
these studies (F = 6.54 × 10−5, L = 22.06, M = 9.26 × 10−3 and U = 3.34 × 10−2). Figure 7 shows
the pressure distribution as the pressed area expands following first contact (a); and as it contracts
on its way to take-off (b). It can be clearly seen that the pressure has an approximately constant
value over the entire pressed area and throughout the duration of the impact. This value is,
naturally, very close to the one given by the curvature contribution (i.e. 2 in the present non-
dimensionalization, see equations (2.18) and (3.3)); as, in the examples here considered, the inertia
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Figure 6. Simulation results for the evolution of dimensionless contact radius as a function of time for F= 6.54 × 10−5,
L= 22.06,M= 9.26 × 10−3, for different values ofU= V0/C. (Online version in colour.)
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Figure 7. Simulation results for pressure as a function of r for different times during contact. (a) The evolution of the pressure
field as thepressed area expands, and (b) as it contracts. The casehere presented corresponds toF= 6.54 × 10−5,L= 22.06,
M= 9.26 × 10−3 andU= 3.34 × 10−2. (Online version in colour.)

of the membrane beneath the sphere is very small, when compared with that of the sphere itself
(M � 1).

It is worth mentioning that, in the case of impacts on a fluid surface, the pressure underneath
the impactor clearly shows a spike near the boundary of the pressed area as the impactor moves
downward (see fig. 8 in [25], and fig 3g and 3f in [28]). The fact that here we do not observe such
a spike in pressure is consistent with the claims made in [25], which suggested such spikes are
indeed caused by the fluid flow under the liquid surface.

(iii) Multiplicity of contacts

While carrying out the investigations described above, we were also able to identify that, for
certain parameter regimes, multiple contacts occur before the centre of the membrane moves
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Figure 8. Evolution of the touch-down and take-off times as a function of initial velocity for F= 1.81 × 10−4,L= 16.54,
M= 7.11 × 10−3. (Online version in colour.)
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Figure 9. Double bounce as seen in experiments (L= 13.08, F= 2.29 × 10−4, M= 5.62 × 10−3 and U= 8.23 ×
10−2).

downward a second time. Such double contacts were observed in simulations as well as in
experiments.

For F = 1.81 × 10−4, L = 16.54, M = 7.11 × 10−3, we track the contact between the sphere and
membrane in our simulations and we summarize the results in figure 8. The low U limit does
not show signs of multiple contacts. These appear at intermediate values of U =V0/C, and the
duration of the intermediate flight slowly increases with U.

We highlight that flights in between two contacts reported in figure 8 are extremely short
periods of mid-rebound flight, which are very difficult to measure in the experiments, and
consequently it was not possible to verify these experimentally. Nevertheless, double contacts
can be observed in some experiments for relatively higher U. Figure 9 shows one of these double
contacts, observed in the experiments. A video of this double bounce is also made available as
electronic supplementary material, for a case in which this can be clearly seen. Unfortunately,
these experimental rebounds with double contacts correspond to relatively strong impacts, which
somewhat escape the linearity assumptions of our model, so a direct comparison was not realistic,
and indeed our model did not predict a double rebound in the case for which it is was observed
in the experiments.

We note that, when the sphere lifts off for the first time, the membrane enters a free oscillation
regime, in which the configuration of the membrane is described by a (potentially infinite) sum
of standing modes, each with a different oscillation frequency. At the same time, the sphere is
slowing down following lift-off, as fast oscillating modes in the membrane are to catch up with
the south pole of the sphere once again.
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Figure 10. Spatio-temporal diagram composed of three-pixel-wide central slices for rebound experiment with L= 13.08,
F= 2.29 × 10−4,M= 5.62 × 10−3 and U= 8.39 × 10−2. Each slice is separated by 0.19 ms. The sequence illustrates
that a second impact can produce a coefficient of restitution greater than one, recovering previously transferred energy back
from the vibrating membrane. (Online version in colour.)
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Figure 11. Example of second bounce with α > 1 found in the simulations. The simulation corresponds to L= 22.1987,
F= 6.50 × 10−5,M= 3.82 × 10−3 andU= 3.62 × 10−2.

(iv) Non-monotonic decay of bouncing

Experimenting with somewhat stronger impacts, we are able to identify regimes in which a
second rebound results in a coefficient of restitution that is greater than one (α > 1). In particular,
this was observed in a case when the second impact happens as the centre of the membrane is
moving downward (as if in phase with the impactor). Figure 10, which is constructed by placing
three-pixel-wide central slices of the images on the bounce, illustrates this phenomenon. The
figure clearly shows that during its second impact, the sphere is able to recover some of the energy
it had bestowed to the membrane during the first bounce. A careful inspection of the first bounce
in figure 10 reveals that the phenomenon reported in figs 8 and 9 is also present in this rebound.

A second bounce with α > 1 can also be seen in the simulations (figure 11), proving that the
model is able to capture this type of inertial effect. Moreover, we note that in all cases where we
found α > 1, whether in experiments or in simulations, the sphere impacts the membrane as the
centre of the membrane is moving downward, indicating that such an impact phase contributes
to this effect.

Figure 11 presents a sample case for which a second bounce with α > 1 is predicted in the
simulations. A larger second bounce is also found in the experiments for these parameters.
However, the second bounce is particularly sensitive to the first coefficient of restitution, as
a differing flight time leads to a different impact phase. In particular, a direct quantitative
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comparison between model predictions and experimental results for this effect is currently
impractical; as even a slight mismatch in the coefficient of restitution of the first impact
(compounded by experimental uncertainty on the impact velocity) leads to different flight times
(and impact phases) between consecutive bounces in the simulations. Regardless, this inertial
effect is qualitatively observed in both experiment and simulation throughout wide parameter
ranges. Even further experimental and modelling refinements would be necessary to achieve
quantitative agreement, and will be the subject of future work.

6. Discussion
The application of the KM method to the model problem here considered reveals the richness
of what at first glance might appear as an exceedingly simple mechanical system. In particular,
the possibility to model non-Hertzian effects allows us to capture behaviour that results from the
wave-mediated exchanges of energy between the colliding solids.

The exploration of a parameter regime that lies away from the quasi-static limit (characterized
by equations (1.1) and (1.2)) reveals new phenomena in both experiments and simulations. In
particular, we have shown that the energy exchange with wave field in the membrane can lead
to complex behaviour that includes multiple contacts over a single rebound, and non-monotonic
decay of the rebound amplitude. These effects attest to the need for models of the present kind to
have reasonable predictions for the coefficient of restitution, such as the ones given here.

For the range of impacts most readily accessible in experiment, the coefficient of restitution
depends only weakly on impact velocity; it increases with the radius of the sphere, and it also
increases for increased sphere density, when all other parameters are kept constant.

In the low impact velocity (low U), we observe the existence of a local maximum in the
coefficient of restitution for certain radii, as well as negative values of the squared coefficient
of restitution. To the best of our knowledge, these behaviours have never been identified in the
impact of two solids. However, both effects have recently been shown to occur in impacts of
solid spheres onto the free surface of a bath [25]. These findings are a strong indication that the
analogous observations in impacts on fluids are not caused by fluid motion, but are instead a
more general effect.

The predicted pressure distributions are approximately constant and equal to the curvature
contribution over the pressed area. This is expected, as the mass of the membrane is small in the
contact region in comparison to that of the sphere. The contrast between the pressure distribution
found in this case and in the case of impacts on fluids supports the claim, made in [25], that the
peaks in the distribution observed in the case of impacts on fluids are caused by fluid motion
effects.

We highlight also that the present work allowed us to improve the prior version of the KM
conditions. Moreover, this improvement will benefit the modelling of impacts on the free-surface
of a fluid, as well all other future applications of the KM.

In summary, the present work constitutes the first application of the KM method for solids,
while also providing experimental validation of results, and leading to the identification of
previously unreported phenomena related to the transfer of energy in these impacts and multiple
contacts over a single rebound event. Moreover, our work informs the study of analogous impacts
on fluids by providing strong indications for causation of behaviours previously reported for
those systems. Furthermore, the article improves the KM method, goes into extensive detail on
the technicalities involved in reproducing the calculations here presented, and provides all code
needed for independent verification and extension of our work.

(a) Future directions
A closely related problem was studied by Eichwald et al. [22], who considered the case of a
rigid sphere bouncing on a membrane that hermetically encloses a volume of air underneath
it. The membrane and the air chamber below it are made to oscillate vertically, thus interacting
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with the bouncing sphere. They observed period doubling transitions into chaotic bouncing and
related their results to the study of similar dynamical systems, in which a droplet bounces on the
free-surface of a vibrating bath [29] and for which the KM has already been used successfully
[23,24]. The exploration of the system presented in [22], using the fully predictive methods here
introduced, is a potential natural extension of known applications of the KM.

Similar set-ups to those presented here and in [21,22] were studied by Gilet and Bush in [26,30],
though in their case, the membrane was replaced by a fluid film and the sphere with a droplet.
The methods here presented are also ideally suited to model system of this sort, provided the
integrity of the fluid membrane is maintained during the rebound.

Our ongoing work includes the numerical implementation of the fully nonlinear form of
equation (2.3), the use of higher order methods in time, the inclusion of the dependence of
membrane tension on deformation (controlled by the elastic modulus), the determination of the
threshold that separates impactors that rebound off the membrane after impact from those that
no longer detach after the first contact, the detailed study of the coefficient of restitution, and
an in-depth analysis of the rebounds that can recover energy from the membrane, as shown in
figure 10.

Future ramifications of the present work also include the consideration of vibrating set-ups
such as the ones covered in the work of [22], the study of impacts on fluid membranes, such
as the one considered by Gilet & Bush [26], and the implementation of impacts by deformable
spheres on deformable substrates.

Furthermore, the problem of a rigid body impacting a deformable solid is clearly a free
boundary problem. That is, the boundary C(t) of the pressed surface S(t) (figure 1) is an unknown
curve that separates two regions where different partial differential equations are to be solved.
Therefore, it is more appropriate to treat the problem with a moving mesh whose nodes are able
to follow the moving boundary exactly. A finite-element method implementation that uses the
spine method to track moving boundaries is being developed to more adequately impose the
matching conditions in system (2.18)–(2.33). This implementation is of particular interest, given
that it can be generalized to manage non-symmetric impacts in a natural way. Moreover, with
only a few changes, the method can be adapted to model impacts in which both impacting bodies
deform, greatly increasing the number of potential engineering applications of it.

Given that the KM is agnostic in relation to the form of the equations that govern the behaviour
of the impacting surfaces, the methods here implemented have great potential for broader
applications. In particular, this opens the possibility to use it to model inelastic collisions, and the
plastic deformation that comes with them, in a fully predictive way and in very general set-ups.
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Appendix A. Governing equation for the elastic membrane
For simplicity, we derive the equations in Cartesian coordinates. We recall our assumption that the
membrane deforms exclusively in the z-direction, and thus we consider the dimensional vertical
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η

τ

p

W

t̂

Figure 12. Schematic of the forces acting on an arbitrary element of the elastic membrane for a case with negative surface
elevation (η < 0) and membrane-element weightW = μgA . (Online version in colour.)

deflection of the membrane η(x, y, t) in an arbitrary surface element S , whose projection on the
(x, y)-plane is given by A . Thus, the z-component of Newton’s second law of motion for this
arbitrary membrane element in dimensional form is given by

μ

∫
A

∂ttη dA = −gμ
∫
A

dA −
∫
S

p
〈
n̂, ẑ

〉
dS + τ

∫
C

〈
t̂ × n̂, ẑ

〉
dl, (A 1)

where C is the boundary of S , ẑ is the unit vector pointing in the direction of the z axis, and
we recall that μ is the mass per unit area of the membrane, which is assumed to be constant,
p= p(x, y) is the pressure distribution on top of the membrane (which is positive when it points
into the membrane), τ is the isotropic stress of the membrane (i.e. normal force per unit length),
which is also assumed constant in time and space, n̂ is the upward-pointing unit vector that is
normal to the membrane, and t̂ is the unit tangent vector to the curve C , which is oriented so that
t̂ × n̂ points in the direction of the membrane traction stress (figure 12).

The left-hand side of (A 1) corresponds to the mass of the surface element times the acceleration
of the centre of mass while the right-hand side has the contribution of the downward force exerted
by gravity, the normal forces due to the pressure distribution, and the isotropic stress (which is
pulling away from the membrane element in the direction that is tangent to the membrane and
normal to C ), respectively.

We define F(x, y, z) = z − η(x, y, t); and, consequently,

n̂(x, y) = ∇F
|∇F| , (A 2)

i.e.

n̂= (−∂xη, −∂yη, 1)T√
(∂xη)2 + (∂yη)2 + 1

. (A 3)

Moreover, ∫
S

p 〈n, z 〉 dS =
∫
A

pdA , (A 4)
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and we have

〈
t̂ × n̂, ẑ

〉
=

〈
t̂, ŷ

〉
∂xη −

〈
t̂, x̂

〉
∂yη√

(∂xη)2 + (∂yη)2 + 1
, (A 5)

where x̂ and ŷ are the unit vectors that point in the direction of the x- and y-axes.
Defining an auxiliary vector field w, so that w : (x, y, z) �→ (−∂yη, ∂xη, 0)/|∇F|, which is smooth

in a neighbourhood of S ⊂R
3, we can express the line integral in A1 as

∫
C

〈
t̂ × n̂, ẑ

〉
dl=

∫
C
w · dl=

∫
S

〈∇ × w, n̂
〉

dS , (A 6)

where the last equality follows from Stokes’ theorem.
We note that

∇ × w=
⎛
⎝0, 0, ∂x

∂xη√
(∂xη)2 + (∂yη)2 + 1

+ ∂y
∂xη√

(∂xη)2 + (∂yη)2 + 1

⎞
⎠

T

, (A 7)

and, therefore, we have

〈∇ × w, n̂
〉 = (∇ · n̂)

〈
n̂, ẑ

〉
, (A 8)

which implies

∫
S

〈∇ × w, n̂
〉
dS =

∫
S

(∇ · n̂)
〈
n̂, ẑ

〉
dS =

∫
A

(∇ · n̂) dA , (A 9)

where κ(η) = ∇ · n̂ is exactly twice the mean curvature operator.
Together, equations (A 1), (A 4), (A 9) allow us to write

∫
A

μ∂ttη dA =
∫
A

(−gμ + τκ(η) − p) dA . (A 10)

Now, since A is arbitrary, we must have

μ∂ttη = −gμ + τκ(η) − p. (A 11)

Finally, we note that the steady-state version of equation (A 11), used for the initial condition
is obtained when the left-hand side and the pressure term are both equal to 0.

Appendix B. Algorithm
A general pseudocode used as a template for the different implementations of our method is
given in algorithm 1.
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Algorithm 1. Pseudocode for the algorithm implemented in this work.

1 begin
2 InitialiseProblemConditions();
3 int i = 0; int j = 0;
4 while simulationTime ≤ finalTime do
5 recalculate ←− False;
6 oneLess ←− tryAdvancingOneStep(δk+1

t , contactPoints −1);
7 samePoints ←− tryAdvancingOneStep(δk+1

t , contactPoints);
8 oneMore ←− tryAdvancingOneStep(δk+1

t , contactPoints +1);
9 minimum ←− min(oneLess.error, samePoints.error, oneMore.error);

10 if minimum == samePoints.error then
11 currentVariables ←− samePoints;
12 else if minimum == oneMore.error then
13 twoMore ←− tryAdvancingOneStep(δk+1

t , contactPoints +2);
14 if oneMore.error < twoMore.error then
15 currentVariables ←− oneMore;
16 else
17 recalculate ←− True;

18 else if minimum == oneLess.error then
19 twoLess ←− tryAdvancingOneStep(δk+1

t , contactPoints −2);
20 if oneLess.error < twoLess.error then
21 currentVariables ←− oneLess;
22 else
23 recalculate ←− True;

24 if recalculate == True then
25 δk+1

t ←− δk+1
t /2; i←− i + 1; j←− 2j ;

26 else
27 simulationTime←− simulationTime + δk+1

t ; j←− j + 1;
28 if j%2 == 0 then
29 δk+1

t ←− 2δk+1
t ; i←− i − 1; j←− j/2;

30 if 2i == j then
31 j←− 0;
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