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ABSTRACT. We provide a new global strict Lyapunov function construction for
a susceptible, infected, and recovered (or SIR) disease dynamics that includes
quarantine of infected individuals and mass vaccination. We use the Lyapunov
function to design feedback controls to asymptotically stabilize a desired en-
demic equilibrium, and to prove input-to-state stability for the dynamics with
a suitable restriction on the disturbances. Our simulations illustrate the po-
tential of our feedback controls to reduce peak levels of infected individuals.

1. Introduction. The recent COVID-19 pandemic has motivated the development
of significant new control theoretic methods for disease dynamics, e.g. [2, 23, 33]
to name a few. While such models may enjoy asymptotic convergence to states in
which the disease is no longer present in a population even if no controls are used,
it is of interest to apply feedback design in such models, to reduce peak levels of
infection, and thereby reduce the numbers of fatalities and reduce the burden on
the medical community. Feedback design entails comparing the effects of different
state dependent parameters in dynamical systems, with a view towards choosing
state dependent parameters that produce desirable asymptotic stability properties
for the systems. Such state dependent parameters are called feedback controls,
and they differ from open loop controls that are typically used in optimal control
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theory, which depend on time but not on the state. Feedback controls are useful for
representing possible mediation efforts that can be used during a pandemic, such
as quarantining or vaccination, subject to physical constraints that can arise from
factors like limited availability of vaccines or other medical resources and logistical
considerations.

Feedback design is usually done in conjunction with the construction of a strict
Lyapunov function for the dynamics on the entire state space of the system. A strict
Lyapunov function is a positive definite and radially unbounded function whose time
derivative along all trajectories of the system is upper bounded by a negative definite
function of the state [16, 21]. This decay condition ensures asymptotic convergence
to a desired equilibrium vector. Starting from a candidate Lyapunov function for
a controlled dynamical system, feedback design usually involves choosing the feed-
back control in order to make the time derivative of the Lyapunov function satisfy
a desired decay condition along solutions of the feedback controlled system. Strict
Lyapunov functions are also useful when one needs to study robustness properties
with respect to uncertainties in the model. In engineering, one important robust-
ness property is input-to-state stability (or ISS) [27], which implies that bounded
uncertainties produce bounded states and which coincides with global asymptotic
stability when the uncertainty is the zero function. One typically proves ISS by
constructing a special type of strict Lyapunov function, called an ISS Lyapunov
function. For linear time invariant systems, constructing strict Lyapunov functions
is often an elementary task that involves linear matrix inequalities. However, for
nonlinear systems, the construction of ISS Lyapunov functions is not always easy.

While there are works on constructing strict Lyapunov functions for time-varying
linear or nonlinear systems [21, 31, 32], we believe that the problem of constructing
strict Lyapunov functions for SIR models with quarantine and vaccination on their
entire spaces was open, owing to their bilinearities involving products of states.
Here, we solve this problem in a recursive way. First, we build a strict Lyapunov
function for a basic two-dimensional SI model. In the second step, we modify
the strict Lyapunov function from the first step to cover a more general model
with vaccination. Finally, we transform the Lyapunov function from the second
step into a strict Lyapunov function for cases with vaccination and isolation. The
last step uses the triangular structure of the dynamics. The augmented Lyapunov
function and its time derivative contain all the state variables as desired. Our strict
Lyapunov functions are ISS ones with explicit expressions, which enable us to prove
ISS properties and design stabilizing feedback controls. Our simulations illustrate
how our new feedback controls can reduce peak levels of infected populations in our
models.

A key ingredient in our strict Lyapunov function constructions is the non-classical
use of logarithmic functions that had been used to build nonstrict global Lyapunov
functions (meaning, Lyapunov functions whose time derivatives along solutions of
the dynamics are only required to be nonpositive) [18, 26, 29]. For a given controller,
nonstrict Lyapunov functions can sometimes verify the asymptotic convergence of
trajectories to an equilibrium, with the help of LaSalle’s invariance principle. How-
ever, nonstrict Lyapunov functions generally only lead to heuristic ways to find
controllers. Moreover, the nonstrictness property usually cannot quantify the ef-
fects of uncertainties, even if the uncertainty magnitude is arbitrarily small. More
importantly, in prior literature, it is commonly assumed that the inflow is fixed
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to keep the total population constant [17], which precludes the possibility of con-
sidering uncertainties in total populations in ISS. To achieve ISS and remove the
assumption of constant total population, a strict Lyapunov function was proposed
in [9] for a simpler three state SIR model. However, the Lyapunov function ob-
tained in [9] is semi-global and not differentiable, and it leads to discontinuities in
controllers which make them less amenable to implementation than more standard
continuous feedback controls.

The major drawback of semi-global Lyapunov function constructions is that the
negativity of their time derivatives is only on a subset of the state space, instead of
being on the entire state space. The dependency of the negativity condition on the
domain size makes the Lyapunov function inconvenient, insofar that it cannot be
directly used in feedback control design because the time derivative is not conducive
to indicating the performance of the controls. This work improves on the semi-global
results [9, 10, 11, 12] for two- and three-dimensional models, by providing global
strict ISS Lyapunov functions for higher dimensional systems which are conducive to
ensuring ISS and to constructing continuous feedback controls. Therefore, [9, 11, 12]
motivate our global strict Lyapunov function constructions in this work that are
more conducive to control design.

The SIR model with quarantine is sometimes called the SIQR model. It has been
used widely for prediction and interpretation of infectious diseases [8, 14]. Recently,
the model was used to estimate the basic reproduction number and to interpret sta-
tistical figures of the COVID-19 outbreak in Brazil [6]. The SIQR model was also
used to describe the COVID-19 outbreak in Japan, and to compare the effectiveness
of quarantine versus lockdown measures [24]. The work [1] focused on numerical
techniques to compute solutions to epidemic models. It also applied the Routh-
Hurwitz criterion to the Jacobian approximation of the SIQR model to numerically
detect bifurcations. Its local stability analysis applies under constant inflow (i.e.,
constant immigration and newborn rates). The work [8] on the SIQR model con-
structed a Lyapunov function in the so-called feasible region that is widely used in
quasi-steady-state stability analysis under the assumption of constant inflow. The
Lyapunov function contains only partial state measurements, and only leads to a
nonpositive time derivative for the Lyapunov function. Hence, LaSalle’s invariance
principle was used in [8], and combined with a stability analysis for the remaining
variables to complete the stability analysis. A similar approach was pursued in
[20] by incorporating culling (i.e., elimination) into the SIQR model to study dis-
eases in animals and quarantining for humans, under fixed constant values for the
vaccination, quarantine, and culling rates. By contrast, our novel construction of
a strict ISS Lyapunov function for the entire four-dimensional SIQR model on its
entire state space combined with our feedback control approach enables us to quan-
tify the effects of perturbations of the immigration/newborn rates using ISS, while
also quantifying the effects of using different vaccination rates as state-dependent
feedback controls. This has the potential to make our treatment more amenable to
more realistic cases where the immigration/newborn rates are uncertain, and where
a comparison is called for to compare the effects of different vaccination rates. Also,
since [1] and [20] are not based on strict Lyapunov function constructions for the
full SIQR model, they are not amenable to proving ISS results.

We use the following standard definitions and notation, which we simplify when
no confusion would arise. The dimensions of our Fuclidean spaces are arbitrary
unless we indicate otherwise. We use | f|s (resp., |f|s) to denote the usual sup norm
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of a bounded function f over its entire domain (resp., a subset J of its domain).
Let I denote the set of all strictly increasing continuous functions « : [0, +00) —
[0,400) such that «(0) = 0; if, in addition, « is unbounded, then we say that « is
of class Ko,. We say that a continuous function 3 : [0, +00) x [0,400) — [0, +00)
is of class KL provided for each fixed s > 0, the function §(-, s) belongs to class K,
and for each fixed r > 0, the function B(r,-) is non-increasing and S(r,s) — 0 as
s — 400. A system of the form &(t) = f(z(t),e(t)) with a state space X C R™ is
called input-to-state stable (or ISS) [16] on X with respect to a disturbance set S
provided: There are § € KL and v € K such that for each initial state z(0) € X
and each locally bounded piecewise continuous function € that is valued in S, the
unique solution x(t) satisfies [x(t)| < B(|z(0)[,t) + v(leljo,4) for all £ > 0.

2. SIR model with quarantine and vaccination. Our main model for which
we will construct our strict Lyapunov function and feedback controls is

S(t) = B +e(t) — p(t)S(t) — uS(t) = BI(t)S(1), (1a)
1(t) = BS(OI(t) = (v + v+ p)(t), (1b)
Q(t) = vI(t) — (t+pQ(1), (1c)
R(t) = ~I(t) +7Q(t) — pR(t) + p()S(1), (1d)

whose positive valued states S, I, @), and R are numbers of susceptible, infected,
quarantined, and recovered individuals, respectively [14]. The positive parame-
ters 3, v and p are the contact/transmission rate, the recovery rate and the non-
associated mortality rate, respectively. The parameter v > 0 is the rate at which
infected individuals are isolated [14]. The parameter 7 > 0 is the reciprocal of the
average time spent in isolation, and the constant B > 0 is the immigration/newborn
rate. The piecewise continuous locally bounded function € represents the immigra-
tion/newborn perturbation, and we assume that it satisfies

e(t) > —B for allt > 0, (2)

which ensures that the positive orthant (0,400)* is a forwardly invariant set for
(1), meaning, each state component stays positive for all ¢ > 0 if the initial state
for (1) is in (0, 4+00)*. The vaccination rate p is

p(t) = p+ u(t), (3)
where the control u (which will be specified in our theorem, and which will depend

on time ¢ through its dependence on state components of the system) is valued in
[—p,+o00) and p is a positive constant, which produces the system

S(t) = B = (p+ p)S(t) = BI(1)S(t) — u(t)S(t) + €(t), (4a)
I(t):ﬁs(t) () = (v +v+wI), (4b)
Qt) = vI(t) = (T + wQ(1), (4c)
R(t) = ~vI(t) +7Q(t) — uR(t) + pS(¢) + u(t)S(1). (4d)
We assume that
BB > (p+p)(v+ v+ p), (5)

which is equivalent to the usual condition that the basic reproduction R satisfies
Ry > 1; see also Remark 4 below for a discussion on Ry, and see Remark 1 for more
on the derivation of the preceding model.
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Let \=~vy4+v+pand x = p+ p. When e =0 and u = 0, the system (4) admits
the componentwise positive (endemic) equilibrium point

(8*7 I*) Q*7 R*) =

<2’f‘;’Tiu(f‘z)’i[@+722)<§‘;>+iﬂ)'(Q

With the choices
5_ () f*—ln( ) (gS7Q7R):(5_5*75_5*7Q_Q*7R_R*)

(7)

and 1, = \ef*,
we can then use the relation
B—(x+pe) S, =B [x+5(4-%)|3=B-p%3 =0 (8)
to obtain
é t) =BS(t), (9a)

U

(

3(6) = = (x+ BeE4E) §(0) + b (1- eE0) - e(t) —u()S(1),  (9b)

Qt) =vet (50— 1) = (v + w)Q(1), (9¢)

R(t) =ye (50 = 1) + 7Q(t) — pR() + pS(1) + u(t)S(2) (9d)
Q

with £(t) € R, S(t) € (=5,,+00), Q(t) € (—Qx, +00) and R(t) € (—R,,+o0) for
all t > 0. Finally, we assume that

< —.
‘€|oo_ 1 (10)

Our first goal in the next section is to find a strict Lyapunov function for (9) on
its entire domain & = R x (=S, +00) X (=Qx, +00) x (=R, 4+00) when u = 0 and
e = 0. By the change of variables that transformed (1) into (9), this is equivalent
to finding a strict Lyapunov function for (1) and (6) on the positive orthant when
u =0 and € = 0. Then, we will use this strict Lyapunov function for (9) to show
that, for a suitable class of control functions u that are valued in [—p, +00), the
controlled system (9) satisfies ISS with respect to the immigration perturbation e(t)
with the disturbance set & = [— min{B, ¥, /4}, ¥, /4].

Remark 1. In the special case where p = ¢ = 0 and B = pu, (1) agrees with
the SIR model with quarantine in [14, Equation (8.6)] under the assumption in
[14] that S(t) + I(t) + Q(t) + R(t) = 1 for all ¢ > 0, which calls for our use
of the coefficient —(7 4+ ) in the @ dynamics. As usual, model (1) employs the
simple mechanism of massively vaccinating the susceptible population [14, Equation
(8.6)] in the SIR model with isolation [14, Equation (8.24)]. Model (1) can be
viewed as a four-dimensional core of the six-dimensional model for the study of
controlling SARS outbreaks without vaccines, and it includes disease-associated
death in the population R [14]. Importantly, this paper employs B + €(t) for the
newborn/immigration value to analyze the robustness of the nonlinear model with
respect to its uncertainty e. Hence, in addition to incorporating uncertainty and
feedback control, a key difference between (1) and the popular models is that the
model (1) does not require that the total population is S(t)+I(¢) +Q(¢) + R(¢t) = 1.
The models in [14, Equations (8.6) and (8.24)]) use u instead of B + €(¢) in order
ensure that the total population at all times is S(t)+1(t)+Q(¢) + R(t) = 1. In fact,



6974 HIROSHI ITO, MICHAEL MALISOFF AND FREDERIC MAZENC

the normalization excludes the idea of globalness and perturbation in the robustness
analysis. Model (1) removes the constant unity assumption on the population size
for the study of global stability and robustness. In the special case where the
perturbation is ¢ = 0 and when the vaccination rate p(t) is replaced by zero, the
model (1) is identical to the model in [8, Equation (6)].

3. Strict Lyapunov function for (9). In terms of the constants from the pre-
ceding section, any constants ¢ > 0 and g > 0, the constants

B 142 2 2, , (c+ 1)y
k1 = max {X R |:28€ + 23 || (11)
4ex? ) 4
ko =k + + e+ D)y | —/————~ 12
vkt (5 e+ 00 ot (12)
~(2ex? | (c+ 1) 160
ko W@)ex | . (L+0)? _ (T +p)e
ky = @, ¢ = 3 +cet*, ¢ = o and ¢y = T2 (14)

and the functions

U6.5) = 55+ 5 |5+ Ko (e )rﬂ”/jm(eé_l—é), (15)

J.(£,5) = [1+cs+§+ce (e’f—l)], (16)

and

1

3 \/k4+min{kl374\/5u}7”—\/al ) (17)

we prove the following, where we write the controls u as functions of ¢ alone to
keep the notation simple but where u will later depend on the state of (9), and
where part (b) implies ISS of (9) with the controls u (by standard results from [16,
Chapter 4] on the sufficiency of the existence of the ISS Lyapunov V. to have ISS):

Ne(r) =

Theorem 3.1. The following conclusions hold: (a) The time derivative of

VES QR =UES) + L[5+ (£-1) v Qv R + 20> )
along all trajectories of (9) satisfies

Velt) < = No(Va(€(), S(1), Q(t), R®)) + Jo(€(1), SB)E W) + S.)u(?)

+eyle(®)] + [cb + g} (t)? (19)
2p
for allt > 0, all piecewise continuous functions

€:[0,400) = [— min{ B, ¥, /4}, 1. /4], (20)

and all control functions u. (b) For each feedback control u(t) such that
Jo(E(t), S(6))(S(t) + S.)u(t) <0 (21)
for allt > 0, the function V, is an ISS Lyapunov function for (9) on its state space
X =R x (=854,4+00) X (—Qy, +00) X (=R, +00) (22)

for the disturbance set S = [—min{B, 1, /4}, V. /4]. O
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Remark 2. Condition (21) provides a systematic procedure for feedback control
design, namely, we choose any u that is bounded below by —p and that satisfies
(21) along all solutions of (9); see for instance (76). Since the constant ¢ > 0 arises
n (21), different choices of ¢ produce different feasible stabilizing feedback controls.
We illustrate the effects of changing ¢ (and the benefits of using nonzero choices
of u) in our simulations below. The presence of g in the V. formula implies that
different choices of g lead to different rates of convergence of V. to zero.

4. Proof of Theorem 3.1. The proof has three parts. In the first part, we build
a strict Lyapunov function for the SI dynamics corresponding to (1) (i.e., where
the R and @ variables are not present), using three key lemmas that we prove in
the appendix. The first of these lemmas provides nonstrict Lyapunov functions
which we later transform into a strict Lyapunov function for the SI dynamics using
a novel variant of the strictification approach [21]. In the second part, we build
a strict Lyapunov function for the SIR dynamics corresponding to (1) (i.e., where
@ is not present), using the first part of the proof. In the final part, we apply a
cascade argument to the result from the second part to prove the theorem. Since
the strict Lyapunov functions for the SI and SIR models that we construct in the
proof of the theorem are of independent interest from both the mathematical and
practical points of view, we state these two constructions as additional lemmas.

4.1. SI model. We consider the system

S(t) =B — xS(t) — BS)I(t) + 6(¢), (23a)
i(t) =BS(H)I(t) — M(2), (23D)

where S and I are valued in (0,400), and B > 0, x > 0, 8 > 0, and A > 0
are constants, and the piecewise continuous locally bounded function § represents
uncertainty. In this subsection, we use ¢ instead of € to represent the uncertainty,
because when we apply this work from this subsection to later subsections, we will
choose

0 = 61 + 02, where 61 = € and d5 = —Su (24)
for a suitable control u and the € from our theorem. Throughout this subsection,
we assume that (0, +00)? is a forward invariant set for (23), which will be the case
if

o(t)y>-B (25)
for all ¢ > 0. We assume that the inequality
BB > xA (26)

is satisfied. The inequality (26) ensures that (23) admits the componentwise positive
equilibrium

(Sn2) = (3.5 - %) (27)
when 6 = 0. Changing coordinates using the variables (7) as in the previous section
transforms (23) into

E(t) =BS(1), (282)
S == (x + BeE0+e) §(8) + i (1— €0 4 6(t) (28b)

with v, defined by (7) as before, and with £(¢) € R and S(t) € (—S,, +00) for all
t>0.
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In terms of the function U, we defined in (15), and the functions

Vl(gvg):%‘gz—’—%(eé_l_é)a (29)
w@@:%ﬁ+g+é*é—gr+%@ﬂd—@, (30)

and
We(a,b) = (x + Be®T) b% + i, [%a + €&+ (e — 1)} (e —1), (31)

for any constant ¢ > 0, our first three lemmas are as follows, where the first lemma
can be interpreted to mean that Vi and V5 are weak (or nonstrict) Lyapunov func-
tions for (28) when § = 0 in the sense of [21]:

Lemma 4.1. The time derivative of the functions Vi and Vo defined in (29) and
(30) satisfy

Vi) = = (x + BeE0+¢) §(1)% + S(1)a(t) (32)
and
Va(t) = = % (e50 1) [xé(t) + et (50 —1)]
+ [S(t) +XE() + et (eﬂt) . 1)} 5(1) (33)
respectively along all trajectories of the system (28) for all t > 0.
Lemma 4.2. For all (a,b) € R2, the inequality
g 2

W.(a,b)* + ———
c2p?x? iy (% + eg*)

We(a,b) > a? (34)

is satisfied.

Lemma 4.3. The constants k3 and k4 defined in (13)-(14) are such that
k4 + éUC(av b) - \/H < %Wc(av b) (35)
holds for all (a,b) € R2.

See the appendix below for proofs of Lemmas 4.1-4.3. We next use the preceding
lemmas to provide our strict Lyapunov function construction for the ST model (28).
In terms of the function J,. from (16) and the constants ¢4 and ¢, that we defined
in (14), our strict Lyapunov function for (28) is provided by the following lemma,
which shows that U, is a strict Lyapunov function for (28) on its state space when
6=0:

Lemma 4.4. With the choices of Ue, Je, and We in (15), (16), and (31), the time
derivative of the function U.(€,S) along all trajectories of the system (28) satisfies

Ue(t) = =We(&(t), S(1) — Je(€(1), S(1)5(t) (36)
for allt > 0. Also, when § has the form
6(t) = 61(t) + 02(2) (37)

where 61 is a piecewise continuous function such that

01]0e < %, (38)
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then, with the choices of ¢y, ¢y, k3, and ky defined in (13)-(14), the inequalities

Ue(t) < =5 Wel€(t), 5(1)) — Je(€(1), S5(1))d2(t) + el (t)] + ¢,61(1)? (39)

and

= (ks + U S@) - V)
= Je(£(1), 5(1))d2(t) + o1 (£)] + 01 () (40)
hold along all solutions of (28) for all t > 0.
Proof. Since
UC(E,S):Vl(g,S)‘FCVvQ(f,S), (41)
we deduce from (32) and (33) that (36) is satisfied. Then, when §(¢) = 91 (¢) +d2(t),
we have
Uc(t) = 7Wc(§7S) - Jc(fas)él *Jc(€75)52 (42)
Here, and in the rest of the proof, time derivatives of functions are along all solutions

of (28) for all ¢ > 0. To complete the proof of the lemma, we first consider the case
where 6o = 0. Then

U.t) = — (x+ 5e5+€*) 52— {“ﬁ;xé (e5 - 1) + et (eé - 1)1 )
+ [0+ 05+ FE+eet (£ -1)] b,

Using the triangle inequality to get
(1+¢)56; < 357 + 252, (44)

we obtain
Uty < — (g + ﬁeéﬁ*) g2 _ [cibﬁ*xg (eg B 1) b (eé B 1)2] -

T [%f—i— ceb+ (eg — 1)} 61 + 07

where ¢, is the constant defined in (14). Next, we distinguish between two cases.
1) |€] < In(2). Then (45) gives

Uelt) < — (% + /BeéJrf*) 52 — [Cwﬁ*xé (eé - 1) + cipuets (e5 - 1)2]

+ [Z (@) + e ] 181 + 2. (46)

2) |€] > In(2). Then |eé — 1| > 3. Consequently, since
E(e* —1) = |€]le* — 1], (47)
we can use (45) to get
) . . - . 2
Ue(t) < — (% +ﬁe£+5*) 52— 2 [ ( ) + i, e (ef — 1) }

= 4 (500 v e =) (18] + e [ = 1] 1o
+ ¢y07. (48)
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From (38), we deduce that in case 2), we have
) . . P . 2
Ue(t) < — (% + ﬂe“f*) 521 {Cwﬁ*xf (eE — 1) + ey, et <65 - 1) }
+ ¢y07. (49)

We deduce that in both cases, U.(t) < —%WC(E(t),S'(t)) + 4|61 ()| + 01 (8)%. Tt
follows that (39) is satisfied when d2 = 0. To check that (39) is also satisfied when
02 is not necessarily 0, it suffices to notice that U,/ dS = —J,. Finally, Lemma 4.3
ensures that (40) is satisfied. O

4.2. SIR model. We next consider the more sophisticated model

8(t) = B+ e(t) — p(t)S(t) — pS(t) — BI(1)S(D), (50a)
I(t) = BSHI(t) — (v + wI(t), (50b)
R(t) = yI(t) — pR(t) + p(t)S(t). (50c)

where S, I and R are valued in (0,+00), and where B, u, 8, and v are positive
constants. The variables S and I and constants have the same interpretations as in
the preceding subsections, and R is the number of recovered or resistant individuals,
as a result of mass vaccination of susceptible individuals. The piecewise continuous
locally bounded function e represents uncertainty as before.

Let the vaccination rate p(t) be represented by

p(t) = p+u(b), (51)

where p > 0 is a constant, and the control u satisfies u(t) € [—p, +o0) for all ¢ > 0.
We assume that the analog

BB > (p+m)(y+ ) (52)
of (26) is satisfied. We also use the notation A = v+ p and x = p + p and S, and
& from (6) and (7). Let

R, = i (ves* + pS.). (53)
Notice that

_ _ 1B =

Re= e t 55 (54)
Also, (52) implies that (26) is satisfied. The inequality (52) ensures that with the
choices in (6), the componentwise positive vector

(S,I,R) = (54, I, Ry) (55)

is the endemic equilibrium for a given constant B > 0 when € and u are the zero
function. Then, with S and £ defined in the previous section, and with R = R — R,
and 1, defined as in (7), the reasoning that led to (9) produces the system

£(t) =BS(t), (56a)
S() = = (x+ B St + v, (1= E0) 4 e(t) —u(®)S(1),  (56D)
R(t) =veb (50 — 1) — uR(t) + pS(t) + S(t)u(t) (56¢)

with £ valued in R, and with S(t) € (=S,, +0c) and R(t) € (—=R,,+oc) for all t > 0.
As in the preceding subsection, we assume that €(¢) is a piecewise continuous
function that is valued in & = [— min{B, v, /4}, 1, /4] which ensures the forward
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invariance of the state space as before. In terms of the notation from (14), the
function U, from (15), the function J, from (16), and the functions

FES R =3 [5+e -0+ 7] 67)
and
Woe(€ 5, 1) = [k + 1 LUE.8) = kit + uF(E 5. R), (58)

we then have the following analog of Theorem 3.1 for the SIR dynamics, which im-
plies the ISS property of (56) on its state space Xy = R x (—Ry, +00) X (=54, +00)
when e is restricted to S = [— min{ B, v, /4}, ¥, /4] and when u satisfies the require-
ments of part (b) of the lemma, and where the class of feasible controls u satisfying
(21) depends on the parameter ¢ > 0:

Lemma 4.5. The following conclusions hold: (a) The time derivative of the func-
tion

Vo€ 8, R) = Uel€. 5) + F1(€, 5, R) (59)
along all trajectories of (56) satisfies
Vire(t) < = W e (€(2), S(8), R(t)) + Je(€(t), S(8)S()u(t)
T asle)] + (e + o ) elt)? (60)

for allt > 0. (b) For any choice of the control u such that (21) is satisfied for all
t >0, the function V. is an ISS Lyapunov function for (56) on its state space

Xy =R x (= Ry, +00) X (=S, +00) (61)
for the disturbance set S = [—min{B, ¢y /4}, 1. /4].

Proof. We deduce from (40) (applied with §; = € and d; = —uS) and the definition
of J. in (16) that

Ut) < = (bt BULES) — V) + L€ S)Sut el + o’ (62)

On the other hand, since p—x = y— X = —p, it follows from our formula 1), = \e&*
that with the choice

St =85+ e85 (£ — 1)+ R, (63)
we have
) = § [— (X + ﬂe@ff*) S+, (1 - ef) —uS + Bet S
+yeb (eé —1) — pR+ pS + Su} + Ste
= & [(p X) S+ (ves — ) (ef — 1) —#R] + Ste (64)
= —u[S et (e - 1)+R]2+ [S+es(ef = 1)+ R e
b S et () HR] e = pR(ES R+ A

IN

where the last inequality in (64) used Young’s inequality. It follows from adding
(62) and (64) that conclusion (a) of the lemma holds.
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To check part (b) of the lemma, note that our formulas (14) give

Woo(é, 8. R) > W U6 S) + 2R RS~ Ve

> \/k‘4 +XoVu,e(§, S, R) — VEa, (65)
where
Xo = min{éﬂu\/ﬂ}- (66)

The function Vi is positive definite and radially unbounded. Thus Vi is a strict
Lyapunov function for the system (56) on its state space when € and wu are zero,
from which an ISS inequality can be deduced when u satisfies the requirements of
part (b) of the lemma. This completes the proof of part (b) of the lemma. O

Remark 3. The added function F} in the formula (59) for Vi . was used to trans-
form the strict Lyapunov function U, for the lower dimensional system (28) into
a strict Lyapunov function for (56). This is necessary because U, is not a proper
positive definite function of the state of the three-dimensional system (56), and also
because the time derivative of U, lacks the required negative definiteness require-
ment for (56), because the right side of the decay condition (62) for U, could be zero
without R being zero. Therefore, U, lacks the two basic properties for being a strict
Lyapunov function for (56) when e and u are zero, namely, the shape requirement
(of being a proper and positive definite function of the three-dimensional state) and
the decay condition (on its time derivative along solutions of (56)). On the other
hand, when « = 0, the sum of the right sides of (62) and (64) can only be zero when
all components of (é .S, R) are zero. Therefore, adding the function F; to U, plays
the dual role of providing the required proper and positive definiteness conditions
for Viy. while also acting as the auxiliary function in the Matrosov approach to
strict Lyapunov function constructions (e.g., from [21]), by providing the required
negative definiteness of the decay condition on the strict Lyapunov function Vi ..

4.3. Proof of Theorem 3.1. To simplify, we first consider the case of (9) where
u is the zero function. Let us introduce the functions

F=3 et (ef - 1) +Q+ R, Fy(R) = 182, and F5(Q) = 132 (67)

Since p—x = —pand —A+v+vy = —p and ¢, = e+, simple calculations give
K(t) = —uk(t) + €(t). Here and in the sequel, all equalities and inequalities are
along solutions of (9) for all ¢ > 0. Hence,

Fy(t) = —pui? + e < —LR% + ﬁeZ and (68)

" 2 3 3 A T+u A2 v2 e+ 3 2
F5(t) = = (7 + p)Q* + ves~ (e - 1) Q< -5+ 5055, (e - 1) (69)
follow from Young’s inequality. Now, we observe that
Ve(€,5,Q, R) = U.(€,5) + gFa(7) + co F5(Q). (70)

Since the (£,S) dynamics in (9) is the same as (28) when u = 0 (with € in (9)
replaced by 0 in (28)), it follows from from (39) (with d2 = 0 and 61 =€), (68) and
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(69) that
Vo(t) < — LWL, S)+cﬂ| |+ coe? — LR2 4 Le?

— o THEQ? + ¢o QD(QTef;:) (eé - 1)2 +cylel + (Cb + i) e
< (34 5efre ) 82— ete [3E g o (£ 1)) (o€ - 1) - 42
— ¢ T;“QQ + cyle| + (cb + 21) €2
AW S) - B - TG 4 gl + (o + ) €, (71)

where the second to last inequality followed from our formula for ¢, from (14).
Hence, Lemma 4.3 gives

Vo)< -1 [ kit £UE,S) — \/a} LR oy THPR 4 gyl
+ (Cb + %) €2
<= b |y flut BUAES) + oV (5 4 00T Q2) - V]

+aslel + (o + 25 ) €, (72)

where the second inequality in (72) used the relation

Vki+s+r >\ ki+s+2kyr (73)

for suitable nonnegative values of r and s. It follows that (19) is satisfied when
u = 0. Therefore, due to the way u enters the dynamics (9), the general case of the
theorem where u is not necessarily the zero function follows because our choices of
Je and V in (16) and (18) give

05,0, R) - 24 (6.5.0, F) -

This allows us to conclude.

~00(€,5) = Jo(E(), 5(). (T4

Remark 4. An alternative expression of (5) is Ry > 1, where
8B

P+ )y +v+p)

is called the basic reproduction number [14]. The condition (5) in Theorem 3.1 has

no conservativeness since this strict inequality is necessary for the component-wise
positiveness of the equilibrium (6). For the SIQR model (1), the function

Ry = (75)

. 2

Fy(R)=1ir>=1 {S*Jreﬁ* (ef—l) +Q+R}
used in the formula (18) for the strict Lyapunov function V. replaces the role Fy
played in adding R for the lower dimensional SIR model (50). For obtaining a strict
Lyapunov function of the four state variables for (1), adding the two variables R and
Q@ to the function U, cannot be completed by the single function F5. This is why
the new function F3(Q> = %(f is also incorporated into the construction process
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for the strict Lyapunov function (18) by using a cascade argument. Since the ST
dynamics drives @), the time derivative of F3 is allowed to consume a portion of the
decay provided by U, appropriately, as seen in (69) and (71).

5. Comparison of controlled and uncontrolled cases. In addition to provid-
ing robustness to model uncertainty through ISS, Lemma 4.5 (for the SIR model)
and Theorem 3.1 (for the full model with quarantines and vaccination) provide a
framework for comparing the performance of different possible controls u, namely,
different choices of u’s that satisfy the ISS requirements from (21) in part (b) of
each of the two results. We next illustrate this point for the full model (1), but
analogous reasoning applies to the special case of the SIR model (50).
Consider the feedback control law

u= max{—ﬁ, —wSJ,(E, 5’)} (76)

which depends on time through its dependence on the states 5 and S, for constants
w > 0 and p > 0, which satisfies the requirements from part (b) of Theorem 3.1.
The choice w = 0 removes the control u from the vaccination p in dynamics (1).
In Figures 1-3, we compare the performance of (1) using u = 0 (in Figure 1), the
control (76) with w = 0.01 and ¢ = 1 (in Fig. 2), and (76) with w = 0.1 and
¢ = 0.1 (in Fig. 3). In each case, we chose ¢ = 0, § = 0.45/6.5, p = 0.000034,
v = 0.0416, B = 221 x 1076, 7 = 0.0454, v = 0.03 and p = 0.0001. The peak
of the infected population I is reduced by (76) when w > 0, so this illustrates the
value of our feedback control. The two controlled cases differ in the coefficient of S
appearing in the J, formula from (76), according to (16). The more the susceptible
individuals are removed when the population is large, the smaller the population of
infected individuals becomes. The guarantee we proved is global, as illustrated by
the convergence in Fig. 4 which is computed for a different set of initial populations.
For the same parameters and the initial populations as in Figs. 1-3, simulations are
performed and plotted in Fig. 5 for the non-zero immigration /newborn perturbation
€(t) = —20 x 1076 cos(7t/150) million, which satisfies €(t) € [~ min{B, ¥, /4}, ¥, /4]
in Theorem 3.1. With the 20% increase of immigrants (from B+ €(0) = 201 x 10~
to B + €(150) = 241 x 1079), the reduction of the infection peak with (76) with
w = 0.1 and ¢ = 0.1 is larger than the reduction with the other two control inputs.

Remark 5. The values for the parameters u, v, B, and 7 we chose above were
based on the data reported in [7] for the outbreak of SARS in 2003, by combining
four variables into two variables and incorporating the disease-associated death in
the population R. The data is for Hong Kong, which has a population of 6.5 million.
In the simulations, the unit of population is in millions, and the time ¢ is in days.
In our simulations, the transmission rate § triples 0.15/6.5 in [7] so that the basic
reproduction number is increased to 6.282 since the transmission rate of COVID-19
has been reported as large as 7 or even higher numbers [19, 28, 30]. The initial
conditions used in Fig. 1-4 are the populations obtained by simulation 25 days
after March 1, 2003 which was the initial time in [7].

6. Conclusion. We provided new global strict Lyapunov function constructions
for an SIR model that also includes quarantine and vaccination. Since our strict
Lyapunov functions were also ISS Lyapunov functions, this made it possible to
prove ISS properties with respect to piecewise continuous locally bounded uncer-
tainties, under suitable bounds on the uncertainties. The ISS robustness property
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FIGURE 2. Populations of (1) under the control (76) with w = 0.01,
c=1, and p = 0.0001.

6983

was beyond the scope of prior treatments of SIR models that did not provide ISS
Lyapunov functions or that led to discontinuous feedbacks. Our strict Lyapunov
function constructions also made it possible to directly design feedback controllers,
and our simulations illustrated how nonzero choices of the feedback controls can
have beneficial effects by reducing the peak infection levels. Our stepwise construc-
tion of ISS Lyapunov functions directly provided reasonable controllers that are
independent of downstream populations and allowed us to concentrate only on sus-
ceptible and infected populations in achieving the ISS guarantee involving all four
populations. In future work, we will study the effects of input delays [4, 13, 22]
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FIGURE 3. Populations of (1) under the control (76) with w = 0.1,
c¢= 0.1, and p = 0.0001.
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e
e
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R(t),Q(t), I(t),5(t)

0 50 100 150

FIGURE 4. Populations of (1) under the control (76) with w = 0.1,
c¢= 0.1, and p = 0.0001.

in our feedback controls, as well as delay compensation based on exact predictors,
chain predictors [3, 5], or other dynamic extensions [25].

Appendix: Proofs of Lemmas 4.1-4.3. We provide proofs of our Lemmas 4.1-
4.3 which we used to prove our result for the SI case in Section 4.1.

Proof of Lemma 4.1. The time derivative of V] along the trajectories of the system
(28) satisfies

Vi(t) = 3§ [_ (X v 565%*) S+ 4, (1 - eé)} + % (ef - 1) BS+56. (A1)
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FIGURE 5. Infected population of (1) with three different controls
in the presence of perturbation €(t).

We deduce that the equality (32) is satisfied. Next, let

G Xg b (6
w—S—Fﬁf—i—e (e 1). (A.2)
Then (28) can be rewritten as
&wzﬁ[wu)—<gaw+eﬂ(J“L-Q)}, (A.3a)
w(t) - _ (X + Beé(t)-i-f*) S’(t) + b, (1 _ eg(t))
4—%5@)+eﬂﬂ+&§@)+5uy (A.3b)
which we rewrite as
() =, (1- 50 + (1), (A.4a)
£) = = () + et (50 = 1)] + (1) (A.4D)
by using the fact that §~ = (5. Using the equalities (A.4) and recalling that
. 1 1/,*
V(6 8) = 5= + 4 (£-1-¢) (A5)

we can easily prove that the time derivative of the function V5 along the trajectories
of (28) satisfies

Va(t) = [§+§ +ebe (ef—l)}w* (1—e5)
S b (1)
+%(5—1>5[§+%£+e5* (eé—lﬂ
+@+%@w@@ﬁ4ﬂ5 (A.6)
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for all ¢ > 0. We deduce that the equality (33) is satisfied.
Proof of Lemma 4.2. For all (a,b) € R? such that |a| > In(2), the inequality

We(a,b) > “xXg (e* — 1) > mé’—éx|a| (A7)

is satisfied. On the other hand, for all (a,b) € R? such that |a] < In(2), we have
le® — 1| > 1|al. Hence,

e&* ey e&x
(a,b) > ety (%| : |a\) Lig| = &£ (%+ : )a2 (A.8)

in this case. From (A.7) and (A.8), we deduce that (34) holds.
Proof of Lemma /.5. From (15), we deduce that for all (a,b) € R?, we have

2
Uc(a,b) <202 4 ¢ [Xa + e (e — 1)} + 7(”;)1/’* (e*—1—a)

< Loy 4 QCX a2 + 2ce®s (e* — 1) + % (e*—1—a), (A.9)

by applying the relation (q +m)? < 2¢? + 2m? for suitable real values of ¢ and m.
Hence, using the relation

e —1—a= [l ~1dl<al(e’—1) < Ja®+ 5 (e* —1)? (A.10)

(which follows, e.g., by separately considering the cases a > 0 and a < 0) we obtain

1+2c,, 2cx?
b
2 T

+ (C+1)¢* 2 + (C+1)"/’* ( _ 1)2

_ 1+ 20 2 2, , e+ D], 2
= b + [206 + 53 (e*—1)
+ |:2cx + (c+1)'¢)*:| a

< %Wc(a,b) + {2”‘ 4 (et 1)1/)*] a2 (A.11)

Ue(a,b) < a? + 2ce® (% — 1)

p? 2p
with k1 defined in (11). From (34), we deduce that

Uc(a,b) <EW.(a,b)

QCX (F+1)1/J* 452 24,2
+ |: + j| |:02'¢)%X2 Wc(aab) cw*<7 &) Wc(aab)]
=22, (a,b) + W, (a,b)? (A.12)

with ko and ks defined in (12) and (13). Tt follows that
2 2
F2 L Unanh) <2 4 B W0, b) + B W, (a,b)?
2
— kg (%WC(CL b) + %) . (A.13)

By our formula for k4 from (14), we deduce that (35) is satisfied.
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