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ABSTRACT

We demonstrate a novel table discovery pipeline called DIALITE
that allows users to discover, integrate and analyze open data tables.
DIALITE has three main stages. First, it allows users to discover
tables from open data platforms using state-of-the-art table discov-
ery techniques. Second, DIALITE integrates the discovered tables
to produce an integrated table. Finally, it allows users to analyze
the integration result by applying different downstreaming tasks
over it. Our pipeline is flexible such that the user can easily add
and compare additional discovery and integration algorithms.
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1 INTRODUCTION

Data discovery has become an important component in data sci-
ence pipeline. The discovery process uses techniques such as key-
word search [13] and table search [4, 7, 9] to discover a set of
tables (datasets). Data scientists use such tables to support decision-
making processes, train machine learning models, perform statisti-
cal analysis, and so on. After discovery, a natural step is to integrate
the discovered tables. An integrated table provides a unified view
of the data and allows users to run queries and analyses that go
beyond a single table.

While integrating tables, we intend to combine tuples from dif-
ferent tables in a maximal way such that the integrated tuples
carry as much information as possible. This enriches the analysis
and decision-making process after integration and also improves
the quality of downstream applications. The widely known outer-
join [12] operator is not associative and does not aim to maximize
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the connections among the integrated tuples [6]. Accordingly, Full
Disjunction (FD) [6] has been understood as a natural way of assem-
bling partial pieces of information (facts) such that it maximizes
the connections among these facts [11]. FD can be viewed as an
associative version of outer join [2] and has been used to integrate
information across relational tables [2, 10] and web tables [10]. In
a recent paper [8], we proposed ALITE, a new algorithm based
on Full Disjunction to integrate tables discovered in data lakes.
ALITE was shown to be correct and faster than the existing FD
algorithms [2, 10] while integrating real open data lake tables in
practice [8]. Additional details on other integration operators and
their comparison against FD are available in the full ALITE pa-
per [8] where FD was shown to be a better semantics for integration
because it produces a result over which a downstream task like
entity-resolution performs more accurately.

In this demonstration, we propose DIALITE, a novel system that
discovers, aligns, and integrates open data tables. It extends the
aforementioned ALITE [8], which does not perform discovery but
instead takes a set of tables as input, aligns the matching columns
using holistic schema matching, and applies the FD to get an inte-
grated table. DIALITE offers state-of-the-art systems for different
table discovery tasks [7, 14] before applying ALITE to integrate
them. Furthermore, DIALITE also offers new downstream analytics
(that have not been previously considered) to evaluate the quality
of integration. Specifically, DIALITE allows users to

(1) Upload a table or randomly generate one using GPT-3 as a
query and discover related tables from a given data lake that
are unionable [7] or joinable [14] with the query table. Apart
from the available table discovery algorithms, DIALITE also
allows users to add new algorithms for table search based
on their preference.

(2) Integrate the discovered tables (or upload a set of tables to
be integrated) using a novel table integration system called
ALITE [8]. Besides ALITE, we allow users to add new inte-
gration operators within our extendible architecture.

(3) Analyze and compare the table integrated using ALITE
against alternative integration techniques by performing
downstream applications. In our demo, we consider outer
join as an alternative integration technique (or other
queries/methods added by the user) and present data an-
alytics (common aggregations and statistics) and entity-
resolution as downstream applications. Both, when applied
over real tables (which can be incomplete) will show the dra-
matic difference between maximally integrating information
using FD vs. using outer joins.

Related Work. To the best of our knowledge, DIALITE is the
first system that enables a full table search pipeline starting from
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table discovery, followed by table integration and downstream ap-
plications over the integrated table. An earlier system called CO-
COA [3] focuses on finding joinable tables with correlated attributes
that expand the query table. After finding the tables, COCOA ap-
plies LEFT JOIN between the query table and the discovered table
as the integration operator. DIALITE, on the other hand, finds a
set of related tables that can be integrated with the query table
(including unionable and joinable tables). Auctus [1] also discovers
related tables and integrates table pairs by applying inner join or
union. Unlike Auctus, DIALITE does not limit the number of tables
to be integrated. In addition, DIALITE uses FD to integrate the ta-
bles, which has been shown in theory to maximize the connections
among the tuples in the tables [11].

Existing table discovery techniques search for joinable, union-
able, or related tables. JOSIE [14] and LSH Ensemble [15], for
instance, take a query table as input with a query column marked
by the user and returns a set of top-k tables that are joinable with
the query table. SANTOS [7] takes a query table and discovers a
set of top-k semantically unionable tables as output. Other table
search techniques [4, 9] also focus on table discovery from large
repositories. But the important question of how to integrate the
discovered tables is not addressed. ALITE [8] provides a solution
to this question. As the data lake tables may lack consistent and
meaningful column headers, ALITE applies holistic schema match-
ing over the set of searched tables and assigns a dummy column
header called an Integration ID to the set of matching columns.
Then, it applies a natural FD over the integration IDs to integrate
the tables. The integration process outputs an integrated table with
maximally integrated tuples [6, 11].

2 SYSTEM DESCRIPTION

DIALITE, outlined in Fig. 1, has three stages (discover, align &
integrate, and analyze) which are included in our demo plan (Sec. 3).

[ Integrated Table ] [Downstream App}

Align &
-. Discover Illl-—l_-—_—-_-—_ Intg;are ...!... Analyze
5 - P E—[TT]

I

Figure 1: An overview of DIALITE.

DIALITE offers various options for discovery, alignment, inte-
gration, and analysis, including the ability for users to implement
their own methods. The pipeline begins with a user-provided query
table Q. However, we also allow the user to randomly generate a
table using GPT-3 [5]. We now detail the components.

2.1 Discover

Given a query table Q, DIALITE uses a data discovery method to
find tables in a data lake (table repository) D that are unionable [7],
joinable [14], or simply semantically similar. DIALITE allows the
user to choose among existing discovery algorithms including SAN-
TOS [7] and LSH Ensemble [15]. Alternatively, a user can use their
own discovery algorithm by implementing a similarity method
between two tables. As we apply ALITE [8] for alignment and inte-
gration, the discovery phase is agnostic to the type of search. ALITE,
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aiming to maximize the connections among the tables, decides how
the tables should be integrated. The output of discovery is an in-
tegration set D C D, a set of tables to be integrated, including the
query table. Our discovery techniques allow users to control the
number of tables returned, and our system permits users to select
a subset of the discovered tables to be integrated.

2.2 Align and Integrate

Given an integration set D, DIALITE uses ALITE [8] to integrate
the tables. The integration set can be derived from the discovery
part (Sec. 2.1) or provided as input by the user. The latter represents
a traditional data integration scenario where the integration set is
given. As shown in Fig. 1, this stage outputs an integrated table.

ALITE is composed of two main parts, namely align and in-
tegrate. Note that we do not require reliable column headers in
the integration set. The first part of ALITE (Align) applies holistic
schema matching to identify common columns in the integration
set. The matched columns are given the same integration ID. Using
these ids as attribute names, the integrate part applies (natural) FD.
Specifically, ALITE uses a new holistic schema matching algorithm
that was shown to outperform state-of-the-art matchers. ALITE
uses a novel algorithm to compute the FD shown to be correct and
efficient on real tables (including tables having nulls) [8]. DIALITE
also allows users to add alternative integration operators, e.g., outer
join, which is included for demonstration.

2.3 Analyze

Given an integrated table (that can also be uploaded as a file by the
user), DIALITE allows the user to explore the benefits of integration.
Specifically, the user can choose a downstream application to apply
over the integrated table. A simple application is an aggregation
query that can be applied over the integrated table as we illustrate
in Sec. 3.1. In Sec. 3.2 we also present a more complex downstream
application, entity-resolution (ER).

2.4 Implementation

DIALITE is implemented in Python 3.8 and the demonstration uses
a web application.! Within our pipeline, we use SANTOS 2, LSH
Ensemble ® and ALITE * using their publicly available code. Also,
we use the py_entitymatching package to show ER as a downstream
application.” We allow users to interact with the system after each
step so that they can validate the intermediate results.

3 DEMONSTRATION PLAN

Next, we illustrate our demonstration. The link to a demonstration
video is available in the github repository.! Our demo contains two
parts. First, we present the use case of the pipeline as described
in Sec. 2. This part is actually composed of three demonstration
items, that can be demonstrated independently. Then, we demon-
strate DIALITE’s extensibility to new algorithms for discovery,
integration, and analysis.

Uhttps://github.com/northeastern- datalab/dialite
https://github.com/northeastern-datalab/santos
Shttps://github.com/ekzhu/datasketch
*https://github.com/northeastern-datalaby/alite
Shttps://github.com/anhaidgroup/py_entitymatching
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3.1 DIALITE Use case

Discovery. The users of DIALITE would be able to upload a query
table in CSV format from an existing pool of tables.® Note that we
will provide a data lake for the users to use in the demonstration.
The tables in this data lake are real tables from open data and
are currently preprocessed for our discovery algorithms [7, 15].
Specifically, the indexes used in SANTOS [7] and LSH Ensemble [15]
are built offline, i.e., they are already available for the user to use.
The users can easily preprocess and link their own data lake.

The set of discovered tables by all the table discovery systems is
stored for the next step. As there may be an overlap in unionable
and joinable search results, we persist the set of tables found by all
techniques to form an integration set.

T, (Query Table) T, (Retrieved unionable table)

Vaccination Rate o Vaccination Rate

i TID|Count Cit

TID| Country City (1+ dose) ry y (1+ dose)
t, |Germany| Berlin 63% t, | Canada | Toronto 83%
t, | England |[Manchester 78% ts | Mexico |Mexico City t
t; | Spain | Barcelona 82% te | USA Boston 62%

T; (Retrieved joinable table)

. Death Rate

TID| City (Total Cases (per 100K residents)

t, | Berlin 1.4M 147

tg |Barcelona| 2.68M 275

ty | Boston 263k 335

tyo [New Delhi| — 2M 158

Figure 2: Tables detailing COVID-19 cases in different places.
The symbol + represents null values present in the input
tables (“missing nulls”).

ExampLE 1. Consider tables Ty, T and T3 about COVID-19 cases
in different places shown in Fig. 2. Here, TID (Tuple ID) is not a real
data column and it is added only to refer to the tuples. Let, Ty be the
query table, and tables T, and T3 reside in the data lake repository. In
our demo, a user selects City as an intent column and query column
to search for a unionable table using SANTOS [7] and a joinable
table using LSH Ensemble [15] respectively. Please see respective
papers for additional details on the search algorithms. Let, T» and
T3 be results of the unionable and joinable searches respectively. So
the result of the discovery step is an integration set of tables Ty, T,
and T3. Note that the names of columns are presented for simplicity
and are not used by the discovery techinques, which are designed
for the ambiguty of data lakes, i.e., unreliable/missing metadata.

Align and Integrate. Once the integration set is formed, DI-
ALITE allows user to apply ALITE’s holistic schema matching to
generate integration IDs. Over such IDs, we apply ALITE’s FD.

ExAMPLE 2. Consider the integration set of tables Ty, T» and T3
shown in Fig. 2 is formed after table discovery step as illustrated
in Ex. 1. DIALITE applies ALITE’s integration algorithm over these
tables that returns an integrated table as shown in Fig. 3. The inte-
gration semantics is explained in ALITE paper [8].

SFor the demonstration itself, we also allow users to randomly generate a query table
(see Sec. 3.2). Also, a user may choose to upload their query table noting that it may
be off-topic wrt the data lake, which may yield no results.
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FD(T,, T,, T;) (Integrated Table by ALITE)

OID| TIDs | Country City Vact(:;llazlg:e;(ate Total Cases e I::;(a)lt(hr:;tieents)
f, [ {ty, t;} [Germany| Berlin 63% 1.4M 147
f, | {t,} | England |Manchester 78% 1 1
fy [ {t3, tg} | Spain | Barcelona 82% 2.68M 275
f, | {t,} | Canada | Toronto 83% 1 1
fg {ts} Mexico | Mexico City + 1 1
fo | {teto} | USA Boston 62% 263k 335
f, | {tyo} L New Delhi 1 2M 158

Figure 3: Result of applying ALITE over the tables in Fig. 2.
The symbol L represents the null values produced during the
integration due to missing information (“produced nulls”).

Analyze. After integration, the next feature that ALITE offers
is the analysis of the integrated table. We show the use of an aggre-
gation query over the integrated table.

ExXAMPLE 3. With the integrated table, we now allow the user to
use queries that go beyond the single tables. For example, over the
integrated table (Fig. 3), the user can find that Boston is the city with
the lowest vaccination rate and Toronto has the highest. Trying to
understand the reason for that, the user may explore the relationship
between vaccination rates (given in Ty and T ), number of cases and
death rates (given in T3). For example, the user can compute the
correlation between vaccination and death rates that shows a positive
(pearson) correlation of 0.16 and (somewhat surprising) correlation
0f 0.9 between case numbers and vaccination rates. While a bit
counter-intuitive, the analysis reveals an interesting insight about
the nature of vaccinations, suggesting that in cities with higher death
rates and more cases, the government is focusing on vaccination
programs and the people are more willing to vaccinate.

3.2 DIALITE Extendibility

As described in Sec. 2, the user can extend DIALITE by implement-
ing their own alternative components in the pipeline. Specifically,
we aim to demonstrate the ability of users to implement (using
python code) new discovery algorithms, integration methods and
perform their required analysis.

EXAMPLE 4. For illustration, a sample code snippet to add a new
joinable table discovery algorithm is provided in Fig. 4. The user
basically implements a similarity function between two datasets
(df1 and df2) that is used by DIALITE for table discovery.

def new_joinability discovery_algorithm(dfl, df2):
join_df = pd.merge(dfl, df2, how

return len(join_df)/max(len(dfl1), len(d

Figure 4: Implementing user-defined discovery algorithm
based on inner join.

We also consider a scenario where the user may not have a
query table to start the analysis. So, DIALITE allows users to use
simple prompts to generate the query table for the analysis. We
demonstrate this feature using GPT-3 based implementation [5]
and allow the user to generate a query table based on prompt as
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illustrated in Fig. 5. Here, we generate a query table about COVID-
19 cases that has 5 columns and 5 rows.

query_table

andomly_generate

query
query_table.head(5)
10.1s

Deaths Recovered Active
2633567

2788841

Country Cases

USA 5742812 178701 2930544

Brazil 3713876 116476 808559
3444061
982822

704016

India 61529 2643788 738744

Russia 16841 745930 219051

Mexico 73814 442309 187893

Figure 5: A code snippet to generate query table using GPT-3.

Furthermore, the users can add an alternative integration opera-
tor over the default integration system (ALITE). For example, Fig. 6
shows a user-defined code snippet that implements the commonly
used outer-join operator for integration. In the demonstration, we
illustrate the benefit of using ALITE over the standard outer join
as shown in the following example.

lef new_outer_join_integration_algorithm(integration_set):
tablel_loc =
tablel =

integration_set.pop()
pd.read_csv(tablel_loc)

table2_loc in integration_set:

table2 =
tablel =
return tablel

pd.read_csv(table2_loc)
tablel.merge(table2, how = "

Figure 6: Implementing outer join as an integration operator.

ExaMmpLE 5. Consider tables Ty, Ts and Ty shown in Fig. 7 (a)
forms an integration set after table discovery where, the tables de-
scribe the COVID-19 vaccines, their country of origin, and the regu-
latory agency that approved the vaccines. For sake of illustration,
assume that a user used outer-join as an alternative integration algo-
rithm (see Fig. 6). The results of applying outer-join and ALITE (FD)
over these tables are shown in Fig. 8 (a) and Fig. 8 (b) respectively.
Now let us assume that the user wants to apply Entity Resolution
(ER) as a downstream application by applying py_entitymatching.’
This analysis over outer join and FD results are shown in Fig. 8(c)
and Fig. 8(d), respectively. Outer join produces more output tuples
than FD; yet, it does not produce any tuple containing the agency
that approved the Johnson & Johnson (J&3) vaccine. FD, on the other
hand, produces an output tuple fi3 that provides this information
(as it can be produced using t13 and t15). Furthermore, since outer
Jjoin produces incomplete tuples, ER can not resolve fo and fio. This
shows an advantage of using the default ALITE operator instead of
outer join to integrate the tables.
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TO T5 TG

TID | Vaccine | Approver TID| Country |Approver| |[TID|Vaccine Country
ty, | Pfizer FDA t,; [United States| FDA tis | J& | United States
t, | Jnd + ty, USA + te| Jnl USA

Figure 7: An integration set of Tables about COVID-19 vac-
cines, their country of origin and their approvers.

Ty > Ty Ty

OID| TIDs Approver| Country Vi Approver| Country
fs [{t,s, ty3}| Pfizer FDA  |United States| | Pfizer FDA  |United States
fo | {ty,} Jn) + 1 In) + 1
fio | {tia} 1 t USA 1 + USA
fa | {tisd | J& L |United States| [ &) L |United States
fio | {tied | I 1 USA

(c) Entity Resolution over
outer join result

(a) Output Table generated using outer join
FD(T,, Ts, Tg)

OID| TIDs |V: Approver| Country Vaccine|Approver| Country
fs |{t;1, ti5}] Pfizer | FDA |United States| | Pfizer | FDA |United States
| {ti) In) 1 USA J&) FDA |United States
fis [{ts s} J&J FDA |United States|  (d) Entity Resolution over FD

(b) Output Table generated using FD (ALITE) result
(ALITE)

Figure 8: Integrating tables in Fig. 7 using outer join and FD.
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