
Integrating Data Lake Tables
Aamod Khatiwada
Northeastern University

Boston, Massachusetts, USA
khatiwada.a@northeastern.edu

Roee Shraga
Northeastern University

Boston, Massachusetts, USA
r.shraga@northeastern.edu

Wolfgang Gatterbauer
Northeastern University

Boston, Massachusetts, USA
w.gatterbauer@northeastern.edu

Renée J. Miller
Northeastern University

Boston, Massachusetts, USA
miller@northeastern.edu

ABSTRACT
We have made tremendous strides in providing tools for data scien-
tists to discover new tables useful for their analyses. But despite
these advances, the proper integration of discovered tables has been
under-explored. An interesting semantics for integration, called
Full Disjunction, was proposed in the 1980’s, but there has been
little progress in using it for data science to integrate tables culled
from data lakes. We provide ALITE, the !rst proposal for scalable
integration of tables that may have been discovered using join,
union or related table search. We empirically show that ALITE can
outperform previous algorithms for computing the Full Disjunction.
ALITE relaxes previous assumptions that tables share common at-
tribute names (which completely determine the join columns), are
complete (without null values), and have acyclic join patterns. To
evaluate ALITE, we develop and share three new benchmarks for
integration that use real data lake tables.

PVLDB Reference Format:
Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J. Miller.
Integrating Data Lake Tables. PVLDB, 16(4): 932 - 945, 2022.
doi:10.14778/3574245.3574274

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/northeastern-datalab/alite.

1 INTRODUCTION
The number of public datasets has grown immensely in open data
platforms [56, 57, 78]. Also, individual corporations have a wealth of
data stored in their own data lakes. Analyzing and integrating such
datasets can help governments and enterprises in making decisions
and plans. Data scientists, as the main users of data, use di"erent
techniques to discover datasets such as keyword search [11, 12, 58,
75] and table search (using the data within their table as a query)
[10, 28, 48, 50, 57, 80]. Such a process usually outputs a collection
of data lake tables that may enrich their analysis [56]. Existing

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 4 ISSN 2150-8097.
doi:10.14778/3574245.3574274

techniques usually discover unionable [12, 41, 48, 57], joinable [26,
55, 75, 77, 78], and related tables [10, 19, 77].

Example 1. Consider the data lake tables about football stadiums
shown in Fig. 1. We have added a TID (Tuple ID) column in each
table to permit us to refer to tuples. Assume that a data scientist uses
table!1 as a query table to search for the top-2 unionable tables [57]
and the top-2 joinable tables [78] from a data lake. Let !2 and !3
be the union search results and !4 and !5 be the join search results.
Join search !nds tables that join on an indicated column (in this
case Location), but does not discover if there are other common
(integratable) columns. For simplicity, assume that the common
columns on these tables are already detected and have identical
column headers. Note that in practice this will not be the case.

After discovery, data scientists would often integrate the discov-
ered tables before analyzing and applying statistical tools. Such
integration not only extends their data but also allows them to
answer queries that go beyond a single table. Consider Tables !2,
!3 and !4 in Fig. 1 and assume a football team has data scientists
assisting in !nding a new coach. Speci!cally, the team looks for
an experienced coach who has handled teams playing in front of
large crowds in new stadiums. So, they may use queries such as
“coaches who coach teams having stadiums established after 2000,
that accommodate at least 50 thousand spectators”. The information
required here goes beyond a single table. In our example, one needs
(at least) to integrate!2,!3 and!4 to obtain such facts, for example,
Dan Campbell who coaches the Detroit Lions that uses Ford
Field Stadium established in 2002 and having a capacity of 65k ("7
in Fig. 2). Prior search methods do not address this “post-discovery”
phase and do not answer the important question of how to integrate
tables (relations) obtained by table search technique(s).

Example 2. The standard relational union operator needs all
tables to have exactly the same schema. However, this is not the case
even for union search results (where tables that union on a subset of
attributes can be retrieved) [57]. So to integrate the tables in Fig. 1,
one can project out non-common columns and union on only the
common columns. For!1,!2, and!3, this would just leave Location.
For the joinable tables, a join on only Location of !1 with !4 leads
to tuples like #11 being omitted and the result has two Stadium
attributes. Worse, the natural join operator, i.e. !1 ⊲⊳ !4 ⊲⊳ !5,
returns an empty set because !4 and !5 do not have joining tuples.
The problem gets more complicated if we try to integrate all !ve
tables using these operators.

932

https://doi.org/10.14778/3574245.3574274
https://github.com/northeastern-datalab/alite
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3574245.3574274
https://www.acm.org/publications/policies/artifact-review-and-badging-current


TID Stadium Location Opened

t5 Soldier Field Chicago 1924
t6 Ford Field Michigan 2002

TID Stadium Location Team

t1 NRG Stadium Texas Houston Texans
t2 AT&T Stadium Texas Dallas Cowboys
t3 Paul Brown Ohio ±
t4 Sofi Stadium California Angeles Chargers

T1

TID Team Location Coach

t7 Houston Texans Texas Lovie Smith
t8 Green Bay Packers Wisconsin Matt LaFleur
t9 Detroit Lions Michigan Dan Campbell

TID Stadium Location Capacity

t10 NRG Stadium Texas ±
t11 Ford Field Michigan 65k

TID Stadium Location Team

t12 Lambeau Field Wisconsin Green Bay Packers
t13 ± Ohio Cleveland
t14 Sofi Stadium California ±

T2 T3

T5T4

OID TID Stadium Location Team Opened Coach Capacity

f1 {t1, t7, t10} NRG Stadium Texas Houston Texans Ʇ Lovie Smith Ʇ
f2 {t2} AT&T Stadium Texas Dallas Cowboys Ʇ Ʇ Ʇ
f3 {t3} Paul Brown Ohio ± Ʇ Ʇ 65.5k
f4 {t13} ± Ohio Cleveland Ʇ Ʇ Ʇ
f5 {t4} Sofi Stadium California Angeles Chargers Ʇ Ʇ Ʇ
f6 {t5} Soldier Field Chicago Ʇ 1924 Ʇ Ʇ
f7 {t6,t9,t11} Ford Field Michigan Detroit Lions 2002 Dan Campbell 65k
f8 {t8, t12} Lambeau Field Wisconsin Green Bay Packers Ʇ Matt LaFleur Ʇ
f10 {t3, t13} Paul Brown Ohio Cleveland Ʇ Ʇ 65.5k
f11 t14 Sofi Stadium California ± Ʇ Ʇ Ʇ

(a) T1 ⊎ T2 ⊎ T3 ⊎ T4 ⊎ T5

TID Stadium Location Team Opened Coach Capacity

t1 NRG Stadium Texas Houston Texans Ʇ Ʇ Ʇ
t2 AT&T Stadium Texas Dallas Cowboys Ʇ Ʇ Ʇ
t3 Paul Brown Ohio ± Ʇ Ʇ Ʇ
t4 Sofi Stadium California Angeles Chargers Ʇ Ʇ Ʇ
t5 Soldier Field Chicago Ʇ 1924 Ʇ Ʇ
t6 Ford Field Michigan Ʇ 2002 Ʇ Ʇ
t7 Ʇ Texas Houston Texans Ʇ Lovie Smith Ʇ
t8 Ʇ Wisconsin Green Bay Packers Ʇ Matt LaFleur Ʇ
t9 Ʇ Michigan Detroit Lions Ʇ Dan Campbell Ʇ
t10 NRG Stadium Texas Ʇ Ʇ Ʇ ±
t11 Ford Field Michigan Ʇ Ʇ Ʇ 65k
t12 Lambeau Field Wisconsin Green Bay Packers Ʇ Ʇ Ʇ
t13 ± Ohio Cleveland Ʇ Ʇ Ʇ
t14 Sofi Stadium California ± Ʇ Ʇ Ʇ

• FD(T1, T2, T3, T4 ,T5) = {f1, f2, f3, f4, f5, f6, f7, f8, f9}

• FDtuple-set(T1, T2, T3, T4, T5) = FD(T1, T2, T3, T4,T5) ∪ {f11}

• T1 ⊞ T2 ⊞ T3 ⊞ T4 ⊞ T5 = FD(T1, T2, T3, T4, T5) – {f4, f5} ∪ {f10, f11}
(b) Output tuples generated using different operators

Figure 1: Tables about football stadiums, their locations and home teams. The objective is to integrate the !ve tables. TID is not
a real data column and metadata like column headers may not be available in real data lake tables, but are used for illustration
purposes. The symbol ± represents null values present in the input tables (“missing nulls”).

Within the data integration literature, Full Disjunction (FD) [32]
has been understood as a natural way of assembling partial pieces of
information (facts) such that it maximizes the connections among
these facts [65]. Indeed, Rajamaran and Ullman describe FD as
a relation with nulls (denoted by ⊥) such that every set of join-
consistent tuples appears within an FD tuple, with a concrete value
or ⊥ in each attribute not found within the set of tuples [65]. Here,
join-consistent is de!ned as common attributes (attributes with the
same name), so this is e"ectively a natural FD. The widely known
outer-join [46, 66] is not associative (hence, the result may depend
on the order in which tables are integrated) and does not aim to
maximize the connections among the integrated tuples [32, 52].

Example 3. Outer-join and outer-union keep all tuples and
columns and pad non-matching tuples (respectively, columns) with
nulls [16, 46]. The outer-union of the tables from Fig. 1 is depicted
in Fig. 2(a). It does not maximally connect the facts in the original
tables. Here, ± indicates a missing value (missing null) in the orig-
inal tables and ⊥ represents a null introduced by the outer-union
operator (produced null). In particular, outer union includes partial
facts like #10 that are made redundant by more complete facts like
#1. Similar observations can be made of the outer-join results. So,
Galindo-Legario de!ned the Full Disjunction (FD) [32]. Informally, it
removes redundant facts and produces, in this case, the !rst 8 tuples
(mustard colored) of Fig. 2(b). FD can be viewed as an associative
version of outer join [17] and has been used to integrate information
across relational tables [17, 59] and web tables [59]. Notice in this
example, FD uses information from all !ve tables so it is important
to be able to compute FD over (possibly large) sets of tables.

But using FD in data lakes poses several important challenges: 1)
We cannot rely on common attributes having the same name as in
our example. Instead, wemust discover what the common attributes
are [56]. We will use schema matching for this purpose [63]. Notice
that we are not given just two schemas that need to be matched,
rather we have a set of tables all of which could potentially share
attributes with some or many of the other tables. Hence, we will
use holistic schema matching [64]. 2) We cannot assume that inte-
grated datasets are complete (that is, they may actually contain null
values or partial facts). 3) Prior work on Full Disjunction has been
done on relatively small relations (with only 1000 or so tuples per
relation [17]) or assumes the common attributes form graphs with
speci!c acyclic structures [65]. To the best of our knowledge, the
only work on using FD on larger datasets requires that all joins be
done on attributes having key-to-foreign-key relationships [59], a
strict requirement that makes the technique only applicable within

well-designed enterprise scenarios, not the possibly messy tables
retrieved from data lakes commonly used in data science.

We assume data scientists use table discovery algorithms to
identify a set of tables that they wish to integrate. Regardless of
the search technique, we wish to !nd the best way to integrate
the tables. Speci!cally, we propose a table integration technique
ALITE (Align and Integrate) that !rst applies schema matching
to identify common columns in a set of tables to be integrated.
Matched columns are given the same integration ID. We then apply
a natural FD over the tables using integration IDs as attribute names.

Contributions. (1) To the best of our knowledge, we introduce
the problem of integrating data lake tables obtained using table dis-
covery algorithms. (2) We propose a new holistic schema matching
algorithm for sets of tables that outperforms the state-of-the-art
matchers on the real data lake tables in our integration benchmarks.
(3) We compare the FD used as the integration semantics in ALITE
to several other semantics and show the di"erence and superiority
of FD. Empirically, we show FD’s superiority for a downstreaming
task of entity resolution [44]. (4) We propose a novel algorithm
to compute the FD by using complementation and subsumption
operators in a novel way. We show that the use of these operators
permits optimizations that make the computation faster than the
state-of-the-art techniques, in practice. Speci!cally, ALITE scales
better than the state-of-the-art FD algorithms on data lake tables,
which are typically large and may have complex join graphs. (5)
We introduce and share several open data integration benchmarks.

2 PRELIMINARIES
We now provide the building blocks for integrating tables in a
data lake setting, namely, specifying the notation and the basic
integration operators, after which we formally de!ne the problem.

Table 1: Symbols used in this paper and their de!nitions
Symbol De!nition Symbol De!nition
T ($= |T |) Set of Tables % Set of tuples

! (!! ) Table (the &th table in T ) # ['] Value of # on the column '
' (! .') Column (Column ' in table ! ) S (( = |S|) Set of all input tuples

)! Arity of Table !! F (" = |F |) Set of output tuples
A(! ) Schema (set of columns) of ! ± Null denoting a missing value
# Tuple ⊥ Null produced by an operator

Notation. Table 1 summarizes the used notation. For any opera-
tor, let S (and its size () and F (and its size " ) denote the collective
set of all input and output tuples, respectively. We use two types of
nulls: ± denotes a missing null i.e., missing value from an incom-
plete input relation to be integrated and ⊥ denotes a produced null,
a null value that is introduced by an operator during integration.

933



TID Stadium Location Team Opened Coach Capacity

t1 NRG Stadium Texas Houston Texans Ʇ Ʇ Ʇ
t2 AT&T Stadium Texas Dallas Cowboys Ʇ Ʇ Ʇ
t3 Paul Brown Ohio ± Ʇ Ʇ Ʇ
t4 Sofi Stadium California Angeles Chargers Ʇ Ʇ Ʇ
t5 Soldier Field Chicago Ʇ 1924 Ʇ Ʇ
t6 Ford Field Michigan Ʇ 2002 Ʇ Ʇ
t7 Ʇ Texas Houston Texans Ʇ Lovie Smith Ʇ
t8 Ʇ Wisconsin Green Bay Packers Ʇ Matt LaFleur Ʇ
t9 Ʇ Michigan Detroit Lions Ʇ Dan Campbell Ʇ
t10 NRG Stadium Texas Ʇ Ʇ Ʇ ±
t11 Ford Field Michigan Ʇ Ʇ Ʇ 65k
t12 Lambeau Field Wisconsin Green Bay Packers Ʇ Ʇ Ʇ
t13 ± Ohio Cleveland Ʇ Ʇ Ʇ
t14 Sofi Stadium California ± Ʇ Ʇ Ʇ

TID Stadium Location Opened

t5 Soldier Field Chicago 1924
t6 Ford Field Michigan 2002

TID Stadium Location Team

t1 NRG Stadium Texas Houston Texans
t2 AT&T Stadium Texas Dallas Cowboys
t3 Paul Brown Ohio ±
t4 Sofi Stadium California Angeles Chargers

T1

TID Team Location Coach

t7 Houston Texans Texas Lovie Smith
t8 Green Bay Packers Wisconsin Matt LaFleur
t9 Detroit Lions Michigan Dan Campbell

TID Stadium Location Capacity

t10 NRG Stadium Texas ±
t11 Ford Field Michigan 65k

TID Stadium Location Team

t12 Lambeau Field Wisconsin Green Bay Packers
t13 ± Ohio Cleveland
t14 Sofi Stadium California ±

T2 T3

T5T4

OID TIDs Stadium Location Team Opened Coach Capacity

f1 {t1, t7, t10} NRG Stadium Texas Houston Texans Ʇ Lovie Smith ±
f2 {t2} AT&T Stadium Texas Dallas Cowboys Ʇ Ʇ Ʇ
f3 {t3} Paul Brown Ohio ± Ʇ Ʇ Ʇ
f4 {t13} ± Ohio Cleveland Ʇ Ʇ Ʇ
f5 {t4} Sofi Stadium California Angeles Chargers Ʇ Ʇ Ʇ
f6 {t5} Soldier Field Chicago Ʇ 1924 Ʇ Ʇ
f7 {t6,t9,t11} Ford Field Michigan Detroit Lions 2002 Dan Campbell 65k
f8 {t8, t12} Lambeau Field Wisconsin Green Bay Packers Ʇ Matt LaFleur Ʇ
f9 {t3, t13} Paul Brown Ohio Cleveland Ʇ Ʇ Ʇ
f10 t14 Sofi Stadium California ± Ʇ Ʇ Ʇ

(a) T1 ⊎ T2 ⊎ T3 ⊎ T4 ⊎ T5

• FD(T1, T2, T3, T4 ,T5) = {f1, f2, f3, f4, f5, f6, f7, f8}

• FDtuple-set(T1, T2, T3, T4, T5) = FD(T1, T2, T3, T4,T5) ∪ {f10}

• T1 ⊞ T2 ⊞ T3 ⊞ T4 ⊞ T5 = FD(T1, T2, T3, T4, T5) – {f3, f4} ∪ {f9, f10}
(b) Output tuples generated using different operators

Figure 2: Result of integrating the tables in Fig. 1 using di"erent techniques. The table in (a) is the result of outer unioning the
!ve tables. The table in (b) is the union of tuples obtained using FD (!rst eight tuples in mustard), a variant called tuple-set FD
(which is the FD plus "10), and Complement Union (!). A unique Output ID (OID) is provided for each output tuple for clarity.

Example 4. Consider Table !1 of Fig. 1. The schema of !1 is
A(!1) = {*#+,&-), ./0+#&/$,!1+)}. Tuple #3 = {Paul Brown, Ohio,
±} has attribute value #3 [*#+,&-)] = Paul Brown and a missing
null on the Team column, i.e., #3 [!1+)] = ±.

2.1 Finding Common Columns
Our running example is unrealistic as common (or in relational
terms join-consistent) columns from di"erent tables have the same
name and columns that are not common have di"erent names. This
is not the case in most realistic examples. Hence, we begin by using
schema matching to assign integration ids to columns such that two
matched columns will have the same id and two columns that are
not matched will have di"erent ids. We will ensure no two columns
in the same table share an integration id. Accordingly, we will set
A(! ) to be the set of integration ids of ! ’s columns (Section 4).

2.2 Integration Operators
We assume that the reader is familiar with the elementary relational
algebra operators like union (∪), join (⊲⊳) and outer join( ⊲⊳ ) [66]
based on which, we now introduce some (less well known) opera-
tors that we use as components of an integration solution.

Outer Union (#) is an extension to the union operator. It unions
tables even if they do not have the same schema [16]. The outer
union between!1 and!2 is denoted by!1#!2. For each' ∈ A(!1)−
A(!2), we pad!2 with a new column' containing nulls (speci!cally
⊥). Similarly, for each ' ∈ A(!2) −A(!1), we pad !1 with a new
column ' containing nulls. We then union the padded relations.

Example 5. The outer union of the tables in Fig. 1 is shown in
Fig. 2(a). Here, the input size (|S| = 14) is the same as the output
size (|F | = 14) but the output may be smaller if there are duplicates.

Subsumption (2). Given two di"erent tuples #1 and #2 having
the same schema, the tuple #1 (subsuming tuple) subsumes #2 (sub-
sumed tuple), denoted by #1 " #2, if all the non-null values of #2 are
equal to that of #1 on the respective columns and #1 has fewer null
values (either missing or produced) than #2 [7, 32]. We denote the
subsumption operation using 2 where 2 (% ) contains all tuples of %
that are not subsumed by another tuple in % . Applying subsumption
to the outer union result is called the minimum union (

⊕
) [32].

An example of minimal union (
⊕

) of tables in Fig. 1 is the set

{#1, #2, #3, #4, #5, #6, #7, #8, #9, #11, #12, #13} in Fig. 2. This is because the
tuple #10 is subsumed by #1 and #14 is subsumed by #4. Here, the size
of the input (|S| = 14) is larger than the output (|F | = 12).

Complementation (3). Two di"erent tuples #1 and #2 having
the same schema complement each other if: 1) there is at least
one column ' on which they have equal and non-null values; 2)
for every column ' where both tuples are non-null, the tuples
must have the same value on '; 3) there is at least one column
' on which #1 is non-null and #2 is null (missing or produced);
and 4) there is at least one column ' on which #2 is non-null and
#1 is null (missing or produced) [7, 9]. The complementation of
#1 and #2 is a tuple #3 where for any column ', #3 ['] = #1 [']
if either #1 ['] is non-null or both #1 ['] and #2 ['] are non-null
(hence, equal). Otherwise, if #2 ['] is non-null #3 ['] = #2 [']. For
the case where both values are null, if #1 ['] = #2 ['] = ⊥ then
#3 ['] = ⊥ otherwise (at least one of the nulls is missing) #3 ['] =
±. The complementation operator (3) replaces all complemented
pairs of tuples with their complementation. Note that a tuple that
results from complementation could be complemented by other
tuples so the complementation operator is the iterative result of
applying complementation to a relation until it contains no further
complementing tuples. Applying complementation over a set of
outer unioned tuples, is known as complement union (!).

Example 6. In Table(a) of Fig. 2, tuples #3 and #13 complement
each other. Their complementation is denoted as "9 in Fig. 2(b), i.e.,
3 (#3, #13) = "9. So complementation can overcombine tuples that do
not agree on all their common attributes. In this example, !5 asserts
that Cleveland is a team in Ohio with an unknown stadium while
!1 asserts that Paul Brown is a stadium in Ohio. But we do not
de!nitively know that Paul Brown is the stadium of Cleveland.
The complement union of the tables in Fig. 1, i.e., !1 !!2 ! · · · !!5
is the set of tuples in Table (b) of Fig. 2 excluding tuples {"3, "4}.
Note that complementation union may not remove all subsumable
tuples (e.g. "10, which can be subsumed by "5, is not complemented
by "5 since the fourth condition of complementation is not met).

2.3 Full Disjunction
The operators of the previous section o"er possible semantics for
integrating tables. In 1994, Galindo-Legario proposed a di"erent se-
mantics called Full Disjunction (FD) [32]. His proposal is essentially

934



a commutative, associative form of outer-join. We will now de!ne
the terms that we need to de!ne FD. We say that #1 ∈ !1 and #2 ∈ !2
are connected tuples if their schemas overlap, i.e.,A(!1)∩A(!2) ≠ ∅.
As in outer join, two connected tuples #1 ∈ !1 and #2 ∈ !2 can be
integrated (or joined) if and only if #1 ['] = #2 ['], #1 ['] ≠ ± and
#2 ['] ≠ ±, ∀' ∈ A(!1) ∩ A(!2). The tuples generated after an
integration are referred to as integrated tuples. When more than two
tables are involved, the integration can be viewed as an iterative
process in which an integrated tuple can be further integrated with
another connected tuple, following the same conditions as before.
Finally, as in outer join, if an input tuple # can not be integrated with
other tuples, it will be padded by produced nulls (⊥) and considered
as an integrated tuple. Note that integrating those tuples that have
missing nulls on their common columns may produce semantically
incorrect tuples. Consider tuples #3 from !1, and #13 from !5, while
they share the value Ohio on Location, the value of Stadium is
known in #3 (Paul Brown), it is unknown in #13. Therefore, we will
not integrate these tuples. Notably, FD was later proposed as the
right semantics for integrating data [65].

Example 7. The FD of the !ve tables from Fig. 1 is the set of tuples
{"1, ..., "8} depicted in mustard in Fig. 2(b). Unlike complementation
union (Example 6), FD does not overcombine tuples #3 and #13 since
Team in #3 is unknown. Hence, it contains "3 and "4 after integration
and does not produce "9. Also, "10 is subsumed by "5.

FD has been shown to produce what has been called maximally
integrated tuples [40].

Definition 8 (Maximally Integrated Tuple). Given a set of in-
tegrated tuples % . Any tuple # ∈ % is said to be a maximally integrated
tuple if it is not subsumed by any other tuple(s) of % [40].

We follow Kanza and Sagiv [40] by de!ning FD based on maxi-
mally integrated tuples.

Definition 9 (Full Disjunction (FD)). The Full Disjunction of
the tables!1,!2, . . .!" , with input tuples S, is the set of all maximally
integrated tuples that can be generated from S.

In Section 5, we will introduce an algorithm that computes FD
based on De!nition 9. The FD de!nition we use [40] is based on
tuples [32], rather than tuple-sets (FDtuple-set) [17, 18]. FDtuple-set
applies subsumption based on the set of tuples from which an
integrated tuple is produced (call the tuple-set) [18]. Subsumption is
only applied between two tuples if the tuple-set of one is a superset
of the tuple-set of the other. Note that FDtuple-set yields a set of
maximally integrated tuples, but might contain integrated tuples
that subsume each other, as we discuss in the next example.

Example 10. Fig. 2(b) illustrates the di"erence between FD and
FDtuple-set. To understand the subsumption in FDtuple-set, !rst con-
sider integrated tuples "3 and "9 whose tuple-sets are {#3} and {#3, #13},
respectively (depicted in the TIDs column in Fig. 2). The tuple-set
of "9 contains all tuples in the tuple-set of "3. Therefore, under
FDtuple-set, "9 subsumes "3. However, if we consider "5 and "10 having
tuple-sets {#4} and {#14}, respectively, neither is a superset of the other.
Therefore, FDtuple-set does not perform subsumption on these two
tuples and returns both. In contrast, the tuple "10, is not produced
by FD as it gets subsumed by "5.

2.4 Solution Overview

…

𝑝5 𝑝2 𝑝7 𝑝1

𝑝1

…

𝑝2

…

Integration ID
Assignment

…

…………………

…………………

…………………

…………………

…………………

Full
Disjunction

Input Tables Annotated Tables Integrated Table

⊎ 𝜅 𝛽

Figure 3: An overview of ALITE.

We introduced and formally de!ned our problem of integrating
data lake tables. Fig. 3 illustrates the entire ALITE pipeline that
we propose as a solution. We assume that we are given a set of
tables. The !rst step (Fig. 3 left part) is to assign each column with
a column header which we call an Integration ID (Section 4). After
assigning such IDs, the tables are annotated (Figure 3 middle part).
We can then apply FD to integrate the tables (Section 5).

3 RELATEDWORK
We now discuss related work mainly revolving around assigning
the column integration IDs and applying FD.

Assigning Column Integration IDs. The problem of assigning
column integration IDs aims at providing correspondences between
columns that can be integrated. In a traditional database setting,
this problem is usually referred to as schema matching [63], a long-
standing problem of identifying correspondences among database
attributes. Numerous algorithmic attempts have been suggested
over the years for handling the matching problem, e.g., COMA [25],
Similarity Flooding [53], BigGorilla [15], and ADnEV [69]. A com-
mon assumption for most of this work is the existence of consistent
and complete metadata, an unrealistic assumption in data lake ta-
bles [56]. Recently, Koutras et al. explored the use of traditional
schema matching methods in the scope of data lakes [45]. However,
the work covered is limited to !nding pairs of matching columns
whereas, our objective is to assign integration IDs to a set of tables
to be integrated in a holistic manner. Holistic schema matching,
i.e., matching a set of schemas at the same time, has received some
attention in the literature [35, 61, 70], mainly revolving around
web tables and assuming metadata is reliable and complete. Some
work [3, 61] uses a clustering-based approach. However, contrary
to the clustering-based approach we will suggest (Section 4), they
use schema information rather than data values. Recall that data
lake tables generally lack reliable metadata [29, 56].

Other related work includes unionable [12, 41, 48, 57], join-
able [26, 55, 75, 77–79], and related [10, 19, 77] table search, for
which the designed methods are usually based on column relation-
ships. For example, in order to !nd unionable tables, TUS [57] !rst
aims at !nding unionable columns. Similarly, Bogatu et al. [10]
assesses table relatedness by assessing their attribute relatedness.
Our work uses a similar methodology to TUS [57] based on column
embeddings. But here we make use of an embedding that was de-
signed for tables, namely, TURL [23]. We are also, to the best of our
knowledge, the !rst to make use of TURL [23] for holistic matching
of data lake tables.

935



Full Disjunction. Full disjunction (FD) was initially de!ned by
Galindo-Legaria as an associative alternative for the outer join op-
erator [32]. Galindo-Legaria used algebraic relationships to express
the outer join in terms of inner join and minimum union, which
is known as join-disjunctive form or Full Disjunction (FD) [32].
The inner joins between each table pair, triple, etc., are computed.
The resulting tuples are then outer-unioned and the subsumable
tuples are removed to get the FD. Rajaraman and Ullman showed
that a !xed ordering of outer joins can give the FD i" the input
tables form a 4-acylic hypergraph. Hence, for the 4-acylic case, the
FD can be computed in linear time in the output size [65]. Kanza
and Sagiv showed that FD can be computed for any arbitrary set
of tables in 5 ($5(2 " 2) time [40] where, recall $ is the number of
input tables, ( is the total number of input tuples, and " is the
number of FD output tuples. This is the !rst work to show that
FD can be computed for any set of tables in polynomial time in
input-output complexity [74]. Other work computes the FDtuple-set,
rather than FD [17, 18]. Cohen and Sagiv introduced an algorithm
that computes k FDtuple-set tuples in a given ranking order [18]
and improved the worst-case time complexity over Kanza and Sa-
giv [40] to compute the full results. Cohen et al. also proposed
an algorithm called BICOMNLOJ that computes each FDtuple-set
tuple with polynomial delay [17]. As we want to integrate all input
tables, we compute the full FD result instead of a partial result. The
worst-case time complexity of BICOMNLOJ to compute full FD is
linear in the output size which is an improvement over the prior
work [18]. Note that both INCREMENTALFD [18] and BICOMNLOJ
[17] perform subsumption in terms of tuple-sets (FDtuple-set) rather
than actual tuples. Hence, they may produce subsumable tuples
in their FDtuple-set result (speci!cally, they may produce a proper
superset of the FD). Note that, when there are no missing values
(±) and subsumable tuples in the input relations, these algorithms
compute the FD [32]. As data lake tables may contain many missing
values and subsumable tuples, we use FD. Our experiments (Sec-
tion 6) show that in real data lakes the di"erence between the FD
and the FDtuple-set [17, 18] can be substantial and that the original
de!nition of FD, which maximally integrates tuples, is preferred.

Recently, Paganelli et al. [59] revised Cohen and Sagiv’s INCRE-
MENTALFD [18] and Cohen et al.’s BICOMNLOJ [17] to compute
the FD in a distributed environment. They also introduced a new
algorithm called ParaFD that outperforms INCREMENTALFD and
BICOMNLOJ while computing FD using multiple machines. ParaFD
!rst !nds all the spanning trees in the scheme graph of the input
table schemas. Then, it applies outer join based on Hash-star join
to integrate tables following the order on each spanning trees by
using Primary Key-Foreign Key relationships. Finally, it applies
subsumption to obtain the FD. ParaFD allows missing nulls but it
can be used only for sets of relational tables on which all joins are
key to foreign-key joins. We consider the general case of arbitrary
joins. To modify ParaFD for arbitrary joins, one needs to use full
outer join without Hash-star join over each spanning tree. But for
real data lake tables forming complex scheme graphs, the number
of spanning trees can be very large. For instance, for a complete
scheme graph (i.e. each table is connected to each of the other ta-
bles) having n tables, the number of spanning trees may be on the
order of $"−2 [1]. One needs to apply outer join over each spanning

tree making ParaFD ine#cient and similar to the baseline suggested
by Galindo-Legaria [32].

Other research considers integrating data from relational and
web tables and handling con$icts between the data values [6–9].
Bleiholder et al. introduced complement union operator that inte-
grates tuples under uncertainty (a con#ict between a null value and
a non-null value) [9]. In the absence of missing nulls (±), the com-
plement union operator is the same as FD. Yet, in the common case
of tables with missing nulls, complement union may over-combine
the tuples having null values on the join columns (see Example 6).

4 ASSIGNING COLUMN INTEGRATION IDS
We now explain the !rst stage of ALITE, namely assigning inte-
gration IDs to the columns of the input tables. We assume that
the schemas A(! ) = '1,'2, . . . ,'# of all the tables ! ∈ T are
opaque [39]. So, our goal, in this stage, is to annotate the columns
with integration IDs. An integration ID 6 (') ∈ P is associated with
each column. The same integration ID can be associated with a set
of columns – these column match (and will be integrated). We now
formally de!ne the column integration ID assignment problem.

Definition 11 (Integration ID Assignment Problem). Given
a set of input tables T = {!1,!2, . . .!"}, the column integration ID
assignment problem is to assign each column an integration ID in P
such that columns in the same table get distinct integration IDs.
∀! ∈ T )' ∈ A(! ),'′ ∈ A(! ) ∧' ≠ '′ 6 (') = 6 ('′)
As discussed in Section 3, this problem can also be seen as a

variation of holistic schema matching [70]. Speci!cally, it can be
seen as a 1 : 1matching constraint, in which an attribute can match
at most one attribute from each of the other tables and cannot be
matched with an attribute from the same table.

Finding Column Integration IDs with ALITE.We now aim
to !nd column integration IDs by positioning the problem as clus-
tering over the columns. In order to apply clustering over columns,
we use their values (assuming the metadata is missing or unreli-
able) to create embeddings over which a clustering algorithm can
be applied. Formally, a column' is embedded into a numeric vector
710 ('), allowing the creation of a similarity matrix. Obtaining an
embedding for data lake columns is far from trivial. TUS [57], for
example, uses embeddings from fastText [38], a word embedding
method based on natural text representations, to assess column
unionability of string columns. Recently, Deng et al., have proposed
TURL that creates embeddings based on a representation of each
table [23]. In this work, we explore the use of TURL to represent
columns of data lake tables. Once the embeddings for the columns
are set, we need to de!ne a similarity/distance measure to be used
in the clustering algorithm (in our experiments we use euclidean
distance). Having de!ned the embeddings and the distance mea-
sure, we follow a hierarchical clustering methodology to create the
clusters out of which the column integration IDs are obtained. We
ensure that the clustering algorithm does not allow columns from
the same table to be assigned to the same cluster. Hierarchical clus-
tering works iteratively. First, each data point (in our case attribute)
is assigned with a cluster. Then, at each iteration the two closest
clusters (by some metric) are merged to generate a new cluster. The
algorithm terminates when all the data points are assigned to the
same cluster. The hierarchical clustering result is usually described

936



using a dendrogram, which is a type of tree that illustrates the
di"erent clusters that can be generated at each iteration [47]. Using
the dendrogram, we select a speci!c cluster as we discuss next.

Selecting the Number of Integration IDs. An important pa-
rameter in any clustering algorithm is the number of clusters [34],
which, in our case corresponds to the number of column integra-
tion IDs. While traditional approaches assume that the number of
clusters is a given parameter, an alternative is to tie this number to
clustering quality [43]. Several clustering quality evaluation meth-
ods exist in the literature based on inter-cluster and intra-cluster
distances [13, 22, 67]. The objective, which we also share in this pa-
per, is to cluster similar columns together (i.e., reduce intra-cluster
distance) and avoid similar columns in di"erent clusters (i.e., in-
crease inter-cluster distance). We follow an approach similar to
the elbow method [5] to determine the number of clusters that
maximizes some (unsupervised) clustering quality measure. In the
experiments we use the well-known Silhouette Coe#cient [67].1

We also need to de!ne the scope of this search, i.e., what are the
possible values for the number of clusters. Recall that the columns
from the same input table cannot be assigned to the same cluster.
Therefore, if)1,)2 . . .)" are the number of columns in the input
tables !1,!2 . . .!" , the minimum number of clusters is given by
max()1,)2 . . .)"). Also, themaximumnumber of clusters is given
by∑"

!=1)! . The latter represents the case when each input column
forms a separate cluster and the bound can be even tighter if we
know that the scheme graph of the input tables is connected. We
show a !gure that zooms in the left part of Fig. 3 and summarizes
the Column Integration ID assignment in our technical report [42].

Example 12. Consider Fig. 1, we need to assign integration IDs to
the columns of tables. Here, we expect to have six clusters, each for
{Stadium, Location, Team, Opened, Coach, Capacity} as our column
labels show the ground truth. We use a clustering algorithm that
computes the clustering quality score starting from the minimum
number of clusters (3), to the maximum (15). Recall TID is not a
real column and was added so we can clearly refer to tuples. The
Silhouette coe$cient over the TURL embeddings is computed for all
values from 3 to 15 and plotted in our technical report [42]. It starts
from 3 and has a maximum at 6 . Then it decreases monotonically
from 7 to 15. Hence, we would pick 6 as the optimal number of clusters
and the clustering created in this simple example does re#ect the
ground truth – e.g., the four Stadium attributes are assigned the
same integration ID, and the single Opened attribute is assigned a
di"erent integration ID not shared by other columns.

5 INTEGRATING TABLES
Once we !nd the column integration IDs, ALITE uses them to
integrate the tables using a novel algorithm for computing Full
Disjunction. We show that our algorithm is correct and in practice,
is faster than existing algorithms.

5.1 ALITE FD Algorithm
The input of Algorithm 1 is a set of tables T to be integrated
with each column labeled with its integration ID. The two main
properties the algorithm uses are that the output is composed of
1Additional details are available in a technical report [42].

Algorithm 1: ALITE Full Disjunction
1 Input: T = {$1,$2, . . .$! }, a set of tables with integration IDs as

column names
2 Output: FD(T) , the Natural Full Disjunction of T
3 T ← GenerateLabeledNulls(T)
4 %ou ← $1 #$2 # · · · #$! //Apply outer union #
5 %comp ← Complement(%ou ) //Apply complementation &
6 %comp ← RemoveLabeledNulls(%comp)
7 $ ′ ← ' (%comp ) //Apply subsumption '
8 Output$ ′

all maximally integrated tuples over the input tuples (De!nition 9)
and should not contain subsumable tuples. ALITE’s pseudo code is
provided in Algorithm 1. We make use of the following property:
complementation (Line 5) over the outer union (Line 4) generates all
maximally integrated tuples if the input relations contain no null
values. Of course, our data lake tables will contain null values (±) so
we begin by replacing these with distinct labeled nulls (Line 3). We
then apply complementation treating the labeled nulls as distinct so
they cannot be equated.We can then replace all distinct labeled nulls
with the same missing value (±) (Line 6) and apply subsumption
(Line 7) as a !nal step to compute the FD. Next, we will explain
each step in detail.

1. Generating Labeled Nulls. Complementation produces all
maximally integrated tuples only if the input tables have no null
values (±). Hence, to prevent over-jealous combining of tuples, we
replace nulls (±), with distinct labeled nulls which are not equal to
each other, to ±, ⊥, or any constant (non-null) in any table. This
avoids undesirable complementation (and generates only integrated
tuples). Speci!cally, the !rst step of Algorithm 1 (Line 3) is to replace
missing nulls in the input tables with the distinct labeled nulls and
store them in a set 8 . This step ensures that the complementation
will not integrate tuples having null values on join columns.

Example 13. We use our running example (Fig. 1) throughout the
description of the algorithm for clarity. Since we have four missing
nulls in the tables (one each on !1 and !4 and two in !5), we replace
them with four distinct labeled nulls. After replacement, they are
treated similar to other non-null values.

2. Outer union. Now we outer union all the input tables and
store the resulting tuples in a set9ou (Line 4). The outer union of
the tables in Fig. 1 is shown in Fig. 2(a). Next, Line 5 passes the set of
outer unioned tuples (9ou) and the total number of tables ($) to Al-
gorithm 2 which uses complementation to return all the maximally
integrated tuples along with (possibly) subsumable tuples.

3. Complementation Step (Algorithm 2). The objective of
this step is to generate all the maximally integrated tuples. First, we
prepare two sets to perform the complementation:9temp and9comp,
and initialize both to9ou. Later on,9comp holds the complementa-
tion result. We start complementing the tuples in 9temp with outer
unioned tuples 9ou. (Line 4). For each tuple in 9temp, we look for a
complementing partner in 9ou and if at least one complementing
partner is found, we add the result of complementation to 9comp
(Line 9-12). However, if a tuple in9temp does not have any comple-
menting tuples, we add the tuple itself to9comp (Line 13-14). This
ensures that the tuples having no join partners are also included

937



Algorithm 2: Complement
1 Input: A set of outer unioned tuples%ou
2 Output: A set of tuples after complementation%comp
3 %comp ← %ou;%temp ← ∅
4 while%temp ≠ %comp do
5 %temp ← %comp;%comp ← ∅
6 for (1 ∈ %temp do
7 complement_count = 0
8 for (2 ∈ %ou do
9 ), complement_status← & ((1, (2 )
10 if complement_status then
11 %comp ← %comp ∪ )
12 complement_count← complement_count + 1
13 if complement_count = 0 then
14 %comp ← %comp ∪ {(1}
15 Output%comp

in the FD results. After we go through all the tuples in 9temp, we
check if 9temp and 9comp have the same tuples. If this is true, it
means that there are no more complementing tuples left and hence,
we stop the complementation. If they are not equal, there may be
tuples that can be complemented. So, we go for another round of
complementation. Note that the outer loop (Line 4-14) never takes
more than $ − 1 rounds (even less in practice). The reason is simple:
complementation can only combine tuples from di"erent tables.
So, there are at most $ − 1 such steps for any tuple. Also from
monotonicity of the process, if a tuple does not get complemented
in one step, it can not be complemented in a future step.

Example 14. Consider Table (a) and (b) of Fig. 2. Table (a) is the
result of outer unioning the tables in Fig. 1 and Table (b) holds the
resulting tuples given by di"erent integration techniques. Consider
Algorithm 2 which has as input a set of tuples to be complemented.
In the complementation !rst round (Line 4-14), both 9ou and 9temp
are the same and they contain the tuples #1, #7 and #10. All these
three tuples integrate with each other. Assume that the labeled
null in #10 was replaced by a distinct non-null value ±1. So, the
complementation operator integrates them pairwise (Line 9) to
generate intermediate tuples 3 (#1, #7) (equal to "1 except Capacity
= ⊥), 3 (#1, #10) (equal to "1 except Coach = ⊥ and Capacity = ±1),
and 3 (#7, #10) (equal to "1 except Capacity = ±1) (see Section 2.2).
All these tuples are added to9comp. Similarly, tuples #8 and #12 com-
plement each other producing "8, which is added to9comp (Line 11).
On the other hand, #5 does not have any integrating partners
and, hence, is added to 9comp itself (Line 14). After the !rst com-
plementation round, 9comp = 9ou \ {#1, #6, #7, #8, #9, #10, #11, #12} ∪
{3 (#1, #7),3 (#1, #10),3 (#7, #10),3 (#6, #9),3 (#6, #11),3 (#9, #11), "8}
which is di"erent from 9ou. Hence, we move 9comp to 9temp,
and empty 9comp. Then the algorithm starts a second round of
complementation (Line 4-14). As mentioned earlier, 9ou is always
the same. So, tuples 3 (#1, #7) and 3 (#1, #10) in 9temp complement
with tuples #10 and #7 respectively. They both produce the same
tuple that is equal to 3 (#7, #10) which is already in 9temp from the
!rst iteration. As 9temp is the set, the newly generated duplicates
are discarded. After this round, we again move 9comp to 9temp
and empty 9comp. In the next round, no tuples in 9temp have
complementing partners in9ou. So, the complementation terminates
and9comp =9temp = {3 (#7, #10), "2, "3, "4, "5, "6, "7, "8, #14}.

4+5. Remove labeled nulls and subsumption. Once the com-
plementation is done, we remove the subsumable tuples to get the
FD. Notice however, we have replaced the missing nulls (±) with
the distinct labeled nulls before complementation. This is to pre-
vent the complementation on the missing nulls. However, to get the
maximally integrated tuples, we ensure that there are no subsum-
able tuples, both on missing nulls and produced nulls. Therefore,
we revert each labeled null to its original missing value (±) (Line 6
of Algorithm 1) and then use subsumption (Line 7) to remove the
non-maximally integrated tuples.

Example 15. We now replace the unique labeled nulls in each
tuple with a missing null (±). This step converts 3 (#7, #10) to "1.
Finally, we apply subsumption to 9comp and get rid of tuple #14
(Algorithm 1, Line 7). This ensures that the !nal result is the set of
FD tuples i.e., {"! }, & ∈ [1, 8] where, i is an integer.

For subsumption, we use the null-value based partitioning algo-
rithm introduced by Bleiholder et al. that computes subsumption in
5 (( log () time where, ( is the number of input tuples [8]. The idea
is to !rst partition the input tuples according to their null value
pattern. This helps to reduce the number of tuple comparisons for
the subsumption check and hence, we can apply subsumption only
on tuples within a partition. Note that the number of columns in
the integrated table is constant for a given set of tables.

5.2 E#cient Complementation
For subsumption, we used an existing fast algorithm. For comple-
mentation, we describe a novel optimization based on partitioning
of the tuples. Recall that two tuples having di"erent non-null values
on a common column cannot complement each other. So, we avoid
the comparison between such tuples by assigning them to di"erent
partitions. Then we apply complementation within each partition
using Algorithm 2, reducing its computation time.

Example 16. Consider column Stadium and tuples #1, #2, #7 and
#10 of Table (a) in Fig. 2. Also recall the necessary conditions for two
tuples to complement each other (see Section 2). Since #1 [*#+,&-)]
= NRG Stadium and #2 [*#+,&-)] = AT&T Stadium, they cannot
complement each other as they have di"erent non-null values on a
common column Stadium. Hence, we safely avoid any comparison
between #1 and #2. Also, as #10 [*#+,&-)] = NRG Stadium, it has a
possibility of complementing #1. So, we compare #1 and #10. Notice
however, tuple #7 complements #10 even though #7 has a produced
null on Stadium. Therefore, a tuple having a produced null on a
common column should still be compared with other tuples.

We intend to make each partition fairly small, i.e., keep the
number of tuples in each partition less than a positive integer :
where, : - ( . Bleiholder et al. suggested to partition tuples using
the values of selected partitioning column(s) [9]. The selection of
the partitioning column(s) is based on a heuristic that considers the
number of non-null and unique values on each column. At !rst, the
tuples having the same non-null values in the partitioning column
are kept in separate partitions. If there are tuples having produced
null values in the partitioning column(s), they are added to all
other partitions. Now, the complementation can be applied on the
tuples within each partition. But partitioning with a single or even

938



a group of columns may still produce large partitions. So, instead of
stopping after the !rst partitioning, we continue the process using
other columns one after another until the number of tuples in each
partition is less than : . The tuples in the produced null partition
should be added to each of the other partitions. Hence, in order to
reduce the number of tuples in the produced null partition, we !rst
sort the columns in ascending order of the number of produced
nulls they contain. Then, we partition the tuples by value of each
column one by one. Also, the tuples from produced null partitions,
when added in other partitions, may create duplicate partitions
i.e., the partitions having exactly the same tuples. To discard such
duplicate partitions, we index each partition based on its tuples.

Example 17. Consider the table in Fig. 2(a), which is the outer
union of the tables in Fig. 1. Each missing null is replaced by a
distinct value. Let the threshold for partitioning be : = 4. The par-
titioning order of the columns based on the number of produced
nulls is {Location, Stadium, Team, Coach, Opened, Capacity}. In
the !rst round, we partition by Location which gives six parti-
tions ;1 = {#1, #2, #7, #10}, ;2 = {#3, #13}, ;3 = {#4, #14}, ;4 = {#5},
;5 = {#6, #9, #11}, ;6 = {#8, #12}. As ;1 does not have less than 4 tu-
ples at the end of the !rst round, we again partition ;1 into smaller
partitions using Stadium column. This gives two more partitions
;11 = {#1, #7, #10} and ;12 = {#2, #7}. Note that #7 has a produced
null in the partitioning column. So, we add #7 to both ;11 and ;12. At
the end of second round, all the partitions have size less than 4. Hence,
we do not further partition using other columns and the input to Al-
gorithm 2 by Algorithm 1 are partitions ;11, ;12, ;2, ;3, ;4, ;5, ;6.

To optimize, we slightly modify Algorithm 1 (Line 5). Speci!-
cally, we apply partitioning over the outer unioned tuples (Algo-
rithm 1 Line 4) and apply complementation over each partition one-
by-one. The complementation over each partition is then unioned
before replacing distinct labeled nulls with the missing nulls.

5.3 Full Disjunction Algorithm Analysis
Correctness. We now present a theorem on the correctness of
Algorithm 1. 2

Theorem 18. The relation computed by ALITE over a set of
input tables !1,!2, . . .!" is exactly the natural full disjunction of
!1,!2, . . .!" .

TimeAnalysis. Recall that the objective of ALITE is to integrate
data lake tables discovered using table search techniques. Generally,
such tables form schema graphs that may have complex cycles. Our
choice of using a complementation operator enables us to optimize
the production ofmaximally integrated tuples. Furthermore, we also
optimize the subsumption operator separately, which makes ALITE
faster in practice than the baselines for computing FD over data
lake tables. We will show the superiority of ALITE over baselines
in di"erent conditions experimentally in Section 6. Further details
on time complexity are available in our technical report [42].

6 EXPERIMENTS
We now evaluate the two steps involved in ALITE.

2 Proof in the technical report [42].

6.1 Experimental Setup
We implement ALITE and all the baselines using Python 3.7 and
run experiments using a CentOS server having Intel(R) Xeon(R)
Gold 5218 CPU @ 2.30GHz processor. The main objective of our
experiments is to answer: (1) How accurate is our Column Inte-
gration ID Assignment method in comparison to the existing at-
tribute matching techniques? (2) How well does our FD algorithm
scale in comparison to the state-of-the-art FD algorithms? (3) Is it
worthwhile to use FD instead of the faster (and widely available)
outer-join operator? Speci!cally, we study how many FD tuples
are missed by outer-join when integrating real data lake tables.

Embedding Generation. Recall that we use pre-trained em-
beddings to represent the columns for clustering (and integration
ID assignment). Before using TURL [23], our method of choice to
generate embeddings, we pre-process the tables using their im-
plementation [72]. This phase includes, for example, generating
a Wikipedia entity dictionary to map values in the tables. TURL
was designed for web tables and, hence, has a limited capacity in
terms of the number of rows and columns it can use to create em-
beddings (mean of ∼20 rows and ∼2 columns [23]). Since typical
data lake tables are much larger (see Fig. 4), to cope with such a lim-
itation, we designed an iterative embedding generation approach
for each column. First, we randomly sample 50 rows and generate
the corresponding column embedding by averaging the representa-
tions of each row. Then, we iteratively sample 50 additional rows
and combine them with the current embedding until convergence.
Convergence is achieved if the euclidean distance between two
consecutive embeddings is less than some value (0.05 in our setup).

Hierarchical Clustering. The generated embeddings are used
to represent columns for clustering (see Section 4). We implement
the clustering algorithm using Agglomerative Clustering module
available in Scikit learn library [60]. Based on our objective of ob-
taining dense, but well-separated clusters, we use the Silhouette
Coe#cient as a clustering quality measure [67]. We select the num-
ber of clusters (column predicates) that maximizes the Silhouette
Coe#cient (Section 4). We use euclidean distance as a distance
metric throughout the experiments.

6.2 Evaluation Measures
To the best of our knowledge, no prior work considers the integra-
tion of data lake tables after discovery. So, we compare the di"erent
components of our pipeline to some approximate baselines.

Column Integration ID Assignment: The column integration
ID assignment can be addressed using schema matching. Generally,
precision, recall and their harmonic mean, i.e., <1-score are used as
the evaluation measures for schema matching [14, 31, 69]. So, we
use the same three metrics to compare our column integration ID
assignment against existing schema matching methods. To assess
the quality of a clustering-based solution using binary measures, we
consider a pair of columns belonging to the same cluster as a match.
Note that a column having no matches forms a singleton cluster,
i.e., a cluster having one column. We count each such cluster as
a true match during the evaluation. Speci!cally, the total number
of matches is the sum of the number of column pairs belonging to
the same cluster and the number of singleton clusters. Formally,
let TM be true column pair matches according to the ground truth

939



and T̂* be the matches according to a method. We de!ne Precision
(;), Recall (=) and <1-score (<1) as follows:

; =
T* ∩ T̂*

T̂*
,= =

T* ∩ T̂*
T*

, <1 =
2 · ; · =
; + =

(1)

We compute precision, recall and <1-score for each set of tables to
be integrated and report the average. In addition, we also report
the time taken by each method to determine the column predicates.

Full Disjunction: Our objective is to show that our proposed
FD algorithm is faster in integrating data lake tables in comparison
to the state-of-the-art methods for computing the FD. Therefore,
we will report the time taken to compute Full Disjunction by each
method. A cut-o" of 10k seconds is used when applying FD. Fur-
thermore, it is interesting to see how many tuples generated by FD
can also be generated by the relatively faster outer-join over real
data lake tables. Recall that outer-join is not an associative operator
and there may exist outer-join orderings that yield the semantics
of Full Disjunction when the scheme graph of the input tables does
not contain a 4-cycle [65]. But the data lake tables to be integrated
may contain gamma cycles in which case an outer join may not
compute the FD. We quantify this using the Tuple Di"erence Ratio
(!>=) as a success metric. Let " be the FD output size and " ′ be
output size of a competing method (e.g. outer join). The !>= is
given by + ∩+ ′

+ . If the competing method produces all FD tuples,
!>= is equal to 1 and it is equal to 0 if it produces none of them.

6.3 Baselines
Column Integration ID Assignment. Recall that we use a clus-
tering approach and pre-trained embeddings created for the tables’
columns [23] to !nd the column integration IDs. Other existing
natural language embeddings were successfully adopted for similar
tasks such as table search [10, 57] and column annotation [71]. Here,
we compare the performance of such embeddings also for our task.
Like in table search [10, 57], we use fastText [38, 54] embeddings of
columns as done for column annotation [71], and we useBERT [24]
embeddings. We use a publicly available Fasttext model [30] using
Gensim python package [33]. We generate BERT embeddings [4]
using the commonly used hugging face package [27].

We also compare our Column Integration ID Assignment with
existing schema matching methods. There are numerous matching
approaches in the literature [25, 45, 51, 69]. However, most work
relies on metadata, which we aim to avoid in our setting. Recently,
in Valentine, Koutras et al. performed a detailed analysis of existing
schema matching methods in a data lake setting [45]. Based on
their analysis, we select the Distribution Based method (DB), pro-
posed by Zhang et al., as a baseline [76]. DB discovers clusters of
similar attributes in tables using information that includes attribute
data types, overlap of the attribute values, and their distribution.
Earth Mover’s Distance is used to measure the similarity between
the column pairs [68]. A threshold is applied over this score to de-
cide the column similarity. We use a threshold of 0.15 suggested by
Zhang et al. [76]. Also, we reproduce DB using the open source code
in Valentine [73]. For completeness, we compare ALITE against
other schema-based matching methods available in Valentine over
a benchmark having real schemas. Speci!cally, we compare CU-
PID [51], COMA [25] and Similarity Flooding (SF) [53]. We also

report a Jaccard Similarity and Levenshtein Distance method (JLM)
used as a baseline in Valentine [45]. We use default parameters
from the respective papers. Note that the holistic schema matching
works with a set of tables whereas the pairwise schema matching
methods work only between a pair of tables (or schemas). So, for
fair evaluation, we make all the pairwise methods holistic. We apply
pairwise schema matching between every pair of tables in the set
of tables to be integrated. Then, the method returns all the column
pair matches, which we use to compute P, R and <1 (Section 6.2).

Full Disjunction. Paganelli et al. recently suggested ParaFD to
compute the FD of relational tables where all joins are between keys
and foreign keys using multiple machines [59]. In a data lake, we are
often not joining on keys and foreign keys, so we mainly compare
ALITE against ParaFD in a benchmark having such relationships.
However, to understand how accurate ParaFD can be in the real
tables that may not necessarily have PK-FK relations, we report its
TDR on a benchmark having real data lake tables.

We also use BICOMNLOJ, which computes the FD with a poly-
nomial delay between tuples [17]. As our focus is to compute full
FD, we report the performance of BICOMNLOJ for computing the
full FD. Also, BICOMNLOJ is based on the tuple sets and computes
FDtuple-set, if the input contains nulls its output may contain some
subsumable tuples (see Example 10). So, to ensure that the output
produced by this algorithm is the same as other algorithms, we
apply subsumption to its !nal result. For fair comparison, we apply
the same subsumption algorithm that we use for our approach [8].
Since an open-source implementation is not available for either
ParaFD or BICOMNLOJ, we reproduce them using the information
provided in the paper. We implement ParaFD to run on a single
machine for fair comparison. The reproduced implementations are
publicly available in our github repository [2]. Also, we run outer
join to integrate the tables and use its output size to report !>=.
As outer join is not associative, the order of integration makes a sig-
ni!cant di"erence [32]. Applying outer join in a connected-pre!x
ordering of the input tables can yield FD for 4-acylic case [17].
Therefore, we !nd the connected-pre!x ordering by performing
DFS transversal over the input scheme graph and use it to compute
the outer join [17].

6.4 Benchmarks

Benchmark Tables Columns Tuples Integration sets Experiments
Align 606 4,584 2.2M 65 Integration ID
Real 102 1, 195 219k 11 Integration ID, FD
Join 302 2, 309 1.1M 28 FD

IMDB 6 33 3k - 30k 1 FD

Figure 4: Benchmarks used in the experiments.

Figure 4 summarizes all benchmarks used in di"erent experi-
ments along with their statistics. Each benchmark contains multiple
tables with di"erent schemas and each schema may be used by mul-
tiple tables. All the benchmarks are publicly available [2].

Align. To the best of our knowledge, there are no available data
lake benchmarks that could be adapted to evaluate the column inte-
gration ID assignment task. So we create a new benchmark called
Align containing 606 tables divided into 65 non-overlapping sets of
tables, which we call integration sets. For example, !1-!5 (Fig. 1) is

940



an integration set containing 5 tables to be integrated. We run the
column integration ID Assignment over the columns of tables of
each integration set and report the average performance. To create
this benchmark, we follow a similar technique used to create a
table union benchmark [57]. First, we select 65 real data lake tables
from US Open Data [36], Canada Open Data [20], and UK Open
Data [21] and consider them as seed tables. Each seed has a di"erent
schema and is used to generate an integration set. We partition
the seed tables by projecting columns and selecting rows (without
replacement) to get 606 smaller tables such that all the columns of
the small tables that originated from the same seed column have
the same integration ID. Accordingly, we have labeled ground truth
for the column integration ID assignment. Based on the number of
columns and rows in the seed tables, each integration set contains 2
to 30 tables. Note that we do not add or remove missing nulls in the
seed tables before partitioning. Therefore, if there is a missing null
in the seed table row, it gets copied to the small tables. On average,
since these are real data lake tables, we have null values in 50% of
the rows. This ensures that our benchmark well-represents the real
data lake scenario where such nulls are prevalent.

Real. To understand the performance of di"erent methods in a
real data lake environment, we also created the Real Benchmark
that contains 102 real data lake tables divided into 11 disjoint in-
tegration sets. We ensure that the schema graph of the tables in
each integration set is connected. Furthermore, two real tables can
have di"erent column headers for the join columns. Therefore, we
manually marked the join columns and labeled the ground truth.
We use this benchmark to evaluate the e"ectiveness of column
integration ID assignment and e#ciency of FD. It is interesting
to evaluate FD computation for di"erent input sizes (() and out-
put sizes (" ). Therefore, we also ensure that the benchmark covers
" < ( , " ≈ ( and " > ( cases. Precisely, in this benchmark, there
are three integration sets where " < ( , !ve integration sets where
" ≈ ( , and three integration sets where " > ( . 3 The number of
tables (n) on each integration set ranges from 5 to 14. Also, ( and "
ranges from 588 to 76k and 580 to 60k respectively.

Join. Except renaming column headers, we do not modify the
Real Benchmark and it contains raw tables searched from open
data lakes. Therefore, to experiment with our algorithm in broader
contexts, like for variation in the input size, output size and the
number of tables in each integration set, we create a Join Benchmark
that contains 28 integration sets generated using 27 seed tables–
at most two integration sets from each seed. Each integration set
contains 2 to 20 tables. We follow a similar methodology as used in
Nargesian et al. [57] as explained in the Align Benchmark, but this
time we also consider broader variation in the number of input and
output tuples and also their ratio. The input tuple size (() varies
from 266 to 100k and range of output size is from 234 to 12M. There
are 17 integration sets with " < ( among which six have " < 0.5( .
Furthermore, !ve integration sets have " ≈ ( and six integration
sets have " > ( .

IMDB. As ParaFD can only be used accurately for the tables
having PK-FK relationships, we also use an IMDB dataset, hav-
ing such relationships for our experiments [37]. This is a dataset
about movies and their details including ratings, crews, etc. The

3We consider + ≈ , when |" −# |
# ≤ 0.05.

full dataset contains about 106.8 M tuples in 6 tables. We use this
benchmark to study the e"ect of di"erent input size on the run
time. Previous work uses 1k tuples in each table to evaluate the
run time [17]. Therefore, to study the trend on similar setting , we
sample tuples randomly and vary the input size between 500 to
5000 for each table– around 3k to 30k input tuples in total for our
experiments. We preserve PK-FK relationships during sampling.

6.5 Column Integration ID Assignment Results Best score
Second Best score

Benchmark
Method

Baseline ALITE
CUPID COMA SF JLM DB fastText BERT TURL

Align
P - - - - 0.953 0.955 0.924 0.934

R - - - - 0.892 0.924 0.967 0.968
F1 - - - - 0.911 0.936 0.942 0.947

Real
P 0.448 0.821 0.255 0.494 0.718 0.689 0.730 0.776
R 0.695 0.631 0.914 0.912 0.799 0.806 0.769 0.762

F1 0.465 0.685 0.296 0.562 0.717 0.722 0.713 0.755

Best score
Second Best score

Benchmark
Method

Baseline ALITE
CUPID COMA SF JLM DB fastText BERT TURL

Align
P - - - - 0.95 0.96 0.92 0.93

R - - - - 0.89 0.92 0.97 0.97
F1 - - - - 0.91 0.94 0.94 0.95

Real
P 0.45 0.82 0.26 0.49 0.72 0.69 0.73 0.78
R 0.70 0.63 0.91 0.91 0.80 0.81 0.77 0.76

F1 0.47 0.69 0.30 0.56 0.72 0.72 0.71 0.76

Figure 5: Average precision, recall and <1 over the Align and
Real benchmarks for column integration ID assignment.

We now report the e"ectiveness of column integration ID as-
signment, followed by an empirical analysis of its e#ciency. Fig. 5
shows the evaluation results for the Align and Real benchmarks.
Recall that ALITE uses a clustering-based approach to !nd the
column integration IDs that uses pre-trained embeddings created
using TURL [23]. So, !rst we compare ALITE’s precision, recall and
<1-Score using TURL-based embeddings against fastText and BERT.
We use the same experimental setups for all three methods (Sec-
tion 6.1). TURL gives comparable or even better precision and recall
against the baselines (Fig. 5). In terms of <1-score (the best overall
metric that combines both precision and recall), TURL performs
better than the baselines. This validates our choice of using table-
based embedding (TURL) instead of natural language embeddings
(fastText and BERT) for data lake tables. We will explore other ways
to embed data lake tables in future research.

Next, we compare the e"ectiveness of ALITE’s embedding-based
technique against >? that uses attribute data types, values and
distribution to !nd the similar columns. The >? approach has
a slightly better precision than ALITE on the '@&A$ benchmark.
However, ALITE outperforms >? by more than 8% in terms of
Recall. In =1+@ benchmark, DB has the lower precision and higher
recall than ALITE. Still, in terms of <1 (the combined metric), ALITE
outperforms DB by more than 4% on both benchmarks. The main
reason for the lower performance of >? is that it relies on value
overlap and ignores the semantics (e.g., synonyms). Speci!cally,
>?’s precision is impacted by the presence of homographs [49]–
the same values having di"erent meanings– in the non-matching
columns, and its recall is impacted by the presence of synonyms in
the matching columns that can not be captured by value overlap.
Also, >? uses information only within a pair of columns to make
the matching decision whereas, ALITE considers all the columns
together in a holistic way, which enhances its performance.

Moreover, we analyze the performance of schema-based meth-
ods for column ID assignment in Real Benchmark. Recall that Align
Benchmark’s tables are generated using seed tables such that the

941



aligning columns have the same column headers (Section 6.4). So,
we do not evaluate schema-based methods (CUPID, COMA, SF and
JLM) in Align Benchmark. In Real Benchmark, we observe that
COMA has better ; and <1 than other schema-based methods but
it has lower = and <1 than DB (baseline) and ALITE. Speci!cally,
ALITE outperforms COMA, the best schema-based method, by
∼10 % in <1-score. This is because the tables contain unreliable
schemas and applying similarity measures over them leads to in-
correct aligning. CUPID also shows weaker performance due to the
same reason. We observe that SF and JLM have the top-2 recalls
among all the methods. However, they have lower precision and
<1-score. This is because they align most columns within the same
cluster which increases their recall but penalizes precision. Hence,
the schema-based methods are not e"ective in the data lake setting.

The column integration ID assignment is considered as an o%ine
task. Yet, ALITE’s clustering is much faster than the pair-wise
comparison done by the baseline (>?). Speci!cally, ALITE takes
∼10 minutes for Align and ∼15 minutes for Real while >? takes
about 45 minutes (×4.5) for Align and about 2 hours (×8) for Real.
Comparing the embedding generation, fastText is the fastest (∼28
seconds for Align and ∼3 seconds for Real) as the embeddings are
pre-de!ned. TURL and BERT, for which a pre-trained model is
used, show somewhat di"erent trends. For the Align benchmark,
BERT takes ∼80 minutes while TURL takes ∼7 minutes. For the Real
benchmark, they take approximately the same time (∼15 minutes).

6.6 Full Disjunction Results
Now we compare ALITE’s FD algorithm e#ciency (Algorithm 1)
against the baselines (see Section 6.3). We also analyze the run time
of our algorithm by varying the input and output sizes. Finally, we
compare the FD output with the outer join output in terms of !>=
(the relative size of the outputs, see Section 6.1).

ALITE against baselines. Before experimenting with our data
lake benchmarks, we conducted a preliminary analysis over three
synthetic integration sets (R1,R2,R3) introduced in Cohen et
al. [17]. We reproduced these by randomly generating 1000 input
tuples in each of the 10 tables in each integration set. Unsurpris-
ingly, since these schema contain biconnected components [17],
?BC5D8.5E splits the tables into smaller integration sets, com-
putes FD for each of them separately and combine them. Therefore,
?BC5D8.5E is much faster than ALITE. As a second step, we
created a new, more complex, integration set having eight tables
that better represents data lake tables (see repository [2]). We again
!x the number of tuples on each input table to 1k for each of the 8
tables, i.e., ( = 8000. We added tuples to the tables in such a way as
to create three cases: " < ( (f = 3868), " ≈ ( (f = 7445) and " > ( (f
= 14204). For all three cases, ALITE outperforms ?BC5D8.5E by
at least one order of magnitude. ?BC5D8.5E could not optimize
the computation because there is only one biconnected component.
Note that this is a common case in data lakes due to the presence
of complex cycles in the scheme graphs.

We also compare the time taken by ALITE’s FD algorithm against
the baseline ?BC5D8.5E in Real Benchmark. Fig. 6(a) summarizes
this experiment. Each pair of bars on the X-axis represents a schema
and the Y-axis shows the time taken to integrate the tables by ALITE
(blue) and ?BC5D8.5E (red). The tables in an integration set are

0.01
0.1

1
10

100
1000

10000

Time (seconds)

0.01
0.1

1
10

100
1000

10000
Time (seconds)

(a) Real Benchmark

(b) Join Benchmark

Figure 6: Integration time (Y-axis, log scale) in (a) Real Bench-
mark and (b) Join Benchmark. The integration sets in X-axis
are arranged in ascending order of input size, some of the
names are truncated for conciseness. A 10k second cut-o"
was used in both benchmarks. Due to space considerations,
integration sets that did not meet the cut-o" time in Join
benchmark are provided in the technical report [2].

(a) (b)

Figure 7: Integration time in the IMDB benchmark for (a)
di"erent input size and (b) di"erent output size.

ordered by input size such that the smallest is shown on the left and
the largest in the right. ALITE’s FD algorithm (blue bars) is signi!-
cantly faster than ?BC5D8.5E (red bars) over all 11 integration
sets. Speci!cally, the cases where the cut-o" was not applied (all
but the last three), ALITE boosts the performance of ?BC5D8.5E
by around two orders of magnitude. The reason for this gain comes
from the fact that our algorithm partitions tuples according to their
complementation patterns and iterates over the tuples only within
the partitions. This leads to an interesting insight, showing the
impact of the complementation operator in optimizing the FD com-
putation for data lake tables. Another reason is that data lake tables
have complex join connections that limit the chances of dividing
the tables of integration sets into biconnected components, which
is used in ?BC5D8.5E . We see the same trend on Join Benchmark

942



(shown in Fig. 6 (b)) where, ALITE outperforms ?BC5D8.5E on
all integration sets by around one and half orders of magnitude. As
in Real, we are much faster for the integration sets having di"erent
output to input ratio. Also, it is notable that out of 28 integration
sets, ?BC5D8.5E computes the full FD result within the cuto"
time for only 13 integration sets that are shown in Fig. 6(b). Gen-
erally, ?BC5D8.5E is able to compute FD within the cuto" time
for input sizes less than 45k. For the remaining 15 integration sets,
the average integration time by ALITE ranges from 20 seconds
to 3827 seconds with an average of 598 seconds–well below the
cut-o" time (10k seconds) that we used in the experiments. This
shows that ALITE is more applicable than the baseline for the data
lake tables with large input size. we also observed that tuple-set
FD produces over 300 subsumable tuples per integration set in the
Real Benchmark which supports the subsumption step in ALITE.

Next, we apply ParaFD over Real Benchmark to see if it can yield
FD results in data lake tables. ParaFD completes the integration
within the cut-o" time for only 3 out of 11 integration sets and
only 2 of them are equal to FD result. ParaFD is slow in Real be-
cause it computes all the spanning trees over the schema graph and
computes outer join over each of them (see Section 3). Accordingly,
we also implement an approximate version of ParaFD where we
do not apply the cut-o" time but compute output tuples using at
most 100 spanning trees. The approximate version yields FD result
for only 5 out of 11 integration sets. For other 6 sets, the average
TDR is 0.82, i.e., ParaFD misses around 18 % of tuples. Also, it takes
an average of 9268 seconds per integration set, which is slower by
magnitudes than ALITE (Fig. 6(a)). The integration time and TDR
on each integration set is provided in the github repository [2].

Moreover, we compare ALITE’s FD algorithm against both
?BC5D8.5E and ;+%+<> in IMDB– a benchmark having six ta-
bles and large number of join connections. As shown in Fig. 7 (a),
we vary input tuples (() from 0 to 30k and observe the runtime.
Note that, when we increase the number of input tuples, the output
size also increases in this benchmark. Therefore, we also show the
integration time with respect to the output size (Fig. 7 (b)). It is seen
that ALITE gives comparable performance against ;+%+<> and is
more than two times faster than ?BC5D8.5E . Recall that ;+%+<>
needs all joins to be key to foreign-key joins to compute FD. It uses
this property to optimize the computations and hence, performs
relatively better than other techniques on BD>?. However, ;+%+<>
cannot be used for the tables without PK-FK relationship. Due to
space constraints, we provide other details like the number of tables
on each integration set, the number of columns, input size, output
size, and missing nulls size with the supplementary materials [2].

FD against outer join. We now show the importance of using
FD against outer join empirically in real data lake tables (Real
Benchmark). We provide a bar graph in our technical report [42]
that shows each integration set of this benchmark in X-axis and
TDR in Y-axis. We show the schemas based on three categories:
( < " , ( ≈ " , and ( > " . Recall that all these schemas contain
complex cycles. Out of 11 integration sets, only once is !>= equal
to one (school_report), i.e., all FD tuples are generated by outer join.
It is interesting that even in the presence of complex cycles, the
outer join can sometimes produce the full FD. For two integration
sets (chicago_parks and 1009ipopayments), the outer join is able to
generate more than half of the FD tuples. But for other sets, !>=

is very low, which shows that the outer join produces incomplete
tuples and hence, magni!es the importance of FD to best integrate
real data lake tables.

Integration 
Method

Integrated
Table Size |𝑻| | 𝑻 ∩ 𝑻 ∗ | P R F1

Full Disjunction 121 98 78 0.795 0.838 0.816
Outer join 114 109 37 0.339 0.397 0.366

Figure 8: Results of applying ER over FD and outer join out-
put. Integrated Table Size is the number of input tuples to
ER, which is the output size of integration methods.

Entity Resolution (ER). Lastly, we analyze the use of FD (rather
than outer join) for the downstream application of entity resolution
(ER). To create ground truth, we inject duplicate tuples into a real
table. We then partition the table into four tables and integrate
them back using outer join and FD. Over these tables, we apply ER
and verify if the tuples in the original table are reproduced. Speci!-
cally, we use Magellan’s py_entitymatching [62] to !nd and remove
matching tuples. Given a table ! (resulting table after applying
ER and removing duplicates from outer joined or FD table) and a
ground truth table ! ∗ (i.e. clean table), we compute precision (; ),
recall (=) and F1-score (<1) as follows:

; =
|! ∩! ∗ |

|! | ,= =
|! ∩! ∗ |
|! ∗ | , <1 =

2 ∗ ; ∗ =
; + =

In other words, precision and recall measure the portion of clean
tuples in ! and the portion of clean tuples that are covered by
! respectively. Additional details on the experimental setup are
provided in the technical report [42].

We report P, R and <1 of applying ER over FD and outer join
output in Fig. 8. The results indicate that applying ER over FD table
is better than outer join table in terms of both P and R and by
∼123% in terms of <1. Since outer join is not able to integrate the
maximal information, its result contains incomplete tuples having
null values. This reduces the information available for the entity
resolution algorithm and impacts de-duplication accuracy.

7 CONCLUSION
We introduce a novel problem of integrating data lake tables after
discovery and present ALITE that aims to solve this problem in
two steps. ALITE !rst assigns an integration ID to each column
and then applies natural full disjunction to integrate the tables. We
show that ALITE’s new FD algorithm is more e#cient than existing
baselines, in practice. We also show the e"ectiveness of using FD
to best integrate the real data lake tables.

ACKNOWLEDGMENTS
This work was supported in part by NSF under award numbers
IIS-1762268, IIS-1956096 and IIS-2107248.

REFERENCES
[1] Martin Aigner andGünterMZiegler. 1999. Proofs from the Book. Berlin. Germany

1 (1999).
[2] ALITE. 2022. https://github.com/northeastern-datalab/alite
[3] Basel Alshaikhdeeb and Kamsuriah Ahmad. 2015. Integrating correlation clus-

tering and agglomerative hierarchical clustering for holistic schema matching.
Journal of Computer Science 11, 3 (2015), 484.

943

https://github.com/northeastern-datalab/alite


[4] Hugging Face BERT base model (uncased). 2022. https://huggingface.co/bert-
base-uncased

[5] Purnima Bholowalia and Arvind Kumar. 2014. EBK-means: A clustering tech-
nique based on elbow method and k-means in WSN. International Journal of
Computer Applications 105, 9 (2014).

[6] Jens Bleiholder, Melanie Herschel, and Felix Naumann. 2011. Eliminating NULLs
with Subsumption and Complementation. IEEE Data Eng. Bull. 34, 3 (2011), 18–25.
http://sites.computer.org/debull/A11sept/DataFusion1.pdf

[7] Jens Bleiholder and Felix Naumann. 2009. Data Fusion. ACM Comput. Surv. 41,
1, Article 1 (Jan. 2009), 41 pages. https://doi.org/10.1145/1456650.1456651

[8] Jens Bleiholder, Sascha Szott, Melanie Herschel, Frank Kaufer, and Felix Naumann.
2010. Subsumption and complementation as data fusion operators. In EDBT
2010, 13th International Conference on Extending Database Technology, Proceedings
(ACM International Conference Proceeding Series), Vol. 426. ACM, 513–524. https:
//doi.org/10.1145/1739041.1739103

[9] Jens Bleiholder, Sascha Szott, Melanie Herschel, and Felix Naumann. 2010. Com-
plement union for data integration. In Workshops Proceedings of the 26th In-
ternational Conference on Data Engineering, ICDE 2010, March 1-6, 2010. IEEE
Computer Society, 183–186. https://doi.org/10.1109/ICDEW.2010.5452760

[10] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Konstanti-
nou. 2020. Dataset Discovery in Data Lakes. In 2020 IEEE 36th International Con-
ference on Data Engineering (ICDE). 709–720. https://doi.org/10.1109/ICDE48307.
2020.00067

[11] Dan Brickley, Matthew Burgess, and Natasha Noy. 2019. Google Dataset Search:
Building a Search Engine for Datasets in an Open Web Ecosystem. In The World
Wide Web Conference (WWW ’19). ACM, 1365–1375. https://doi.org/10.1145/
3308558.3313685

[12] Michael J. Cafarella, Alon Halevy, and Nodira Khoussainova. 2009. Data In-
tegration for the Relational Web. Proc. VLDB Endow. 2, 1 (2009), 1090–1101.
https://doi.org/10.14778/1687627.1687750

[13] Tadeusz Caliński and Jerzy Harabasz. 1974. A dendrite method for cluster
analysis. Communications in Statistics-theory and Methods 3, 1 (1974), 1–27.

[14] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating Embeddings of Heterogeneous Relational Datasets for Data Integration
Tasks. In SIGMOD Conference 2020. ACM, 1335–1349. https://doi.org/10.1145/
3318464.3389742

[15] Chen Chen, Behzad Golshan, Alon Y Halevy, Wang-Chiew Tan, and AnHai
Doan. 2018. BigGorilla: An Open-Source Ecosystem for Data Preparation and
Integration. IEEE Data Eng. Bull. 41, 2 (2018), 10–22.

[16] E. F. Codd. 1979. Extending the Database Relational Model to Capture More
Meaning. ACM Trans. Database Syst. 4, 4 (dec 1979), 397–434. https://doi.org/10.
1145/320107.320109

[17] Sara Cohen, Itzhak Fadida, Yaron Kanza, Benny Kimelfeld, and Yehoshua Sagiv.
2006. Full Disjunctions: Polynomial-Delay Iterators in Action. In Proceedings of
the 32nd International Conference on Very Large Data Bases (VLDB ’06). VLDB
Endowment, 739–750.

[18] Sara Cohen and Yehoshua Sagiv. 2007. An incremental algorithm for computing
ranked full disjunctions. J. Comput. Syst. Sci. 73, 4 (2007), 648–668. https:
//doi.org/10.1016/j.jcss.2006.10.015

[19] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Halevy, Hongrae Lee, Fei Wu,
Reynold Xin, and Cong Yu. 2012. Finding Related Tables. In SIGMOD Conference
2012. ACM, 817–828. https://doi.org/10.1145/2213836.2213962

[20] Canada Open Data. 2020. https://open.canada.ca/en/open-data
[21] UK Open Data. 2020. https://data.gov.uk/
[22] David L. Davies and Donald W. Bouldin. 1979. A Cluster Separation Measure.

IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1, 2 (1979),
224–227. https://doi.org/10.1109/TPAMI.1979.4766909

[23] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: Table
Understanding through Representation Learning. Proc. VLDB Endow. 14, 3 (2020),
307–319. https://doi.org/10.5555/3430915.3442430

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
ArXiv abs/1810.04805 (2019).

[25] Hong-Hai Do and Erhard Rahm. 2002. COMA—a system for $exible combination
of schema matching approaches. In VLDB’02: Proceedings of the 28th International
Conference on Very Large Databases. 610–621. https://doi.org/10.1016/B978-
155860869-6/50060-3

[26] Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada. 2021.
E#cient Joinable Table Discovery in Data Lakes: A High-Dimensional Similarity-
Based Approach. In 37th IEEE International Conference on Data Engineering, ICDE
2021. IEEE, 456–467. https://doi.org/10.1109/ICDE51399.2021.00046

[27] Hugging Face. 2022. https://huggingface.co
[28] Grace Fan, JinWang, Yuliang Li, Dan Zhang, and Renée J. Miller. 2022. Semantics-

aware Dataset Discovery from Data Lakes with Contextualized Column-based
Representation Learning. CoRR abs/2210.01922 (2022). https://doi.org/10.48550/
arXiv.2210.01922

[29] Mina H. Farid, Alexandra Roatis, Ihab F. Ilyas, Hella-Franziska Ho"mann, and
Xu Chu. 2016. CLAMS: Bringing Quality to Data Lakes. In SIGMOD Conference

2016. ACM, 2089–2092. https://doi.org/10.1145/2882903.2899391
[30] fastText. 2022. https://fasttext.cc/docs/en/english-vectors.html
[31] Avigdor Gal, Haggai Roitman, and Roee Shraga. 2021. Learning to Rerank

Schema Matches. IEEE Trans. Knowl. Data Eng. 33, 8 (2021), 3104–3116. https:
//doi.org/10.1109/TKDE.2019.2962124

[32] César A. Galindo-Legaria. 1994. Outerjoins as Disjunctions. In SIGMOD Confer-
ence 1994. ACM, 348–358. https://doi.org/10.1145/191839.191908

[33] Gensim. 2022. https://radimrehurek.com/gensim
[34] Johannes Grabmeier and Andreas Rudolph. 2002. Techniques of Cluster Al-

gorithms in Data Mining. Data Min. Knowl. Discov. 6, 4 (2002), 303–360.
https://doi.org/10.1023/A:1016308404627

[35] Bin He and Kevin Chen-Chuan Chang. 2005. Making holistic schema matching
robust: an ensemble approach. In Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 429–
438. https://doi.org/10.1145/1081870.1081920

[36] The home of the U.S. Government’s open data. 2020. https://data.gov/
[37] IMDB. 2022. https://datasets.imdbws.com/
[38] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag

of tricks for e#cient text classi!cation. arXiv preprint arXiv:1607.01759 (2016).
[39] Jaewoo Kang and Je"rey F. Naughton. 2003. On Schema Matching with Opaque

Column Names and Data Values. In SIGMOD Conference 2003. ACM, 205–216.
https://doi.org/10.1145/872757.872783

[40] Yaron Kanza and Yehoshua Sagiv. 2003. Computing Full Disjunctions. In Pro-
ceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS ’03). ACM, 78–89. https://doi.org/10.1145/
773153.773162

[41] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-
bauer, Renée J Miller, and Mirek Riedewald. 2023. SANTOS: Relationship-based
Semantic Table Union Search. In SIGMOD Conference 2023. ACM.

[42] Aamod Khatiwada, Gatterbauer Wolfgang, Roee Shraga, and Renée J. Miller.
2022. Technical Report on Integrating Data Lake Tables. https://github.com/
northeastern-datalab/alite/blob/main/alite-technical-report.pdf

[43] Trupti M Kodinariya and Prashant R Makwana. 2013. Review on determining
number of Cluster in K-Means Clustering. International Journal 1, 6 (2013),
90–95.

[44] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of Entity
Resolution Approaches on Real-World Match Problems. Proc. VLDB Endow. 3,
1–2 (2010), 484–493. https://doi.org/10.14778/1920841.1920904

[45] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lo!, Angela Bonifati, and Asterios Katsifodi-
mos. 2021. Valentine: Evaluating Matching Techniques for Dataset Discovery. In
37th IEEE International Conference on Data Engineering, ICDE 2021. IEEE, 468–479.
https://doi.org/10.1109/ICDE51399.2021.00047

[46] Michel Lacroix and Alain Pirotte. 1976. Generalized joins. ACM Sigmod Record
8, 3 (1976), 14–15.

[47] Peter Langfelder, Bin Zhang, and Steve Horvath. 2008. De!ning clusters from a
hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinform. 24, 5
(2008), 719–720. https://doi.org/10.1093/bioinformatics/btm563

[48] Oliver Lehmberg and Christian Bizer. 2017. Stitching Web Tables for Improving
Matching Quality. Proc. VLDB Endow. 10, 11 (2017), 1502–1513. https://doi.org/
10.14778/3137628.3137657

[49] Aristotelis Leventidis, Laura Di Rocco, Wolfgang Gatterbauer, Renée J. Miller,
and Mirek Riedewald. 2021. DomainNet: Homograph Detection for Data Lake
Disambiguation. In EDBT 2021. OpenProceedings.org, 13–24. https://doi.org/10.
5441/002/edbt.2021.03

[50] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. 2010. Annotating
and Searching Web Tables Using Entities, Types and Relationships. Proc. VLDB
Endow. 3, 1–2 (2010), 1338–1347. https://doi.org/10.14778/1920841.1921005

[51] Jayant Madhavan, Philip A Bernstein, and Erhard Rahm. 2001. Generic schema
matching with cupid. In vldb, Vol. 1. Citeseer, 49–58.

[52] David Maier. 1983. The theory of relational databases. Vol. 11. Computer science
press Rockville.

[53] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. 2002. Similarity Flood-
ing: A Versatile Graph Matching Algorithm and Its Application to SchemaMatch-
ing. In Proceedings of the 18th International Conference on Data Engineering, 2002.
IEEE Computer Society, 117–128. https://doi.org/10.1109/ICDE.2002.994702

[54] Tomás Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Ar-
mand Joulin. 2018. Advances in Pre-Training Distributed Word Representations.
In Proceedings of the Eleventh International Conference on Language Resources
and Evaluation, LREC 2018. European Language Resources Association (ELRA).
http://www.lrec-conf.org/proceedings/lrec2018/summaries/721.html

[55] Renée J. Miller. 2018. Open Data Integration. Proc. VLDB Endow. 11, 12 (2018),
2130–2139. https://doi.org/10.14778/3229863.3240491

[56] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data Lake Management: Challenges and Opportunities. Proc.
VLDB Endow. 12, 12 (2019), 1986–1989. https://doi.org/10.14778/3352063.3352116

[57] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table
Union Search on Open Data. Proc. VLDB Endow. 11, 7 (2018), 813–825. https:

944

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
http://sites.computer.org/debull/A11sept/DataFusion1.pdf
https://doi.org/10.1145/1456650.1456651
https://doi.org/10.1145/1739041.1739103
https://doi.org/10.1145/1739041.1739103
https://doi.org/10.1109/ICDEW.2010.5452760
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1145/3308558.3313685
https://doi.org/10.1145/3308558.3313685
https://doi.org/10.14778/1687627.1687750
https://doi.org/10.1145/3318464.3389742
https://doi.org/10.1145/3318464.3389742
https://doi.org/10.1145/320107.320109
https://doi.org/10.1145/320107.320109
https://doi.org/10.1016/j.jcss.2006.10.015
https://doi.org/10.1016/j.jcss.2006.10.015
https://doi.org/10.1145/2213836.2213962
https://open.canada.ca/en/open-data
https://data.gov.uk/
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.5555/3430915.3442430
https://doi.org/10.1016/B978-155860869-6/50060-3
https://doi.org/10.1016/B978-155860869-6/50060-3
https://doi.org/10.1109/ICDE51399.2021.00046
https://huggingface.co
https://doi.org/10.48550/arXiv.2210.01922
https://doi.org/10.48550/arXiv.2210.01922
https://doi.org/10.1145/2882903.2899391
https://fasttext.cc/docs/en/english-vectors.html
https://doi.org/10.1109/TKDE.2019.2962124
https://doi.org/10.1109/TKDE.2019.2962124
https://doi.org/10.1145/191839.191908
https://radimrehurek.com/gensim
https://doi.org/10.1023/A:1016308404627
https://doi.org/10.1145/1081870.1081920
https://data.gov/
https://datasets.imdbws.com/
https://doi.org/10.1145/872757.872783
https://doi.org/10.1145/773153.773162
https://doi.org/10.1145/773153.773162
https://github.com/northeastern-datalab/alite/blob/main/alite-technical-report.pdf
https://github.com/northeastern-datalab/alite/blob/main/alite-technical-report.pdf
https://doi.org/10.14778/1920841.1920904
https://doi.org/10.1109/ICDE51399.2021.00047
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.14778/3137628.3137657
https://doi.org/10.14778/3137628.3137657
https://doi.org/10.5441/002/edbt.2021.03
https://doi.org/10.5441/002/edbt.2021.03
https://doi.org/10.14778/1920841.1921005
https://doi.org/10.1109/ICDE.2002.994702
http://www.lrec-conf.org/proceedings/lrec2018/summaries/721.html
https://doi.org/10.14778/3229863.3240491
https://doi.org/10.14778/3352063.3352116
https://doi.org/10.14778/3192965.3192973


//doi.org/10.14778/3192965.3192973
[58] Paul Ouellette, Aidan Sciortino, Fatemeh Nargesian, Bahar Ghadiri Bashardoost,

Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2021. RONIN: Data Lake Exploration.
Proc. VLDB Endow. 14, 12 (2021), 2863–2866. https://doi.org/10.14778/3476311.
3476364

[59] Matteo Paganelli, Domenico Beneventano, Francesco Guerra, and Paolo Sottovia.
2019. Parallelizing Computations of Full Disjunctions. Big Data Research 17
(2019), 18–31. https://doi.org/10.1016/j.bdr.2019.07.002

[60] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Courna-
peau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-
learn: Machine Learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.
https://doi.org/10.5555/1953048.2078195

[61] Jin Pei, Jun Hong, and David A. Bell. 2006. A Novel Clustering-Based Approach
to Schema Matching. In Advances in Information Systems, 4th International Con-
ference, ADVIS 2006, Proceedings (Lecture Notes in Computer Science), Vol. 4243.
Springer, 60–69. https://doi.org/10.1007/11890393_7

[62] py_entitymatching. 2016. https://github.com/anhaidgroup/py_entitymatching
[63] Erhard Rahm and Philip A. Bernstein. 2001. A survey of approaches to automatic

schema matching. VLDB J. 10, 4 (2001), 334–350. https://doi.org/10.1007/
s007780100057

[64] Erhard Rahm and Eric Peukert. 2019. Holistic Schema Matching. In Encyclopedia
of Big Data Technologies. Springer. https://doi.org/10.1007/978-3-319-63962-
8_12-1

[65] Anand Rajaraman and Je"rey D. Ullman. 1996. Integrating Information by Out-
erjoins and Full Disjunctions (Extended Abstract). In Proceedings of the Fifteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS ’96). ACM, 238–248. https://doi.org/10.1145/237661.237717

[66] Raghu Ramakrishnan and Johannes Gehrke. 2003. Database management systems
(3. ed.). McGraw-Hill.

[67] Peter J. Rousseeuw. 1987. Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. J. Comput. Appl. Math. 20 (1987), 53–65.
https://doi.org/10.1016/0377-0427(87)90125-7

[68] Y. Rubner, C. Tomasi, and L.J. Guibas. 1998. A metric for distributions with
applications to image databases. In Sixth International Conference on Computer
Vision (IEEE Cat. No.98CH36271). 59–66. https://doi.org/10.1109/ICCV.1998.
710701

[69] Roee Shraga, Avigdor Gal, and Haggai Roitman. 2020. ADnEV: Cross-Domain
SchemaMatching using Deep Similarity Matrix Adjustment and Evaluation. Proc.
VLDB Endow. 13, 9 (2020), 1401–1415. https://doi.org/10.14778/3397230.3397237

[70] Weifeng Su, Jiying Wang, and Frederick H. Lochovsky. 2006. Holistic Schema
Matching for Web Query Interfaces. In Advances in Database Technology - EDBT
2006, 10th International Conference on Extending Database Technology, Proceedings
(Lecture Notes in Computer Science), Vol. 3896. Springer, 77–94. https://doi.org/
10.1007/11687238_8

[71] Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çagatay Demiralp, Chen
Chen, and Wang-Chiew Tan. 2022. Annotating Columns with Pre-trained
Language Models. In SIGMOD Conference 2022. ACM, 1493–1503. https:
//doi.org/10.1145/3514221.3517906

[72] TURL. 2020. https://github.com/sunlab-osu/TURL
[73] Valentine. 2021. https://github.com/delftdata/valentine
[74] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Very

Large Data Bases, 7th International Conference, 1981. IEEE Computer Society,
82–94.

[75] Jiang Zhan and Shan Wang. 2007. ITREKS: Keyword Search over Relational
Database by Indexing Tuple Relationship. In Advances in Databases: Concepts,
Systems and Applications, 12th International Conference on Database Systems
for Advanced Applications, DASFAA 2007 (Lecture Notes in Computer Science),
Vol. 4443. Springer, 67–78. https://doi.org/10.1007/978-3-540-71703-4_8

[76] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M. Procopiuc,
and Divesh Srivastava. 2011. Automatic discovery of attributes in relational
databases. In SIGMOD Conference 2011. ACM, 109–120. https://doi.org/10.1145/
1989323.1989336

[77] Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in Data Lakes
for Interactive Data Science. In SIGMOD Conference 2020. ACM, 1951–1966.
https://doi.org/10.1145/3318464.3389726

[78] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In SIG-
MOD Conference 2019. ACM, 847–864. https://doi.org/10.1145/3299869.3300065

[79] Erkang Zhu, Yeye He, and Surajit Chaudhuri. 2017. Auto-Join: Joining Tables
by Leveraging Transformations. Proc. VLDB Endow. 10, 10 (2017), 1034–1045.
https://doi.org/10.14778/3115404.3115409

[80] Erkang Zhu, Ken Q. Pu, Fatemeh Nargesian, and Renée J. Miller. 2017. Interactive
Navigation of Open Data Linkages. Proc. VLDB Endow. 10, 12 (2017), 1837–1840.
https://doi.org/10.14778/3137765.3137788

945

https://doi.org/10.14778/3192965.3192973
https://doi.org/10.14778/3476311.3476364
https://doi.org/10.14778/3476311.3476364
https://doi.org/10.1016/j.bdr.2019.07.002
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1007/11890393_7
https://github.com/anhaidgroup/py_entitymatching
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/978-3-319-63962-8_12-1
https://doi.org/10.1007/978-3-319-63962-8_12-1
https://doi.org/10.1145/237661.237717
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1109/ICCV.1998.710701
https://doi.org/10.1109/ICCV.1998.710701
https://doi.org/10.14778/3397230.3397237
https://doi.org/10.1007/11687238_8
https://doi.org/10.1007/11687238_8
https://doi.org/10.1145/3514221.3517906
https://doi.org/10.1145/3514221.3517906
https://github.com/sunlab-osu/TURL
https://github.com/delftdata/valentine
https://doi.org/10.1007/978-3-540-71703-4_8
https://doi.org/10.1145/1989323.1989336
https://doi.org/10.1145/1989323.1989336
https://doi.org/10.1145/3318464.3389726
https://doi.org/10.1145/3299869.3300065
https://doi.org/10.14778/3115404.3115409
https://doi.org/10.14778/3137765.3137788

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Finding Common Columns
	2.2 Integration Operators
	2.3 Full Disjunction
	2.4 Solution Overview

	3 Related Work
	4 Assigning Column Integration IDs
	5 Integrating Tables
	5.1 ALITE FD Algorithm
	5.2 Efficient Complementation
	5.3 Full Disjunction Algorithm Analysis

	6 Experiments
	6.1 Experimental Setup
	6.2 Evaluation Measures
	6.3 Baselines
	6.4 Benchmarks
	6.5 Column Integration ID Assignment Results
	6.6 Full Disjunction Results

	7 Conclusion
	Acknowledgments
	References

