Integrating Data Lake Tables

Aamod Khatiwada

Northeastern University
Boston, Massachusetts, USA
khatiwada.a@northeastern.edu

Wolfgang Gatterbauer
Northeastern University
Boston, Massachusetts, USA
w.gatterbauer@northeastern.edu

ABSTRACT

We have made tremendous strides in providing tools for data scien-
tists to discover new tables useful for their analyses. But despite
these advances, the proper integration of discovered tables has been
under-explored. An interesting semantics for integration, called
Full Disjunction, was proposed in the 1980’s, but there has been
little progress in using it for data science to integrate tables culled
from data lakes. We provide ALITE, the first proposal for scalable
integration of tables that may have been discovered using join,
union or related table search. We empirically show that ALITE can
outperform previous algorithms for computing the Full Disjunction.
ALITE relaxes previous assumptions that tables share common at-
tribute names (which completely determine the join columns), are
complete (without null values), and have acyclic join patterns. To
evaluate ALITE, we develop and share three new benchmarks for
integration that use real data lake tables.

PVLDB Reference Format:

Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J. Miller.
Integrating Data Lake Tables. PVLDB, 16(4): 932 - 945, 2022.
doi:10.14778/3574245.3574274

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/northeastern-datalab/alite.

1 INTRODUCTION

The number of public datasets has grown immensely in open data
platforms [56, 57, 78]. Also, individual corporations have a wealth of
data stored in their own data lakes. Analyzing and integrating such
datasets can help governments and enterprises in making decisions
and plans. Data scientists, as the main users of data, use different
techniques to discover datasets such as keyword search [11, 12, 58,
75] and table search (using the data within their table as a query)
[10, 28, 48, 50, 57, 80]. Such a process usually outputs a collection
of data lake tables that may enrich their analysis [56]. Existing

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 4 ISSN 2150-8097.
doi:10.14778/3574245.3574274

Roee Shraga
Northeastern University
Boston, Massachusetts, USA
r.shraga@northeastern.edu

Renée J. Miller

Northeastern University
Boston, Massachusetts, USA
miller@northeastern.edu

techniques usually discover unionable [12, 41, 48, 57], joinable [26,
55, 75, 77, 78], and related tables [10, 19, 77].

ExaMPLE 1. Consider the data lake tables about football stadiums
shown in Fig. 1. We have added a TID (Tuple ID) column in each
table to permit us to refer to tuples. Assume that a data scientist uses
table Ty as a query table to search for the top-2 unionable tables [57]
and the top-2 joinable tables [78] from a data lake. Let T, and T3
be the union search results and Ty and Ts be the join search results.
Join search finds tables that join on an indicated column (in this
case Location), but does not discover if there are other common
(integratable) columns. For simplicity, assume that the common
columns on these tables are already detected and have identical
column headers. Note that in practice this will not be the case.

After discovery, data scientists would often integrate the discov-
ered tables before analyzing and applying statistical tools. Such
integration not only extends their data but also allows them to
answer queries that go beyond a single table. Consider Tables Tz,
T3 and Ty in Fig. 1 and assume a football team has data scientists
assisting in finding a new coach. Specifically, the team looks for
an experienced coach who has handled teams playing in front of
large crowds in new stadiums. So, they may use queries such as
‘coaches who coach teams having stadiums established after 2000,
that accommodate at least 50 thousand spectators”. The information
required here goes beyond a single table. In our example, one needs
(at least) to integrate Ty, T3 and T4 to obtain such facts, for example,
Dan Campbell who coaches the Detroit Lions that uses Ford
Field Stadium established in 2002 and having a capacity of 65k (f7
in Fig. 2). Prior search methods do not address this “post-discovery”
phase and do not answer the important question of how to integrate
tables (relations) obtained by table search technique(s).

ExAMPLE 2. The standard relational union operator needs all
tables to have exactly the same schema. However, this is not the case
even for union search results (where tables that union on a subset of
attributes can be retrieved) [57]. So to integrate the tables in Fig. 1,
one can project out non-common columns and union on only the
common columns. For Ty, Ty, and T3, this would just leave Location.
For the joinable tables, a join on only Location of Ty with Ty leads
to tuples like t11 being omitted and the result has two Stadium
attributes. Worse, the natural join operator, i.e. Ty < Ty » Ts,
returns an empty set because Ty and T5 do not have joining tuples.
The problem gets more complicated if we try to integrate all five
tables using these operators.

https://doi.org/10.14778/3574245.3574274
https://github.com/northeastern-datalab/alite
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3574245.3574274
https://www.acm.org/publications/policies/artifact-review-and-badging-current

T T, T3
TID| Stadium Location Team TID| Stadium |Location [Opened| |TID Team Location Coach
t; | NRG Stadium | Texas | Houston Texans ts |Soldier Field| Chicago | 1924 t, | Houston Texans Texas Lovie Smith
t, |AT&T Stadium| Texas | Dallas Cowboys tg | Ford Field |Michigan| 2002 tg |Green Bay Packers|Wisconsin| Matt LaFleur
t, | Paul Brown Ohio + T, ty Detroit Lions Michigan |Dan Campbell Ts
t, | Sofi Stadium |California|Angeles Chargers = = = 5
TID Stadium Location | Capacity TID Stadium Location Team
t,, |NRG Stadium| Texas + t;, | LambeauField | Wisconsin | Green Bay Packers
ty; Ford Field Michigan 65k)3 + Ohio Cleveland
ty, Sofi Stadium California +

Figure 1: Tables about football stadiums, their locations and home teams. The objective is to integrate the five tables. TID is not
areal data column and metadata like column headers may not be available in real data lake tables, but are used for illustration
purposes. The symbol + represents null values present in the input tables (“missing nulls”).

Within the data integration literature, Full Disjunction (FD) [32]
has been understood as a natural way of assembling partial pieces of
information (facts) such that it maximizes the connections among
these facts [65]. Indeed, Rajamaran and Ullman describe FD as
a relation with nulls (denoted by L) such that every set of join-
consistent tuples appears within an FD tuple, with a concrete value
or L in each attribute not found within the set of tuples [65]. Here,
join-consistent is defined as common attributes (attributes with the
same name), so this is effectively a natural FD. The widely known
outer-join [46, 66] is not associative (hence, the result may depend
on the order in which tables are integrated) and does not aim to
maximize the connections among the integrated tuples [32, 52].

ExXAMPLE 3. Outer-join and outer-union keep all tuples and
columns and pad non-matching tuples (respectively, columns) with
nulls [16, 46]. The outer-union of the tables from Fig. 1 is depicted
in Fig. 2(a). It does not maximally connect the facts in the original
tables. Here, + indicates a missing value (missing null) in the orig-
inal tables and L represents a null introduced by the outer-union
operator (produced null). In particular, outer union includes partial
facts like t1 that are made redundant by more complete facts like
t1. Similar observations can be made of the outer-join results. So,
Galindo-Legario defined the Full Disjunction (FD) [32]. Informally, it
removes redundant facts and produces, in this case, the first 8 tuples
(mustard colored) of Fig. 2(b). FD can be viewed as an associative
version of outer join [17] and has been used to integrate information
across relational tables [17, 59] and web tables [59]. Notice in this
example, FD uses information from all five tables so it is important
to be able to compute FD over (possibly large) sets of tables.

But using FD in data lakes poses several important challenges: 1)
We cannot rely on common attributes having the same name as in
our example. Instead, we must discover what the common attributes
are [56]. We will use schema matching for this purpose [63]. Notice
that we are not given just two schemas that need to be matched,
rather we have a set of tables all of which could potentially share
attributes with some or many of the other tables. Hence, we will
use holistic schema matching [64]. 2) We cannot assume that inte-
grated datasets are complete (that is, they may actually contain null
values or partial facts). 3) Prior work on Full Disjunction has been
done on relatively small relations (with only 1000 or so tuples per
relation [17]) or assumes the common attributes form graphs with
specific acyclic structures [65]. To the best of our knowledge, the
only work on using FD on larger datasets requires that all joins be
done on attributes having key-to-foreign-key relationships [59], a
strict requirement that makes the technique only applicable within

933

well-designed enterprise scenarios, not the possibly messy tables
retrieved from data lakes commonly used in data science.

We assume data scientists use table discovery algorithms to
identify a set of tables that they wish to integrate. Regardless of
the search technique, we wish to find the best way to integrate
the tables. Specifically, we propose a table integration technique
ALITE (Align and Integrate) that first applies schema matching
to identify common columns in a set of tables to be integrated.
Matched columns are given the same integration ID. We then apply
anatural FD over the tables using integration IDs as attribute names.

Contributions. (1) To the best of our knowledge, we introduce
the problem of integrating data lake tables obtained using table dis-
covery algorithms. (2) We propose a new holistic schema matching
algorithm for sets of tables that outperforms the state-of-the-art
matchers on the real data lake tables in our integration benchmarks.
(3) We compare the FD used as the integration semantics in ALITE
to several other semantics and show the difference and superiority
of FD. Empirically, we show FD’s superiority for a downstreaming
task of entity resolution [44]. (4) We propose a novel algorithm
to compute the FD by using complementation and subsumption
operators in a novel way. We show that the use of these operators
permits optimizations that make the computation faster than the
state-of-the-art techniques, in practice. Specifically, ALITE scales
better than the state-of-the-art FD algorithms on data lake tables,
which are typically large and may have complex join graphs. (5)
We introduce and share several open data integration benchmarks.

2 PRELIMINARIES

We now provide the building blocks for integrating tables in a
data lake setting, namely, specifying the notation and the basic
integration operators, after which we formally define the problem.

Table 1: Symbols used in this paper and their definitions

Symbol Definition Symbol Definition
T (n=|T7) Set of Tables r Set of tuples
T (T;) Table (the iy, table in 7°) t[A] Value of ¢ on the column A
A (T.A) Column (Column A in table T)| S (s=|S|) Set of all input tuples
m; Arity of Table T; F (f=|F1) Set of output tuples
A(T) Schema (set of columns) of T + Null denoting a missing value
t Tuple L Null produced by an operator

Notation. Table 1 summarizes the used notation. For any opera-
tor, let S (and its size s) and ¥ (and its size f) denote the collective
set of all input and output tuples, respectively. We use two types of
nulls: + denotes a missing null i.e., missing value from an incom-
plete input relation to be integrated and L denotes a produced null,
a null value that is introduced by an operator during integration.

(@TIwT2u0T3WT4UW TS

TID| Stadium Location Team Opened Coach Capacity OID| TIDs Stadium Location Team Opened Coach Capacity
t, | NRG Stadium | Texas Houston Texans 1 1 1 i [{ty t7 tio}| NRG Stadium | Texas Houston Texans 1 Lovie Smith 3
t, |AT&T Stadium| Texas Dallas Cowboys 1 1 1 f, {t,} | AT&T Stadium| Texas Dallas Cowboys 1 1 1
t; | Paul Brown Ohio + 1 1 1 fy {t} Paul Brown Ohio + 1 1 1
t, | Sofi Stadium | California | Angeles Chargers 1 1 1 fa {t15} + Ohio Cleveland 1 1 1
t; | Soldier Field | Chicago 1 1924 1 1 fs {ts} Sofi Stadium | California | Angeles Chargers 1 1 1
t; | FordField | Michigan 1 2002 1 1 fe {ts} Soldier Field | Chicago 1 1924 1 1
t, 1 Texas Houston Texans 1 Lovie Smith 1 f, | {tstotyy}| Ford Field | Michigan Detroit Lions 2002 |Dan Campbell| 65k
tg 1 Wisconsin | Green Bay Packers 1 Matt LaFleur 1 fs | {tg t;,} [Lambeau Field|Wisconsin|Green Bay Packers 1 Matt LaFleur 1
to 1 Michigan | Detroit Lions 1 |Dan Campbell 1 fo | {ts t;3} | Paul Brown Ohio Cleveland 1 1 1
tyo | NRG Stadium | Texas 1 1 1 + 1o tyy Sofi Stadium | California + 1 i 1
ty, | FordField | Michigan 1 1 1 65k FD(Ty, T Ta T4, To) = {1, 5, f, £, s, fe, £, f}

t;, [Lambeau Field| Wisconsin | Green Bay Packers 1 1 1

tys + Ohio Cleveland 1 1 1 FDupie-set(Tr T2 Tay Tas Ts) = FD(T4, Ty, T, T4, To) U {f10}

ty4 | Sofi Stadium | California + 1 L L T BT, BT;ET,H Ts=FD(Ty, Ty, Ta, Ty, Ts) = {fa, fi} U {fo, f10}

(b) Output tuples generated using different operators

Figure 2: Result of integrating the tables in Fig. 1 using different techniques. The table in (a) is the result of outer unioning the
five tables. The table in (b) is the union of tuples obtained using FD (first eight tuples in mustard), a variant called tuple-set FD
(which is the FD plus fjy), and Complement Union (&). A unique Output ID (OID) is provided for each output tuple for clarity.

ExAMPLE 4. Consider Table Ty of Fig. 1. The schema of Ty is
A(Th) = {Stadium, Location, Team}. Tuple t3 = {Paul Brown, Ohio,
+} has attribute value t3[Stadium] = Paul Brown and a missing
null on the Team column, i.e., t3[Team] = +.

2.1 Finding Common Columns

Our running example is unrealistic as common (or in relational
terms join-consistent) columns from different tables have the same
name and columns that are not common have different names. This
is not the case in most realistic examples. Hence, we begin by using
schema matching to assign integration ids to columns such that two
matched columns will have the same id and two columns that are
not matched will have different ids. We will ensure no two columns
in the same table share an integration id. Accordingly, we will set
A(T) to be the set of integration ids of T’s columns (Section 4).

2.2 Integration Operators

We assume that the reader is familiar with the elementary relational
algebra operators like union (U), join (=) and outer join(><) [66]
based on which, we now introduce some (less well known) opera-
tors that we use as components of an integration solution.

Outer Union (W) is an extension to the union operator. It unions
tables even if they do not have the same schema [16]. The outer
union between Ty and T, is denoted by Ty WT5. For each A € A(Ty) —
A(Tz), we pad T, with a new column A containing nulls (specifically
). Similarly, for each A € A(T2) — A(T1), we pad Ty with a new
column A containing nulls. We then union the padded relations.

ExAMPLE 5. The outer union of the tables in Fig. 1 is shown in
Fig. 2(a). Here, the input size (|S| = 14) is the same as the output
size (|| = 14) but the output may be smaller if there are duplicates.

Subsumption (). Given two different tuples #; and #; having
the same schema, the tuple #; (subsuming tuple) subsumes to (sub-
sumed tuple), denoted by #1 O ty, if all the non-null values of ¢, are
equal to that of #; on the respective columns and #; has fewer null
values (either missing or produced) than t; [7, 32]. We denote the
subsumption operation using f§ where f(r) contains all tuples of r
that are not subsumed by another tuple in r. Applying subsumption
to the outer union result is called the minimum union (€B) [32].
An example of minimal union (B) of tables in Fig. 1 is the set

934

{t1, t2, t3, ta, t5, te, t7, t3, Lo, 111, t12, t13 } in Fig. 2. This is because the
tuple t1o is subsumed by t; and t14 is subsumed by t4. Here, the size
of the input (|S| = 14) is larger than the output (|| = 12).

Complementation (k). Two different tuples t; and 2 having
the same schema complement each other if: 1) there is at least
one column A on which they have equal and non-null values; 2)
for every column A where both tuples are non-null, the tuples
must have the same value on A; 3) there is at least one column
A on which #; is non-null and #; is null (missing or produced);
and 4) there is at least one column A on which #; is non-null and
t; is null (missing or produced) [7, 9]. The complementation of
t; and t; is a tuple t3 where for any column A, t3[A] = #;[A]
if either #1[A] is non-null or both #;[A] and t2[A] are non-null
(hence, equal). Otherwise, if t[A] is non-null t3[A] = #;[A]. For
the case where both values are null, if t1[A] = t3[A] = L then
t3[A] = L otherwise (at least one of the nulls is missing) t3[A] =
+. The complementation operator (k) replaces all complemented
pairs of tuples with their complementation. Note that a tuple that
results from complementation could be complemented by other
tuples so the complementation operator is the iterative result of
applying complementation to a relation until it contains no further
complementing tuples. Applying complementation over a set of
outer unioned tuples, is known as complement union (g).

EXAMPLE 6. In Table(a) of Fig. 2, tuples t3 and t13 complement
each other. Their complementation is denoted as fo in Fig. 2(b), i.e.,
K(t3,113) = fo. So complementation can overcombine tuples that do
not agree on all their common attributes. In this example, Ts asserts
that Cleveland is a team in Ohio with an unknown stadium while
Ty asserts that Paul Brown is a stadium in Ohio. But we do not
definitively know that Paul Brown is the stadium of Cleveland.
The complement union of the tables in Fig. 1, i.e, i BT, 8 --- 8 T;
is the set of tuples in Table (b) of Fig. 2 excluding tuples {f3, fa}.
Note that complementation union may not remove all subsumable
tuples (e.g. fio, which can be subsumed by fs, is not complemented
by f5 since the fourth condition of complementation is not met).

2.3 Full Disjunction

The operators of the previous section offer possible semantics for
integrating tables. In 1994, Galindo-Legario proposed a different se-
mantics called Full Disjunction (FD) [32]. His proposal is essentially

a commutative, associative form of outer-join. We will now define
the terms that we need to define FD. We say thatt; € Ty and t; € Ty
are connected tuples if their schemas overlap, i.e., A(T))NA(Tz) # 0.
As in outer join, two connected tuples t; € Ty and ¢, € T» can be
integrated (or joined) if and only if #; [A] = tz[A], t1[A] # + and
t2[A] # %, VA € A(T1) N A(Ty). The tuples generated after an
integration are referred to as integrated tuples. When more than two
tables are involved, the integration can be viewed as an iterative
process in which an integrated tuple can be further integrated with
another connected tuple, following the same conditions as before.
Finally, as in outer join, if an input tuple ¢ can not be integrated with
other tuples, it will be padded by produced nulls (L) and considered
as an integrated tuple. Note that integrating those tuples that have
missing nulls on their common columns may produce semantically
incorrect tuples. Consider tuples #3 from Tj, and #13 from T5, while
they share the value Ohio on Location, the value of Stadium is
known in t3 (Paul Brown), it is unknown in t;3. Therefore, we will
not integrate these tuples. Notably, FD was later proposed as the
right semantics for integrating data [65].

ExAMPLE 7. The FD of the five tables from Fig. 1 is the set of tuples
{f1, -, 3] depicted in mustard in Fig. 2(b). Unlike complementation
union (Example 6), FD does not overcombine tuples t3 and t13 since
Team in t3 is unknown. Hence, it contains f3 and f after integration
and does not produce fy. Also, fig is subsumed by fs.

FD has been shown to produce what has been called maximally
integrated tuples [40].

DEFINITION 8 (MAXIMALLY INTEGRATED TUPLE). Given a set of in-
tegrated tuplesr. Any tuplet € r is said to be a maximally integrated
tuple if it is not subsumed by any other tuple(s) of r [40].

We follow Kanza and Sagiv [40] by defining FD based on maxi-
mally integrated tuples.

DEFINITION 9 (FuLL DisyuncTioN (FD)). The Full Disjunction of
the tables Ty, Tz, . . . Ty, with input tuples S, is the set of all maximally
integrated tuples that can be generated from S.

In Section 5, we will introduce an algorithm that computes FD
based on Definition 9. The FD definition we use [40] is based on
tuples [32], rather than tuple-sets (FDyyple-set) [17, 18]. FDyple-set
applies subsumption based on the set of tuples from which an
integrated tuple is produced (call the tuple-set) [18]. Subsumption is
only applied between two tuples if the tuple-set of one is a superset
of the tuple-set of the other. Note that FDyypje-set yields a set of
maximally integrated tuples, but might contain integrated tuples
that subsume each other, as we discuss in the next example.

ExXAMPLE 10. Fig. 2(b) illustrates the difference between FD and
FDyyple-ser- To understand the subsumption in FDyypje ser, first con-
sider integrated tuples f3 and fo whose tuple-sets are {t3} and {t3, t13},
respectively (depicted in the TIDs column in Fig. 2). The tuple-set
of fo contains all tuples in the tuple-set of f3. Therefore, under
FDyypie-set: fo subsumes f3. However, if we consider f5 and fio having
tuple-sets {ta} and {t14}, respectively, neither is a superset of the other.
Therefore, FDyyple-ser does not perform subsumption on these two
tuples and returns both. In contrast, the tuple fio, is not produced
by FD as it gets subsumed by fs.

935

2.4 Solution Overview

Integrated Table

Integration ID
Assignment

‘ Full
Disjunction

Figure 3: An overview of ALITE.

We introduced and formally defined our problem of integrating
data lake tables. Fig. 3 illustrates the entire ALITE pipeline that
we propose as a solution. We assume that we are given a set of
tables. The first step (Fig. 3 left part) is to assign each column with
a column header which we call an Integration ID (Section 4). After
assigning such IDs, the tables are annotated (Figure 3 middle part).
We can then apply FD to integrate the tables (Section 5).

3 RELATED WORK

We now discuss related work mainly revolving around assigning
the column integration IDs and applying FD.

Assigning Column Integration IDs. The problem of assigning
column integration IDs aims at providing correspondences between
columns that can be integrated. In a traditional database setting,
this problem is usually referred to as schema matching [63], a long-
standing problem of identifying correspondences among database
attributes. Numerous algorithmic attempts have been suggested
over the years for handling the matching problem, e.g., COMA [25],
Similarity Flooding [53], BigGorilla [15], and ADnEV [69]. A com-
mon assumption for most of this work is the existence of consistent
and complete metadata, an unrealistic assumption in data lake ta-
bles [56]. Recently, Koutras et al. explored the use of traditional
schema matching methods in the scope of data lakes [45]. However,
the work covered is limited to finding pairs of matching columns
whereas, our objective is to assign integration IDs to a set of tables
to be integrated in a holistic manner. Holistic schema matching,
i.e., matching a set of schemas at the same time, has received some
attention in the literature [35, 61, 70], mainly revolving around
web tables and assuming metadata is reliable and complete. Some
work [3, 61] uses a clustering-based approach. However, contrary
to the clustering-based approach we will suggest (Section 4), they
use schema information rather than data values. Recall that data
lake tables generally lack reliable metadata [29, 56].

Other related work includes unionable [12, 41, 48, 57], join-
able [26, 55, 75, 77-79], and related [10, 19, 77] table search, for
which the designed methods are usually based on column relation-
ships. For example, in order to find unionable tables, TUS [57] first
aims at finding unionable columns. Similarly, Bogatu et al. [10]
assesses table relatedness by assessing their attribute relatedness.
Our work uses a similar methodology to TUS [57] based on column
embeddings. But here we make use of an embedding that was de-
signed for tables, namely, TURL [23]. We are also, to the best of our
knowledge, the first to make use of TURL [23] for holistic matching
of data lake tables.

Full Disjunction. Full disjunction (FD) was initially defined by
Galindo-Legaria as an associative alternative for the outer join op-
erator [32]. Galindo-Legaria used algebraic relationships to express
the outer join in terms of inner join and minimum union, which
is known as join-disjunctive form or Full Disjunction (FD) [32].
The inner joins between each table pair, triple, etc., are computed.
The resulting tuples are then outer-unioned and the subsumable
tuples are removed to get the FD. Rajaraman and Ullman showed
that a fixed ordering of outer joins can give the FD iff the input
tables form a y-acylic hypergraph. Hence, for the y-acylic case, the
FD can be computed in linear time in the output size [65]. Kanza
and Sagiv showed that FD can be computed for any arbitrary set
of tables in O(n’s%f?) time [40] where, recall n is the number of
input tables, s is the total number of input tuples, and f is the
number of FD output tuples. This is the first work to show that
FD can be computed for any set of tables in polynomial time in
input-output complexity [74]. Other work computes the FDyyple-set,
rather than FD [17, 18]. Cohen and Sagiv introduced an algorithm
that computes k FDyypje-set tuples in a given ranking order [18]
and improved the worst-case time complexity over Kanza and Sa-
giv [40] to compute the full results. Cohen et al. also proposed
an algorithm called BICOMNLO] that computes each FDyyple-set
tuple with polynomial delay [17]. As we want to integrate all input
tables, we compute the full FD result instead of a partial result. The
worst-case time complexity of BICOMNLOT to compute full FD is
linear in the output size which is an improvement over the prior
work [18]. Note that both INCREMENTALFD [18] and BICOMNLO7J
[17] perform subsumption in terms of tuple-sets (FDyyple-set) rather
than actual tuples. Hence, they may produce subsumable tuples
in their FDyyple set result (specifically, they may produce a proper
superset of the FD). Note that, when there are no missing values
(%) and subsumable tuples in the input relations, these algorithms
compute the FD [32]. As data lake tables may contain many missing
values and subsumable tuples, we use FD. Our experiments (Sec-
tion 6) show that in real data lakes the difference between the FD
and the FDyyple-set [17, 18] can be substantial and that the original
definition of FD, which maximally integrates tuples, is preferred.

Recently, Paganelli et al. [59] revised Cohen and Sagiv’s INCRE-
MENTALFD [18] and Cohen et al’s BICOMNLOY [17] to compute
the FD in a distributed environment. They also introduced a new
algorithm called ParaFD that outperforms INCREMENTALFD and
BICOMNLOY while computing FD using multiple machines. ParaFD
first finds all the spanning trees in the scheme graph of the input
table schemas. Then, it applies outer join based on Hash-star join
to integrate tables following the order on each spanning trees by
using Primary Key-Foreign Key relationships. Finally, it applies
subsumption to obtain the FD. ParaFD allows missing nulls but it
can be used only for sets of relational tables on which all joins are
key to foreign-key joins. We consider the general case of arbitrary
joins. To modify ParaFD for arbitrary joins, one needs to use full
outer join without Hash-star join over each spanning tree. But for
real data lake tables forming complex scheme graphs, the number
of spanning trees can be very large. For instance, for a complete
scheme graph (i.e. each table is connected to each of the other ta-
bles) having n tables, the number of spanning trees may be on the
order of n*~2 [1]. One needs to apply outer join over each spanning

936

tree making ParaFD inefficient and similar to the baseline suggested
by Galindo-Legaria [32].

Other research considers integrating data from relational and
web tables and handling conflicts between the data values [6-9].
Bleiholder et al. introduced complement union operator that inte-
grates tuples under uncertainty (a conflict between a null value and
a non-null value) [9]. In the absence of missing nulls (+), the com-
plement union operator is the same as FD. Yet, in the common case
of tables with missing nulls, complement union may over-combine
the tuples having null values on the join columns (see Example 6).

4 ASSIGNING COLUMN INTEGRATION IDS

We now explain the first stage of ALITE, namely assigning inte-
gration IDs to the columns of the input tables. We assume that
the schemas A(T) = A1, A, ..., Ap of all the tables T € 7 are
opaque [39]. So, our goal, in this stage, is to annotate the columns
with integration IDs. An integration ID p(A) € P is associated with
each column. The same integration ID can be associated with a set
of columns - these column match (and will be integrated). We now
formally define the column integration ID assignment problem.

DEFINITION 11 (INTEGRATION ID ASSIGNMENT PROBLEM). Given
a set of input tables T = {T1, I, ... Ty}, the column integration ID
assignment problem is to assign each column an integration ID in P
such that columns in the same table get distinct integration IDs.

VT €T AA € A(T), A" € A(T) NA + A’ p(A) = p(A’)

As discussed in Section 3, this problem can also be seen as a
variation of holistic schema matching [70]. Specifically, it can be
seen as a 1 : 1 matching constraint, in which an attribute can match
at most one attribute from each of the other tables and cannot be
matched with an attribute from the same table.

Finding Column Integration IDs with ALITE. We now aim
to find column integration IDs by positioning the problem as clus-
tering over the columns. In order to apply clustering over columns,
we use their values (assuming the metadata is missing or unreli-
able) to create embeddings over which a clustering algorithm can
be applied. Formally, a column A is embedded into a numeric vector
vec(A), allowing the creation of a similarity matrix. Obtaining an
embedding for data lake columns is far from trivial. TUS [57], for
example, uses embeddings from fastText [38], a word embedding
method based on natural text representations, to assess column
unionability of string columns. Recently, Deng et al., have proposed
TURL that creates embeddings based on a representation of each
table [23]. In this work, we explore the use of TURL to represent
columns of data lake tables. Once the embeddings for the columns
are set, we need to define a similarity/distance measure to be used
in the clustering algorithm (in our experiments we use euclidean
distance). Having defined the embeddings and the distance mea-
sure, we follow a hierarchical clustering methodology to create the
clusters out of which the column integration IDs are obtained. We
ensure that the clustering algorithm does not allow columns from
the same table to be assigned to the same cluster. Hierarchical clus-
tering works iteratively. First, each data point (in our case attribute)
is assigned with a cluster. Then, at each iteration the two closest
clusters (by some metric) are merged to generate a new cluster. The
algorithm terminates when all the data points are assigned to the
same cluster. The hierarchical clustering result is usually described

using a dendrogram, which is a type of tree that illustrates the
different clusters that can be generated at each iteration [47]. Using
the dendrogram, we select a specific cluster as we discuss next.
Selecting the Number of Integration IDs. An important pa-
rameter in any clustering algorithm is the number of clusters [34],
which, in our case corresponds to the number of column integra-
tion IDs. While traditional approaches assume that the number of
clusters is a given parameter, an alternative is to tie this number to
clustering quality [43]. Several clustering quality evaluation meth-
ods exist in the literature based on inter-cluster and intra-cluster
distances [13, 22, 67]. The objective, which we also share in this pa-
per, is to cluster similar columns together (i.e., reduce intra-cluster
distance) and avoid similar columns in different clusters (i.e., in-
crease inter-cluster distance). We follow an approach similar to
the elbow method [5] to determine the number of clusters that
maximizes some (unsupervised) clustering quality measure. In the
experiments we use the well-known Silhouette Coefficient [67].!
We also need to define the scope of this search, i.e., what are the
possible values for the number of clusters. Recall that the columns
from the same input table cannot be assigned to the same cluster.
Therefore, if my, my ... m, are the number of columns in the input
tables 71, T» . . . T, the minimum number of clusters is given by
max(my, my ... mp). Also, the maximum number of clusters is given
by X1, m;. The latter represents the case when each input column
forms a separate cluster and the bound can be even tighter if we
know that the scheme graph of the input tables is connected. We
show a figure that zooms in the left part of Fig. 3 and summarizes
the Column Integration ID assignment in our technical report [42].

ExaMPLE 12. Consider Fig. 1, we need to assign integration IDs to
the columns of tables. Here, we expect to have six clusters, each for
{Stadium, Location, Team, Opened, Coach, Capacity} as our column
labels show the ground truth. We use a clustering algorithm that
computes the clustering quality score starting from the minimum
number of clusters (3), to the maximum (15). Recall TID is not a
real column and was added so we can clearly refer to tuples. The
Silhouette coefficient over the TURL embeddings is computed for all
values from 3 to 15 and plotted in our technical report [42]. It starts
from 3 and has a maximum at 6 . Then it decreases monotonically
from 7to 15. Hence, we would pick 6 as the optimal number of clusters
and the clustering created in this simple example does reflect the
ground truth — e.g., the four Stadium attributes are assigned the
same integration ID, and the single Opened attribute is assigned a
different integration ID not shared by other columns.

5 INTEGRATING TABLES

Once we find the column integration IDs, ALITE uses them to
integrate the tables using a novel algorithm for computing Full
Disjunction. We show that our algorithm is correct and in practice,
is faster than existing algorithms.

5.1 ALITE FD Algorithm

The input of Algorithm 1 is a set of tables 7 to be integrated
with each column labeled with its integration ID. The two main
properties the algorithm uses are that the output is composed of

! Additional details are available in a technical report [42].

937

Algorithm 1: ALITE Full Disjunction

1 Input: 7= {11, Tz,... T}, a set of tables with integration IDs as

column names
Output: FD(7"), the Natural Full Disjunction of 7~

T« GenerateLabeledNulls(7)
Uou%Tll*JTzLﬂ"'LﬂTn

Ucomp < Complement (Usy)

Ucomp < RemoveLabeledNulls(Ucomp)
T’ — B(Ucomp)

Output T’

Apply outer union ¥
Apply complementation x

Apply subsumption

[SR N R

all maximally integrated tuples over the input tuples (Definition 9)
and should not contain subsumable tuples. ALITE’s pseudo code is
provided in Algorithm 1. We make use of the following property:
complementation (Line 5) over the outer union (Line 4) generates all
maximally integrated tuples if the input relations contain no null
values. Of course, our data lake tables will contain null values (+) so
we begin by replacing these with distinct labeled nulls (Line 3). We
then apply complementation treating the labeled nulls as distinct so
they cannot be equated. We can then replace all distinct labeled nulls
with the same missing value (+) (Line 6) and apply subsumption
(Line 7) as a final step to compute the FD. Next, we will explain
each step in detail.

1. Generating Labeled Nulls. Complementation produces all
maximally integrated tuples only if the input tables have no null
values (+). Hence, to prevent over-jealous combining of tuples, we
replace nulls (), with distinct labeled nulls which are not equal to
each other, to +, L, or any constant (non-null) in any table. This
avoids undesirable complementation (and generates only integrated
tuples). Specifically, the first step of Algorithm 1 (Line 3) is to replace
missing nulls in the input tables with the distinct labeled nulls and
store them in a set N. This step ensures that the complementation
will not integrate tuples having null values on join columns.

EXAMPLE 13. We use our running example (Fig. 1) throughout the
description of the algorithm for clarity. Since we have four missing
nulls in the tables (one each on Ty and Ty and two in T5), we replace
them with four distinct labeled nulls. After replacement, they are
treated similar to other non-null values.

2. Outer union. Now we outer union all the input tables and
store the resulting tuples in a set Uy (Line 4). The outer union of
the tables in Fig. 1 is shown in Fig. 2(a). Next, Line 5 passes the set of
outer unioned tuples (Uyy) and the total number of tables (n) to Al-
gorithm 2 which uses complementation to return all the maximally
integrated tuples along with (possibly) subsumable tuples.

3. Complementation Step (Algorithm 2). The objective of
this step is to generate all the maximally integrated tuples. First, we
prepare two sets to perform the complementation: Uemp and Ucomp,
and initialize both to Uyy. Later on, Ucomp holds the complementa-
tion result. We start complementing the tuples in Uemp with outer
unioned tuples Uy. (Line 4). For each tuple in Utemp, we look for a
complementing partner in Uy, and if at least one complementing
partner is found, we add the result of complementation to Ucomp
(Line 9-12). However, if a tuple in Utemp does not have any comple-
menting tuples, we add the tuple itself to Ucomp (Line 13-14). This
ensures that the tuples having no join partners are also included

Algorithm 2: Complement

1 Input: A set of outer unioned tuples Uy,

2 Output: A set of tuples after complementation Ucomp
3 Ucomp — Uou; Utemp —0

4 while Uiemp # Ucomp do

5 Utemp — Ucomp§ Ucomp —0

6 for t; € Utemp do

7 complement_count = 0

3 for t, € Uy, do

9 R, complement_status « x(#1, t2)

10 if complement_status then

11 Ucomp < Ucomp UR

12 complement_count < complement_count + 1
13 if complement_count = 0 then

14 ‘ Ucomp <~ Ucomp U {t:1}
15 Output Ucomp

in the FD results. After we go through all the tuples in Utemp, we
check if Utemp and Ucomp have the same tuples. If this is true, it
means that there are no more complementing tuples left and hence,
we stop the complementation. If they are not equal, there may be
tuples that can be complemented. So, we go for another round of
complementation. Note that the outer loop (Line 4-14) never takes
more than n — 1 rounds (even less in practice). The reason is simple:
complementation can only combine tuples from different tables.
So, there are at most n — 1 such steps for any tuple. Also from
monotonicity of the process, if a tuple does not get complemented
in one step, it can not be complemented in a future step.

ExampLE 14. Consider Table (a) and (b) of Fig. 2. Table (a) is the
result of outer unioning the tables in Fig. 1 and Table (b) holds the
resulting tuples given by different integration techniques. Consider
Algorithm 2 which has as input a set of tuples to be complemented.
In the complementation first round (Line 4-14), both Uoy, and Utemp
are the same and they contain the tuples t1,t; and t19. All these
three tuples integrate with each other. Assume that the labeled
null in t19 was replaced by a distinct non-null value +1. So, the
complementation operator integrates them pairwise (Line 9) to
generate intermediate tuples k(t1, t7) (equal to fi except Capacity
= 1), k(t1,t10) (equal to fi except Coach = L and Capacity = +1),
and k(t7,t10) (equal to fi except Capacity = +1) (see Section 2.2).
All these tuples are added to Ucomp. Similarly, tuples ts and t12 com-
plement each other producing fs, which is added to Ucomyp (Line 11).
On the other hand, t5 does not have any integrating partners
and, hence, is added to Ucomyp itself (Line 14). After the first com-
plementation round, Ucomp = Ugy \ {t1, ts, t7, t3, to, t10, t11, t12} U
{xe(t1, t7), k(t1, t10), K (27, t10), K (t6, 19), K (t6, 111), K (t9, 111), f3}
which is different from Uyy. Hence, we move Ucomp to Utemp,
and empty Ucomp. Then the algorithm starts a second round of
complementation (Line 4-14). As mentioned earlier, Uy, is always
the same. So, tuples k(t1,t7) and k(t1,t10) in Utemp complement
with tuples t19 and t7 respectively. They both produce the same
tuple that is equal to x(t7, t10) which is already in Ugemyp from the
first iteration. As Uemyp is the set, the newly generated duplicates
are discarded. After this round, we again move Ucomp to Uremp
and empty Ucomp. In the next round, no tuples in Ugemp have
complementing partners in Uyy,. So, the complementation terminates

and Ucomp = Utemp = {x(t7,t10), f2. 3. fa. f5, for f7, foo 14}

938

4+5. Remove labeled nulls and subsumption. Once the com-
plementation is done, we remove the subsumable tuples to get the
FD. Notice however, we have replaced the missing nulls (+) with
the distinct labeled nulls before complementation. This is to pre-
vent the complementation on the missing nulls. However, to get the
maximally integrated tuples, we ensure that there are no subsum-
able tuples, both on missing nulls and produced nulls. Therefore,
we revert each labeled null to its original missing value (+) (Line 6
of Algorithm 1) and then use subsumption (Line 7) to remove the
non-maximally integrated tuples.

ExXAMPLE 15. We now replace the unique labeled nulls in each
tuple with a missing null (+). This step converts x(t7,t10) to fi.
Finally, we apply subsumption to Ucomp and get rid of tuple t14
(Algorithm 1, Line 7). This ensures that the final result is the set of
FD tuples i.e., {fi},i € [1,8] where, i is an integer.

For subsumption, we use the null-value based partitioning algo-
rithm introduced by Bleiholder et al. that computes subsumption in
O(slogs) time where, s is the number of input tuples [8]. The idea
is to first partition the input tuples according to their null value
pattern. This helps to reduce the number of tuple comparisons for
the subsumption check and hence, we can apply subsumption only
on tuples within a partition. Note that the number of columns in
the integrated table is constant for a given set of tables.

5.2 Efficient Complementation

For subsumption, we used an existing fast algorithm. For comple-
mentation, we describe a novel optimization based on partitioning
of the tuples. Recall that two tuples having different non-null values
on a common column cannot complement each other. So, we avoid
the comparison between such tuples by assigning them to different
partitions. Then we apply complementation within each partition
using Algorithm 2, reducing its computation time.

ExAMPLE 16. Consider column Stadium and tuples t1, t2, t7 and
t10 of Table (a) in Fig. 2. Also recall the necessary conditions for two
tuples to complement each other (see Section 2). Since t1 [Stadium]
= NRG Stadium and t;[Stadium] = AT&T Stadium, they cannot
complement each other as they have different non-null values on a
common column Stadium. Hence, we safely avoid any comparison
between t; and tp. Also, as t19[Stadium] = NRG Stadium, it has a
possibility of complementing t;. So, we compare t; and t19. Notice
however, tuple t7 complements t1o even though t; has a produced
null on Stadium. Therefore, a tuple having a produced null on a
common column should still be compared with other tuples.

We intend to make each partition fairly small, i.e., keep the
number of tuples in each partition less than a positive integer 0
where, 0 < s. Bleiholder et al. suggested to partition tuples using
the values of selected partitioning column(s) [9]. The selection of
the partitioning column(s) is based on a heuristic that considers the
number of non-null and unique values on each column. At first, the
tuples having the same non-null values in the partitioning column
are kept in separate partitions. If there are tuples having produced
null values in the partitioning column(s), they are added to all
other partitions. Now, the complementation can be applied on the
tuples within each partition. But partitioning with a single or even

a group of columns may still produce large partitions. So, instead of
stopping after the first partitioning, we continue the process using
other columns one after another until the number of tuples in each
partition is less than 6. The tuples in the produced null partition
should be added to each of the other partitions. Hence, in order to
reduce the number of tuples in the produced null partition, we first
sort the columns in ascending order of the number of produced
nulls they contain. Then, we partition the tuples by value of each
column one by one. Also, the tuples from produced null partitions,
when added in other partitions, may create duplicate partitions
i.e., the partitions having exactly the same tuples. To discard such
duplicate partitions, we index each partition based on its tuples.

ExAMPLE 17. Consider the table in Fig. 2(a), which is the outer
union of the tables in Fig. 1. Each missing null is replaced by a
distinct value. Let the threshold for partitioning be 0 = 4. The par-
titioning order of the columns based on the number of produced
nulls is {Location, Stadium, Team, Coach, Opened, Capacity}. In
the first round, we partition by Location which gives six parti-
tions Py = {t1, 12, t7,t10}, P2 = {t3,t13}, P3 = {ta, t1a}, P4 = {t5},
Ps = {t, to, t11}, Ps = {18, t12}. As P1 does not have less than 4 tu-
ples at the end of the first round, we again partition Py into smaller
partitions using Stadium column. This gives two more partitions
P11 = {t1,t7,t10} and P12 = {t2,t7}. Note that t; has a produced
null in the partitioning column. So, we add t7 to both P11 and P13. At
the end of second round, all the partitions have size less than 4. Hence,
we do not further partition using other columns and the input to Al-
gorithm 2 by Algorithm 1 are partitions P11, P12, Py, P3, P4, Ps, Pg.

To optimize, we slightly modify Algorithm 1 (Line 5). Specifi-
cally, we apply partitioning over the outer unioned tuples (Algo-
rithm 1 Line 4) and apply complementation over each partition one-
by-one. The complementation over each partition is then unioned
before replacing distinct labeled nulls with the missing nulls.

5.3 Full Disjunction Algorithm Analysis

Correctness. We now present a theorem on the correctness of
Algorithm 1. 2

THEOREM 18. The relation computed by ALITE over a set of
input tables Ty, To, . .. Ty is exactly the natural full disjunction of
I, D,... T,

Time Analysis. Recall that the objective of ALITE is to integrate
data lake tables discovered using table search techniques. Generally,
such tables form schema graphs that may have complex cycles. Our
choice of using a complementation operator enables us to optimize
the production of maximally integrated tuples. Furthermore, we also
optimize the subsumption operator separately, which makes ALITE
faster in practice than the baselines for computing FD over data
lake tables. We will show the superiority of ALITE over baselines
in different conditions experimentally in Section 6. Further details
on time complexity are available in our technical report [42].

6 EXPERIMENTS

We now evaluate the two steps involved in ALITE.

2 Proof in the technical report [42].

939

6.1 Experimental Setup

We implement ALITE and all the baselines using Python 3.7 and
run experiments using a CentOS server having Intel(R) Xeon(R)
Gold 5218 CPU @ 2.30GHz processor. The main objective of our
experiments is to answer: (1) How accurate is our Column Inte-
gration ID Assignment method in comparison to the existing at-
tribute matching techniques? (2) How well does our FD algorithm
scale in comparison to the state-of-the-art FD algorithms? (3) Is it
worthwhile to use FD instead of the faster (and widely available)
outer-join operator? Specifically, we study how many FD tuples
are missed by outer-join when integrating real data lake tables.

Embedding Generation. Recall that we use pre-trained em-
beddings to represent the columns for clustering (and integration
ID assignment). Before using TURL [23], our method of choice to
generate embeddings, we pre-process the tables using their im-
plementation [72]. This phase includes, for example, generating
a Wikipedia entity dictionary to map values in the tables. TURL
was designed for web tables and, hence, has a limited capacity in
terms of the number of rows and columns it can use to create em-
beddings (mean of ~20 rows and ~2 columns [23]). Since typical
data lake tables are much larger (see Fig. 4), to cope with such a lim-
itation, we designed an iterative embedding generation approach
for each column. First, we randomly sample 50 rows and generate
the corresponding column embedding by averaging the representa-
tions of each row. Then, we iteratively sample 50 additional rows
and combine them with the current embedding until convergence.
Convergence is achieved if the euclidean distance between two
consecutive embeddings is less than some value (0.05 in our setup).

Hierarchical Clustering. The generated embeddings are used
to represent columns for clustering (see Section 4). We implement
the clustering algorithm using Agglomerative Clustering module
available in Scikit learn library [60]. Based on our objective of ob-
taining dense, but well-separated clusters, we use the Silhouette
Coefficient as a clustering quality measure [67]. We select the num-
ber of clusters (column predicates) that maximizes the Silhouette
Coefficient (Section 4). We use euclidean distance as a distance
metric throughout the experiments.

6.2 Evaluation Measures

To the best of our knowledge, no prior work considers the integra-
tion of data lake tables after discovery. So, we compare the different
components of our pipeline to some approximate baselines.
Column Integration ID Assignment: The column integration
ID assignment can be addressed using schema matching. Generally,
precision, recall and their harmonic mean, i.e., Fi-score are used as
the evaluation measures for schema matching [14, 31, 69]. So, we
use the same three metrics to compare our column integration ID
assignment against existing schema matching methods. To assess
the quality of a clustering-based solution using binary measures, we
consider a pair of columns belonging to the same cluster as a match.
Note that a column having no matches forms a singleton cluster,
i.e., a cluster having one column. We count each such cluster as
a true match during the evaluation. Specifically, the total number
of matches is the sum of the number of column pairs belonging to
the same cluster and the number of singleton clusters. Formally,
let 7x4 be true column pair matches according to the ground truth

and 73 be the matches according to a method. We define Precision
(P), Recall (R) and F;-score (Fy) as follows:

_2-P-R
" P+R

ng ng
szA 77\4,R=77\4 77\4F

. 1
T T 1

We compute precision, recall and Fj-score for each set of tables to
be integrated and report the average. In addition, we also report
the time taken by each method to determine the column predicates.

Full Disjunction: Our objective is to show that our proposed
FD algorithm is faster in integrating data lake tables in comparison
to the state-of-the-art methods for computing the FD. Therefore,
we will report the time taken to compute Full Disjunction by each
method. A cut-off of 10k seconds is used when applying FD. Fur-
thermore, it is interesting to see how many tuples generated by FD
can also be generated by the relatively faster outer-join over real
data lake tables. Recall that outer-join is not an associative operator
and there may exist outer-join orderings that yield the semantics
of Full Disjunction when the scheme graph of the input tables does
not contain a y-cycle [65]. But the data lake tables to be integrated
may contain gamma cycles in which case an outer join may not
compute the FD. We quantify this using the Tuple Difference Ratio
(TDR) as a success metric. Let f be the FD output size and f” be
output size of a competing method (e.g. outer join). The TDR is

nf

given by - If the competing method produces all FD tuples,

TDR is equal to 1 and it is equal to 0 if it produces none of them.

6.3 Baselines

Column Integration ID Assignment. Recall that we use a clus-
tering approach and pre-trained embeddings created for the tables’
columns [23] to find the column integration IDs. Other existing
natural language embeddings were successfully adopted for similar
tasks such as table search [10, 57] and column annotation [71]. Here,
we compare the performance of such embeddings also for our task.
Like in table search [10, 57], we use fastText [38, 54] embeddings of
columns as done for column annotation [71], and we use BERT [24]
embeddings. We use a publicly available Fasttext model [30] using
Gensim python package [33]. We generate BERT embeddings [4]
using the commonly used hugging face package [27].

We also compare our Column Integration ID Assignment with
existing schema matching methods. There are numerous matching
approaches in the literature [25, 45, 51, 69]. However, most work
relies on metadata, which we aim to avoid in our setting. Recently,
in Valentine, Koutras et al. performed a detailed analysis of existing
schema matching methods in a data lake setting [45]. Based on
their analysis, we select the Distribution Based method (DB), pro-
posed by Zhang et al., as a baseline [76]. DB discovers clusters of
similar attributes in tables using information that includes attribute
data types, overlap of the attribute values, and their distribution.
Earth Mover’s Distance is used to measure the similarity between
the column pairs [68]. A threshold is applied over this score to de-
cide the column similarity. We use a threshold of 0.15 suggested by
Zhang et al. [76]. Also, we reproduce DB using the open source code
in Valentine [73]. For completeness, we compare ALITE against
other schema-based matching methods available in Valentine over
a benchmark having real schemas. Specifically, we compare CU-
PID [51], COMA [25] and Similarity Flooding (SF) [53]. We also

940

report a Jaccard Similarity and Levenshtein Distance method (JLM)
used as a baseline in Valentine [45]. We use default parameters
from the respective papers. Note that the holistic schema matching
works with a set of tables whereas the pairwise schema matching
methods work only between a pair of tables (or schemas). So, for
fair evaluation, we make all the pairwise methods holistic. We apply
pairwise schema matching between every pair of tables in the set
of tables to be integrated. Then, the method returns all the column
pair matches, which we use to compute P, R and F; (Section 6.2).

Full Disjunction. Paganelli et al. recently suggested ParaFD to
compute the FD of relational tables where all joins are between keys
and foreign keys using multiple machines [59]. In a data lake, we are
often not joining on keys and foreign keys, so we mainly compare
ALITE against ParaFD in a benchmark having such relationships.
However, to understand how accurate ParaFD can be in the real
tables that may not necessarily have PK-FK relations, we report its
TDR on a benchmark having real data lake tables.

We also use BICOMNLOY], which computes the FD with a poly-
nomial delay between tuples [17]. As our focus is to compute full
FD, we report the performance of BICOMNLOY] for computing the
full FD. Also, BICOMNLAO] is based on the tuple sets and computes
FDyyple-set> if the input contains nulls its output may contain some
subsumable tuples (see Example 10). So, to ensure that the output
produced by this algorithm is the same as other algorithms, we
apply subsumption to its final result. For fair comparison, we apply
the same subsumption algorithm that we use for our approach [8].
Since an open-source implementation is not available for either
ParaFD or BICOMNLO], we reproduce them using the information
provided in the paper. We implement ParaFD to run on a single
machine for fair comparison. The reproduced implementations are
publicly available in our github repository [2]. Also, we run outer
join to integrate the tables and use its output size to report TDR.
As outer join is not associative, the order of integration makes a sig-
nificant difference [32]. Applying outer join in a connected-prefix
ordering of the input tables can yield FD for y-acylic case [17].
Therefore, we find the connected-prefix ordering by performing
DFS transversal over the input scheme graph and use it to compute
the outer join [17].

6.4 Benchmarks

Benchmark | Tables | Columns | Tuples | Integration sets Experiments
Align 606 4,584 2.2M 65 Integration ID
Real 102 1,195 219k 11 Integration ID, FD
Join 302 2,309 1.1M 28 FD
IMDB 6 33 3k - 30k 1 FD

Figure 4: Benchmarks used in the experiments.

Figure 4 summarizes all benchmarks used in different experi-
ments along with their statistics. Each benchmark contains multiple
tables with different schemas and each schema may be used by mul-
tiple tables. All the benchmarks are publicly available [2].

Align. To the best of our knowledge, there are no available data
lake benchmarks that could be adapted to evaluate the column inte-
gration ID assignment task. So we create a new benchmark called
Align containing 606 tables divided into 65 non-overlapping sets of
tables, which we call integration sets. For example, T1-T5 (Fig. 1) is

an integration set containing 5 tables to be integrated. We run the
column integration ID Assignment over the columns of tables of
each integration set and report the average performance. To create
this benchmark, we follow a similar technique used to create a
table union benchmark [57]. First, we select 65 real data lake tables
from US Open Data [36], Canada Open Data [20], and UK Open
Data [21] and consider them as seed tables. Each seed has a different
schema and is used to generate an integration set. We partition
the seed tables by projecting columns and selecting rows (without
replacement) to get 606 smaller tables such that all the columns of
the small tables that originated from the same seed column have
the same integration ID. Accordingly, we have labeled ground truth
for the column integration ID assignment. Based on the number of
columns and rows in the seed tables, each integration set contains 2
to 30 tables. Note that we do not add or remove missing nulls in the
seed tables before partitioning. Therefore, if there is a missing null
in the seed table row, it gets copied to the small tables. On average,
since these are real data lake tables, we have null values in 50% of
the rows. This ensures that our benchmark well-represents the real
data lake scenario where such nulls are prevalent.

Real. To understand the performance of different methods in a
real data lake environment, we also created the Real Benchmark
that contains 102 real data lake tables divided into 11 disjoint in-
tegration sets. We ensure that the schema graph of the tables in
each integration set is connected. Furthermore, two real tables can
have different column headers for the join columns. Therefore, we
manually marked the join columns and labeled the ground truth.
We use this benchmark to evaluate the effectiveness of column
integration ID assignment and efficiency of FD. It is interesting
to evaluate FD computation for different input sizes (s) and out-
put sizes (f). Therefore, we also ensure that the benchmark covers
f <s, f =sand f > s cases. Precisely, in this benchmark, there
are three integration sets where f < s, five integration sets where
f =~ s, and three integration sets where f > s. > The number of
tables (n) on each integration set ranges from 5 to 14. Also, s and f
ranges from 588 to 76k and 580 to 60k respectively.

Join. Except renaming column headers, we do not modify the
Real Benchmark and it contains raw tables searched from open
data lakes. Therefore, to experiment with our algorithm in broader
contexts, like for variation in the input size, output size and the
number of tables in each integration set, we create a Join Benchmark
that contains 28 integration sets generated using 27 seed tables—
at most two integration sets from each seed. Each integration set
contains 2 to 20 tables. We follow a similar methodology as used in
Nargesian et al. [57] as explained in the Align Benchmark, but this
time we also consider broader variation in the number of input and
output tuples and also their ratio. The input tuple size (s) varies
from 266 to 100k and range of output size is from 234 to 12M. There
are 17 integration sets with f < s among which six have f < 0.5s.
Furthermore, five integration sets have f =~ s and six integration
sets have f > s.

IMDB. As ParaFD can only be used accurately for the tables
having PK-FK relationships, we also use an IMDB dataset, hav-
ing such relationships for our experiments [37]. This is a dataset
about movies and their details including ratings, crews, etc. The

3We consider f ~ s when @ < 0.05.

941

full dataset contains about 106.8 M tuples in 6 tables. We use this
benchmark to study the effect of different input size on the run
time. Previous work uses 1k tuples in each table to evaluate the
run time [17]. Therefore, to study the trend on similar setting , we
sample tuples randomly and vary the input size between 500 to
5000 for each table- around 3k to 30k input tuples in total for our
experiments. We preserve PK-FK relationships during sampling.

6.5 Column Integration ID Assignment Results

Method
Benchmark Baseline ALITE
CUPID|COMA| SF [JLM | DB [fastText|BERT|TURL
4 - - - | - |0.95| 0.96 |0.92|0.93
Align| R - - - | - lo.89| 0.92 [0.97]0.97
Fy - - - | - |0.91| 0.94 |0.94|0.95
P 0.45 | 0.82 (0.26|0.49(0.72| 0.69 |0.73|0.78
Real| R | 0.70 | 0.63 |0.91]|0.91|0.80| 0.81 |0.77|0.76
F, | 0.47 | 0.69 |0.30/0.56(0.72| 0.72 |0.71|0.76
Best score

Second Best score

Figure 5: Average precision, recall and F; over the Align and
Real benchmarks for column integration ID assignment.

We now report the effectiveness of column integration ID as-
signment, followed by an empirical analysis of its efficiency. Fig. 5
shows the evaluation results for the Align and Real benchmarks.
Recall that ALITE uses a clustering-based approach to find the
column integration IDs that uses pre-trained embeddings created
using TURL [23]. So, first we compare ALITE’s precision, recall and
Fi-Score using TURL-based embeddings against fastText and BERT.
We use the same experimental setups for all three methods (Sec-
tion 6.1). TURL gives comparable or even better precision and recall
against the baselines (Fig. 5). In terms of F;-score (the best overall
metric that combines both precision and recall), TURL performs
better than the baselines. This validates our choice of using table-
based embedding (TURL) instead of natural language embeddings
(fastText and BERT) for data lake tables. We will explore other ways
to embed data lake tables in future research.

Next, we compare the effectiveness of ALITE’s embedding-based
technique against DB that uses attribute data types, values and
distribution to find the similar columns. The DB approach has
a slightly better precision than ALITE on the Align benchmark.
However, ALITE outperforms DB by more than 8% in terms of
Recall. In Real benchmark, DB has the lower precision and higher
recall than ALITE. Still, in terms of F; (the combined metric), ALITE
outperforms DB by more than 4% on both benchmarks. The main
reason for the lower performance of DB is that it relies on value
overlap and ignores the semantics (e.g., synonyms). Specifically,
DB’s precision is impacted by the presence of homographs [49]-
the same values having different meanings— in the non-matching
columns, and its recall is impacted by the presence of synonyms in
the matching columns that can not be captured by value overlap.
Also, DB uses information only within a pair of columns to make
the matching decision whereas, ALITE considers all the columns
together in a holistic way, which enhances its performance.

Moreover, we analyze the performance of schema-based meth-
ods for column ID assignment in Real Benchmark. Recall that Align
Benchmark’s tables are generated using seed tables such that the

aligning columns have the same column headers (Section 6.4). So,
we do not evaluate schema-based methods (CUPID, COMA, SF and
JLM) in Align Benchmark. In Real Benchmark, we observe that
COMA has better P and F; than other schema-based methods but
it has lower R and F; than DB (baseline) and ALITE. Specifically,
ALITE outperforms COMA, the best schema-based method, by
~10 % in Fy-score. This is because the tables contain unreliable
schemas and applying similarity measures over them leads to in-
correct aligning. CUPID also shows weaker performance due to the
same reason. We observe that SF and JLM have the top-2 recalls
among all the methods. However, they have lower precision and
Fi-score. This is because they align most columns within the same
cluster which increases their recall but penalizes precision. Hence,
the schema-based methods are not effective in the data lake setting.

The column integration ID assignment is considered as an offline
task. Yet, ALITE’s clustering is much faster than the pair-wise
comparison done by the baseline (DB). Specifically, ALITE takes
~10 minutes for Align and ~15 minutes for Real while DB takes
about 45 minutes (x4.5) for Align and about 2 hours (x8) for Real.
Comparing the embedding generation, fastText is the fastest (~28
seconds for Align and ~3 seconds for Real) as the embeddings are
pre-defined. TURL and BERT, for which a pre-trained model is
used, show somewhat different trends. For the Align benchmark,
BERT takes ~80 minutes while TURL takes ~7 minutes. For the Real
benchmark, they take approximately the same time (~15 minutes).

6.6 Full Disjunction Results

Now we compare ALITE’s FD algorithm efficiency (Algorithm 1)
against the baselines (see Section 6.3). We also analyze the run time
of our algorithm by varying the input and output sizes. Finally, we
compare the FD output with the outer join output in terms of TDR
(the relative size of the outputs, see Section 6.1).

ALITE against baselines. Before experimenting with our data
lake benchmarks, we conducted a preliminary analysis over three
synthetic integration sets (R1, Rz, R3) introduced in Cohen et
al. [17]. We reproduced these by randomly generating 1000 input
tuples in each of the 10 tables in each integration set. Unsurpris-
ingly, since these schema contain biconnected components [17],
BICOMNLOY] splits the tables into smaller integration sets, com-
putes FD for each of them separately and combine them. Therefore,
BICOMNLO] is much faster than ALITE. As a second step, we
created a new, more complex, integration set having eight tables
that better represents data lake tables (see repository [2]). We again
fix the number of tuples on each input table to 1k for each of the 8
tables, i.e., s = 8000. We added tuples to the tables in such a way as
to create three cases: f < s (f=3868), f ~ s (f=7445) and f > s (f
= 14204). For all three cases, ALITE outperforms BICOMNLO] by
at least one order of magnitude. BICOMNLO] could not optimize
the computation because there is only one biconnected component.
Note that this is a common case in data lakes due to the presence
of complex cycles in the scheme graphs.

We also compare the time taken by ALITE’s FD algorithm against
the baseline BICOMNLO] in Real Benchmark. Fig. 6(a) summarizes
this experiment. Each pair of bars on the X-axis represents a schema
and the Y-axis shows the time taken to integrate the tables by ALITE
(blue) and BICOMNLO] (red). The tables in an integration set are

942

Time (seconds)
10000

1000
100
10
0.01 |
o &) o
NN (o
& o o q, & & 4‘\ ,'b
SRR PN AN S &
RO U 'zﬁ@ & & § <~‘°
&L LV < & & 9 2
Q Por 4 65/ QL o’
?) N @QO) b§ Q,,bﬂ\
S
& m BICOMNLO)J

(a) Real Benchmark
Time (seconds) W ALITE
10000

1000

100
0
1
ot il
001'
33 ‘1 -

B o

N &P & &
S (,\0 Sr o &£ & x*’
Q C Q b/ £ S \\ &
RN R S SO S v‘o/ NS o&\ &
RO & el & T e &
S L é§ a7 \7\> &7 {\b% ‘O'b(\ .\ob
< S S SN > 0

(b) Join Benchmark

Figure 6: Integration time (Y-axis, log scale) in (a) Real Bench-
mark and (b) Join Benchmark. The integration sets in X-axis
are arranged in ascending order of input size, some of the
names are truncated for conciseness. A 10k second cut-off
was used in both benchmarks. Due to space considerations,
integration sets that did not meet the cut-off time in Join
benchmark are provided in the technical report [2].

10000 10000

8000 - 8000 -

6000 7 6000 -

4000 4000 -~

Time (seconds)
N

Time (seconds)
\

2000 et 2000 " w

0 m—= 0 &=

30k 0ok 500k 1000k 1500k 2000k 2500k
s s
~4#-ALITE —a -BICOMNLOJ ParaFD

20k 25k

(a) (b)
Figure 7: Integration time in the IMDB benchmark for (a)
different input size and (b) different output size.

ordered by input size such that the smallest is shown on the left and
the largest in the right. ALITE’s FD algorithm (blue bars) is signifi-
cantly faster than BICOMNLO] (red bars) over all 11 integration
sets. Specifically, the cases where the cut-off was not applied (all
but the last three), ALITE boosts the performance of BICOMNLOJ
by around two orders of magnitude. The reason for this gain comes
from the fact that our algorithm partitions tuples according to their
complementation patterns and iterates over the tuples only within
the partitions. This leads to an interesting insight, showing the
impact of the complementation operator in optimizing the FD com-
putation for data lake tables. Another reason is that data lake tables
have complex join connections that limit the chances of dividing
the tables of integration sets into biconnected components, which
is used in BICOMNLO]. We see the same trend on Join Benchmark

(shown in Fig. 6 (b)) where, ALITE outperforms BICOMNLO] on
all integration sets by around one and half orders of magnitude. As
in Real, we are much faster for the integration sets having different
output to input ratio. Also, it is notable that out of 28 integration
sets, BICOMNLO] computes the full FD result within the cutoff
time for only 13 integration sets that are shown in Fig. 6(b). Gen-
erally, BICOMNLO] is able to compute FD within the cutoff time
for input sizes less than 45k. For the remaining 15 integration sets,
the average integration time by ALITE ranges from 20 seconds
to 3827 seconds with an average of 598 seconds—well below the
cut-off time (10k seconds) that we used in the experiments. This
shows that ALITE is more applicable than the baseline for the data
lake tables with large input size. we also observed that tuple-set
FD produces over 300 subsumable tuples per integration set in the
Real Benchmark which supports the subsumption step in ALITE.
Next, we apply ParaFD over Real Benchmark to see if it can yield
FD results in data lake tables. ParaFD completes the integration
within the cut-off time for only 3 out of 11 integration sets and
only 2 of them are equal to FD result. ParaFD is slow in Real be-
cause it computes all the spanning trees over the schema graph and
computes outer join over each of them (see Section 3). Accordingly,
we also implement an approximate version of ParaFD where we
do not apply the cut-off time but compute output tuples using at
most 100 spanning trees. The approximate version yields FD result
for only 5 out of 11 integration sets. For other 6 sets, the average
TDR is 0.82, i.e., ParaFD misses around 18 % of tuples. Also, it takes
an average of 9268 seconds per integration set, which is slower by
magnitudes than ALITE (Fig. 6(a)). The integration time and TDR
on each integration set is provided in the github repository [2].
Moreover, we compare ALITE’s FD algorithm against both
BICOMNLO] and ParaFD in IMDB- a benchmark having six ta-
bles and large number of join connections. As shown in Fig. 7 (a),
we vary input tuples (s) from 0 to 30k and observe the runtime.
Note that, when we increase the number of input tuples, the output
size also increases in this benchmark. Therefore, we also show the
integration time with respect to the output size (Fig. 7 (b)). It is seen
that ALITE gives comparable performance against ParaFD and is
more than two times faster than BICOMNLO]. Recall that ParaFD
needs all joins to be key to foreign-key joins to compute FD. It uses
this property to optimize the computations and hence, performs
relatively better than other techniques on IMDB. However, ParaFD
cannot be used for the tables without PK-FK relationship. Due to
space constraints, we provide other details like the number of tables
on each integration set, the number of columns, input size, output
size, and missing nulls size with the supplementary materials [2].
FD against outer join. We now show the importance of using
FD against outer join empirically in real data lake tables (Real
Benchmark). We provide a bar graph in our technical report [42]
that shows each integration set of this benchmark in X-axis and
TDR in Y-axis. We show the schemas based on three categories:
s < f,s~ f,and s > f. Recall that all these schemas contain
complex cycles. Out of 11 integration sets, only once is TDR equal
to one (school_report), i.e., all FD tuples are generated by outer join.
It is interesting that even in the presence of complex cycles, the
outer join can sometimes produce the full FD. For two integration
sets (chicago_parks and 1009ipopayments), the outer join is able to
generate more than half of the FD tuples. But for other sets, TDR

943

is very low, which shows that the outer join produces incomplete
tuples and hence, magnifies the importance of FD to best integrate
real data lake tables.

Integration |Integrated *
Method Table Size LR R i “
Full Disjunction 121 98 78 0.795)0.838|0.816
Outer join 114 109 37 0.339(0.397(0.366

Figure 8: Results of applying ER over FD and outer join out-
put. Integrated Table Size is the number of input tuples to
ER, which is the output size of integration methods.

Entity Resolution (ER). Lastly, we analyze the use of FD (rather
than outer join) for the downstream application of entity resolution
(ER). To create ground truth, we inject duplicate tuples into a real
table. We then partition the table into four tables and integrate
them back using outer join and FD. Over these tables, we apply ER
and verify if the tuples in the original table are reproduced. Specifi-
cally, we use Magellan’s py_entitymatching [62] to find and remove
matching tuples. Given a table T (resulting table after applying
ER and removing duplicates from outer joined or FD table) and a
ground truth table T* (i.e. clean table), we compute precision (P),
recall (R) and F1-score (Fy) as follows:

P_|TﬂT*| _TnT*| . 2xPxR
T T
In other words, precision and recall measure the portion of clean
tuples in T and the portion of clean tuples that are covered by
T respectively. Additional details on the experimental setup are
provided in the technical report [42].

We report P, R and F; of applying ER over FD and outer join
output in Fig. 8. The results indicate that applying ER over FD table
is better than outer join table in terms of both P and R and by
~123% in terms of F;. Since outer join is not able to integrate the
maximal information, its result contains incomplete tuples having
null values. This reduces the information available for the entity
resolution algorithm and impacts de-duplication accuracy.

7 CONCLUSION

We introduce a novel problem of integrating data lake tables after
discovery and present ALITE that aims to solve this problem in
two steps. ALITE first assigns an integration ID to each column
and then applies natural full disjunction to integrate the tables. We
show that ALITE’s new FD algorithm is more efficient than existing
baselines, in practice. We also show the effectiveness of using FD
to best integrate the real data lake tables.

ACKNOWLEDGMENTS

This work was supported in part by NSF under award numbers
11S-1762268, 11S-1956096 and IIS-2107248.

REFERENCES

[1] Martin Aigner and Gunter M Ziegler. 1999. Proofs from the Book. Berlin. Germany
1(1999).

[2] ALITE. 2022. https://github.com/northeastern-datalab/alite

[3] Basel Alshaikhdeeb and Kamsuriah Ahmad. 2015. Integrating correlation clus-
tering and agglomerative hierarchical clustering for holistic schema matching.
Journal of Computer Science 11, 3 (2015), 484.

https://github.com/northeastern-datalab/alite

=

[9

=

[10]

(1]

[12

[13]

[14

[15]

[16]

[17

[18

[19]

[20]
[21]
[22]

[23

[24]

[25]

[27
[28]

[29]

Hugging Face BERT base model (uncased). 2022. https://huggingface.co/bert-
base-uncased

Purnima Bholowalia and Arvind Kumar. 2014. EBK-means: A clustering tech-
nique based on elbow method and k-means in WSN. International Journal of
Computer Applications 105, 9 (2014).

Jens Bleiholder, Melanie Herschel, and Felix Naumann. 2011. Eliminating NULLs
with Subsumption and Complementation. IEEE Data Eng. Bull. 34,3 (2011), 18-25.
http://sites.computer.org/debull/A11sept/DataFusion1.pdf

Jens Bleiholder and Felix Naumann. 2009. Data Fusion. ACM Comput. Surv. 41,
1, Article 1 (Jan. 2009), 41 pages. https://doi.org/10.1145/1456650.1456651

Jens Bleiholder, Sascha Szott, Melanie Herschel, Frank Kaufer, and Felix Naumann.
2010. Subsumption and complementation as data fusion operators. In EDBT
2010, 13th International Conference on Extending Database Technology, Proceedings
(ACM International Conference Proceeding Series), Vol. 426. ACM, 513-524. https:
//doi.org/10.1145/1739041.1739103

Jens Bleiholder, Sascha Szott, Melanie Herschel, and Felix Naumann. 2010. Com-
plement union for data integration. In Workshops Proceedings of the 26th In-
ternational Conference on Data Engineering, ICDE 2010, March 1-6, 2010. IEEE
Computer Society, 183-186. https://doi.org/10.1109/ICDEW.2010.5452760

Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Konstanti-
nou. 2020. Dataset Discovery in Data Lakes. In 2020 IEEE 36th International Con-
ference on Data Engineering (ICDE). 709-720. https://doi.org/10.1109/ICDE48307.
2020.00067

Dan Brickley, Matthew Burgess, and Natasha Noy. 2019. Google Dataset Search:
Building a Search Engine for Datasets in an Open Web Ecosystem. In The World
Wide Web Conference (WWW ’19). ACM, 1365-1375. https://doi.org/10.1145/
3308558.3313685

Michael J. Cafarella, Alon Halevy, and Nodira Khoussainova. 2009. Data In-
tegration for the Relational Web. Proc. VLDB Endow. 2, 1 (2009), 1090-1101.
https://doi.org/10.14778/1687627.1687750

Tadeusz Caliniski and Jerzy Harabasz. 1974. A dendrite method for cluster
analysis. Communications in Statistics-theory and Methods 3, 1 (1974), 1-27.
Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating Embeddings of Heterogeneous Relational Datasets for Data Integration
Tasks. In SIGMOD Conference 2020. ACM, 1335-1349. https://doi.org/10.1145/
3318464.3389742

Chen Chen, Behzad Golshan, Alon Y Halevy, Wang-Chiew Tan, and AnHai
Doan. 2018. BigGorilla: An Open-Source Ecosystem for Data Preparation and
Integration. IEEE Data Eng. Bull. 41, 2 (2018), 10-22.

E. F. Codd. 1979. Extending the Database Relational Model to Capture More
Meaning. ACM Trans. Database Syst. 4, 4 (dec 1979), 397-434. https://doi.org/10.
1145/320107.320109

Sara Cohen, Itzhak Fadida, Yaron Kanza, Benny Kimelfeld, and Yehoshua Sagiv.
2006. Full Disjunctions: Polynomial-Delay Iterators in Action. In Proceedings of
the 32nd International Conference on Very Large Data Bases (VLDB °06). VLDB
Endowment, 739-750.

Sara Cohen and Yehoshua Sagiv. 2007. An incremental algorithm for computing
ranked full disjunctions. J. Comput. Syst. Sci. 73, 4 (2007), 648—668. https:
//doi.org/10.1016/j.jcss.2006.10.015

Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Halevy, Hongrae Lee, Fei Wu,
Reynold Xin, and Cong Yu. 2012. Finding Related Tables. In SIGMOD Conference
2012. ACM, 817-828. https://doi.org/10.1145/2213836.2213962

Canada Open Data. 2020. https://open.canada.ca/en/open-data

UK Open Data. 2020. https://data.gov.uk/

David L. Davies and Donald W. Bouldin. 1979. A Cluster Separation Measure.
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1, 2 (1979),
224-227. https://doi.org/10.1109/TPAMI.1979.4766909

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: Table
Understanding through Representation Learning. Proc. VLDB Endow. 14, 3 (2020),
307-319. https://doi.org/10.5555/3430915.3442430

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
ArXiv abs/1810.04805 (2019).

Hong-Hai Do and Erhard Rahm. 2002. COMA—a system for flexible combination
of schema matching approaches. In VLDB02: Proceedings of the 28th International
Conference on Very Large Databases. 610-621. https://doi.org/10.1016/B978-
155860869-6/50060-3

Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada. 2021.
Efficient Joinable Table Discovery in Data Lakes: A High-Dimensional Similarity-
Based Approach. In 37th IEEE International Conference on Data Engineering, ICDE
2021. IEEE, 456-467. https://doi.org/10.1109/ICDE51399.2021.00046

Hugging Face. 2022. https://huggingface.co

Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, and Renée]. Miller. 2022. Semantics-
aware Dataset Discovery from Data Lakes with Contextualized Column-based
Representation Learning. CoRR abs/2210.01922 (2022). https://doi.org/10.48550/
arXiv.2210.01922

Mina H. Farid, Alexandra Roatis, Thab F. Ilyas, Hella-Franziska Hoffmann, and
Xu Chu. 2016. CLAMS: Bringing Quality to Data Lakes. In SIGMOD Conference

944

[42]

[43

[44]

[46

[47

[48

[49

[50

[51

[52]

(53

(54]

[55

[56

[57

2016. ACM, 2089-2092. https://doi.org/10.1145/2882903.2899391

fastText. 2022. https://fasttext.cc/docs/en/english-vectors.html

Avigdor Gal, Haggai Roitman, and Roee Shraga. 2021. Learning to Rerank
Schema Matches. IEEE Trans. Knowl. Data Eng. 33, 8 (2021), 3104-3116. https:
//doi.org/10.1109/TKDE.2019.2962124

César A. Galindo-Legaria. 1994. Outerjoins as Disjunctions. In SIGMOD Confer-
ence 1994. ACM, 348-358. https://doi.org/10.1145/191839.191908

Gensim. 2022. https://radimrehurek.com/gensim

Johannes Grabmeier and Andreas Rudolph. 2002. Techniques of Cluster Al-
gorithms in Data Mining. Data Min. Knowl. Discov. 6, 4 (2002), 303-360.
https://doi.org/10.1023/A:1016308404627

Bin He and Kevin Chen-Chuan Chang. 2005. Making holistic schema matching
robust: an ensemble approach. In Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 429-
438. https://doi.org/10.1145/1081870.1081920

The home of the U.S. Government’s open data. 2020. https://data.gov/

IMDB. 2022. https://datasets.imdbws.com/

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag
of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016).
Jaewoo Kang and Jeffrey F. Naughton. 2003. On Schema Matching with Opaque
Column Names and Data Values. In SIGMOD Conference 2003. ACM, 205-216.
https://doi.org/10.1145/872757.872783

Yaron Kanza and Yehoshua Sagiv. 2003. Computing Full Disjunctions. In Pro-
ceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS "03). ACM, 78-89. https://doi.org/10.1145/
773153.773162

Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-
bauer, Renée] Miller, and Mirek Riedewald. 2023. SANTOS: Relationship-based
Semantic Table Union Search. In SIGMOD Conference 2023. ACM.

Aamod Khatiwada, Gatterbauer Wolfgang, Roee Shraga, and Renée J. Miller.
2022. Technical Report on Integrating Data Lake Tables. https://github.com/
northeastern-datalab/alite/blob/main/alite- technical-report.pdf

Trupti M Kodinariya and Prashant R Makwana. 2013. Review on determining
number of Cluster in K-Means Clustering. International Journal 1, 6 (2013),
90-95.

Hanna Képcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of Entity
Resolution Approaches on Real-World Match Problems. Proc. VLDB Endow. 3,
1-2 (2010), 484-493. https://doi.org/10.14778/1920841.1920904

Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Katsifodi-
mos. 2021. Valentine: Evaluating Matching Techniques for Dataset Discovery. In
37th IEEE International Conference on Data Engineering, ICDE 2021. IEEE, 468-479.
https://doi.org/10.1109/ICDE51399.2021.00047

Michel Lacroix and Alain Pirotte. 1976. Generalized joins. ACM Sigmod Record
8,3 (1976), 14-15.

Peter Langfelder, Bin Zhang, and Steve Horvath. 2008. Defining clusters from a
hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinform. 24, 5
(2008), 719-720. https://doi.org/10.1093/bioinformatics/btm563

Oliver Lehmberg and Christian Bizer. 2017. Stitching Web Tables for Improving
Matching Quality. Proc. VLDB Endow. 10, 11 (2017), 1502-1513. https://doi.org/
10.14778/3137628.3137657

Aristotelis Leventidis, Laura Di Rocco, Wolfgang Gatterbauer, Renée J. Miller,
and Mirek Riedewald. 2021. DomainNet: Homograph Detection for Data Lake
Disambiguation. In EDBT 2021. OpenProceedings.org, 13-24. https://doi.org/10.
5441/002/edbt.2021.03

Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. 2010. Annotating
and Searching Web Tables Using Entities, Types and Relationships. Proc. VLDB
Endow. 3, 1-2 (2010), 1338-1347. https://doi.org/10.14778/1920841.1921005
Jayant Madhavan, Philip A Bernstein, and Erhard Rahm. 2001. Generic schema
matching with cupid. In vidb, Vol. 1. Citeseer, 49-58.

David Maier. 1983. The theory of relational databases. Vol. 11. Computer science
press Rockville.

Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. 2002. Similarity Flood-
ing: A Versatile Graph Matching Algorithm and Its Application to Schema Match-
ing. In Proceedings of the 18th International Conference on Data Engineering, 2002.
IEEE Computer Society, 117-128. https://doi.org/10.1109/ICDE.2002.994702
Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Ar-
mand Joulin. 2018. Advances in Pre-Training Distributed Word Representations.
In Proceedings of the Eleventh International Conference on Language Resources
and Evaluation, LREC 2018. European Language Resources Association (ELRA).
http://www.Irec-conf.org/proceedings/lrec2018/summaries/721.html

Renée J. Miller. 2018. Open Data Integration. Proc. VLDB Endow. 11, 12 (2018),
2130-2139. https://doi.org/10.14778/3229863.3240491

Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data Lake Management: Challenges and Opportunities. Proc.
VLDB Endow. 12, 12 (2019), 1986-1989. https://doi.org/10.14778/3352063.3352116
Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table
Union Search on Open Data. Proc. VLDB Endow. 11, 7 (2018), 813-825. https:

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
http://sites.computer.org/debull/A11sept/DataFusion1.pdf
https://doi.org/10.1145/1456650.1456651
https://doi.org/10.1145/1739041.1739103
https://doi.org/10.1145/1739041.1739103
https://doi.org/10.1109/ICDEW.2010.5452760
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1145/3308558.3313685
https://doi.org/10.1145/3308558.3313685
https://doi.org/10.14778/1687627.1687750
https://doi.org/10.1145/3318464.3389742
https://doi.org/10.1145/3318464.3389742
https://doi.org/10.1145/320107.320109
https://doi.org/10.1145/320107.320109
https://doi.org/10.1016/j.jcss.2006.10.015
https://doi.org/10.1016/j.jcss.2006.10.015
https://doi.org/10.1145/2213836.2213962
https://open.canada.ca/en/open-data
https://data.gov.uk/
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.5555/3430915.3442430
https://doi.org/10.1016/B978-155860869-6/50060-3
https://doi.org/10.1016/B978-155860869-6/50060-3
https://doi.org/10.1109/ICDE51399.2021.00046
https://huggingface.co
https://doi.org/10.48550/arXiv.2210.01922
https://doi.org/10.48550/arXiv.2210.01922
https://doi.org/10.1145/2882903.2899391
https://fasttext.cc/docs/en/english-vectors.html
https://doi.org/10.1109/TKDE.2019.2962124
https://doi.org/10.1109/TKDE.2019.2962124
https://doi.org/10.1145/191839.191908
https://radimrehurek.com/gensim
https://doi.org/10.1023/A:1016308404627
https://doi.org/10.1145/1081870.1081920
https://data.gov/
https://datasets.imdbws.com/
https://doi.org/10.1145/872757.872783
https://doi.org/10.1145/773153.773162
https://doi.org/10.1145/773153.773162
https://github.com/northeastern-datalab/alite/blob/main/alite-technical-report.pdf
https://github.com/northeastern-datalab/alite/blob/main/alite-technical-report.pdf
https://doi.org/10.14778/1920841.1920904
https://doi.org/10.1109/ICDE51399.2021.00047
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.14778/3137628.3137657
https://doi.org/10.14778/3137628.3137657
https://doi.org/10.5441/002/edbt.2021.03
https://doi.org/10.5441/002/edbt.2021.03
https://doi.org/10.14778/1920841.1921005
https://doi.org/10.1109/ICDE.2002.994702
http://www.lrec-conf.org/proceedings/lrec2018/summaries/721.html
https://doi.org/10.14778/3229863.3240491
https://doi.org/10.14778/3352063.3352116
https://doi.org/10.14778/3192965.3192973

[58]

[59]

[60]

[61]

[65]

[66]

[67]

[68]

//doi.org/10.14778/3192965.3192973

Paul Ouellette, Aidan Sciortino, Fatemeh Nargesian, Bahar Ghadiri Bashardoost,
Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2021. RONIN: Data Lake Exploration.
Proc. VLDB Endow. 14, 12 (2021), 2863-2866. https://doi.org/10.14778/3476311.
3476364

Matteo Paganelli, Domenico Beneventano, Francesco Guerra, and Paolo Sottovia.
2019. Parallelizing Computations of Full Disjunctions. Big Data Research 17
(2019), 18-31. https://doi.org/10.1016/j.bdr.2019.07.002

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Courna-
peau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-
learn: Machine Learning in Python. J. Mach. Learn. Res. 12 (2011), 2825-2830.
https://doi.org/10.5555/1953048.2078195

Jin Pei, Jun Hong, and David A. Bell. 2006. A Novel Clustering-Based Approach
to Schema Matching. In Advances in Information Systems, 4th International Con-
ference, ADVIS 2006, Proceedings (Lecture Notes in Computer Science), Vol. 4243.
Springer, 60-69. https://doi.org/10.1007/11890393_7

py_entitymatching. 2016. https://github.com/anhaidgroup/py_entitymatching
Erhard Rahm and Philip A. Bernstein. 2001. A survey of approaches to automatic
schema matching. VLDB . 10, 4 (2001), 334-350. https://doi.org/10.1007/
5007780100057

Erhard Rahm and Eric Peukert. 2019. Holistic Schema Matching. In Encyclopedia
of Big Data Technologies. Springer. https://doi.org/10.1007/978-3-319-63962-
8_12-1

Anand Rajaraman and Jeffrey D. Ullman. 1996. Integrating Information by Out-
erjoins and Full Disjunctions (Extended Abstract). In Proceedings of the Fifteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS *96). ACM, 238-248. https://doi.org/10.1145/237661.237717

Raghu Ramakrishnan and Johannes Gehrke. 2003. Database management systems
(3. ed.). McGraw-Hill.

Peter J. Rousseeuw. 1987. Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. J. Comput. Appl. Math. 20 (1987), 53-65.
https://doi.org/10.1016/0377-0427(87)90125-7

Y. Rubner, C. Tomasi, and L.J. Guibas. 1998. A metric for distributions with
applications to image databases. In Sixth International Conference on Computer
Vision (IEEE Cat. No.98CH36271). 59-66. https://doi.org/10.1109/ICCV.1998.
710701

Roee Shraga, Avigdor Gal, and Haggai Roitman. 2020. ADnEV: Cross-Domain
Schema Matching using Deep Similarity Matrix Adjustment and Evaluation. Proc.
VLDB Endow. 13, 9 (2020), 1401-1415. https://doi.org/10.14778/3397230.3397237
Weifeng Su, Jiying Wang, and Frederick H. Lochovsky. 2006. Holistic Schema
Matching for Web Query Interfaces. In Advances in Database Technology - EDBT
2006, 10th International Conference on Extending Database Technology, Proceedings
(Lecture Notes in Computer Science), Vol. 3896. Springer, 77-94. https://doi.org/
10.1007/11687238_8

Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Cagatay Demiralp, Chen
Chen, and Wang-Chiew Tan. 2022. Annotating Columns with Pre-trained
Language Models. In SIGMOD Conference 2022. ACM, 1493-1503. https:
//doi.org/10.1145/3514221.3517906

TURL. 2020. https://github.com/sunlab-osu/TURL

Valentine. 2021. https://github.com/delftdata/valentine

Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Very
Large Data Bases, 7th International Conference, 1981. IEEE Computer Society,
82-94.

Jiang Zhan and Shan Wang. 2007. ITREKS: Keyword Search over Relational
Database by Indexing Tuple Relationship. In Advances in Databases: Concepts,
Systems and Applications, 12th International Conference on Database Systems
for Advanced Applications, DASFAA 2007 (Lecture Notes in Computer Science),
Vol. 4443. Springer, 67-78. https://doi.org/10.1007/978-3-540-71703-4_8
Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M. Procopiuc,
and Divesh Srivastava. 2011. Automatic discovery of attributes in relational
databases. In SIGMOD Conference 2011. ACM, 109-120. https://doi.org/10.1145/
1989323.1989336

Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in Data Lakes
for Interactive Data Science. In SIGMOD Conference 2020. ACM, 1951-1966.
https://doi.org/10.1145/3318464.3389726

Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In SIG-
MOD Conference 2019. ACM, 847-864. https://doi.org/10.1145/3299869.3300065
Erkang Zhu, Yeye He, and Surajit Chaudhuri. 2017. Auto-Join: Joining Tables
by Leveraging Transformations. Proc. VLDB Endow. 10, 10 (2017), 1034-1045.
https://doi.org/10.14778/3115404.3115409

Erkang Zhu, Ken Q. Pu, Fatemeh Nargesian, and Renée J. Miller. 2017. Interactive
Navigation of Open Data Linkages. Proc. VLDB Endow. 10, 12 (2017), 1837-1840.
https://doi.org/10.14778/3137765.3137788

https://doi.org/10.14778/3192965.3192973
https://doi.org/10.14778/3476311.3476364
https://doi.org/10.14778/3476311.3476364
https://doi.org/10.1016/j.bdr.2019.07.002
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1007/11890393_7
https://github.com/anhaidgroup/py_entitymatching
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/978-3-319-63962-8_12-1
https://doi.org/10.1007/978-3-319-63962-8_12-1
https://doi.org/10.1145/237661.237717
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1109/ICCV.1998.710701
https://doi.org/10.1109/ICCV.1998.710701
https://doi.org/10.14778/3397230.3397237
https://doi.org/10.1007/11687238_8
https://doi.org/10.1007/11687238_8
https://doi.org/10.1145/3514221.3517906
https://doi.org/10.1145/3514221.3517906
https://github.com/sunlab-osu/TURL
https://github.com/delftdata/valentine
https://doi.org/10.1007/978-3-540-71703-4_8
https://doi.org/10.1145/1989323.1989336
https://doi.org/10.1145/1989323.1989336
https://doi.org/10.1145/3318464.3389726
https://doi.org/10.1145/3299869.3300065
https://doi.org/10.14778/3115404.3115409
https://doi.org/10.14778/3137765.3137788

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Finding Common Columns
	2.2 Integration Operators
	2.3 Full Disjunction
	2.4 Solution Overview

	3 Related Work
	4 Assigning Column Integration IDs
	5 Integrating Tables
	5.1 ALITE FD Algorithm
	5.2 Efficient Complementation
	5.3 Full Disjunction Algorithm Analysis

	6 Experiments
	6.1 Experimental Setup
	6.2 Evaluation Measures
	6.3 Baselines
	6.4 Benchmarks
	6.5 Column Integration ID Assignment Results
	6.6 Full Disjunction Results

	7 Conclusion
	Acknowledgments
	References

