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ABSTRACT
This work considers why-not questions in the context of top-k
queries and score-based ranking functions. Following the popular
linear scalarization approach for multi-objective optimization, we
study rankings based on the weighted sum of multiple scores. A
given weight choice may be controversial or perceived as unfair to
certain individuals or organizations, triggering the question why
some entity of interest has not yet shown up in the top-k. We
introduce various notions of such why-not-yet queries and for-
mally de!ne them as satis!ability or optimization problems, whose
goal is to propose alternative ranking functions that address the
placement of the entities of interest. While some why-not-yet prob-
lems have linear constraints, others require quanti!ers, disjunction,
and negation. We propose several optimizations, ranging from a
monotonic-core construction that approximates the complex con-
straints with a conjunction of linear ones, to various techniques
that let the user control the tradeo" between running time and
approximation quality. Experiments with real and synthetic data
demonstrate the practicality and scalability of our technique, show-
ing its superiority compared to the state of the art (SOA).
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1 INTRODUCTION
Top-! queries, which return tuples in the order dictated by a rank-
ing function, have received signi!cant attention, as indicated by a
survey from 2008 [26] with more than 1,000 citations as of October
31, 2022 according to Google Scholar. Since the position in a rank-
ing can determine outcomes of algorithm-in#uenced decisions, e.g.,
who gets hired, there is growing interest in critically evaluating
the fairness of rankings [48, 49]. In this context, a lot of questions
have been raised: Why has my favorite hotel not shown up in the
top result of a booking application yet [21]? Why has our potential
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product not shown up in the preference list for this user yet [41]?
Why have some good students not shown up in our admission list
yet [3]? All these real-world examples from previous papers point
to one question: why have some expected tuples not shown up in
the top-! result yet? We study such why-not-yet problems: Given
the absence of one or more expected tuples from the ! top positions,
how can the ranking function be !xed?

Example 1 (NBA). Consider a web site where sports fans can
explore rankings of NBA basketball players by controlling how
much importance they assign to di!erent features such as points
scored (PTS), rebounds (REB), assists (AST), steals (STL), and blocks
(BLK). Anita and Bo want to use this service to settle their ar-
gument if Luka Dončić, one of the current NBA superstars, be-
longs to the top-20 of all time. Bo quickly picks equal weights
(0.2, 0.2, 0.2, 0.2, 0.2), for which Luka does not make it into the top-
20. In response, Anita uses our POINT approach, which, within less
than a second, con$rms that Luka is even a top-10 player for weight
vector (0.27, 0.12, 0.46, 0.0, 0.14). After a few more rounds of present-
ing weight combinations that support their respective claims, they
agree that it would be more useful to explain in a simple way, under
which conditions Luka would reach the top-20. Here Anita and Bo
turn to our BOX method, which can $nd the largest hyper-rectangle
such that all weight combinations contained in it would place Luka
in the top-20. Depending on preferences, the search can be limited to
“reasonable” regions, e.g., setting a minimum weight on PTS, or one
can require a su%ciently large range of choices for each weight. Us-
ing BOX for target weights in range [0, 1.0], they $nd out that Luka
always makes the top-20 for "1 ∈ [0.62, 0.96], "2 ∈ [0.55, 0.89],
"3 ∈ [0.65, 1.0], "4 ∈ [0.0, 0.22], and "5 ∈ [0.0, 0.1]. Intuitively,
Luka is in the top-20 if one values o!ensive skills (PTS, REB, AST
are in medium-to-high range) over defense (STL and BLK are low).
Now they can focus on arguing if o!ensive skills should be weighed
higher than defensive ones for determining the best NBA players.

While ranking functions come in many #avors, this work fo-
cuses on the common scenario where entities are sorted based on a
linear combination of scoring attributes. (See Section 4.4 for more
details.) We formally de!ne and address several problems. SAT asks
if there exists an attribute weighting, such that the entity of interest
reaches rank ≤ ! . If so, then POINT asks to present an example.
BEST asks for the best rank the entity of interest could ever reach.
And BOX is concerned with presenting the largest (in terms of
perimeter or volume) hyper-rectangle #, such that for each weight
vector$ in #, the entity of interest reaches the top-! . In general, a
BOX solution compactly represents an in!nite number of POINT
solutions. And in contrast to a set of POINT solutions, the BOX
solution guarantees that there are no “holes,” i.e., weight vectors
resulting in a low ranking in-between POINT solutions where the

2377

https://doi.org/10.14778/3598581.3598606
https://github.com/northeastern-datalab/why-not-yet
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3598581.3598606
https://www.acm.org/publications/policies/artifact-review-and-badging-current


expected entity is ranked high. Each of these problems can be con-
strained to consider only a certain “reasonable” region of the space
of possible weight vectors or to enforce a certain “thickness” of the
BOX hyper-rectangle.

Example 1 illustrated the use of SAT, POINT and BOX for an
application where ranking creator and consumer are the same,
i.e., where consumers of a ranking can control the weights of the
ranking function [24]. This applies in many other scenarios, e.g., de-
cisions about hiring and university admissions [48]. In cases where
consumers cannot directly in#uence the ranking, e.g., university
rankings published by US News and World Report, our technique
can still be applied. For example, the ranking creator wants the
target audience to trust the ranking. Omitting MIT from the top-10
of US universities in computer science (CS) would not inspire con-
!dence in the ranking itself. Following the same methodology of
testing and debugging software with test cases, the ranking creator
can apply our approach to analyze and improve the ranking func-
tion. In addition to using SAT, POINT, and BOX as in Example 1
for understanding if and how an entity of interest can reach the
top-! , BEST provides valuable insights about inherent limits of the
ranking function. For instance, if MIT would not reach the top-10
in the CS ranking, no matter what weights are chosen, then either
relevant scoring attributes are missing, or there are possibly errors
in the scores themselves.

As we discuss in Section 7, previous work on reverse top-! and
why-not on top-! queries explored related, but di"erent, problems
for !nding weight assignments that achieve a certain ranking out-
come for individual entities. While some can be extended to a
sampling-based solution for SAT, BEST, and POINT, the answers
obtained that way are inferior to our approach. We make the fol-
lowing main contributions:

(1) We de!ne new why-not-yet problems (Section 2) and formal-
ize them as constraint-satisfaction and optimization problems with
linear constraints (Section 3). For modeling tuple ranks, we propose
to use indicator variables, which avoid an O(%!−1) blowup in the
number of combinations of linear constraints. For BOX we propose
a novel “monotonic core” approximation that eliminates quanti-
!ers, disjunction, and negation from the constraints, resulting in
dramatic performance improvement.

(2) While most of our problems are solvable in polynomial time,
running time rapidly increases with data size. Hence we propose op-
timizations and approximation techniques that trade result quality
for improved running time (Section 5). One of them—clustering—
can achieve near unlimited scalability, at the cost of possibly low
approximation quality.

(3) Our experiments demonstrate the practicality of our approach
and its superiority over the SOA (Section 6). They also quantify the
tradeo" between running time and approximation quality for our
proposed scalability improvements.

2 PROBLEM DEFINITION
Table 1 summarizes our notation. A top-! query & over relation '
is de!ned in SQL as1

SELECT id, (" ()1,)2, . . . ,)#) AS Score
FROM R

1Depending on the DBMS, the syntax for requesting the top-! rows may di"er.

Table 1: Notation

Symbol De!nition
$ Top-! query
% Relation
& = |% | Number of tuples in %
'1, . . . ,'! Attributes of % used for ranking
(" Scoring function used to rank the %-tuples
" = ()1, . . . ,)!) Weight vector de!ning (
P Predicate constraining the choices of"
*" (+ ) Rank of + for scoring function ("
%" (!) Top-! result for scoring function ("
id Primary key of %
, Indicator of the relationship between two tuples

WHERE -- some conditions
ORDER BY Score DESC LIMIT !.

Conceptually, & sorts all '-tuples by a scoring function (" and
returns the !rst ! of them. The scoring function is the weighted
sum over numerical attributes )1, . . . ,)# of ', i.e.,

(" ()1,)2, . . . ,)#) =
#∑
-=1

"-)- , (1)

where $ = ("1, . . . ,"#) and all "- are non-negative. We will
often omit$ from the function name. Without loss of generality,
we assume that we sort in descending order of scores. We discuss
alternative design choices in Section 4.4.

While the notion of rank is intuitive—the rank of * ∈ ' is the
position of * in sort order—we need to make sure it is well-de!ned
in the presence of ties:

Definition 2 (top-! result, rank). Given a top-! query & , its
result '" (!) is any subset of ' of cardinality ! that satis$es

∀* ∈ '" (!), * ′ ∈ ' \ '" (!) : ( (* ) ≥ ( (* ′).
The rank of a tuple * ∈ ' is

+" (* ) = |{* ′ ∈ ' | ( (* ′) > ( (* )}| + 1.
Let %1, %2, and %3 denote the number of '-tuples whose score is

higher than, equal to, and lower than the score of * , respectively.
Sorting by score only guarantees that at least %1 tuples appear
before * and at least %3 after it. However, the ordering of the %2
tuples tied with * is arbitrary. Hence we de!ne * ’s rank to be the
best position it may reach, i.e., %1 + 1. If +" (* ) ≤ ! , we say that *
ranks among the top-! tuples.

Using this terminology, we are now ready to formally de!ne a
variety of interesting problems related to the question“why have I
not yet seen tuple * in the output of &?”

Definition 3 (Satisfiability (SAT), Best possible rank
(BEST)). Given a top-! query & and the id of a tuple * ∈ ':

• SAT: Does there exist a weight vector$ such that +" (* ) ≤ ! ,
i.e., * ranks among the top-! for some ranking function?

• BEST: What is the best rank, min" +" (* ), tuple * can reach
for any scoring function?

Definition 4 (Inner box). Given a top-! query & and the id of
a tuple * ∈ ', # is an inner box for & and * i!

(1) # = [,1,ℎ1] × · · · × [,#,ℎ#], where ∀. : ,- ≤ ℎ- .
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Figure 1: The satis!ability region for a given ! (space between
the two diagonal lines), an inner point (star), and two inner
boxes. SAT asks whether the satis!ability region exists. BEST
asks for the smallest ! with a non-empty satis!ability region.
POINT returns an inner point. BOX returns the largest inner
box.

(2) ∀$ ∈ # : +" (* ) ≤ ! .
The perimeter and volume of an inner box are de$ned as

∑
- (ℎ- − ,- )

and
∏

- (ℎ- − ,- ), respectively.

An inner box is an /-dimensional hyper-rectangle of weight
vectors, such that tuple * ranks among the top-! for any weight
vector contained in it. A special case is an inner point, i.e., an inner
box where ∀. : ,- = ℎ- . Inner points are isomorphic to weight
vectors.

Definition 5 (Inner point (POINT), Max inner box (BOX)).
Given a top-! query & and the id of a tuple * ∈ ':

• POINT: Return a weight vector$ such that +" (* ) ≤ ! , i.e.,
* ranks among the top-! .

• BOX: Return the inner box # with the largest perimeter or
volume.

Figure 1 illustrates the above problems in the 2D space. We
are interested in the largest inner boxes, because they compactly
describe a large region of the weight-combination space where the
desired ranking outcome is achieved. The largest volumemaximizes
the number of weight combinations, while the largest perimeter
optimizes for the largest number of choices per weight dimension.

3 FORMALIZINGWHY-NOT-YET
We formalize the problems introduced in Section 2 in a way that
enables e$cient solutions, starting with a tuple’s rank.

3.1 Tuple Rank
The rank of * ∈ ' is determined by the number of '-tuples with
higher scores. Another tuple 0 ∈ ' beats * if it has a higher score,
i.e., ( (* ) < ( (0):

#∑
-=1

"- (* .)- − 0 .)- ) < 0. (2)

This inequality is a linear constraint, which lets us leverage e$-
cient linear programming approaches to solve problems related to
satis!ability and optimization. Adding a constraint like Equation (2)
to a linear program enforces that only those weight vectors where
0 beats * can be selected.

Challenge: How do we express “at most ! − 1 tuples in ' beat *”
using linear constraints? The main problem is that we do not know
which of the '-tuples we want to satisfy Equation (2). For example,
requiring * to beat 01 and 02 may not be satis!able, but requiring it
to beat 01 and 03 might be.

Solution 1: Brute force. To ensure that * ranks among the top-! ,
it is su$cient for it to beat or tie with%−! tuples, nomatter if it beats
more than that. Hence we need to explore

(&−1
&−!

)
=

(&−1
!−1

)
= O(%!−1)

linear programs, each containing % − ! instances of the negation of
Equation (2).

Solution 2: Indicator variables. We propose an approach that
uses a single linear program. The core insight is to de!ne indicator
variables, which are supported by standard linear program solvers.
For each 0 ∈ ', 0 ≠ * , we de!ne an indicator variable 1. that is 1 if
0 beats * , and 0 otherwise. To enforce that * ranks among the top-! ,
we add a constraint for the sum of the indicator variables:

1. =

(
#∑
-=1

"- (* .)- − 0 .)- ) < 0
)
, 0 ∈ ', 0 ≠ *

∑
.∈%;.≠+

1. < ! .
(3)

Example 6. Consider '()1,)2,)3) with * = (3, 2, 8), and 01 =
(4, 1, 15), 02 = (1, 1, 14), 03 = (0, 2, 14), and 04 = (6, 5, 14).a For
! = 3 the constraints are:

11 = (−"1 +"2 − 7"3 < 0) , 12 = (2"1 +"2 − 6"3 < 0) ,
13 = (3"1 − 6"3 < 0) , 14 = (−3"1 − 3"2 − 6"3 < 0) ,
11 + 12 + 13 + 14 < 3

aWe omit the id for readability in all examples.

3.2 SAT, BEST, and POINT
Since all constraints in Equation (3) are linear in$ , we can directly
solve SAT using SOA solvers such as Gurobi [19] or Z3 [12]. In
addition to answering satis!ability, when the problem is satis!able,
these solvers return a certi$cate, which is an assignment of$ . This
assignment answers POINT.

To answer BEST, we perform a binary search on the value of ! ,
solving SAT for the corresponding value until we !nd the smallest
! for which Equation (3) is satis!ed. Since ! ≤ %, this adds a time
factor of O(log%) compared to answering SAT and POINT.

Example 7. Continuing Example 6. For SAT the answer is “SAT-
ISFIABLE.” A POINT solution is ("1 = 1,"2 = 0,"3 = 0). The BEST
answer is 2 as illustrated in Figure 2. The weights "1,"2,"3 are
mapped to axes in the $gure. The red 2D triangle in 3D space repre-
sents the set of all$ where"1 +"2 +"3 = 1, which is a commonly
used constraint (see Section 4.2). Note that the star and the other
lines fall into the triangle. The star represents a scoring function that
ranks * in 5-th place. The three lines in the triangle show the bound-
aries for indicators 11, 12, 13; indicator 14 is not visible because its
hyperplane does not intersect with the triangle. (The inequality for
14 is satis$ed for all$ in the triangle, therefore * can never beat 04.)
When crossing a boundary, * swaps ranks with the corresponding
tuple. The numbers indicate * ’s rank for the corresponding regions
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Figure 2: Example 7: Solution space (2D triangle in 3D space),
ranking function placing * 5-th (star), and indicator bound-
aries (colored lines). The numbers indicate * ’s rank when
selecting$ from the corresponding region of the triangle.

of the triangle. It is easy to see that * reaches its best rank of 2 when
"1 is “small”,"2 is “large”, and"3 is close to zero.

3.3 BOX
The BOX problem is signi!cantly more challenging to formalize
than SAT, BEST, and POINT. First, we need to model the lower and
upper bounds of the box. This requires introducing the ,- and ℎ-
as additional variables that must satisfy ℎ- − ,- ≥ 0. Second, BOX
is an optimization problem (maximize perimeter or volume), not a
satis!ability problem. The objective is either linear (for perimeter)
or a degree-/ polynomial (for volume). The latter often dramatically
increases running time of a solver compared to the former. Third,
we must tie the$ to the ,- and ℎ- and add constraints to ensure
that * is ranked among the top-! for all$ in the inner box.

Challenge:How do we enforce that * is ranked among the top-!
for all$ in the inner box?

Solution 1: Direct encoding. We can encode the constraint
directly as:

∀"1, . . . ,"# :
(
#∧
-=1

,- ≤ "- ≤ ℎ-

)
⇒ )*

+
∑

.∈%;.≠+
1. < !

,-
.

(4)

resulting in max-perimeter optimization problem (for volume, re-
place the objective function with the corresponding product)

max
#∑
-=1

(ℎ- − ,- )

s.t. ,- ≤ ℎ- , . = 1, . . . ,/

∀"1, . . . ,"# :
(
#∧
-=1

,- ≤ "- ≤ ℎ-

)
⇒ )*

+
∑

.∈%;.≠+
1. < !

,-
.
,where

1. =

(
#∑
-=1

"- (* .)- − 0 .)- ) < 0
)
, 0 ∈ ', 0 ≠ *

(5)
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Figure 3: Example 8: The rank of * as a function of weight"1
is neither convex nor monotonic.

Unfortunately, the use of nested quanti!ers gives rise to a prob-
lem in the theory of reals, which, while decidable, requires advanced
techniques such as cylindrical algebraic decomposition to solve.
This is something that current solvers generally do not support and,
if they do, the complexity introduced poses serious performance
and scalability problems in practice.

Improvement attempt: Convexity and monotonicity. Struc-
tural properties of constraints, in particular convexity and mono-
tonicity, provide opportunities for vastlymore e$cient optimization.
Consider convex function2 (3) = 32. Given any interval [,/ ,ℎ/ ] of
3-values, the maximum of 2 (3) over that interval must be either
,2/ or ℎ2/ , i.e., it must fall on one of the interval endpoints ,/ and ℎ/ .
In general, for convex 2 (3),
(∀3 : ,/ ≤ 3 ≤ ℎ/ ⇒ 2 (3) < 4 ) ⇔ (2 (,/ ) < 4 ∧2 (ℎ/ ) < 4 ) .

This equivalence means that we can replace a complex formula like
the left-hand side that contains quanti!ers and implication with
a simple conjunction like the one of the right. Similarly, for any
monotonically increasing function 5 (3) (and analogously for the
decreasing case):

(∀3 : ,/ ≤ 3 ≤ ℎ/ ⇒ 5 (3) < 4 ) ⇔ 5 (ℎ/ ) < 4 .

Notice the structural similarity of the left-hand side to Equa-
tion (4). There we could apply the same simpli!cation, slightly gen-
eralized to/ dimensions, as long as function 6 ($ ) = ∑

.∈%;.≠+ 1.
is monotonic or convex. Unfortunately, in general it is neither as
the following counter example demonstrates even for/ = 2. In-
tuitively, as we sweep the range of a weight "- from ,- to ℎ- , the
rank of tuple * , which is equal to 6 ($ ), may increase and decrease
repeatedly. This violates both convexity and monotonicity.

Example 8. Consider '()1,)2) = {(25, 5), (27, 4), (22, 9), (19, 7)},
where * is the $rst tuple. Assume the common Triangle constraint
(Section 4.2), i.e.,"1 +"2 = 1. (We can construct similar examples
for other constraints on$ .) Figure 3 shows the rank of * for dif-
ferent values of "1. Since * ’s rank increases, decreases, and then
increases again for increasing"1, the function is neither convex nor
monotonic.

Solution 2: Monotonic core. Our goal here is to !nd an ap-
proximation of 6 ($ ) = ∑

.∈%;.≠+ 1. that ideally delivers almost the
same BOX solution, but is monotonic or convex. This is challeng-
ing, because small changes of$ in any direction inside a box of
$ -combinations can result in up or down movement of * ’s rank
as the above example demonstrated. Our solution is based on the
following crucial insight:

Lemma 9. Given hyper-rectangle # = [,1,ℎ1] × · · ·× [,#,ℎ#]. Let
6. ($ ) = (" (0) − (" (* ) and let 7 = (81, . . . , 8#), where 8- = ℎ- if
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0 .)- ≥ * .)- ; and 8- = ,- otherwise. Then(
∀"1, . . . ,"# :

#∧
-=1

,- ≤ "- ≤ ℎ- ⇒ 6. ($ ) ≤ 0
)

⇔ 6. (7) ≤ 0

Proof. To prove the theorem, it is su$cient to show that 6. ($ )
reaches its maximum in corner point7 of hyper-rectangle #. If that
maximum value is at most 0, then 6. must be at most 0 in all of #,
and vice versa.

To prove that 6. reaches its maximum in7 , consider two weight
vectors$1 ("1,"2, . . . ,"#) and$2 = (91,"2, . . . ,"#) in # that
agree in all but the !rst dimension:

6. ($2) − 6. ($1) = 910 .)1 +
#∑
-=2

"-0 .)- − 91* .)1 +
#∑
-=2

"-* .)-

− ("10 .)1 +
#∑
-=2

"-0 .)- −"1* .)1 +
#∑
-=2

"-* .)- )

= 910 .)1 − 91* .)1 −"10 .)1 +"1* .)1
= (91 −"1) (0 .)1 − * .)1)

(6)

This implies that 6. ($2) > 6. ($1) i" both factors are negative or
both are positive. We can derive analogous results for each of the
other dimensions.

Let : = (31, . . . , 3#) ∈ # be the weight vector for which 6.
reaches its maximum in #. We show that either : = 7 or 6. (7) =
6. (: ), which each implies that 6. reaches its maximum in corner7 .
If 7 ≠ : , then they must di"er in at least one dimension. Without
loss of generality, let 81 ≠ 31. We now show by replacing 31 with
81 in : , the value of 6. cannot decrease, i.e., 6. (31, 32, . . . , 3#) ≤
6. (81, 32, . . . , 3#). From Equation (6) it follows that

6. (81, 32, . . . , 3#) − 6. (31, 32, . . . , 3#) = (81 − 31) (0 .)1 − * .)1).

Case 1: 0 .)1 = * .)1. This implies 6. (31, 32, . . . , 3#) =
6. (81, 32, . . . , 3#).

Case 2: 0 .)1 < * .)1. Then by de!nition 81 = ,1 and hence
81 − 31 ≤ 0. Together, (81 − 31) (0 .)1 − * .)1) ≥ 0 and therefore
6. (31, 32, . . . , 3#) ≤ 6. (81, 32, . . . , 3#).

Case 3: 0 .)1 > * .)1. Then by de!nition 81 = ℎ1 and hence
81 − 31 ≥ 0. Together, (81 − 31) (0 .)1 − * .)1) ≥ 0 and therefore
6. (31, 32, . . . , 3#) ≤ 6. (81, 32, . . . , 3#).

We apply the same construction to weight vector (81, 32, . . . , 3#),
showing that replacing 32 with 82 cannot decrease the value of 6. ,
then doing the same for replacing 33 with 83 and so on. This proves
that the maximum of 6. over # is reached in corner 7 , concluding
the proof of the theorem. !

In order to use Lemma 9 for solving BOX, we also need:

Lemma 10. Given hyper-rectangle # = [,1,ℎ1] × · · · × [,#,ℎ#].
If |{0 ∈ ' | ∀$ ∈ # : (" (0) − (" (* ) ≤ 0}| ≥ % − ! then ∀$ ∈ # :
+" (* ) ≤ ! .

The lemma states that if there are at least % − ! other tuples
that do not beat * anywhere in #, then * ’s rank is ! or better. This
follows directly from the de!nition of the rank.

Combining Lemmas 9 and 10, we obtain:

Theorem 11. Given a top-! query & , the id of a tuple * ∈ ', and
hyper-rectangle # = [,1,ℎ1] × · · · × [,#,ℎ#]. Let 7 = (81, . . . , 8#),
where 8- = ℎ- if 0 .)- ≥ * .)- ; and 8- = ,- otherwise. If

|{0 ∈ ' | 6. (7) = (0 (0) − (0 (* ) ≤ 0}| ≥ % − !

then # is an inner box for & and * .

Theorem 11 enables us to solve BOX using only a conjunction of
linear constraints and the indicator variables, removing the nested
quanti!er and implication. The corresponding optimization prob-
lem for box perimeter is:

max
#∑
-=1

(ℎ- − ,- )

s.t. ,- ≤ ℎ- , . = 1, . . . ,/

1. =

(
#∑
-=1

8- (* .)- − 0 .)- ) ≥ 0
)
, 0 ∈ ', 0 ≠ *

∑
.∈%;.≠+

1. ≥ % − !,

(7)

where 8- = ℎ- if 0 .)- ≥ * .)- ; and 8- = ,- otherwise.
Since Lemma 10 is an implication, not an equivalence, the condi-

tions in Equation (7) are su$cient, but not necessary for enforcing
that the corresponding solution be an inner box. In terms of prac-
tical implications, this means that the inner box found for Equa-
tion (7) may be smaller compared to Equation (5). Our experiments
in Section 6.6 indicate that the size di"erence is small. And since
the latter approach is infeasible for all but very small datasets, our
proposed approximation Equation (7) currently is the only option
for medium-to-large datasets.

3.4 Additional Weight Constraints
In addition to the constraints discussed so far, for all problems we
need a predicate P to enforce desirable properties of the ranking
function. First, we include the requirement for all "- to be non-
negative in P. Second, for SAT, BEST, and POINT we also include∑
- "- > 0 to exclude the undesirable case where all weights are

zero and hence all tuples have the same score of zero. For BOX, we
instead require ∑

- ℎ- > 0.
Challenge: Preventing an unbounded solution space. Mul-

tiplying each"- with the same constant 8 scales the score of each
'-tuple by the same factor 8 and hence does not change the ranking.

Solution: Upper bounds on the weights. The issue is easily
addressed by including in P linear constraints upper-bounding
the "- (or analogously the ℎ- for BOX). These are discussed in
Section 4.2.

The predicate also enables the user to de!ne constraints like:
• Search for the largest inner box in a speci!c region of the

weight-vector space.
• Consider only scoring functions that place a particularly

high (or low) weight on some attribute of interest, e.g.,
because of some natural notion of importance dictated by
the application.

• Ensure that the BOX solution has a certain minimal “thick-
ness” in a dimension.

• After returning a POINT !nd the maximal inner box that
contains it.
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For all constraints on$ discussed here, the corresponding predicate
is a conjunction of linear constraints.

4 ALGORITHM IMPLEMENTATION
As discussed above, solving the problems introduced in Section 2
requires solving the satis!ability and optimization problems in
Equations (3), (5) and (7), respectively, possibly with additional
linear constraints P on the weights. We !rst discuss the appropriate
state-of-the-art solvers for these types of problems and then cover
speci!c implementation aspects.

4.1 Solver Summary
We selected Gurobi [19] and Z3 [12] as they use di"erent underlying
technology and have di"erent capabilities. Gurobi is a state-of-the-
art, commercial mathematical programming solver that can handle
MILP (Mixed Integer Linear Programming) problems. It can solve
satis!ability queries and, when provided with objective functions,
it can solve optimization versions of such problems. Gurobi has
some of the most advanced algorithms of any similar tool, using
standard techniques such as cutting planes and symmetry breaking,
as well as various heuristics and the ability to run in parallel.

Z3 is a state-of-the-art SMT (Satis!ability Modulo Theories)
solver. SMT solvers are used to solve problems in decidable frag-
ments of !rst order logic that include multiple theories, such as
linear arithmetic, uninterpreted functions and strings. SMT solvers
use a Boolean SAT (Satis!ability) solver to orchestrate interaction
between decision procedures for the theories they support. SMT
solvers are now widely used in the context of formal methods, soft-
ware engineering, security and programming languages. Z3 also
provides support for quanti!ers, which allows for a direct encoding
for BOX in Equation (5). The use of quanti!ers leads to undecidable
fragments of logic, therefore, Z3’s support for such problems is
heuristic.

For our problems, Gurobi tends to be the better choice, typically
outperforming Z3’s execution time by an order of magnitude, or
more. This can be explained by the numeric nature of our prob-
lems: Gurobi is designed to handle numeric constraints and that is
the most natural way to encode our problems. When quanti!ers
and implications are used in our constraints, Z3 can only handle
relatively small datasets.

4.2 Default Weight Constraints
To enforce non-negative weights, we add to Equation (3) constraints

"- ≥ 0, . = 1, . . . ,/
#∑
-=1

"- > 0 (omitted for Triangle)

and to Equations (5) and (7)

,- ≥ 0, . = 1, . . . ,/
#∑
-=1

ℎ- > 0 (omitted for Triangle)

In addition, we also add to Equation (3) one of the following 2
constraints:

Triangle: "# = 1 − ∑#−1
-=1 "- ∧ ∑#−1

-=1 "- ≤ 1 (8)
Cube: "- ≤ 1, . = 1, . . . ,/ (9)

Each is a linear constraint that prevents an unbounded solution
space (Section 3.4); their names are inspired by the geometric shape
of the resulting constrained space of possible$ -values for/ = 3.
In the linear program for Triangle, we do not include the left term
of the conjunction, but instead replace all occurrences of"# with
1 − ∑#−1

-=1 "- . Triangle enforces
∑#
-=1"- = 1, which is used by all

previous work on reverse top-! and why-not questions for top-!
(see Section 7). Cube directly bounds the solution space to desired
ranges for each weight dimension. Di"erent from Triangle, where
"# is eliminated from the program, it treats all weight dimensions
symmetrically. For Equations (5) and (7), the Triangle or Cube
constraint is analogous, but uses ℎ- instead of"- .

Example 12. In Figure 2, the Triangle constraint limits the
solution space to the large triangle. The Cube constraint limits the
solution space to the cube with range [0, 1] in each dimension.

4.3 Program Properties
The program for Equation (3) has/ variables"1, . . . ,"# and % − 1
indicator variables 1. . Each indicator is de!ned via a linear con-
straint. There is an additional linear constraint on the sum of the
indicator variables. And P has / + 1 (Triangle) or 2/ (Cube)
additional linear constraints limiting the range of the"- . Hence in
total, the number of variables and constraints is O(/ + %).

Similarly, the program for Equation (7) has 2/ variables for the
inner-box coordinates ,1, . . . , ,#,ℎ1, . . . ,ℎ# and %− 1 indicator vari-
ables. There are/ linear constraints for the box coordinates, % − 1
linear constraints de!ning the indicator variables, 1 linear con-
straint for the indicator sum, and the/ + 1 or 2/ linear constraints
in P. Hence the number of variables and constraints is O(/ + %).

The direct BOX encoding in Equation (5) has 3/ variables for
the/-dimensional points "1, . . . ,"# , the inner-box coordinates
,1, . . . , ,#,ℎ1, . . . ,ℎ# and / + % − 1 indicator variables including
/ more indicators of whether "1, . . . ,"# are in the range of
[,1,ℎ1], . . . , [,#,ℎ#]. There are / linear constraints for the box
coordinates, / + % − 1 linear constraints de!ning the indicator
variables, 1 linear constraint for the indicator sum, the/ + 1 or 2/
linear constraints in P, and one more constraint for the quanti!er
including implication. The number of variables and constraints is
also linear in/ and %. However, it contains the complex one with
quanti!cation and implication, which dramatically slows down the
solver compared to the linear-constraint-only programs.

4.4 Generality of the Approach
While more general ranking functions exist, ranking by a linear
combination of individual scoring attributes or features, using non-
negative weights, is powerful and widely used [2, 3, 9, 11, 17, 21,
22, 24, 28, 32, 41–47, 50]. There are good reasons for this.

First, in many ranking problems one has to combine multiple
separate scoring features. For example, when buying a used car,
one ideally would like to minimize scoring features such as age,
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mileage, and price of the car. For multi-objective optimization prob-
lems like this, linear scalarization is arguably the default approach,
especially when one needs a total order of competing solutions.
Second, in a linear function like Equation (1), the weights directly
reveal the importance assigned to each individual scoring attribute.
This makes it easier to analyze properties of the ranking function,
compared to a complex blackbox model that outputs a single score.
Third, the linear ranking function is much more powerful than it
may seem, because we can incorporate more complex functions as
features. In the used-car example, we can add a data column that
contains for each car the expected repair cost predicted by some
non-linear AI model. Then the linear ranking function controls the
impact between given (age, mileage, price) and derived (repair cost)
scoring features all together. Similarly, for someone applying to
college, one can add a score indicating predicted interest in di"erent
majors based on a model that analyzes the applicant’s essay [48].

Our solution could directly handle any real-valued weights, not
only non-negative ones. However, in agreementwith previouswork,
we have not found a need for this. When combining multiple scores
into a single one used for ranking, one may want to minimize some,
e.g., car price, while maximizing others, e.g., expected resale value.
In a maximization problem, instead of assigning a negative weight
to an attribute like car price, one can equivalently work with the
negative car price and a non-negative weight.

In theory, our approach also supports any general ranking func-
tion over the attributes of input '. The main di"erence is the struc-
ture of the constraints that encode the ranking order. If the ranking
function is not linear, the constraints can become more complex.
While some solvers can handle non-linear constraints, running time
and even decidability of the problem may be a"ected. The construc-
tion of the monotonic core would also have to be revisited. We
intend to explore suitable generalizations of the ranking function
in future work.

5 SCALABILITY AND EXTENSIONS
In why-not-yet, the number of constraints, which signi!cantly
impacts solver performance is determined by the cardinality of the
dataset % = |' |. For improved scalability, we propose techniques
that reduce the number of constraints and/or enable the user to
control the tradeo" between running time and result quality.

5.1 Removing Dominators and Dominatees
We can reduce in time O(%) the number of constraints without
impacting the why-not-yet solutions by removing all dominators
and dominatees. A dominator 0 ∈ ' is a tuple whose values of the
ranking attributes )1, . . . ,)# are all greater than or equal to those
of * , with at least one of them being strictly greater. Hence 0 will
always beat * . (Recall that all "- are non-negative.) Similarly, a
dominatee is an '-tuple whose values of the ranking attributes are
all less than or equal to those of * . A dominatee can never have a
higher score than * and hence does not a"ect * ’s rank. We refer to
the remaining '-tuples as competitors.

The number of dominators is only a lower bound for the best
rank * could reach. Even though * could beat each competitor
individually for the right choice of ranking function, there may be

no ranking function where * beats all or even most of them. Hence
solving SAT and BEST is not trivial.

Example 13. Consider relation ' with ()1,)2)-pairs (2, 2),
(1, 4), and (4, 1). Even though (2, 2) is not dominated by any
of the other 2 tuples, it can never reach rank 1: 2"1 + 2"2 ≥
"1+4"2∧2"1+2"2 ≥ 4"1+"2 implies 4("1+"2) ≥ 5("1+"2),
which is only satis$ed for"1 = "2 = 0.

5.2 Binary Search for BOX
BOX is more general than SAT, BEST, and POINT and therefore, as
our experiments show, takes the solvers signi!cantly longer, even
with the monotonic approximation Equation (7). We propose an
approach that lets the user control the tradeo" between running
time and result quality, i.e., box size. The main idea is to replace
the optimization problem (maximize inner-box perimeter) with an
easier decision procedure (does an inner box of perimeter ; exist).
We show the resulting constraints, with default constraints for
Equation (7) (it is analogous for Equation (5)):

#∑
-=1

(ℎ- − ,- ) ≥ ;

0 ≤ ,- ≤ ℎ- , . = 1, . . . ,/
#∑
-=1

ℎ- > 0

1. =

(
#∑
-=1

8- (0 .)- − * .)- ) ≤ 0
)
, 0 ∈ ', 0 ≠ *

∑
.∈%;.≠+

1. ≥ % − !

(10)

where 8- = ℎ- if 0 .)- ≥ * .)- ; and 8- = ,- otherwise.
First, we check satis!ability for ; = 0, which is equivalent to

solving POINT. If it is unsatis!able, then no inner box exists. Else,
we check satis!ability for the greatest possible value of ; , i.e., ; =/
for Cube and ; = 1 for Triangle. If it is satis!able, then the
corresponding inner box is maximal and returned immediately.
Otherwise we perform a binary search using Algorithm 1 to !nd
the largest ; for which Equation (10) is satis!able, returning the
corresponding inner box found.

The user has 2 ways of controlling the time-vs-quality tradeo".
First, they can set threshold <total or a threshold on the precision
5 − = of the convergence to stop the binary search early, forcing
the algorithm to return the largest inner box # found so far. Second,
they can set timeout <decision for the decision procedure, i.e., the
time it takes to solve Equation (10). A timeout is treated like an
UNSATISFIABLE response, meaning the binary search continues
with smaller perimeter candidates. Lower timeouts reduce running
time at the cost of possibly ending up with an inner box of smaller
perimeter. (The approach for volume is analogous.) Based on our
experiments, We suggest setting the convergence threshold to 0.01,
<decision to 1 min and <total to 10 mins. From here, the user can
explore larger time thresholds if the results are returned quickly,
and vice versa.
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Algorithm 1: Binary search for BOX
Input: Satis!ability problem1 (Equation (10)); upper bound 2

(2 =# for Cube; 2 = 1 for Triangle) and lower bound
3 = 0 for box perimeter

Output: inner box
1 perimeter 4 = (2 + 3)/2
2 repeat
3 Set 4 in1

4 1 .decide() with timeout 5decision
5 if 1 .status == SATISFIABLE then
6 6 = 1 .78569/ ()
7 3 = 4

8 else
9 2 = 4

10 4 = (2 + 3)/2
11 until convergence or timeout 5total
12 Return inner box 6

5.3 Clustering
The binary search for BOX still solves a SAT problem in each it-
eration, which may take too long when the dataset is very large.
Similarly, large data may result in a slow response for SAT, POINT,
and BEST. We now discuss a data-reduction process that can speed
up all our techniques, while providing an approximate solution.
This solution provably never produces false positives, meaning SAT
will never incorrectly claim satis!ability, BEST will never return
a rank better than the true answer, and all answers returned by
POINT and BOXwill be valid weight combinations that achieve the
desired ranking outcome. To achieve this guarantee, we propose
the following construction.

The main idea is to partition ' into > subsets, which we call clus-
ters, and then replace each subset by a single cluster representative,
similar to previous work like [6]. Performance improves because
the solver deals with > instead of % − 1 indicator variables. We
need to address 2 challenges speci!c to our problem: (1) Introduce
indicator variables and constraints for clusters and (2) choose an ap-
propriate partitioning of ' into > clusters. For simplicity, we explain
our approach using Example 6.

Modi!ed indicator constraints.Assume 02 and 03 in Example 6
form a cluster. Let the cluster representative be formed by taking
the maximum value for each ranking attribute, i.e., for 02 = (1, 1, 14)
and 03 = (0, 2, 14), this is ? = (1, 2, 14). In Equation (3), we remove
the 2 indicators 1.2 , 1.3 and replace them with cluster indicator

1: =

(
#∑
-=1

"- (* .)- − ? .)- ) < 0
)
.

We also replace indicator constraint 1.1 + 1.2 + 1.3 < ! with 1.1 +
21: < ! . It captures the fact that if representative ? beats * , then in
the worst case both cluster members may beat * . The approximation
is caused by the fact that while (" (* ) ≥ (" (? ) implies (" (* ) ≥
(" (02) ∧ (" (* ) ≥ (" (03), the reverse is not true. This means that
the modi!ed constraints are stricter than the original ones.

Example 14. Figure 4 shows how the solution space of Figure 2
changes after clustering 02 and 03. Their indicators are replaced by

Figure 4: Example 14: Solution space after clustering 02, 03.
The bold line shows the constraint for the cluster; the dotted
lines show the original constraints for 02, 03.

the indicator of their representative 1: = 2"1 − 6"3 < 0. Since the
indicator represents 2 tuples, its weight is 2, i.e., crossing the line
changes * ’s rank by 2 positions.

After partitioning ' into > clusters of sizes 81, . . . , 8; , there are >
indicator variables 11, . . . , 1; for the corresponding cluster represen-
tatives, which are obtained by taking for each ranking attribute the
maximum over the tuples in the cluster. The indicator constraint
is ∑;

-=1 8-1- < ! , where the indicator weights 8- are the cluster
sizes. This construction applies analogously to all linear programs
discussed above.

Cluster !nding. Our construction is equivalent to replac-
ing each indicator constraint ∑#

-=1"- (* .)- − 0 .)- ) < 0 by∑#
-=1"- (* .)- − ? .)- ) < 0 for the corresponding cluster represen-

tative ? . This introduces error"- (? .)- − 0 .)- ) in dimension . . To
minimize this error, we want the cluster representative to be as
similar as possible to all cluster members. By construction of the
representative, this is equivalent to requiring all cluster members
to have small pairwise di"erences for all ranking attributes. This
aligns with the design goal of popular clustering techniques like
k-means and hierarchical clustering [20]. Our implementation uses
the k-means algorithm [1] and Euclidean distance.

5.4 Multiple Expected Tuples
Our technique can be easily extended to why-not-yet problems
over a set {*1, *2, . . .} of expected tuples. Di"erent from previous
work [21] that requires the same value of ! for each *- , we support
a di"erent !- for each *- . Hence the user now can ask for a ranking
function that puts *1 in the top-!1, while at the same time putting
*2 in the top-!2 etc. The idea is to create an instance of Equation (3)
(and analogously for the other problems) for each *- and combine
all these constraints into a single program. Indicator names must
be chosen so that for each pair *- , * < , . ≠ @ , their sets of indicator
names are disjoint.
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6 EXPERIMENTS
We now demonstrate that our techniques are practical and compare
them against related work. For our approximation techniques, we
quantify the tradeo" between running time and result quality.

6.1 Experimental Setup
The default ranking function ("0 assigns the same weight to each
ranking attribute. The original rank of a tuple * refers to its rank
+"0 (* ) according to this default function.

Environment and Implementation. All experiments are ex-
ecuted on an Ubuntu 20 Linux server with an Intel Xeon E5-2643
CPU and 128GB RAM. We implemented our technique in Java, test-
ing it on both Java 11 and Java 18. To solve the satis!ability and
optimization problems, we utilize the Java libraries of the leading
commercial optimizer Gurobi [19]. We also use Z3 [12], a SOA
open-source theorem prover to implement the direct encoding of
BOX with quanti!ers and implication (Equation (5)). For Gurobi
and Z3 we used their default con!gurations, which meant that the
former utilized 8 cores with up to 16 threads, while the latter ran on
1 core. To !nd clusters (Section 5.3), we use the Weka [15] k-means
algorithm [1].

Competitors. No previous work exists for BOX. For SAT, BEST,
and POINT there is no direct solution either, but we can adopt
the why-not algorithm for top-! by He and Lo [21]. It cleverly
samples weight vectors and applies pruning techniques to minimize
top-! query computations. The algorithm can be tuned to balance
improving a tuple’s rank vs minimizing weight changes relative
to a given weight vector. Since we are interested in the former,
we set ! = 1 and set the tuning parameter to not penalize weight
modi!cations. (This way the algorithm tries to get expected tuple
* as high in the ranking as possible.) We refer to this algorithm
as Sampling, using the original C++ code shared by the authors.
We also adopt the arrangement tree algorithm [3] for SAT, BEST,
and POINT. It combines sampling with an exploration of partitions
de!ned by hyper-planes that separate the half-space where a tuple
beats another, from the half-space where it does not. Since the
algorithm is designed to achieve a ranking where a certain number
of members of a given group appears in the top-! , we can consider
all expected tuples as members of the target group. We refer to this
algorithm as Tree, and implemented it as described in the original
paper. (For all calls to an ILP solver, we use Gurobi so that times
are comparable.)

Datasets. Like previous work on related problems, e.g., [17, 21,
41], we use the latest version of the real NBA dataset, as well as
synthetic datasets of di"erent distributions.

The NBA dataset [34] contains 22467 tuples with statistics of all
NBA players from seasons 1979/80 to 2021/22. Each tuple repre-
sents a player-season combination—uniquely identi!ed by the PLR
attribute, which consists of player name, age and team. As intro-
duced in Example 1, the default ranking attributes are the player’s
average statistics during that season: PTS, REB, AST, STL, and BLK.

The synthetic datasets—uniform, correlated, and anti-correlated—
allow us to explore the impact of correlations between the ranking
attributes. In the uniform data, values for each ranking attribute
are generated uniformly at random, and independent of the other
attributes. In the correlated dataset, a tuple with a high (low) value

in one ranking attribute is likely to also have high (low) values
for the others. In the anti-correlated dataset, a tuple with a high
(low) value in one ranking attribute is likely to also have high (low)
values for half of the other attributes, but more likely to receive low
(high) values for the other half. This pattern of generating synthetic
data of di"erent distributions dates back to [5].

6.2 Case Study: Why has Luka Dončić not
shown up in the top-10 yet?

We study an NBA player who is widely perceived as a superstar,
but who does not appear in the top-10 of all time when using equal
default weights of 0.2 for each of the 5 ranking attributes. Our
technique returns SATISFIABLE in 596 msec. The Triangle and
Cube answers are ("1,"2,"3,"4) ∈ [0.24, 0.3] × [0.17, 0.17] ×
[0.34, 0.34] × [0.0, 0.18], and ("1,"2,"3,"4,"5) ∈ [0.54, 0.54] ×
[0.94, 0.94] × [1.0, 1.0] × [0.0, 1.0] × [0.0, 0.2] in 10708 msec and
6598 msec, respectively. Both answers convey similar information:
to get Dončić into the top-10, we need higher weights on PTS, REB
and AST, but lower weights on STL and BLK. The Cube answer
is more interesting, indicating that with very high weights on the
!rst three, one can pick any weight on STL. The answers match
the perception that Dončić is a versatile player in terms of o"ense
(points, rebounds, assists), but not a top defender (steals, blocks).

6.3 Performance on BEST
On SAT and POINT, our approach generally takes less than a sec-
ond to respond, while Sampling and Tree are very fast when a
large fraction of the weight-combination space is satis!able, but
extremely slow (several hours) when the satis!able region is very
small. Hence we present results for BEST, where our approach
takes on average 6 sec to solve the instances discussed below. Since
the competitors produce continually improving answers as they
are given more time, we report the best ranking they !nd within 6
sec and 60 sec, i.e., giving them 10x more time. For Sampling, this
corresponds to taking 100,000 and 1 million samples, respectively.

Figure 5 reports the best ranks found for all NBA data’s player-
season tuples originally ranked at odd positions between 20 and
50. Sampling !nds the correct answer only in 40% and 60% of the
cases, respectively; while Tree is correct in 26.67% and 40% of the
cases. Note that in contrast to our approach, even when they !nd a
sample for which the best rank is achieved, the competitors do not
know if a better solution may exist. Sampling generally has no way
to determine when it may have found the true answer to BEST. In
contrast, since Tree combines sampling with systematic exploration
of the weight-combination space, it can in theory determine the
exact answer if it explores all nodes of the arrangement tree. For
the datasets in our experiments, this was generally not feasible,
resulting in hours or days of running time.

Why is it hard for sampling-based approaches to !nd the
best possible rank? Sampling works well when the probability of
!nding the correct answer is su$ciently high. Otherwise success
probability is low, forcing a sampling-based algorithm to continue
exploring. While Tree partially addresses the issue by systematically
exploring the space, low success probability still forces it to explore
a large fraction of the huge arrangement tree, which has more than
250 million nodes. Since it solves a linear program at each node,
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Figure 5: Performance on BEST. Lower rank found is better.
Only our approach guarantees to !nd the correct answer.
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(b) Samples with top-20 result

Figure 6: Rank distribution for 10,000 samples for a tuple
originally ranked 31st, whose highest possible rank is 11.

running time exceeds 2 days when traversing the entire tree, even
when applying their pruning techniques. Figure 6 illustrates the
sampling success rate for the tuple originally ranked 31st, whose
solution for BEST is 11. Out of 10,000 samples, only 48 rank among
the top-20, and only 1 sample among the top-15 (Figure 6b).

6.4 Performance on BOX: Monotonic Core
Since no previous approach can solve BOX, we explore the perfor-
mance of our main approach (Equation (7)), then compare it to the
other versions and extensions. We also compare running time to
SAT, which is easier than BOX.

On the NBA data, we vary the expected rank (!), the original
rank of the expected player * (+"0 (* )), the number of attributes
(/) and the number of the expected tuples (|−→* |). Table 2 shows the
parameter settings; the default ones are bold. By default, we select
the tuple with original rank ! + 10 as the expected tuple, i.e., we
explore how this tuple could move up 10 places. Due to the use
of heuristics whose e"ectiveness depends on the speci!c program
instance, running time of solvers like Gurobi and Z3 can varywidely,
even for seemingly similar inputs. Hence for every combination of
! , +"0 (* ),/ and |−→* |, here and in Sections 6.5 and 6.6, we conduct 5
runs—for the tuples at original ranks +"0 (* ), +"0 (* ) +1, +"0 (* ) +2,
+"0 (* )+3, and +"0 (* )+4—and take themedian time of all satis!able
ones. In each experiment, we use Gurobi.

Table 2: Parameter settings

Parameter Ranges
! 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

+"0 (* ) [! + 1, ! + 21] (default is ! + 10)
/ 2, 3, 4, 5
|−→* | 1, 2, 3, 4, 5

Varying ! (Figure 7a). As ! increases, execution time increases
because the solver must consider a larger space of settings for the
indicator variables. Execution time is acceptable even for large ! .

Varying +"0 (* ) (Figure 7b). There is no clear trend as tuples
at di"erent original ranks are selected as the expected tuple * . This
is reasonable, because it depends on the speci!c tuple values how
hard it is to determine weights to move it up 10 positions.

Varying/ (Figure 7c). As the number of ranking attributes and
hence program variables increases, so does running time. The im-
pact is negligible for the SAT problem, whose satis!ability problem
is easier than the optimization problem for BOX.

Varying |−→* | (Figure 7d). As we increase the number of the
expected tuples, execution time increases approximately linearly.
When there are 5 expected tuples, the problem is unsatis!able,
hence no time is recorded for BOX. (For SAT, the time reported is
until UNSATISFIABLE is returned.)

6.5 BOX: Scalability
We use the synthetic data to explore the e"ectiveness of the tech-
niques introduced in Section 5. Here we set ! = 50, +"0 (* ) = 51,
/ = 3, |−→* | = 1, and the weight constraint to be Cube, since it
generally is the slowest. After removing all dominators and domi-
natees, about 10%, 5%, and 90% of the tuples remain as competitors
for the uniform, correlated, and anti-correlated distribution, re-
spectively. Therefore, for the same data size, running time on the
anti-correlated distribution is generally higher.

Varying % (Figures 7e to 7g). By default, we set the cluster
number to be half of the competitor number, the binary-search
timeout for each iteration to 1 min and the convergence threshold
of Algorithm 1 to 0.01. Note the log scale on both axes. Both tech-
niques reduce running time and can achieve more speedup for more
aggressive parameter settings (fewer clusters, shorter timeout).

Tradeo$ of binary search (Figure 7h).We explore the tradeo"
between approximation quality and running time of binary search.
Each data point represents a run from Figures 7e to 7g whose
running time was greater than 1 min. Most points gather in the
top left corner, demonstrating a good speed-up with little loss in
quality.

Tradeo$ of clustering (Figure 7i).We explore the impact of
cluster number on inner-box perimeter and execution time. We use
the uniform dataset for % = 1, 000, 000 with the other parameters as
mentioned above. As cluster size is reduced, strong performance
gains can be realized with fairly little impact on box size (until
about 0.3). Then box size drops more rapidly, but the tradeo" may
still be worth it, because a smaller box obtained in seconds is often
better than no response for minutes or hours.
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(a) NBA data, Equation (7)
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(b) NBA data, Equation (7)
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(c) NBA data, Equation (7)
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(d) NBA data, Equation (7)
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(e) Correlated data, Equation (7)
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(f) Uniform data, Equation (7)
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(g) Anti-correlated data, Equation (7)

	�	 	�� 	�� 	�� 	�� 
�	 
�� 
�� 
��
�$��#"� ��"����!�"� �� ���� ���

	��	

	��


	��	

	��


	��	

	��


	��	

	��



�		

��
!��

�"
�!
�!�

"� 
�� 

��
�� 

���

� !!���"��
���� !�
��"��� !!���"��

(h) Tradeo$ of binary search

0.70.60.50.40.30.20.1Cluster 
parameter

0.770.710.610.580.2300
Perimeter 
ratio      
(on / off)

0.630.610.300.180.130.070.04
Execution 
time ratio 
(on / off)

(i) Tradeo$ of clustering (cluster parameter =
cluster number / competitor number)

Figure 7: Performance on BOX. C indicates use of clustering; B binary search (Section 5).

6.6 Impact of Other Design Choices
Why not use the brute force approach for SAT? We demon-
strate the importance of using indicator variables (Section 3.1). In
Figure 8a, we show representative results for uniform data when
using Gurobi, setting ! = 10, +"0 (* ) = 11,/ = 3, |−→* | = 1 and vary-
ing % from 30 to 50. Even for these tiny datasets, execution time
of the brute force approach rises rapidly due to the combinatorial
number of problem instances explored.

Why not use the direct BOX encoding with quanti!ers,
disjunction, and negation (Equation (5))? Both Gurobi and Z3
do not support optimization with quanti!ed constraints, but we
were able to implement Equation (5) in the Z3 theorem prover using
our binary-search procedure (Section 5.2). We present results for
! ∈ {10, 20, 30} and set +"0 (* ) = ! + 1, % = 50, / = 3, |−→* | = 1,

weight constraint to Cube, using 3 synthetic datasets. In Figure 8b,
each point represents a run that returns a valid inner box.2 We
can see that our monotonic core approximates the direct-encoding
solution well, with much faster execution time. Note also that the
dataset here is extremely small. Direct encoding for % > 100
tuples resulted in solver timeouts and runtime exceptions.

Why optimize for box perimeter instead of volume?While
our approach works for both volume and perimeter maximization,
the objective function for perimeter is linear; for volume it is a
polynomial of degree/, which slows down the solvers. Figure 8c
presents a heatmap for the ratio of the execution time for volume vs
perimeter optimization. We use synthetic uniform data, set % = 100,
2Sometimes the perimeter ratio can slightly exceed 1.0 because the solution of direct
encoding is implemented in an approximate way through binary search. In that case,
we set the parameter ratio to 1.0, giving an advantage to direct encoding.
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(a) Indicators vs brute force encoding
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(b) Monotonic core vs direct encoding
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(c) Ratio of execution time when optimizing
for inner-box volume vs perimeter

Figure 8: Experimental results for Section 6.6

+"0 (* ) = ! + 1, |−→* | = 1, weight constraint to Cube, and vary ! and
/. When ! and/ increase, the ratio increases rapidly. Note again
the extremely small dataset. When solving the Triangle BOX of
the !rst case in Section 6.2, optimizing perimeter only takes about
3 sec, while volume takes more than 1 hour.

7 RELATEDWORK
Why not? Chapman and Jagadish [7] introduce “why-not” as the
problem of identifying the relational operator that is responsible
for an expected tuple to be missing from the query output. Later
research focused on formalizing why-not provenance and general-
izing the queries supported [4], as well as automatically generating
a re!ned query whose output includes the expected tuples [40].

Why-not on top-! queries. In a series of articles, He, Lo et al
introduce why-not problems for top-! queries [21, 22, 47], which
return a re!ned top-! query that includes the missing tuples. They
explore tradeo"s between increasing ! and minimal changes to the
weight vector$ . Our why-not-yet problems are di"erent: we are
interested in !nding weight vectors that improve the ranking of
expected output tuples, not increase ! . Nevertheless, as we discuss
in Section 6, it is possible to extend their approach into a solu-
tion for our problem. They rely on clever sampling and pruning
strategies, making this the best known sampling-based solution
for our problem. A similar sampling strategy was also proposed in
the context of the “modifying$ and ! problem” for reverse top-!
queries [17, 32]. As our experiments show, sampling is inherently
limited when using it for SAT, BEST, and POINT; and it cannot solve
BOX. Other related work on why-not on top-! queries explored
specialized solutions in the context of applications that manage
keyword queries and 2-dimensional spatial coordinates [8–10, 51].

Reverse top-k queries. Vlachou et al. [41, 42] introduce reverse
top-! queries of 2 types. Themonochromatic type !nds all$ where
a query tuple ranks among the top-! , while in the bichromatic type
the weight vectors must be chosen from a given set of candidates.
Follow-up work explores variations and extensions [11, 17, 28, 32,
33, 43–45, 50]. In our why-not-yet problems, no candidate set for
$ is given, therefore solutions for the bichromatic type cannot
be used. (They focus on e$ciently eliminating given candidates,
while in our problems the candidates have to be found.) For the
monochromatic type, an exact solution only exists for/ = 2 where
"2 = 1−"1. For larger/, previouswork acknowledges the hardness

of !nding an exact solution [42] and hence resorts to sampling-
based approaches [17, 32].

Fair score-based ranking. [48] survey the SOA for fair score-
based ranking. The most related is work by Asudeh et al [3], which
aims to modify a linear ranking function to ensure su$cient rep-
resentation of groups in the top-! . We experimentally compare to
this approach when adapted to our problem. A similar method is
used in [2] to !nd stable rankings.

Other query explanation work. Our work !ts into the general
context of database usability [27] and reverse datamanagement [36].
Some approaches there explainmissing query answers by proposing
data modi!cations [23, 25]; which is related to how-to queries
that change input to get a desired output [37]. The most recent
work in this space includes extensions to explain missing answers
over nested data [13, 14] and the use of diagrams, examples, query
graphs, conditional instances, respectively, to help users understand
queries [18, 29–31, 38]. There is also renewed interest in studying
the connection between causality and explanations [16, 35, 39].

8 CONCLUSION
We propose the !rst general exact solution for problems SAT, BEST,
and POINT. Adopting sampling approaches from related work can
only provide approximate answers or results in infeasible running
time for BEST. In general, sampling becomes ine"ective when only
a small fraction of the space of possible weight vectors ranks the
expected tuples among the top-! . For BOX, we propose the !rst
known solution. To make it practical and scalable, we propose
the notion of a monotonic core. Our clustering approach enables
the user to improve running time for all problems as desired by
controlling the number of clusters, with moderate loss in result
quality even for large data.

Interesting avenues for future work are computing a compact
description of the entire set of weight vectors that rank the expected
tuples among the top-! and generalizing the approach to noisy and
unreliable data.
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