Semantics-aware Dataset Discovery from Data Lakes with
Contextualized Column-based Representation Learning

Grace Fan Jin Wang Yuliang Li
Northeastern University Megagon Labs Megagon Labs
United States United States United States

fan.gr@northeastern.edu

Dan Zhang

Megagon Labs

United States
dan_z@megagon.ai

ABSTRACT

Dataset discovery from data lakes is essential in many real ap-
plication scenarios. In this paper, we propose Starmie, an end-to-
end framework for dataset discovery from data lakes (with table
union search as the main use case). Our proposed framework fea-
tures a contrastive learning method to train column encoders from
pre-trained language models in a fully unsupervised manner. The
column encoder of Starmie captures the rich contextual semantic
information within tables by leveraging a contrastive multi-column
pre-training strategy. We utilize the cosine similarity between col-
umn embedding vectors as the column unionability score and pro-
pose a filter-and-verification framework that allows exploring a
variety of design choices to compute the unionability score between
two tables accordingly. Empirical results on real table benchmarks
show that Starmie outperforms the best-known solutions in the ef-
fectiveness of table union search by 6.8 in MAP and recall. Moreover,
Starmie is the first to employ the HNSW (Hierarchical Navigable
Small World) index to accelerate query processing of table union
search which provides a 3,000X performance gain over the linear
scan baseline and a 400X performance gain over an LSH index (the
state-of-the-art solution for data lake indexing).

PVLDB Reference Format:

Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, and Renée J. Miller.
Semantics-aware Dataset Discovery from Data Lakes with Contextualized
Column-based Representation Learning. PVLDB, 16(7): 1726 - 1739, 2023.
doi:10.14778/3587136.3587146

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/megagonlabs/starmie.

1 INTRODUCTION

The growing number of open datasets from governments, academic
institutions, and companies have brought new opportunities for
innovation, economic growth, and societal benefits. To integrate

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 7 ISSN 2150-8097.
doi:10.14778/3587136.3587146

jin@megagon.ai

1726

yuliang@megagon.ai

Renée J. Miller

Northeastern University
United States
miller@northeastern.edu

and analyze such datasets, researchers in both academia and in-
dustry have built a number of dataset search engines to support
the application of dataset discovery [3, 7, 17, 19, 33, 40, 45]. One
popular example is Google’s dataset search [3] which provides key-
word search on the metadata. However, for open datasets, simple
keyword search might suffer from data quality issues of incomplete
and inconsistent metadata across different datasets and publish-
ers [1, 16, 41, 42]. Thus it is essential to support table search over
open datasets, and more generally data lake tables (including private
enterprise data lakes), to boost dataset discovery applications, such
as finding related tables, domain discovery, and column clustering.

Finding related tables from data lakes [11, 25, 39, 46, 57] has a
wide spectrum of real application scenarios. There are two sub-tasks
of finding related tables, namely table union search and joinable
table search. In this paper, we mainly focus on the problem of table
union search, which has been recognized as a crucial task in dataset
discovery from data lakes [2, 24, 39, 41, 42, 57, 61]. Given a query
table and a collection of data lake tables, table union search aims to
find all tables that are unionable with the query table. To determine
whether two tables are unionable, existing solutions first identify
all pairs of unionable columns from the two tables based on column
representations, such as bag of tokens or bag of word embeddings.
They then devise some mechanism to aggregate the column-level
results to compute the table unionability score.

State-of-the-art: Early work on finding unionable tables used
table clustering followed by simple syntactic measures such as the
difference in column mean string length and cosine similarities to
determine if two tables are unionable [4]. Table union search [42]
improved on this by applying a rich collection of column repre-
sentations including syntactic, semantic (leveraging ontologies),
and natural language (based on word-embeddings) column rep-
resentations. Two important innovations of this work were the
modeling of data lake context to create an ensemble unionability
score which models the surprisingness of a score given the score
distributions within a data lake and the use of LSH indices to make
table union search fast over large data lakes [42]. More recently
D3L [2] added additional column representations based on regu-
lar expression matching and SANTOS [24] added to the column
representations, representations of binary relationships. In paral-
lel to these search-based approaches, the mighty hammer of deep
learning has been applied to the problem of column matching (de-
termining the semantic type of a column) [22, 56]. Since these

https://doi.org/10.14778/3587136.3587146
https://github.com/megagonlabs/starmie
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3587136.3587146
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table A: Name Mode of Travel Purpose Destination Day Month Year Expense
Philip Duffy Air Regional Mesting London | 10 April 2019 189.06
Jeremy Oppenheim Taxi Exchange Visil Cllawa 30 Jul 2019 8.08
Mark Sedwill Air Evening Meal Bristol 02 | September 2019 50
Table B: Table C:
Name Date Destination Purpose Bird Name Scientific Name Date Location
Clark 23007 France Discuss EU Pine Siskin Carduelis Pinus 2019 Ollawa
Gyimah 03/09 Belgium Build Relations. American Robin Turdus migratorius 2019

Harrington ~ 05/08 China Discuss Productivity Northern Flicker Colaples auratus 2019

Figure 1: An example of table union search on Open Data.

approaches are supervised, they can only be applied to finding a
limited set of semantic types (78 in their experiments), and while
not a general solution for unionability in data lakes, they can be
used in an offline fashion to find unionable tables containing the
types on which they are trained.

However, there are still plenty of opportunities to further im-
prove the performance of table union search. One important issue
is to learn sufficient contextual information between columns in ta-
bles so as to determine the unionability. This point can be illustrated
in the following motivation example.

Example 1.1. Figure 1 shows an example of finding unionable
tables. Given the query Table A, existing approaches first find union-
able columns. In this example, the column Destination in Table A
will be deemed more unionable with Location from Table C than
with Destination from Table B. This is because the syntactic simi-
larity score, e.g. overlap and containment Jaccard, between the two
Destination columns is 0; while the average word embedding of
cities (Table A) is also not as close to that of nations (Table B). Sim-
ilarly, if an ontology is used, Table A and Table C shares the same
class while the values in B are in different (though related) classes.
Meanwhile, looking at the tables as a whole we observe that Table A
is actually irrelevant to Table C. But as existing solutions only look
at the pair of single columns when calculating column unionability
score, the columns Year/Date and Destination/Location of the
two tables might be wrongly aligned together. Even techniques that
look at relationships [24] can be fooled by the value overlap in this
relationship and determine the relationship Year-Destination in
Table A to be unionable with Date-Location in Table C. This kind
of mistake can be avoided by looking at a table’s context, i.e. in-
formation carried by other columns within a table. Looking at the
table as a whole, a method should be able to recognize that the
Year in Table A is part of a travel date while in Table C it is the
date of discovery of a bird; and Destination in Table A refers to
the cities to which the officers are traveling; whereas Location in
Table C is the city where a bird is found.

From the above example, we focus on the following challenges
in proposing a new solution. Firstly, it is essential to learn richer
semantics of columns based on natural language domain. To this
end, we require a more powerful approach to learn the column
representation so as to capture richer information instead of relying
on simple methods like the average over bag of word embeddings
utilized in previous studies [2, 14] or even the similarity of the
word embedding distributions [42]. Secondly, we argue that it is
crucial to utilize the contextual information within a table to learn
the representation of each column, which is ignored by previous
studies. Even proposals for capturing relationship semantics do not
use contextual information to learn column representations [24].

1727

Finally, due to the large volume of data lake tables, it is also a great
challenge to develop a scalable and memory-efficient solution.

We propose Starmie, an end-to-end framework for dataset dis-
covery from data lakes with table union search as the main use case.
Starmie uses pre-trained language models (LMs) such as BERT [13]
to obtain semantics-aware representations for columns of data lake
tables. While pre-trained LMs have been shown to achieve state-of-
the-art results in table understanding applications [12, 31, 47], their
good performance heavily relies on high-quality labeled training
data. For the problem setting of table union search [41, 42], we
must come up with a fully unsupervised approach in order to apply
pre-trained LMs to such applications, something not yet supported
by previous studies. Starmie addresses this issue by leveraging con-
trastive representation learning [10] to learn column representations
in a self-supervised manner. An innovation of this approach is
to assume that two randomly selected columns in a data lake can be
used as negative training examples. For positive examples, we pro-
pose and use novel data augmentation methods. The framework de-
fines a learning objective that connects the same or similar columns
in the representation space while separating distinct columns. As
such, Starmie can apply the pre-trained representation model in
downstream tasks such as table union search without requiring any
labels. We also propose to combine the learning algorithm with a
novel multi-column table transformer model to learn contextualized
column embeddings that model the column semantics depending
on not only the column values, but also their context within a table.
While a recent study SANTOS [24] can reach a similar goal by em-
ploying a knowledge base, our proposed methods can automatically
capture such contextual information from tables in an unsupervised
manner without relying on any external knowledge or labels.

Based on the proposed column encoders, we use cosine sim-
ilarity between column embeddings as the column unionability
score and develop a bipartite matching based method to calculate
the table unionability score. We propose a filter-and-verification
framework that enables the use of different indexing and pruning
techniques to reduce the number of computations of the expensive
bipartite matching. While most previous studies employed LSH
index to improve the search performance, we also make use of
HNSW (Hierarchical Navigable Small World) index [36] to acceler-
ate query processing. Experimental results show that HNSW can
significantly improve the query time while only slightly reducing
the MAP/recall scores. Besides table union search, we further con-
duct two case studies to show that Starmie can also support other
dataset discovery applications such as joinable table search and
column clustering. We believe these results show great promise
in the use of contextualized, self-supervised embeddings for many
table understanding tasks.

Our contributions can be summarized as the following.

e We propose Starmie, an end-to-end framework to support

dataset discovery over data lakes with table union search
as the main use case.
We develop a contrastive learning framework to learn con-
textualized column representations for data lake tables with-
out requiring labeled training instances. Starmie achieves
an improvement of 6.8% in both MAP and recall compared
with the best state-of-the-art method, with a MAP of 99%,
a significant margin compared with previous studies.

e We design and implement a filter-and-verification based
framework for computing the table-level unionability score
which can accommodate multiple design choices of index-
ing and pruning to accelerate the overall query processing.
By leveraging the HNSW index, Starmie achieves up to
three orders of magnitude in performance gain for query
time relative to the linear scan baseline.

We conduct an extensive set of experiments over two real
world data lake corpora. Experimental results demonstrate
that the proposed Starmie framework significantly outper-
forms existing solutions in effectiveness. It also shows good
scalability and memory efficiency.

We further conduct case studies to show the flexibility and
generality of our proposed framework in other dataset dis-
covery applications.

2 OVERVIEW

2.1 Problem definition

A data lake consists of a collection of tables 7. Each table T € 7~
consists of several columns {ty,. .., {;;} where each column t; can
be from different domains. Here m is the number of columns in
table T (denoted as |T| = m). We will use the notation T to denote
both the table and its set of columns if there is no ambiguity. To de-
termine the unionability between two columns, following previous
studies, we employ column encoders to generate the representations
of columns. Then the column unionability score can be computed to
measure the relevance between those representations. A column
encoder M takes a column ¢ as input and outputs M(t) as the
representation. Given two columns £; and ¢;, the column unionabil -
ity score is computed as 7 (M(t;), M(t;)), where F is a scoring
function between two column representations.

Based on the column unionability scores, we compute the table
unionability score between two tables, which is obtained by aggre-
gating the column unionability scores introduced above. Given two
tables S and T, we define a table unionability scoring mechanism
as U = {F, M, A}, where M and ¥ are the column encoder and
scoring function for two column representations, respectively. Here
A is a mechanism to aggregate the column unionability scores
between all pairs of columns from the two tables. We will introduce
the details of A later in Section 4.

Following the above discussions, we can formally define the table
union search problem as a top-k search problem as Definition 2.1:

Definition 2.1 (Table Union Search). Given a collection of data
lake tables 7 and a query table S, top-k table union search aims at
finding a subset § € 7 where |S| = kand¥T € Sand T' € 7 - S,
we have U(S,T) =2 U(S,T).

2.2 System architecture

Figure 2 shows the overall architecture of Starmie that solves table
union search in two stages: offline and online.

During the offline stage, Starmie pre-trains a column represen-
tation model that encodes columns of data lake tables into dense
high-dimensional vectors (i.e., column embeddings). Then, we ap-
ply the trained model to all data lake tables to obtain the column
embeddings via model inference. We store the embedding vectorsin

1728

Contrastive Self-supervised Training

s BEH BR o

3 & P &9

g g 00 @

- I o

Multi-Column @@ Vector Indices
Encoder @ (HNSW, LSH, etc.)

"""""""""""""""""" erifér'e'ﬁf:é""'"""""" “"Retrieve”

P Online

! B % —

-

e ©0@ Table Scorer @00 Contextualized

8 0 Verify

@ embeddings

[Table A: 0.9, Table B: 0.85, ...]
@00

Figure 2: During the offline phase, Starmie pre-trains a multi-
column table encoder using contrastive learning and stores the em-
beddings of data lake columns in vector indices like HNSW. During
online processing, Starmie retrieves candidate tables with similar
contextualized column embeddings then verifies their table-level
unionability scores using column alignment algorithms.

efficient vector indices for online retrieval. A key challenge for the
offline stage is to train high-quality column encoders that capture
the semantics of tabular data. In Starmie, we follow a recent trend
[12,31,47] of table representation learning that encodes tabular data
using pre-trained language models (LMs). Pre-trained LMs have
achieved state-of-the-art performance on table understanding tasks
such as column type and relation type annotation [47]. However,
the good performance of pre-trained LMs requires fine-tuning on
high-quality labeled datasets, which are always not available in ta-
ble search applications such as table union search. Using pre-trained
LMs off-the-shelf is also problematic as the column embeddings
cannot capture (ir-)relevance between columns or the contextual
information within tables. To this end, in Section 3, we propose a
contrastive learning framework for learning high-dimensional col-
umn representations in fully unsupervised manner. We combine the
framework with a multi-column table model that captures column
semantics from the column values while taking the table context
into account. Then we apply the column encoder to all tables to
convert each table into a collection of embedding vectors.

During the online stage, given an input query table, we retrieve a
set of candidate tables from the vector indices by searching for data
lake column embeddings of high column-level similarity with the
input columns. Starmie then applies a verification step for checking
and ranking the candidates for the top-k tables with the highest
table-level unionability scores. The first challenge for the online
stage is how to efficiently search for unionable columns. This is not
a trivial task due to the massive size of data lakes. We address this
challenge by allowing different design choices of state-of-the-art
high-dimensional vector indices. Yet another challenge is designing
a table unionability function that can effectively aggregate the col-
umn unionability scores. As in other studies, we employ weighted
bipartite graph matching. To address its limitation of high compu-
tation complexity, we introduce a novel algorithm to reduce the
number of expensive calls to the exact matching algorithm by de-
ducing lower and upper bounds of the matching score (Section 4).

Two views of the same
batch (e.g., via sampling)

<s> 9/14/2009 12/14/2009 10/31/2009 ... |

Two batches of !
serialized columns *

" omedss

ajeiedes

Figure 3: Contrastive learning with single-column input.

3 LEARNING CONTEXTUALIZED COLUMN
EMBEDDINGS

We now describe the offline stage for training high-quality column
encoders. The encoder pre-processes tables into sequenced inputs
and uses a pre-trained LM to encode each column into a high-
dimensional vector. Next we describe a novel contrastive learning
approach for table encoders in Section 3.2 and generalize it to
multi-column encoders for contextualized embeddings in Section
3.3. Finally, we describe the table pre-processing approaches to
generate the input for such learning processes in Section 3.4.

3.1 Background

Contrastive learning is a self-supervision approach that learns data
representations where similar data items are close while distinct
data items are far apart. In this work, we adopt a popular con-
trastive learning framework SimCLR [10] as the cornerstone. Fig-
ure 3 illustrates the high-level idea of the algorithm. The goal is to
learn an encoder M (e.g., a column encoder) that takes a data item
(e.g., a column) as input and encodes it into a high-dimensional
vector. To train the encoder in a self-supervised manner without la-
bels, SImCLR relies on (1) a data augmentation operator generating
semantic-preserving views (in our context this means X,,; and Xaug
that are unionable) of the same data item and (2) a sampling method
(e.g., uniform sampling from a large collection) that returns pairs
of data items (i.e., X and Y) that are distinct (i.e. non-unionable)
with high probability. SimCLR then applies a contrastive loss func-
tion that connects the representations of the semantic-preserving
(unionable) views meanwhile separating those of the sampled dis-
tinct (non-unionable) items. Next, we illustrate how we apply the
algorithm for training a single-column encoder.

3.2 Contrastive Learning Framework

The goal is to connect representations of the same or unionable
columns in their representation space while separating represen-
tations of distinct columns. To achieve the first goal, Algorithm 1
leverages a data augmentation operator op (Line 5). Given a batch of
columns X = {x1,...,xn} where N is the batch size, op transforms
X into a semantics-preserving view X,,g. We design the augmenta-
tion operator to be uniform sampling of the values from the original
column. By doing so, we can generate diverse views of the same
column while all views preserve the original semantic types. Then
M can encode the batches X (also X, which is a copy of X) and

1729

Algorithm 1: SimCLR pre-training
Input: A collection D of data lake columns
Variables :Number of training epochs n_epoch;
Data augmentation operator op; Learning rate n
Output: An embedding model M
1 Initialize M using a pre-trained LM;

2 for ep =1 ton_epoch do

Randomly split D into batches {By, ...
for B € {By,...B,} do

/* augment and encode every item

3 Bn};

1
*/
Byri, Baug < augment (B, op):
2)’miszaug — M(Buri), M(Baug)§
/* Equation (1) and (2)
L — Leontrast (Zuriszaug);
/* Back-prop to update M
| M e back-propagate(M, n, 9.L/IM);

*/

*/

9 return M;

Xaug into column embedding vectors Z,ri and faug respectively.
Note that Zmi and Z\ug are both matrices with size N times the
dimension of embedding vector (e.g., 768 for BERT).

Next, the algorithm leverages a contrastive loss function to con-
nect the semantics-preserving views of columns and separate rep-
resentations of distinct columns (Line 6). More specifically, let
Z = {Zi}1<i<2n be the concatenation of the two encoded views
Z)ri and Zaug of batch X introduced above. Here Z; is the i-th ele-
ment offori for i < N and the (i — N)-th element offaug fori > N.
We first define a single-pair loss £(i, j) for an element pair (Z;, Z;)
to be Equation 1.

exp (sim (Z;,) /1)

03, j) = - ——
[k#ikzj] exp (sim (Z, Z¢) /1)

(1)
gl
where sim is a similarity function such as cosine and 7 is a tem-
perature hyper-parameter in the range (0, 1]. We fix 7 to be 0.07
empirically. Intuitively, by minimizing this loss for a pair (Z;, Z;)
that are views of the same columns, we (i) maximize the similarity
score sim (Z;, Zj) in the numerator and (ii) minimize Z;’s similarities
with all the other elements in the denominator.
Next, we can obtain the contrastive loss by averaging all match-
ing pairs shown in Equation 2 (Line 7):
1 N
Leontrast = N I; [£(k.k+N)+(k+N, k)

(@)

where each term £(k, k+ N) and £(k + N, k) refers to pairs of views
generated from the same column.

3.3 Multi-column Table Encoder

While the method shown in Algorithm 1 learns column represen-
tations based on values within a column itself, it cannot take the
contextual information of a table into account. For example, the
single-column model can understand that a column consisting of
values “1997 1998 ...” is a column about years, but depending on
the context of other columns present in the same table, the same
column can represent “years in which a species of bird was observed

Contextualized Column |O Q0

Embeddings - -
_____________ =

Rl - e e el Lk

| 1 1 1 =t

1 Transformer Layer I 38

! 1 E&

:[Transformer Layer]: E%

’ 1t o

1 LA

t
<s> Albany Sac ... <s» 1797 1854 ...
! t

Serialize + Tokenize

<5> New York Cal ...
4

State Capital Since
New York Albany 1797
California Sacramento 1854

Figure 4: Multi-column table encoder.

in a specific area” or “years of car production” etc. As illustrated
in Figure 1, such understanding is important for deciding whether
two tables are unionable or not.

To address this problem, Starmie combines contrastive learning
with a multi-column table encoder illustrated in Figure 4. The model
starts with serializing an input table into a string by concatenating
cell values from each column. Following the implementation of to-
kenizers in the HuggingFace library, it also adds a special separator
token “<s>" to indicate the start of each column. Next, we feed the
sequence as the input to a pre-trained LM such as RoBERTa [35]
and use the output vector of the special token in the beginning of
the sequence following the paradigm of fine-tuning.

The pre-trained LM first converts the input sequence into a se-
quence of token embeddings independent of their context then ap-
plies 12 or more Transformer layers [48] on top. The self-attention
mechanism in the Transformer layers convert the word embed-
dings into a sequence of contextualized embeddings. These vector
representations depend not only on the tokens themselves (e.g.,
“17977) but also their context (e.g., “Albany”). As such, we can ex-
tract the representations of the separator tokens (i.e., “<s>") to be
the contextualized column embeddings.

To apply contrastive learning using the multi-column model, we
adapt the SimCLR algorithm (Algorithm 1) as follows. First, we
create the batches of columns (Line 3) by uniformly sampling a
batch of tables from all data lake tables and form each batch of
columns B using all columns from the sampled tables. To augment
the batch B, instead of transforming each column independently, we
apply table-level augmentation operators such as row sampling and
column sampling (Line 5). Note that in the multi-column setting,
the augmentation operators produce views of tables with pairs of
columns that align with each other.

We summarize the supported augmentation operators in Table 1.
While there is a large design space of the operators, we summarize
them by the levels (e.g., cell, row, column) of the table to which the
operators apply. The cell-level operators are general transforma-
tions also used in related tasks such as Entity Matching [31]. The
row and column-level operators cover different ways for creating
samples of rows/columns. One can also perform more complex
transformations by applying multiple operators simultaneously. In
our ablation study (see Appendix B.1), we find that the simple col-
umn sampling operator (drop_col) provides the best performance.

1730

Table 1:

<s> New York California <s» Albany Sacramento <s> 1797 1851
[:_ _ - =fon-Mafch~ ~ _ ~ J, - Non-Matehr = - -

<s> California New York <s»> Sacramento Albany <s> 1851 1797

Match

(view of) Table 1:

~a P R N

~~ Prag ~~ - N

_oS== . Non-Match
- - B -

- ~ i~ -

Table 2: <s> Happy Feet Cars <s> George Miller John Lasseter <s> USA UK

Figure 5: Contrastive learning positive and negative pairs.

We then apply the multi-column model on the original and aug-
mented views of tables to obtain the contextualized column em-
beddings Z)ri and Zaug (Line 6) and compute the contrastive loss
(Line 7). Note that in the multi-column setting, the positive pairs
(for which we maximize the similarity) consist of the aligned pairs
of columns generated by the augmentation operators. We minimize
the similarity of all other pairs which include (i) pairs of unaligned
columns from the same table and (ii) all pairs of columns from two
distinct tables. By doing so, the algorithm learns representations
that can distinguish columns with the same/different table contexts,
thus creating the positive and negative pairs shown in Figure 5.
More formally, let P be the set of indices of all aligned pairs of
columns in the batch B, we minimize the multi-column contrastive
loss shown in Equation 3:

Lmulti-culumn = Z [f(i, J) + f(j: l)] (3)
| |(1',j)EP

3.4 Table Preprocessing

Typical pre-trained LMs like BERT support an input length of at
most 512 sub-word tokens, while a column in real-world tables such
as those in Open Data may contain thousands or even millions of
tokens. To apply the proposed techniques in Section 3.2 and 3.3
on data lake tables, we must preprocess the columns to reduce the
input length to fit the token limit of LMs, while preserving their
semantics. The procedure is outlined in Algorithm 2, while the full
details with design choices (scoring functions, row/column orders,
and alignment rules) are in the appendix due to the space limitation.

Algorithm 2 illustrates the steps of table pre-processing. It first
assigns an importance score for each cell by first computing the
TF-IDF scores of every token in a cell and then averaging the TF-
IDF scores of all tokens. Then it ranks the average cell-level scores
of rows and then selects the rows to be included in the serialization
result. Here we finish this step in a deterministic way: by ranking

Table 1: Data augmentation operators at different levels.

Level Operators Description

Cell drop_cell, drop_token, Dropping a random cell; Drop-
swap_token, repl_token ping/swapping tokens within cells

Row sample_row, Sampling x% (e.g., 50) of rows; Shuf-
shuffle_row fling the row order

Col drop_col, drop_num_col, DroppingX (numeric) columns;

shuffle_col Shuffling column order

Algorithm 2: Table Preprocessing

Input: A table T; A token scoring function such as TF-IDF
TF-IDF(-); The max #tokens m.
Variables :Preprocessing mode € {"row”, “cell”, “token”}
Output: The table T” with selected rows, cells, or tokens
1 foreach cellc € T do

/* Sum over token scores */
2 cell_score(c) « Xioken rec TF-IDF(€);
3 foreach rowr € T do

/* Sum over cell scores */

|

5 if mode = “row” then
6 L return Top-n rows with highest row_score up to length m;

row_score(c) < X el cer cell_score(c);

7 if mode = “cell” then

8 return Top-n cells with highest cell_score for each column up
to length m/|T|; // |T|: number of columns

9 if mode = “token” then

10 return Top-n tokens with highest TF-IDF for each column up

to length m/|T|; // |T|: number of columns
in the descending order of the importance score, until we reach the
token budget for each column.

4 ONLINE QUERY PROCESSING

In this section, we introduce how to find unionable tables based
on contextualized column embeddings. We first introduce the ta-
ble unionability scores and the overall workflow of online query
processing in Section 4.1. Then we discuss the design choices for re-
ducing the number of candidates using vector indices and deducing
bounds for more efficient verification in Sections 4.2 and 4.3, respec-
tively. Note that the online processing techniques explored here are
not limited to any specific column encoders, they are also applicable
to other dense-vector column representation methods [22, 56].

4.1 Table-level Matching Score

After training a column encoder M using techniques from Sec-
tion 3, we can then obtain the embedding vectors for all columns
in data lake tables via model inference. The column unionability
score between two columns s and ¢ can be calculated by using
cosine similarity as F between those embedding vectors. Next,
we define the function A for aggregating the column unionability
scores to compute the table unionability. Motivated by the idea of
c-alignment [42] that aims to find a maximum set of one-to-one
alignment between columns in two tables, we propose modeling
table unionability as a weighted bipartite graph matching problem.
More formally, given two tables S and T with m and n columns
respectively, we construct a bipartite graph G = (S, T, E) where
the nodes S and T are the two sets of columns. The edges in E de-
note the column unionability score between each pair of columns.
Then table unionability score U(S, T) can be calculated by finding
the maximum bipartite matching of graph G. In order to remove
the noise caused by dissimilar pairs of columns, we follow the
de-noising strategy from fuzzy string matching [51] by introduc-
ing a hyper-parameter 7 as the similarity lower bound: given two
columns s € Sand t € T, there is an edge {s,t) € Eiff 7 (s,1) > 7.

1731

Figure 6: Example of table unionability score via maximum
bipartite matching. Solid (red) lines denote the edges belong-
ing to the maximum matching,.

Algorithm 3: Online Query Processing

Input: S: the query table; 7= the set of data lake tables;
Variables :k:the number of desired results;
7: threshold of column unionable score;
Output: ‘H: The top-k unionable tables
1 Initialize 9 and C as 0;
2 for all columnss € S do
3 |_ C = C U findCandidates(s, 7, 7);

4 for all tablesT € C do
if |H| < k then
| Compute Verify (S, T) and add T into H;
else
X « the score of top element of H;
if LB(S,T) > X then
10 | Replace the top element of #{ with T;
else if UB(S,T) < X then
|_ Discard T;

else if Verify(S,T) > X then
|_ Replace the top element of H with T;

return H;

-

5

Example 4.1. We show an example of computing the table union-
ability score in Figure 6. Suppose there are two tables S and T with
4 and 3 columns respectively and the threshold 7 for column union-
ablity score is 0.5. Since the cosine similarity between s3 and t3
is 0.3 (< 1), the edge between them is discarded (denoted with a
dash line). For the ease of presentation, we omit the remaining dash
lines between other nodes in the figure. The maximum bipartite
matching of this graph consists of the edges in red (solid lines),
which are (s1, t1), {(s2, t2) and (s4, t3) with a score of 2.15.

In order to find the tables with top-k highest table unionability
scores with the given query table S, a straightforward method is to
conduct a linear scan: we use a min-heap with cardinality of k to
keep the results of top-k search, then for each table T in the data
lake, we directly compute U(S, T); and if the score is higher than
the top element of the min-heap, we replace the top element with
it and adjust the min-heap accordingly. However, since the time
complexity of weighted bipartite matching is O(n® log n), where n
is the total number of columns in two tables, it is rather expensive
to traverse all tables in a data lake. A scalable solution requires
reducing (i) the number of accessed tables and (ii) the computational
overhead of verifying each pair of tables.

We propose a filter-and-verification framework to address this
issue as illustrated in Algorithm 3. Instead of doing a linear scan over
all data lake tables, it employs filter mechanisms to identify a set of
candidate tables C for further verification (line: 3). As a result, it can
reduce the number of expensive verification operations Verify(S, T).
This is realized by the function findCandidates (Section 4.2). Then
for all the candidate tables, we further come up with a pruning
mechanism to estimate the lower bound LB(S, T) and upper bound
UB(S,T) of U(S, T). If the lower bound is larger than the current
lowest score, we can directly replace it with the top element without
further verification (line: 10). Similarly, if the upper bound is no
larger than the current lowest score, we can directly discard it
(line: 12). This pruning mechanism is effective since LB and UB
are much more efficient to estimate than the exact verification
Verify (S, T) (Section 4.3).

4.2 Reducing the Number of Candidates

Given a column with its embedding vector, we need to quickly
identify tables from the data lake that contain unionable columns,
which is realized by the findCandidates function in Algorithm 3.
This is a problem of similarity search over high-dimensional vectors.
Locality Sensitivity Hashing (LSH) [20] has been used in previous
studies of table search to find joinable [61], unionable [42], and re-
lated columns [2] in sub-linear time. The basic idea is to use a family
of hash functions to map high-dimensional vectors into a number
of buckets, where the probability that two vectors are hashed into
the same bucket is correlated to the value of a certain similarity
metric between them. Following this work, we build a simHash [8]
LSH index to estimate the cosine similarity between column embed-
ding vectors. Then for each query column vector s, we can quickly
find a set of similar column vectors via an index lookup. Then the
candidate set C can be obtained by the union of candidates returned
by utilizing each column vector s to query the index. In addition
to LSH, we also explore the more recent HNSW [36]. HNSW is a
proximity graph with multiple layers where two vertices are linked
based on their proximity. It supports fast nearest neighbor search
with high recall. We find that HNSW improves the query time by
orders of magnitude and thus allows Starmie to support querying
over the WDC corpus with 50M tables, which is much larger than
the previously supported datasets for table union search.

Since such index structures return approximate instead of exact
results, there might be some false negatives in the top-k results.
Nevertheless, we find in the experiments that the effectiveness
loss caused by the false negatives is within a reasonable range.
Meanwhile, the query time can be reduced by one to three orders
of magnitude (details in Section 5.3).

4.3 Pruning Mechanism for Verification

Once a candidate table is found, we can reduce the expensive ver-
ification cost by quickly computing lower and upper bounds on
the unionability score. We first look at how to estimate the upper
bound UB(S, T) between two tables S and T. Recall that in maxi-
mum weighted bipartite matching, each column/node in both S and
T can be covered by at most 1 edge in the edges of the maximum
matching. If we remove this constraint, since nodes can appear in

1732

multiple edges, the new optimal matching is easy to compute. More-
over, as it allows edges with greater weights, the total score forms
an upper bound of the true table unionability score U(S, T). For
the upper bound UB(S, T), we first sort the edges by their weights
in descending order. Then we add edges with the largest weights
into the matching in a greedy manner. This process is repeated
until all columns in S or T are covered or all edges are used. The
time complexity of the above process for calculating UB(S, T) is
O(|E|log |E| + n), where |E| is the number of edges in G. It is much
cheaper to compute than the real table unionability score.

Next, we introduce how to quickly estimate a meaningful lower
bound LB(S, T). For lower bounds, we would like to find a set of
edges that do not violate the constraint of bipartite matching, i.e.,
each column in the two tables is covered by one edge. We can also
achieve this goal via a greedy algorithm. Similar to computing the
upper bound, we sort the edges by weight in descending order and
pick edges with the largest weights. After that, we remove edges
that are associated with the columns in the selected edges so as to
avoid violations. The termination condition of this process is also
the same as that of calculating the upper bound. Since the resulting
matching does not necessarily cover all nodes in S or T, the total
weight LB(S, T) is a lower bound of the maximum matching. The
time complexity of calculating LB(S, T) is also O(|E|log |E| + n).

Example 4.2. We use the example in Figure 6 to illustrate the
upper bound computation. Note this example is designed to illus-
trate the algorithm, not to model the actual distribution of weights
in a data lake. We fetch edges in the descending order of weight:
(s1,t2), (s1,t1), (s2,t2), and (s4, t3). At this point, since all nodes
{t1,t2,t3} in T are covered, we stop here. The upper bound is
0.85+ 0.8 + 0.7 + 0.65 = 3, larger than the exact value 2.15.

To compute the lower bound, we start from edge (s1,t2) and
then remove all edges associated with s; and 3. The remaining
edge with maximum weight is (s4, 13). After involving this edge
into the matching, there is no remaining one and the algorithm
stops here. Hence, the lower bound is 0.85 + 0.65 = 1.5, which is
smaller than the exact value 2.15.

5 EXPERIMENTS

We now present an evaluation of Starmie on real-world data lake
corpora. First, we show that Starmie achieves new state-of-the-
art results on table union search by outperforming the previous
best methods by 6.8% in MAP and Recall. Next, our scalability ex-
periments show that Starmie (especially with the HNSW index)
achieves significant performance gain (up to 3,000x) while pre-
serving reasonable effectiveness performance. Lastly, we conduct
case studies to show that Starmie generalizes to two other dataset
discovery applications: column clustering and table discovery for
downstream machine learning tasks. We include additional results
and discussions in the full technical report [15].

5.1 Experiment Setup

5.1.1 Environment. We implement Starmie in Python using Py-
torch and the Hugging Face Transformers library [52]. For con-
trastive learning, we use RoBERTa [35] as the base language model.
We set the hyper-parameters batch size to 64, learning rate to 5e-5,

and max sequence length to 256 across all the experiments. All ex-
periments are run on a server with configurations similar to those
of a p4d.24xlarge AWS EC2 machine with 8 A100 GPUs. The server
has 2 AMD EPYC 7702 64-Core processors and 1TB RAM.

5.1.2 Datasets. We use five benchmark datasets with statistics
detailed in Table 2. Firstly, we evaluate the effectiveness on the
first three benchmark datasets, which are subsets of real Open
Data. Since accuracy requires manually labeled ground truth, such
datasets are not very large. We only use them to conduct the exper-
iments of effectiveness reported in Section 5.2. The SANTOS Small
benchmark [24] consists of 550 real data lake tables drawn from
296 Canada, UK, US, and Australian open datasets, and 50 query
tables. From Table Union Search [42], there are two available bench-
marks: TUS Small and TUS Large. TUS Small benchmark consists
of 1,530 data lake tables that are derived from 10 base tables from
Canada open data. We also use the larger benchmark, TUS Large,
which consists of ~5,000 data lake tables derived from 32 base tables
from Canada open data. For these two benchmarks, we randomly
select 150 and 100 query tables, respectively, following previous
studies [24, 42]. The SANTOS! and TUS? benchmarks, along with
their ground truth of unionable tables, are publicly available.

The last two benchmarks are utilized in efficiency and scalability
experiments. The SANTOS Large benchmark contains ~11K raw
data lake tables from Canada and UK open data, and 80 query
tables. We also run experiments on the WDC web tables corpus [28]
which contains 50.8 million relational web tables extracted from
the Common Crawl. We randomly select 30 tables as the query.

Table 2: Effectiveness (top) and scalability (bottom) benchmarks.

Benchmark # Tables #Cols Avg#Rows Size (GB)
SANTOS Small 550 6,322 6,921 0.45
TUS Small 1,530 14,810 4,466 1
TUS Large 5,043 54,923 1,915 1.5
SANTOS Large 11,090 123,477 7,675 11
WDC 50M 250M 14 500

5.1.3 Metrics. For effectiveness, we perform evaluation based on
the ground truth from the first three benchmarks. For the TUS
benchmarks, the tables are synthetically-partitioned from tables
of distinct domains, so the ground truth is created in a generative
manner. As for the SANTOS Small benchmark, the tables have
been manually-annotated to create a ground truth listing expected
unionable tables to each query table. Then we follow previous
studies [2, 24, 37, 42] and use the Mean Average Precision at k
(MAP@K), Precision at k (P@k) and Recall at k (R@k) to evaluate
the effectiveness in returning the top-k results. We compute each
score by averaging 5 repeated runs. For efficiency, we measure the
average time per query.

!https://github.com/northeastern-datalab/santos
Zhttps://github.com/RJMillerLab/table-union- search-benchmark

1733

5.1.4 Baselines. For effectiveness experiments, we compare our
approach, Starmie, with the following existing approaches.

e D3L [2] extends Table Union Search [42] for the problem of find-
ing related tables by using table features such as column names,
value overlap, and formatting. To compare fairly with Starmie, we
omit the column name feature.

® SANTOS [24] proposes an approach that leverages both columns
and relationships between columns by using external and self-
curated knowledge bases.

o Sherlock [22] is a representation learning method that leverages
several column features such as table statistics and word embed-
dings to learn the embedding vector of a column.

® SATO [56] extends Sherlock by capturing the table context using
LDA, and thus performing a form of multi-column prediction.

e SingleCol is our column encoder proposed in Section 3.2 that only
uses a single column as the input of the encoder in the training
process. This is Starmie without the use of contextual information
from Section 3.3.

For efficiency experiments, we aim at exploring the benefits
brought by different design choices in the Starmie framework. Thus
we compare the performance of 4 methods: basic linear search
(Linear), pruning based on estimated bounds (Pruning), search with
an LSH index (LSH), and search with an HNSW index (HNSW).

5.1.5 Column encoder settings. We empirically choose the most
suitable sampling method (Section 3.4) and augmentation operator
(introduced in Section 3.3 and more details in Appendix A). For
sampling methods, we find that Starmie achieves the best perfor-
mance when pre-trained with the cell-level TF-IDF scoring func-
tion on the SANTOS Small and TUS Large benchmarks, and with a
column-ordered sampling method, alphaHead, that sorts tokens in
alphabetical order performs the best, on TUS Small. For augmenta-
tion operators, we find that the drop_col operator performs the best
on SANTOS Small while drop_cell achieves the best performance
on the two TUS benchmarks.

5.2 Results for Effectiveness

Table 3 reports the results of MAP@k and R@k on the three bench-
marks for all methods. Note that the results for SANTOS are unavail-
able for TUS Large because SANTOS, which requires the labeled
query table intent columns [24], have not been evaluated on this
benchmark due to the absence of annotated intent columns. We run
the experiments up to k=10 on SANTOS Small following [24], and
up to k=60 on the TUS benchmarks, which is consistent with [42].
Note the recall cannot reach 100% when k is smaller than the num-
ber of correct unionable tables from the labeled ground truth as
reported in previous studies [24, 42]. Table 3 indicates the maximum
recall as IDEAL for each setting.

We can observe that Starmie outperforms the baselines across
all three benchmarks. On the SANTOS Small benchmark, Starmie
achieves the highest MAP@10 of 99.3% and highest R@10 of 73.7%
(which is close to the IDEAL), outperforming SATO, Sherlock, SAN-
TOS, D3L baselines by large margins of 13%, 27%, 6.8%, and 90%
respectively. Also, Starmie outperforms its SingleCol variation by
11%, showing that a multi-column approach is necessary. Similarly,
on the TUS Small benchmark, Starmie outperforms the highest-
achieving baseline, Sherlock, by 0.7% and SingleCol variation by

https://github.com/northeastern-datalab/santos
https://github.com/RJMillerLab/table-union-search-benchmark

Table 3: MAP@k and R@k results on all benchmarks with ground
truth, where k=10 for SANTOS Small benchmark and k=60 for the
TUS benchmarks. The IDEAL R@k for SANTOS Small is 0.75, IDEAL
R@kKk for TUS Small is 0.341, and IDEAL R@k for TUS Large is 0.277.

SANTOS Small TUS Small TUS Large
Method | MAP@k R@k | MAP@k R@k | MAP@k R@k
SingleCol 0.891 0.588 0.954 0.255 0.902 0.208
SATO 0.878 0.594 0.966 0.271 0.930 0.223
Sherlock 0.782 0.493 0.984 0.265 0.744 0.119
SANTOS 0.930 0.690 0.885 0.230 - -
DL 0.523 0.422 0.794 0.215 0.484 0.124
Starmie 0.993 0.737 0.991 0.277 0.965 0.238
—=— Starmie SingleCol -#- SATO - Sherlock o SANTOS -«- DL —— IDEAL
0.70
0.60
0.50
4
®©0.40
4
0.30
0.60 — 0.20
kT
0.50] Ao AT 0.10
-
2 4 6 8 10
k
(a) P@k on SANTOS Small (b) R@k on SANTOS Small
1.00 H—lﬂ\.\. 0.35
T
L T et S NN 0.30
0.95 <.
S) 0.25
3090 R $0.20
a ... o
0.85 Y 0.15
0.80] & -cma £ A 0.10
A, 0.05

(d) R@k on TUS Small
0.25
0.20
o0 9015
T~ 0.10
0.60 S
0.05
050 4w o,
10 20 30 40 50 60
k
(e) P@k on TUS Large (f) R@k on TUS Large

Figure 7: P@k and R@k results on different benchmarks.

4% in MAP@k. On the TUS Large benchmark, Starmie outperforms
SATO by 4% and SingleCol by 7% in MAP@k. Thus, the Starmie
approach, by capturing column context and leveraging contrastive
learning in pre-training, is very effective in solving the table union
search problem.

Figure 7 shows the P@k and R@k of Starmie and the baselines as
k increases on all benchmarks. Throughout all values of k, Starmie

1734

outperforms all baselines for both P@k and R@k. In Figures 7(b),
(d), and (f), Starmie is closest to IDEAL, with R@10 only 1.8% below
IDEAL on SANTOS Small, R@60 18.8% below IDEAL on TUS Small,
and R@60 14.1% below IDEAL on TUS Large.

To better understand the influence of datasets on the perfor-
mance of Starmie, we conducted an in-depth analysis to look at its
performance for different settings of arity, cardinality, and percent-
age of numerical columns in query tables. We evenly split the query
tables into five groups for each setting. We compare Starmie with
alternative representation methods SATO, Sherlock, and SingleCol
that also encode columns into high-dimensional vectors. As shown
in Figure 8(a)/(c), Starmie consistently outperforms the baselines
as the number of columns varies and as the percentage of numeric
columns varies. As the number of rows increases (Figure 8(b)), the
results of Starmie remain consistently high while the performances
of SATO, Sherlock, and SingleCol generally decrease. We believe
this is due to our efforts of table preprocessing techniques (Sec-
tion 3.4). Meanwhile, the performance of SingleCol is much worse
than Starmie under all settings, illustrating the importance of con-
textual information in training the column encoders. The methods
have similar trends on TUS Small and TUS Large (Appendix C).

5.3 Scalability

Table 4: Effectiveness of different design choices. The first
four methods are for Starmie.

Method MAP@10 P@10 R@10 Query Time (s)
Linear 0.993 0.984 0.737 96
Pruning 0.993 0.984 0.737 61
LSH Index 0.932 0.780 0.580 12
HNSW Index 0.945 0.810 0.606 4
SATO 0.878 0.806 0.594 252
Sherlock 0.782 0.672 0.493 264
SingleCol 0.891 0.798 0.588 108

Impacts on effectiveness. Since some design choices might re-
sult in effectiveness loss, we report their results of three evaluation
metrics on the SANTOS Small benchmark. As shown in Table 4,
we compare Starmie with a basic linear scan with three other de-
sign choices (above the horizontal line), as well as baselines SATO,
Sherlock, and SingleCol (full experiment results are shown in Ap-
pendix C). The main takeaway is that HSNW preserves the effec-
tiveness as much if not better than the LSH index that is widely used
in previous studies, while having tremendous speed improvement.
This suggests HSNW is a very promising direction for providing
real-time search over massive data lakes.

Preprocessing time. Since Starmie requires model pre-training
and model inference, in addition to possibly indexing, we provide
some insights of such overhead by comparing its preprocessing
time with existing systems D°L and SANTOS that are not based
on pre-trained LMs. The preprocessing time of Starmie consists of
the following parts: pre-training taking 3.1 hours, model inference
taking 4.4 min, and indexing taking 10-30 sec. Meanwhile, D3L
takes 7.6 hours to create four indexes for each column feature and

I Starmie B SATO

8-9
Number of Columns

9-11 11-19 19-41 15-300 500-1K

(a) MAP@k of different # Cols

=<1 Sherlock

1K-6K
Number of Rows

(b) MAP@kK of different # Rows

B3 SingleCol

6K-30K 30K-157K 0-7 7-14 14-20 22-36 37-90

Percentage of Numeric Columns (%)

(c) MAP@k of different % Num. Cols

Figure 8: In-depth analysis of Starmie, SATO, Sherlock, and SingleCol as we vary the number of columns, number of rows, and
percentage of numerical columns on the SANTOS Small benchmark.

SANTOS takes 17 hours to create indexes using a knowledge base
and the data lake. Thus, pre-training a language model in Starmie
does not incur too much overhead compared to existing systems.
Time efficiency. We have observed that the employed design
choices can speed up the online query time while sufficiently pre-
serving the effectiveness scores. Next we evaluate the scalability of
different design choices. In Figure 9(a), we first evaluate the four
variations of Starmie on the SANTOS Large benchmark, as we in-
crease the number of returned unionable tables k from 10 to 60. We
then evaluate their query times as the data lake size grows to its
full size of ~11K tables / ~120K columns. We also experiment on
the WDC benchmark, specifically when the data lake grows to 1M
tables / 5M columns (Figure 9(b)) to show the trend of each method
, and when the data lake grows to 50M tables / 250M columns (Fig-
ure 9(c)). For each method, if a data point’s query time does not
finish within 24 hours, then we consider it as timeout and omit the
result from the corresponding figures.

Throughout all these experiments, we see that the design choice
with the HNSW index leads to the best performance. On the SAN-
TOS Large benchmark in Figure 9(a), the k-scalability experiment
shows that Pruning is 2X faster than Linear, while LSH index is
20X faster than Linear. Meanwhile, HNSW index, which leads to
an average query time of around 300 ms, is 220X faster than Linear
and 11X faster than the popular LSH index. As the data lake grows
to its full size, there is a steady increase in query time of Linear
and Pruning; while that of LSH index and HNSW index remain
stable, with the query time of HNSW index remaining around 400
ms. On the WDC benchmark in Figure 9(b), there is a similar trend
as the data lake grows to 1M tables. On the full WDC benchmark
in Figure 9(c), Linear and Pruning time out after 1M tables, while
LSH index times out after having an average query time of 2,520
sec on 10M tables. Meanwhile, the query time for HNSW index
stays consistent at around 60 ms as the data lake grows to its full
size of 50M tables / 250M columns. The reason is that the hierar-
chical graph-based structure of HNSW allows it to locate to the
nearest neighbors much faster than hash-based indexes [36]. Over-
all, the design choices explored in this paper, especially HNSW
index, show a great improvement in the average query time, even
when the data lake grows to an immense size of 50M tables. To the
best of our knowledge, the largest dataset that are evaluated by
existing solutions of table union search is with only 5,000 tables /
1M columns [42], which has 250 times smaller number of columns.

1735

Memory overhead. Lastly, we examine the relative memory over-
head of Starmie with different design choices. Specifically, the mem-
ory usage of No index (the linear scan and pruning methods from
Table 4), LSH index and HNSW index over the data lake of SAN-
TOS Large (11 GB) is 359MB, 733MB and 749 MB, respectively. The
results show that Starmie is not only scalable but also memory
efficient: its variations take up 3-7% space overhead. The memory
saving is mainly due to the condensed vector column representa-
tions of Starmie which take up only 3% of the data lake size.

5.4 Data discovery for ML tasks

Next, we conduct a case study to show that Starmie can be applied
to another application scenario of dataset discovery, i.e., retrieving
relevant tables to improve the performance of downstream ML tasks.
For this case study, we consider a subset of 78k WDC tables used
in the evaluation of SATO [56], from which we collect all the 4,130
tables of at least 50 rows as the data lake tables. Among these tables,
we find that 25 tables of at least 200 rows contain a numeric column
called “Rating”. These 25 tables contain various types of ratings
including those for sportsmen, TV shows, US congress members,
etc. From these tables, we construct 25 regression tasks with the
goal of training an ML model that predicts “Rating” as the target
column. Since the ratings are from different domains, we normalize
their values to the range [0, 1]. More details about the setting can
be found in Appendix D.

For each task, we train a Gradient-Boosted Tree model [9] with
all non-target columns as features. We featurize the textual columns
using Sentence Transformers [44]. We split each dataset into train-
ing and test sets at a ratio of 4:1. Note that the original dataset may
not contain informative features. Figure 10 shows such a dataset of
US congress members.

To improve the model’s performance on these downstream tasks,
we leverage Starmie to retrieve relevant tables from the data lake
to join with the datasets (i.e., the query tables) to provide additional
features. To showcase the effectiveness of Starmie, we use Starmie’s
contextualized column embeddings to retrieve from the data lake
table that contains a column having the highest cosine similarity
with a non-target column of the query table. Finally, we augment
the query table by performing a left-join with the retrieved table to
ensure that the size of the augmented table stays unchanged. We
also consider two popular similarity methods for this task, Jaccard

-l Linear @ Pruning =@ LSHIndex =#- HNSW Index
$70 & 800
EBO £ 600
Eso F
gt z g 400
=1
& & &
g,20 & 200
© 10 © 107 e © P g
N e e e e L e S

10 20 30 40 50 60
K

Data Lake Size (# tables/# columns)

(a) SANTOS Large benchmark

% - - % o
o 1o A 00 {I-Q
ﬂ;{-\ &px-\ d,ﬂ %,gi ¥

AW e b e
B R R

Data Lake Size (# tables/# columns)

(b) WDC (Sample) benchmark

i

@ 2500
@
@ 2000 §

)
o
d
)
g: —k——k— ke — k- —d— ok
o&i\““’\:\ﬁl\"@\x“@\w"@@@@ﬂ"@h
- S 0 g o

Data Lake Size (# tables/# columns)

(c) WDC (Full) benchmark

Figure 9: Scalability on the SANTOS Large benchmark, a sample of 1M WDC tables, and the full WDC benchmark

and Overlap [14, 60], as baselines by replacing the cosine similarity
scores with the corresponding similarity functions.

Table 5 summarizes the results of the 3 evaluated methods. While
all 3 methods result in performance improvement (i.e., reduction of
MSE), Starmie achieves significantly better overall improvements
with a 14.75% MSE reduction, on 15/25 tasks improved, and by an
average of 20.64%. By inspecting the retrieved tables, we find that
Starmie indeed retrieves qualitatively better candidate tables. As
Figure 10 shows, for the same US congress members table, Jaccard
similarity retrieves an irrelevant table of dog competitions that
also contains a similar “State” column, but the two tables are not
semantically relevant. On the other hand, Starmie retrieves a table
consisting of the amount of money raised from different interest
groups, which is a potentially relevant feature to “Rating”. Indeed,
by joining with the retrieved table by Starmie, the MSE of the model
drops from 0.1598 to 0.1198 (by >25%).

Table 5: Performance gain of data discovery methods on 25 rating
prediction tasks from WDC.

NoJoin Jaccard Overlap Starmie

Avg. MSE 0.0820 0.0753 0.0748 0.0699

Improvement - 8.23% 8.82% 14.75%
#improved - 13 12 15

avg. Improve - 14.74% 14.05% 20.64%

5.5 Case study: Column clustering

Finally we show another application scenario of Starmie in dataset
discovery: column clustering. Specifically, we apply Starmie as
a column encoder to provide embeddings for clustering all the
119,360 columns from the 78k WDC tables used in the experiments
of Sherlock, SATO, and others [22, 47, 56]. These columns are an-
notated with 78 ground truth semantic types such as population,
city, name, etc. The goal of column clustering is to discover clusters
of columns that are semantically relevant. The task of semantic
type detection has traditionally been solved as a supervised multi-
class classification problem which requires significant annotated
training data [47]. Starmie provides an unsupervised solution. From

N ECCWETT - BT T
AZ | US House | 8 TrentFranks | Republican | 5.0
TX | US.House | 3 | SamJohnson | Republican | 95.0
OH | US. House | 4 Jim Jorden | Republican | 95.0
Retrieved by Jaccard:
SHOW State | cCITY DATE | BREED | ENTRY | DOGPTS | BITCHPTS
Tucson Kennel |, 5 Tucson | O3jzeiee | Chinese NaN NaN NaN
Club Cresteds
ForlBendKe | TX | Richmond | 1117706 | ©MNese Nal Nal NaN
Cresteds
MarionOh Ke | OH Maron | O7izaies | CMnese 12.0 1.0 20
Cresteds
Ours:
§ From Interest Groups § From Interest
Name P Stat Vot
=0 ° That Supported Groups That Opposad ote
TrentFranks | R | AZ2 $12,000 50 Yes
Samdohnson | R | TX3 $4,000 50 Yes
Jim Jordan R | on4 $22,000 50 Yes

Figure 10: Example tables retrieved by Jaccard vs. Starmie. By joining
the query table with the DL table retrieved by Starmie, the MSE for
predicting the “Rating” attribute drops from 0.1598 to 0.1195 (vs.
0.1544 when joining with the table retrieved by Jaccard).

the contextualized column embeddings, we can construct a simi-
larity graph over all data lake columns as nodes. We can then add
undirected edges between all pairs of columns having cosine simi-
larities above a threshold & (e.g., 0.6). Next the column clusters can
be generated via any graph clustering algorithm. We choose the
connected component algorithm for efficiency and simplicity.

With Starmie, the clustering algorithm generates 2,297 clusters
with an average cluster size of 51.96. We measure the quality of the
clusters by the purity score, which is the percentage of columns
assigned with the same semantic type as the majority ground truth
type of each cluster. The discovered clusters are generally of high
quality as they achieve a purity score of 51.19 while using baselines
such as Sherlock and SATO only achieves 30.5 or 37.36 purity scores
when generating a similar number of clusters.

We further inspect the column values within each cluster and
find that Starmie discovers clusters of finer-grained semantic types
not present in the original 78 types (more results in Appendix E).
Table 6 shows 3 such example clusters. The majority types (from
the 78 original types) of columns in the 3 clusters are “type”, “name”,
and “artist” respectively. After inspecting the column values, we
can interpret the types of the 3 clusters as names of schools, names

1736

Table 6: Column clusters discovered by Starmie. We show the first 3 values from 3 columns of each cluster. The clusters have finer-grained
types (e.g., names of schools, grocery stores, song names) than the original ground truth types (e.g., type, name, artist).

Cluster type ‘ 1st Column ‘ 2nd Column ‘ 3rd Column
type Emerson Elementary School Choctawhatchee Senior High School | Sumner Academy Of Arts and Science
— Banneker Elementary School Fort Walton Beach High School Wyandotte High School
Names of schools Silver City Elementary School Ami Kids Emerald Coast J C Harmon High School
name People’s Grocery Co-op Exchange Amazing Grains Apples Street Market
— Prairieland Market BisMan Community Food Cooperative Bexley Natural Market

Food/grocery stores | The Merc (Community Mercantile)

Bowdon Locker & Grocery

Kent Natural Foods Co-op

artist IDon’t Give A ...
— I'm The Kinda
Song names 1U She

Spoken Intro New Wave
The Court Up The Cuts
Maze Thrash Unreal

of food/grocery stores, and names of songs. It is difficult to discover
such fine-grained types by existing supervised methods.

6 RELATED WORK
6.1 Dataset Discovery

Dataset Discovery has been a hot topic in the data management
community. Earlier studies [1, 5, 49] relied on keyword search over
web tables to identify essential information. Octopus [4] and In-
foGather [54] focused on the problem of schema complement, an
important topic in exploring web tables. Aurum [17], S3D [19]
and Tableminer+ [38, 58] utilized knowledge bases to identify re-
lationship between datasets. SemProp [18] followed this route by
leveraging ontologies and word embeddings, and Leva [59] solved
a similar problem with graph neural networks. D* [43] addressed
the problem of column clustering in data lake tables. Valentine [26]
provided resources for evaluating column matching tasks. Domain-
Net [29] studied the problem of disambiguation in data lakes.

Finding related tables from data lakes is an essential task in
dataset discovery. There are two sub-tasks in this application, namely
finding joinable tables and table union search [46]. To support find-
ing joinable tables, earlier studies utilized syntactic similarity met-
rics that are widely used in the applications of string similarity
search and join [21, 30, 53]. LSH Ensemble used containment (over-
lap) [61] as the similarity metric and provided a high-dimensional
similarity search based solution. Josie [60] employed overlap over to-
kens and developed an exact data-optimized solution. PEXESO [14]
relied on cosine similarity over word embeddings and proposed in-
dexing techniques to improve performance. The table union search
problem has been well explored recently. Ling et al. [34] and Lehm-
berg et al. [27] illustrated the importance of finding unionable Web
tables. Nargesian et al. [42] proposed the first definition and com-
prehensive solution for the table union search problem in data lakes.
Bogatu et al. [2] proposed the D3L system by dividing columns into
different categories. The SANTOS [24] system uses a knowledge
base along with binary relationships in the data lake to identify
tables that share unionable columns and relationships, and it is the
state-of-the-art approach in this field. To the best of our knowl-
edge, our work is the first solution to utilize contrastive learning
techniques in table union search.

6.2 Representation Learning for Tables

Recently many efforts use representation learning techniques to ad-
dress problems related to tabular data. Sherlock [22] and Sato [56]
used a supervised feature based approach to learn vector repre-
sentations for tables and columns. TURL [12] proposed to use a
pre-trained language model for web table related tasks and to come
up with benchmark datasets for several tasks. And pre-trained lan-
guage models have been widely applied to different table-related
applications, including entity matching [6, 31, 32], column type de-
tection [47, 50], and question answering [23, 55]. Our work follows
this line of study and proposes the first solution that employs a
pre-trained language model in a fully unsupervised way for the
problem of table union search.

7 CONCLUSION AND FUTURE WORK

In this paper, we mainly focused on the problem of table union
search, an essential application in dataset discovery from data lakes.
We argued that it is crucial to utilize contextual information to de-
termine whether two columns are unionable and proposed Starmie,
an end-to-end framework based on contrastive representation learn-
ing as the solution. We also developed a multi-column encoder that
can capture the contextual information from a table so as to learn
contextualized column embeddings. Experimental results on pop-
ular benchmark datasets demonstrated that Starmie significantly
outperformed existing solutions for table union search.

Our results show the promise of self-supervised contrastive learn-
ing in improving the accuracy of table union search, as well as
joinable table search, and column clustering — the latter areas we
are exploring further. We believe the improved accuracy justifies
the use of learning over previous heuristic approaches and the
self-supervision will be important to data lakes where labeled train-
ing data is expensive to collect and generalize. Our results using
the relatively new HNSW index are exciting and important in the
development of real-time data lake search solutions.

ACKNOWLEDGMENTS

This work was supported in part by NSF under award numbers
11S-1956096 and IIS-2107248. It was done during Grace’s internship
at Megagon Labs. We would like to thank Yoshihiko Suhara for his
valuable comments on this work.

REFERENCES

(1]

[2

—

(3]

[10]

[11]

[12

[13]

[14]

[15]

[16]

[17

(18]

[19]

[20

[21]

[23]

[24]

[25]

[26

[27

[28]

Marco D. Adelfio and Hanan Samet. 2013. Schema Extraction for Tabular Data
on the Web. Proc. VLDB Endow. 6, 6 (2013), 421-432.

Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Konstanti-
nou. 2020. Dataset Discovery in Data Lakes. In ICDE. 709-720.

Dan Brickley, Matthew Burgess, and Natasha F. Noy. 2019. Google Dataset
Search: Building a search engine for datasets in an open Web ecosystem. In
WWW. 1365-1375.

Michael J. Cafarella, Alon Y. Halevy, and Nodira Khoussainova. 2009. Data
Integration for the Relational Web. Proc. VLDB Endow. 2, 1 (2009), 1090-1101.
Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu, and Yang
Zhang. 2008. WebTables: exploring the power of tables on the web. Proc. VLDB
Endow. 1, 1 (2008), 538-549.

Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating Embeddings of Heterogeneous Relational Datasets for Data Integration
Tasks. In SIGMOD, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew
Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). 1335-1349.

Sonia Castelo, Rémi Rampin, Aécio S. R. Santos, Aline Bessa, Fernando Chirigati,
and Juliana Freire. 2021. Auctus: A Dataset Search Engine for Data Discovery
and Augmentation. Proc. VLDB Endow. 14, 12 (2021), 2791-2794.

Moses Charikar. 2002. Similarity estimation techniques from rounding algo-
rithms. In STOC. 380-388.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In KDD. ACM, 785-794.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.
A Simple Framework for Contrastive Learning of Visual Representations. In
ICML, Vol. 119. 1597-1607.

Tianji Cong, James Gale, Jason Frantz, H. V. Jagadish, and Cagatay Demiralp.
2023. WarpGate: A Semantic Join Discovery System for Cloud Data Warehouses.
In CIDR.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: Table
Understanding through Representation Learning. Proc. VLDB Endow. 14, 3 (2020),
307-319.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In NAACL-HLT. 4171-4186.

Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada. 2021.
Efficient Joinable Table Discovery in Data Lakes: A High-Dimensional Similarity-
Based Approach. In ICDE. 456-467.

Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, and Renée J. Miller. 2022. Semantics-
aware Dataset Discovery from Data Lakes with Contextualized Column-based
Representation Learning. CoRR abs/2210.01922 (2022). https://doi.org/10.48550/
arXiv.2210.01922

Mina H. Farid, Alexandra Roatis, Thab F. Ilyas, Hella-Franziska Hoffmann, and
Xu Chu. 2016. CLAMS: Bringing Quality to Data Lakes. In SIGMOD. 2089-2092.
Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A Data Discovery System. In
ICDE. 1001-1012.

Raul Castro Fernandez, Essam Mansour, Abdulhakim Ali Qahtan, Ahmed K.
Elmagarmid, Thab F. Ilyas, Samuel Madden, Mourad Ouzzani, Michael Stone-
braker, and Nan Tang. 2018. Seeping Semantics: Linking Datasets Using Word
Embeddings for Data Discovery. In ICDE. 989-1000.

Sainyam Galhotra and Udayan Khurana. 2020. Semantic Search over Structured
Data. In CIKM. 3381-3384.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In VLDB. Morgan Kaufmann, 518-529.

Hazar Harmouch, Thorsten Papenbrock, and Felix Naumann. 2021. Relational
Header Discovery using Similarity Search in a Table Corpus. In ICDE. 444-455.
Madelon Hulsebos, Kevin Zeng Hu, Michiel A. Bakker, Emanuel Zgraggen,
Arvind Satyanarayan, Tim Kraska, Cagatay Demiralp, and César A. Hidalgo.
2019. Sherlock: A Deep Learning Approach to Semantic Data Type Detection. In
KDD. 1500-1508.

Hiroshi lida, Dung Thai, Varun Manjunatha, and Mobhit Iyyer. 2021. TABBIE:
Pretrained Representations of Tabular Data. In NAACL-HLT. 3446—-3456.
Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-
bauer, Renée J. Miller, and Mirek Riedewald. 2023. SANTOS: Relationship-based
Semantic Table Union Search. In SIGMOD.

Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J. Miller. 2022.
Integrating Data Lake Tables. Proc. VLDB Endow. 16, 4 (2022), 932-945.
Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Katsi-
fodimos. 2021. Valentine: Evaluating Matching Techniques for Dataset Discovery.
In ICDE. 468-479.

Oliver Lehmberg and Christian Bizer. 2017. Stitching Web Tables for Improving
Matching Quality. Proc. VLDB Endow. 10, 11 (2017), 1502-1513.

Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. 2016. A
Large Public Corpus of Web Tables containing Time and Context Metadata. In

1738

[30

[31

[32

(34]

(35]

[36

[37

'@
&

[39

[40]

(41

[42

[43]

[45

[46

[47

(48]

[50

[51

(52]

[53

[54]

[55

[56]

[57

(58]

WWW (Companion Volume). ACM, 75-76.

Aristotelis Leventidis, Laura Di Rocco, Wolfgang Gatterbauer, Renée J. Miller,
and Mirek Riedewald. 2021. DomainNet: Homograph Detection for Data Lake
Disambiguation. In EDBT. 13-24.

Chen Li, Jiaheng Lu, and Yiming Lu. 2008. Efficient Merging and Filtering
Algorithms for Approximate String Searches. In ICDE. 257-266.

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. Proc. VLDB
Endow. 14, 1 (2020), 50-60.

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, Jin Wang, Wataru Hirota, and Wang-
Chiew Tan. 2021. Deep Entity Matching: Challenges and Opportunities. ACM 7.
Data Inf. Qual. 13,1 (2021), 1:1-1:17.

Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. 2010. Annotating
and Searching Web Tables Using Entities, Types and Relationships. Proc. VLDB
Endow. 3, 1 (2010), 1338-1347.

Xiao Ling, Alon Y. Halevy, Fei Wu, and Cong Yu. 2013. Synthesizing Union
Tables from the Web. In IJCAL 2677-2683.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).
Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824-836.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. 2008. Intro-
duction to information retrieval. Cambridge University Press.

Suvodeep Mazumdar and Zigi Zhang. 2016. Visualizing Semantic Table Annota-
tions with TableMiner+. In ISWC, Vol. 1690.

Renée J. Miller. 2018. Open Data Integration. Proc. VLDB Endow. 11, 12 (2018),
2130-2139.

Renée J. Miller, Fatemeh Nargesian, Erkang Zhu, Christina Christodoulakis,
Ken Q. Pu, and Periklis Andritsos. 2018. Making Open Data Transparent: Data
Discovery on Open Data. IEEE Data Eng. Bull. 41, 2 (2018), 59-70.

Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data Lake Management: Challenges and Opportunities. Proc.
VLDB Endow. 12, 12 (2019), 1986—-1989.

Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table
Union Search on Open Data. Proc. VLDB Endow. 11, 7 (2018), 813-825.

Masayo Ota, Heiko Mueller, Juliana Freire, and Divesh Srivastava. 2020. Data-
Driven Domain Discovery for Structured Datasets. Proc. VLDB Endow. 13, 7
(2020), 953-965.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In EMNLP. Association for Computational Lin-
guistics, 3980-3990.

Aécio S. R. Santos, Aline Bessa, Christopher Musco, and Juliana Freire. 2022. A
Sketch-based Index for Correlated Dataset Search. In ICDE. 2928-2941.

Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Y. Halevy, Hongrae Lee, Fei Wu,
Reynold Xin, and Cong Yu. 2012. Finding related tables. In SIGMOD. 817-828.
Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Cagatay Demiralp, Chen
Chen, and Wang-Chiew Tan. 2022. Annotating Columns with Pre-trained Lan-
guage Models. In SIGMOD. 1493-1503.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NeurIPS. 5998-6008.

Petros Venetis, Alon Y. Halevy, Jayant Madhavan, Marius Pasca, Warren Shen,
Fei Wu, Gengxin Miao, and Chung Wu. 2011. Recovering Semantics of Tables
on the Web. Proc. VLDB Endow. 4, 9 (2011), 528-538.

Daheng Wang, Prashant Shiralkar, Colin Lockard, Binxuan Huang, Xin Luna
Dong, and Meng Jiang. 2021. TCN: Table Convolutional Network for Web Table
Interpretation. In WWW. 4020-4032.

Jin Wang, Chunbin Lin, and Carlo Zaniolo. 2019. MF-Join: Efficient Fuzzy String
Similarity Join with Multi-level Filtering. In ICDE. 386-397.

Thomas Wolf, Lysandre Debut, Victor Sanh, and et al. 2020. Transformers:
State-of-the-Art Natural Language Processing. In EMNLP. 38-45.

Jiacheng Wu, Yong Zhang, Jin Wang, Chunbin Lin, Yingjia Fu, and Chunxiao Xing.
2019. Scalable Metric Similarity Join Using MapReduce. In ICDE. 1662-1665.
Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri.
2012. InfoGather: entity augmentation and attribute discovery by holistic match-
ing with web tables. In SIGMOD. ACM, 97-108.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In
ACL. 8413-8426.

Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Cagatay Demiralp,
and Wang-Chiew Tan. 2020. Sato: Contextual Semantic Type Detection in Tables.
Proc. VLDB Endow. 13, 11 (2020), 1835-1848.

Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in Data Lakes for
Interactive Data Science. In SIGMOD. 1951-1966.

Ziqi Zhang. 2017. Effective and efficient Semantic Table Interpretation using
TableMiner®. Semantic Web 8, 6 (2017), 921-957.

https://doi.org/10.48550/arXiv.2210.01922
https://doi.org/10.48550/arXiv.2210.01922

[59] Zixuan Zhao and Raul Castro Fernandez. 2022. Leva: Boosting Machine Learning SIGMOD. 847-864.

Performance with Relational Embedding Data Augmentation. In SIGMOD. 1504— [61] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH
1517. Ensemble: Internet-Scale Domain Search. Proc. VLDB Endow. 9, 12 (2016), 1185—
[60] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE: 1196.

Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In

1739

	Abstract
	1 Introduction
	2 Overview
	2.1 Problem definition
	2.2 System architecture

	3 Learning contextualized column embeddings
	3.1 Background
	3.2 Contrastive Learning Framework
	3.3 Multi-column Table Encoder
	3.4 Table Preprocessing

	4 Online query processing
	4.1 Table-level Matching Score
	4.2 Reducing the Number of Candidates
	4.3 Pruning Mechanism for Verification

	5 Experiments
	5.1 Experiment Setup
	5.2 Results for Effectiveness
	5.3 Scalability
	5.4 Data discovery for ML tasks
	5.5 Case study: Column clustering

	6 Related Work
	6.1 Dataset Discovery
	6.2 Representation Learning for Tables

	7 Conclusion and Future Work
	References

