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ABSTRACT
Data discovery refers to a set of tasks that enable users and down-
stream applications to explore and gain insights from massive col-
lections of data sources such as data lakes. In this tutorial, we will
provide a comprehensive overview of the most recent table dis-
covery techniques developed by the data management community.
We will cover table understanding tasks such as domain discov-
ery, table annotation, and table representation learning which help
data lake systems capture semantics of tables. We will also cover
techniques enabling various query-driven discovery and table ex-
ploration tasks, as well as how table discovery can support key
data science applications such as machine learning and knowledge
base construction. Finally, we will discuss future research direc-
tions on developing new table discovery paradigms by combining
structured knowledge and dense table representations, as well as im-
proving the e�ciency of discovery using state-of-the-art indexing
techniques, and more.
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1 INTRODUCTION
We have witnessed in the last decades a drastic growth in the
number of open and shared datasets coming from governments,
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academic institutes, and private companies. These massive collec-
tions of structured or unstructured datasets, which we refer to as
data lakes, open up new opportunities for innovation, economic
growth, and social bene�ts [39]. As of 2022, the size of US open
data (data.gov) has reached a total of 335k datasets contributing to
$3 trillion of the US economy [9]. WebDataCommons [30] has also
made 233M tables extracted from the open web publicly available.
Data lakes store a wide variety of open-domain knowledge from
sources such as Wikipedia, news articles, and other online sources,
as well as data that is private to an organization or purchased from
data brokers. However, while data lakes are invaluable data sources,
their large size and complexity can make it di�cult for users to �nd
and access the speci�c data that is required by speci�c downstream
applications. To address this issue, the data management commu-
nity has been building data discovery systems [3, 6, 18, 20, 34, 40, 48],
with table discovery from data lakes as the primary application.
Data discovery systems help users quickly and easily explore and
analyze large datasets, enabling them to gain insights and knowl-
edge that can support decision making and other activities.

This tutorial aims at providing a comprehensive overview of the
most recent developments from the database community that enable
the aforementioned data discovery methodologies and systems.
While there are some previous studies about discovery from other
data formats, such as images and JSON [36, 55], we focus on the
discovery from tabular data, which is a primary data format in data
lakes. We will organize our tutorial by taking an architectural view
of table discovery systems depicted in Figure 1. The architecture
highlights key system components (in green) and sub-tasks (in blue)
that are essential building blocks of an end-to-end data discovery
pipeline from raw data lake tables to end-users and downstream
applications.

Firstly, we will have an overview of several table understanding
tasks. Given an input data lake, table discovery systems typically
enrich the raw data lake tables via automatically annotating and
indexing techniques to enable better understanding of table seman-
tics. Annotations such as semantic column types can be further
used to improve the performance of downstream applications (e.g.,
table search). We will focus on the tasks of (1) table annotation [34]
for generating useful meta-data about tables, (2) domain discovery
[33, 45] for identifying novel domains beyond standard DB data
types, (3) machine learning techniques for learning embeddings
[14, 50] of data items in tables (including columns, rows, and entire
tables).
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Figure 1: Overview of table discovery in data lakes.

The table discovery system serves the data lake tables to the end-
users (e.g., data scientists) by enabling them to query and explore
tables that are relevant to their downstream analytic tasks. This
is typically achieved via query driven discovery [43]: given a user
query, retrieve the top-k relevant tables from the data lake. Alter-
natively, some discovery systems support data navigation allowing
a user to navigate through the tables in a data lake using a (dis-
covered) organization for the tables [42] or by exploring individual
tables followed by tables related through a foreign key or other
relationships [18]. And query and navigation can be combined to
create organizations over the set of tables retrieved by search [46]
in an online manner.

For query driven discovery, we will survey the classic query
types includingkeyword search or meta-data search, which of-
ten use table schema including attribute names [4, 47, 54] as sup-
ported by popular systems such as Google dataset search [3, 21].
Importantly, rather than keywords or table schema, an emerg-
ing trend in table discovery systems is to support querying data
lakes using table values (e.g., columns or an entire table). Previ-
ous studies have identi�ed two types of important search queries:
joinable table search [12, 15, 16, 48, 59, 60] and unionable table
search [2, 12, 17, 27, 44]. Joinable table search aims at augmenting a
query table with additional attributes, while unionable table search
is motivated by the need to �nd tables with new tuples to extend
a query table. We will be covering the classic schema-based and
value-based approaches, as well as the latest approaches based on
knowledge graphs [27] and pre-trained language models [17] that
achieve state-of-the-art performance.

We will also cover an emerging trend of performing data discov-
ery to support a variety of data science tasks. One typical example
is the creation and augmentation of training datasets. High-quality
training datasets are often times a prerequisite for the success of
ML models. Data lakes provide a unique opportunity for harvesting
training data. Among those techniques, we will primarily intro-
duce (1) data augmentation [8] that aims at �nding new features to
improve the ML models’ performance and (2) training set discov-
ery/construction [58] which focuses on constructing training data
from a �xed set of tables via learning representations.

Finally, we will present challenges and future research directions
for table discovery. We will cover four main aspects. First, for table
understanding which is core to table discovery, we will discuss the

possibility of combining two lines of already successful approaches:
knowledge based approaches [27, 53] and machine learning based
approaches [14, 17, 23]. We will challenge the community to �nd
synergies between the two approaches by bringing together both
rich structured knowledge from KB’s and highly e�ective dense rep-
resentations fromML. Second, we will further discuss the challenge
of boosting the scalability of discovery systems, especially the is-
sues related to indexing. We will elaborate on why indexing is still a
challenging unsolved problem for data lakes and how some recently
developed techniques on data structures [25], sketching [48], and
vector indices [38] can potentially help. Finally, we will discuss the
challenge of query-time table annotation and a potential research
direction for connecting table discovery with graph mining.

2 TUTORIAL OUTLINE
In this section, we give an overview of the topics that will be covered
in the tutorial. They are depicted in Figure 1 as themain components
of a data discovery system (in green) and applications (in blue) that
are related to table discovery.

2.1 Overview
A popular methodology for table discovery is query-driven dis-
covery [12, 43, 60], where the user starts with a query and aims
to �nd dataset(s) relevant to the query. The query could be either
keywords or tables, while the query type could be exact match,
joinable, unionable, etc. Existing studies support keyword search
over the metadata of tables for users who intend to �nd tables rele-
vant to a topic (Section 2.3). However, the schemas of tables in data
lakes are often unreliable, either missing or incomplete often due
to data being shared in primitive formats like CSV [43]. Even when
metadata is available, the tables often come from a huge variety of
sources meaning the metadata may be inconsistent using di�erent
vocabularies and naming conventions. Thus, two important lines of
work have emerged. The �rst we call Table Understanding, which
are tasks that seek to recover some of the semantics of tables. The
second is data-driven table discovery based on a query table (rather
than metadata), speci�cally joinable table search and unionable
table search. Yet, data-driven table discovery still has ambiguity in
the de�nitions, which have evolved over time. For example, early
work [12] de�nes related tables as schema-complements and entity-
complements based on a de�ned subject attribute that explains
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the table entities. Valentine [28] uses four di�erent notions of join-
ability and unionability depending on the alignment between the
schema of returned tables with that of the query table. Bogatu et
al. [2] simultaneously �nds joinable and unionable tables by em-
ploying �ve di�erent metrics. Thus, de�nitions of �nding related
tables can be very broad, leading to many variations of joinable
and unionable table search, which are discussed in Sections 2.4 and
2.5, respectively. Also, there is another aspect of table discovery
called navigation [46], which can return a collection of tables in a
hierarchical structure that includes not only the contents but also
the relationship of tables in the results.

Besides, the outcome of table discovery can bene�t many related
data science applications. For instance, in the problem of tabular
data classi�cation, joinable table search [15] can help extract richer
features from the data lakes to enrich the original tables in the
training data. And table stitching [29] has been proven rather useful
in supporting knowledge base completion.

2.2 Table Understanding
An early in�uential table discovery system [34] makes use of a
variety of table annotations to perform search. These include anno-
tating cells with entities (from an ontology) that the cell mentions,
annotating columns with ontology types, and annotating pairs of
columns with ontology relationships [34]. The approach uses a
supervised probabilistic graphical model to collectively learn all
types of annotations. Venetis et al. [51] achieves similar goals by
leveraging a proprietary ontology to label columns and binary re-
lationships. More recent work has used labeled training data and
supervised learning to label columns with a set of types. These
studies start from a set of tables annotated with a �xed set of 78
types and train a machine learning model to apply on unlabeled
tables. Sherlock [23] uses a feature-based method to learn column
representations for semantic type detection; while Sato [56] makes
further improvements by incorporating topic modeling methods
(that use row context) for semantic type detection.

Domain discovery is a related problem that aims to identify
sets of terms that represent instances of a semantic concept or
domain from a given collection of tables. Rather than annotating
columnswith types, domain discovery collects all values that belong
to the same domain. Existing solutions [33, 45] are unsupervised
and leverage co-occurrence information to cluster domain terms.
In addition Li et al. [33] select a representative as the domain or
semantic type.

Recently there is a new trend of utilizing pre-trained language
models like BERT to support table annotation applications [14, 50,
52]. The idea is to sequentialize tabular data items by inserting
special tokens and use this representation of tables as input to
perform �ne-tuning over pre-trained language models. This has
been done for a variety of annotation applications, including column
type detection, relation extraction, cell �lling, row population and
schema augmentation [14]. Notably, such studies achieve state-of-
the-art performance on a variety of benchmarking tasks due to the
superior power of language models. We will revisit this observation
when we talk about future challenges (Section 3).

2.3 Keyword Search
For users who intend to �nd tables about a certain topic, some data
discovery systems support keyword search to satisfy this need. Key-
word search was �rst used to �nd tuples within databases [10, 22,
26], but this soon developed into keyword search to �nd relevant
tables, especially in a data lake setting. In this case, a user provides
topic keywords and the data discovery system �nds relevant ta-
bles where di�erent systems have de�ned relevance by proposing
di�erent similarity measurements. The OCTOPUS [4] system sup-
ports keyword search over web tables using document keyword
search to �nd pages and then computes the correlation between
the keywords and each element (cell) in any table extracted from
the document. OCTOPUS returns clusters of tables that share the
same schema. In addition, it infers additional attributes by join-
ing tables. In contrast, Pimplikar and Sarawagi [47] use keyword
queries describing columns and identify a mapping between the
columns of a table and query keywords using table headers, the
text surrounding a table on a webpage, and the data within a table.
To better facilitate keyword search, Google Dataset Search [3, 21]
focuses on integrating and normalizing metadata of tables from
various data sources. It works on cleaning, standardizing, and in-
ferring the metadata of each dataset and the relationships among
di�erent datasets, while organizing them into a knowledge graph to
facilitate retrieval. Keyword search is done only over the metadata,
not the data within a table.

2.4 Joinable Table Search
Except for keyword search, many table discovery systems use the
data values themselves to �nd tables that are related to the col-
umn values of the given query table. One problem that several
approaches aim to solve is joinable table search, with the goal of
�nding relevant tables to join and augment the query table with ad-
ditional attributes. InfoGather [54] allows augmentation of a query
table with new attributes by �rst performing schema matching and
then either augmentation by attribute names or example tuples, or
discovery of related attributes to a given set of entities. Das Sarma
et al. [12] de�nes joinable tables as schema-complements, where
schema matching is conducted using attribute names, types, and
values to �nd joinable attributes and non-matching attributes to
augment with the query. Lehmberg et al. [31] conducts joinable
table search on web tables with an aligned subject attributes by
measuring the Jaccard similarity between the data values, metadata,
and table contexts.

Although early work tended to use Jaccard similarity to measure
the syntactic similarity between attributes, Jaccard has been shown
to be bias attributes with smaller cardinality [1]. This is impractical
in the case of data lake tables, where there is a large skew in the
domain sizes. LSH Ensemble [60] studies the problem of domain
search to solve the problem of joinable table search. For domain
search, it uses set containment to �nd attributes with high overlap
(containment) in values. In this way, it �nds joinable tables by �nd-
ing domains that highly contain the query domain. By employing a
Locality Sensitive Hashing (LSH) index [13] and a data partitioning
scheme that optimally minimizes false negatives, LSH ensemble is
able to �nd joinable tables on a large scale even among attributes
with skewed cardinality distributions. This line of work continues
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with JOSIE [59], which uses set containment to assess the equi-
joinability between columns and returns the exact top-: joinable
tables.

Meanwhile, Juneau [57] supports joinable table search in Jupyter
Notebooks by creating data pro�les using the data values and do-
mains, then performing schema matching. PEXESO [15] addresses
the joinable table search problem using word embeddings. By en-
coding the columns into high-dimensional vectors and �nding the
cosine similarity between vectors, it �nds tables that can be fuzzy
joined using similarity predicates. Santos et al. [48] extends joinable
table search to also �nd top-: tables that are joinable with the query
table and contain numerical columns that are correlated with some
numerical query column. To assist with the retrieval of tables that
are both joinable and correlated, it uses a QCR hashing scheme that
estimates the correlations between join keys and numerical values.
MATE [16] allows for joins over multiple attributes by hashing each
row value and aggregating them into a super key. WarpGate [11]
supports semantic join discovery by using embeddings to capture
semantic relationships between tables and retrieving the top-: join-
able columns to a query column.

2.5 Unionable Table Search
Another data-driven table discovery problem is unionable table
search, with the goal of �nding tables that can be unioned with the
query table to extend it with tuples. However, this problem de�ni-
tion is very vague, leading many systems to create their own inter-
pretation of what it means to be unionable. For example, Das Sarma
et al. [12] �rst de�nes unionable tables as entity-complements that
share a subject attribute and have similar, if not the same schema
as the query table. To this end, it makes use of di�erent ontologies,
including a proprietary one, and table co-occurrences. Relaxing
the strong, and often unrealistic, assumption that unionable tables
share schemas, Nargesian et al. [44] de�nes table union search based
on attribute unionability, in which unionable tables have attributes
that originate from the same domain. It de�nes three probabilistic
models to measure the likelihood that attributes originate from the
same domain andmakes use of syntactic similarity through set over-
lap, semantic similarity using an ontology, and a natural language
measure using word embeddings. It then aggregates the column-
level scores to a table-level unionability score using bipartite graph
matching. Attribute unionability is a muchmore expensive measure
to compute than schema overlap, hence Nargesian et al. [44] use
LSH indices to store column embeddings and return most related
columns in sub-linear time. This approach has been extended to
add in measures that include formatting similarity and attribute
names [2].

SANTOS [27] de�nes table unionability not only based on col-
umns, but also column-to-column relationships. By capturing bi-
nary relationships between column values, SANTOS more accu-
rately de�nes the table semantics and retrieves tables that align
with the intention behind the query, thus reducing false positives
signi�cantly. Using a notion of intent columns to capture the topic(s)
of the tables, SANTOS �nds the semantics of columns and their
relationships using both an existing knowledge graph and a self-
curated knowledge graph, populated with values and relationships
between values from the data lake.

More recently, Starmie [17] extends the notion of capturing bi-
nary relationships in tables to making use of the entire context
within a table. Following the growing success of pre-trained lan-
guage models in encoding column semantics, Starmie leverages
self-supervised learning to encode contextualized column repre-
sentations, such that the entire table context is taken into account.
Starmie then uses indices like LSH and HNSW (Hierarchical Nav-
igable Small World) [38] to �nd column embeddings with high
similarity to those of the query table, and aggregates them into
table-level similarities. By employing a table-context approach to
the unionable table search problem, Starmie has been shown to be
e�ective in e�ciently returning tables with highly-aligned seman-
tics to the query table.

2.6 Data Lake Navigation
Navigation is an alternative way to realize table discovery. Instead
of returning a �at structure such as a list of tables or attributes,
navigation makes use of hierarchies or Directed Acyclic Graphs
(DAG) to organize information about tables. To reach this goal, some
studies [18, 19] help users discover relevant data items by navigating
over a linkage graph. The links or edges in the graph indicate the
relevance between datasets, tables or attributes. Another approach
focuses on constructing a hierarchical structure over data lake
tables that allow users to discover a table relevant to a topic of
interest from the process of navigation over an “organization” of
data lakes [41, 42, 46] Auctus [6] enables dataset search over tables
collected from multiple open-data portals by exploring di�erent
pro�ling and querying and augmentation techniques.

2.7 Support Data Science Applications
The outcome of table discovery can always bene�t a variety of data
science applications in many �elds. A typical example is the ma-
chine learning based ones. ARDA [8] augments the relational table
by relational operations, such as join, projection and aggregation, to
automatically involve richer features to improve machine learning
applications. Leva [58] proposes a graph representation learning
framework to capture inter-table information which can bene�t
related regression and classi�cation applications for tabular data.
It is also illustrated in recent studies [15, 17] that �nding joinable
tables can help improve machine learning tasks. Another import
use case that can bene�t from table discovery is knowledge bases.
This can be realized by table stitching [35], which aims at �nding
pairs of tables with semantically equivalent headers. Lehmberg and
Bizer [29] show that stitching union tables can boost the application
of knowledge base completion via matching facts with contents
from web tables.

3 CHALLENGES AND OPPORTUNITIES
Another important goal of the tutorial will be to present and exam-
ine in detail open challenges and opportunities in data discovery.
Our goal will be to provoke a discussion and interest in this impor-
tant area. To this end, an important role of data discovery systems
is the recovery of semantics. Tables are often shared with limited
or incomplete meta-data or with meta-data that is represented in a
way that is inconsistent with the meta-data of other tables in the
data lake. Current approaches have successfully used knowledge
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bases (KB) to recover semantics as well as a variety of machine
learning approaches from statistical relational models, word embed-
dings, and the dense representations of language models. Common
wisdom says that KBs provide higher precision with possibly low
coverage or recall in contrast to the higher recall of language mod-
els at the cost of some precision [53]. But this trade-o� (and how
to best exploit this trade-o�) has not been formally studied for
data discovery systems. We will examine this trade-o�, how it is
currently handled, and suggest avenues for study.

Many of the approaches we will survey make use of indexes to
provide scalability. The study of data structures in datamanagement
that index a single (or pair) of tables is well developed. Indeed a
periodic table for single table indices has been proposed [25]. But
for data lakes, we require indices over millions of tables or more.
Researchers have employed indices that include variants of the
inverted lists for textual data [16, 37, 59], sketching indices [48],
LSH indices [2, 44, 60] and graph-based indices such as HNSW [38].
However, the community’s study of the properties of such indices
is in its infancy compared to traditional single-table data structures.
Extending current work, the tutorial will present a vision for the
design space of such data structures. Notably this will include issues
like adapting to the data distributions within data lakes which
may vary dramatically between data lakes and which may also be
dynamic in some lakes. This points to the need to develop more
e�ective cost-based and distribution-aware access methods that
optimize access based on the data distribution and points to the
question of whether learned indices can be e�ective beyond single
table data structures [24, 49].

Current data discovery systems have o�ine components that
process the whole data lake to do a variety of annotation tasks
like annotating columns with semantic types or domains. Similarly,
they may create column, row, or table representations that can
then be indexed to use in online components like search or naviga-
tion. Moving between these two modes is an interesting research
direction. For example, RONIN [46] creates (in an online fashion)
navigations over the set of tables returned by a search query. In
this tutorial, we will discuss some of the challenges with making se-
mantic annotation solutions that are“query time" rather than batch
o�ine tasks.

Many data lake solutions make use of knowledge graphs. Rather
than viewing knowledge graphs as a static resource, an interesting
open challenge is to view the data lake as a source of knowledge
that can be utilized to verify and augment knowledge graphs. SAN-
TOS [27] takes a step in this direction by creating a synthesize
knowledge graph from parts of a data lakes that are not covered by
existing knowledge graph. Integrating table discovery, both query
and navigation, more comprehensively with knowledge graph aug-
mentation is another theme we will highlight. Additionally, a data
lake can itself be modeled as a graph or network. Such a view lets
us use graph mining and network measures to better understand
the data lake. One approach in this direction used graph centrality
measures to �nd ambiguous values (homographs) within a data
lake [32]. Another interesting direction is scaling up the graph
embedding techniques developed for single tables [5] to massive
table collections like data lakes. We will discuss other ways of using
graph mining and network science to enhance table discovery.

4 TUTORIAL LOGISTICS
Target AudienceDataset discovery from data lakes has been a pop-
ular topic in the database community. As the presenters come from
both academia and industrial institutes and have experience with
data discovery practice, this tutorial targets researchers, engineers
and practitioners with an interest in tabular data management. For
database researchers, this tutorial can provide a comprehensive
survey on recent studies and a vision of interesting opportunities
in this �eld; Engineers and practitioners can expect the tutorial
to provide useful insights in discovering datasets from large-scale
data lake tables which is common in real commercial production
pipelines. The expected background of this tutorial is that of an un-
dergraduate level course of database systems. Some studies covered
in the tutorial also requires related techniques about information
retrieval and machine learning. Importantly, we will focus on data
management innovations over the search/IR innovations covered
elsewhere [7]. We will carefully provide necessary background
knowledge and terminologies to help attendees unfamiliar with the
topic to understand the basic concepts and problem settings.
Previous Tutorials This tutorial is spiritually connected to a previ-
ous one titled “Data Lake Management: Challenges and Opportuni-
ties” presented by Fatemeh Nargesian, Erkang Zhu, Renée J. Miller,
Ken Q. Pu and Patricia C. Arocena in VLDB 2019 [43]. However, this
tutorial substantially di�ers from the above tutorial in two aspects:
(i) while the above tutorial provided a comprehensive overview
of topics related to data lakes, this tutorial focused on the speci�c
topic of dataset discovery from data lakes and make an in-depth
discussion about its related works; (ii) this tutorial includes the sig-
ni�cant new work since 2019 so as to cover the up-to-date advances
in this important and growing �eld.
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