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Aerodynamic effects can become dangerous when a drone follows a path at high speed even
in the absence of wind. This paper studies a method to ensure that a quadrotor drone follows a
2D high-speed trajectory in the presence of safety constraints. A reference governor control is
implemented to make the drone follow its trajectory, while respecting a set of constraints that
includes polynomial constraints when aerodynamic effects are modelled. The method is based
on a recent state space augmentation technique that converts polynomial constraints into linear
constraints. For the first time, this state augmentation technique is applied to flight envelope
protection for tracking high-speed trajectories using a reference governor to alter the reference
trajectory to protect the flight envelope. Simulation results for the proposed algorithms are
reported when a drone follows a circular trajectory with increasing speed.

Nomenclature

𝑒1, 𝑒2, 𝑒3 = inertial frame
𝑥, 𝑦, 𝑧 = 3D position of the drone with respect to the inertial frame, 𝑚
𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 = linear velocities expressed in the inertial frame, 𝑚/𝑠
𝑚 = drone mass, kg
𝑔 = gravitational acceleration, 𝑚/𝑠2
𝑐 = mass normalized collective thrust, 𝑚/𝑠2
𝜃, 𝜙, 𝜓 = Euler angles (pitch,roll,yaw), rad
𝑝, 𝑞, 𝑟 = angular velocities expressed in the body frame, rad/s
𝐽𝑥𝑥 , 𝐽𝑦𝑦 , 𝐽𝑧𝑧 = inertia coefficients of the diagonal inertia matrix J, 𝑘𝑔.𝑚2

𝜏1, 𝜏2, 𝜏3 = torque produced by the propellers in the body frame, Nm
𝑀eff = control effectiveness matrix
𝑇𝑖 = individual thrust produced by the i-th propeller, 𝑖 ∈ {1, 4}, 𝑁
𝑋lon = column vector [𝑣𝑥 ; 𝜃; 𝑞], [m/s; rad; rad/s]
𝑋lat = column vector [𝑣𝑦; 𝜙; 𝑝], [m/s; rad; rad/s]

I. Introduction
Quadrotor unmanned aerial vehicles (or UAVs) are some of the most popular UAV platforms as their underactuated

and unstable dynamics allow them to perform aggressive flight maneuvers. Controlling quadrotor drones has traditionally
been done by neglecting aerodynamic effects which only become relevant outside of hover conditions [1]. Consideration
of aerodynamic effects has recently become a popular research area, as these can no longer be overlooked when a drone
is operating at high speed and/or in high wind conditions. During high speed flight, quadrotor drones are subjected to
aerodynamic effects such as rotor drag, blade flapping, and thrust variation due to induced velocity changes [2].

Most of the previous research on the aerodynamics of quadrotor UAVs has been based on helicopter aerodynamics
[3, 4]. In [5], first order aerodynamic effects were investigated, while in [6] the effects of drag and thrust power were
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investigated near hover conditions. A drag-augmented control scheme for quadrotor drones was developed in [7].
Techniques which take drag into account near hover conditions are presented in [8–10]. Blade flapping during the
ascent and descent stages of flight are considered in the control design in [11]. Increasing flight speeds and the resulting
aerodynamic effects from blade flapping and thrust variation were addressed in [12]. In [13], an analysis of blade
flapping and thrust variation is taken into consideration when developing models and control methods for quadrotor
UAVs. Rotor drag effects in quadrotor drones were studied in [7, 9, 14] and the same effects were studied in vehicles
capable of vertical take-off and landing (or VTOLs) in [15]. The authors in [1] developed a control method for improving
trajectory tracking while considering rotor drag, an improvement over previous methods which treated aerodynamic
effects as disturbances which led to increasing trajectory following error as speed increased. By contrast, this work will
consider the aerodynamics in the control of a quadrotor while ensuring that the safe flight envelope (or SFE) is protected.

The capabilities of an aircraft in terms of speed, load, and altitude are referred to as its flight envelope. Ensuring
that an aircraft remains within its flight envelope is essential to prevent loss of control (or LoC). Since quadrotor drones
are unstable, preventing LoC is crucial to ensure their safety [16]. A SFE must be predicted accurately for an aircraft to
prevent LoC. Envelope protection currently entails preventing specific constraint violations [17]. Existing literature on
defining SFEs for commercial fixed-wing aircraft is available [18–20] but there is little research on the SFE for quadrotor
drones. In [21], the authors predict the SFE for a quadrotor moving at high speeds using Monte Carlo simulations.

By contrast, the present work is devoted to methods that are based on reference governors. Reference governors are
add-on schemes which modify the reference signal that is fed into the nominal controller to satisfy constraints [22].
Should the constraints be satisfied by the original reference signal, the reference governor is inactive. Since LoC is to be
avoided and additional safety constraints must be satisfied during quadrotor flight, a reference governor approach is
employed in this work to ensure constraint satisfaction. Conventional reference governors are based on the maximum
output admissible set (or MOAS) which is the set of all initial states and constant reference commands for which the
ensuing response satisfies the constraints. The computation of the MOAS gives a forward invariant set which provides a
safe set that must contain the state at all times. Reference governor approaches have been used in different applications
such as automotive applications [23] (including rollover avoidance [24, 25]), as well as constrained control of UAVs [26].
With the MOAS providing a safe set in which the state of the system may exist, invariant inner approximations of this
set, represented by a finite number of inequalities, can be computed easily when both the system dynamics and output
constraints are linear. A design for a reference governor for linear systems with polynomial constraints and constant
reference commands was developed in [27]. This approach augmented the system state to include the output signal from
the reference governor and the constant reference command. The Kronecker product was then used to embed the linear
system into another higher dimensional linear system which encompassed the state of the original linear system plus its
higher order powers. Originally polynomial constraints would become linear in terms of the new extended state. The
approach was shown to successfully satisfy linear state constraints and polynomial actuator constraints in [28].

In this paper, this state augmenting reference governor approach is employed to control a quadrotor drone at high
speeds and therefore, subject to aerodynamic effects. This new application was beyond the scope of previous research
on this control problem. The reference governor ensures constraint satisfaction, to protect the SFE. The drone model
including aerodynamic effects is first presented followed by an explanation of the tracking control method. Propeller
thrust limitations are then reformulated as polynomial quadratic constraints which must be satisfied. The modifications
to the traditional reference governor scheme to handle polynomial constraints are then reviewed. Lastly, simulations in
which a quadrotor drone follows a circular trajectory at increasing speeds are presented. It is shown that the control
methodology developed in this paper is capable of controlling a drone as it follows a circular trajectory at increasing
speeds in the presence of aerodynamic effects and that the drone can safely stop when it becomes dangerous to track it.

II. Problem formulation

A. Modeling
As was proposed in [7], this paper considers the quadrotor model of [1] assuming no wind, rigid propellers, and no

dependence of the rotor drag on thrust. Thrust is modelled as in [2]. As the vehicle moves in a direction, the advancing
blade produces a larger relative air velocity than the retreating blade. This causes aerodynamic forces depending on
air-velocity to be greater on the advancing blade than the retreating blade. The force imbalance leads to nonzero net
forces and torques on the vehicle [7, 9, 29]. The translation equations of motion involving aerodynamic effects are

¤𝑣 = −𝑔𝑒3 + 𝑐𝑅𝑒3 − 𝑅𝐷𝑅𝑇𝑣 − 𝑅𝐶Ω
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where 𝑣 = [𝑣𝑥 𝑣𝑦 𝑣𝑧]𝑇 is the velocity, 𝑅 is the rotation matrix representing the quadrotor’s orientation, and Ω = [𝑝 𝑞 𝑟]𝑇
is the angular velocity. The rotational equations of motion are given by

𝐽 ¤Ω = −Ω × 𝐽Ω − 𝜏𝐺 + 𝜏 − 𝐴𝑅𝑇𝑣 − 𝐵Ω

where 𝜏𝐺 indicates gyroscopic torques from the propellers and 𝜏 = [𝜏1 𝜏2 𝜏3]. The matrix 𝐷 incorporates the effects
of the force imbalance as a result of the difference of air-velocities between the advancing and retreating blades. The
constant matrices 𝐴 and 𝐵 encapsulate the effects of rotor drag and blade flapping on the rotation of the vehicle. This
work considers the aforementioned model but simplifies it by assuming:

• the propellers are rigid (i.e., 𝐶 = 0),
• the collective thrust remains equal to the commanded collective thrust,
• the yaw angle 𝜓 and its derivatives remain equal to 0,
• the drone flies at a constant altitude 𝑧,
• the pitch and roll angles are small all the time, and
• the inertia matrix is diagonal and 𝐽𝑥𝑥 = 𝐽𝑦𝑦 .

Under these approximations, the rotation matrix is approximated by the matrix 𝑅 that is defined by

𝑅 =


1 0 𝜃

0 1 −𝜙
−𝜃 𝜙 1

 (1)

and the following equations of motion for the quadrotor were derived by keeping only the linear and quadratic terms:

¤𝑥 = 𝑣𝑥 (2)

¤𝑦 = 𝑣𝑦 (3)
¤𝑣𝑥 = 𝑔𝜃 − 𝑑𝑥𝑣𝑥 (4)
¤𝑣𝑦 = −𝑔𝜙 − 𝑑𝑦𝑣𝑦 (5)

¤𝜙 = 𝑝 (6)
¤𝜃 = 𝑞 (7)

𝐽𝑥𝑥 ¤𝑝 = 𝜏1 − 𝑎11𝑣𝑥 − 𝑎12𝑣𝑦 − 𝑎13 (𝜃𝑣𝑥 − 𝜙𝑣𝑦) − 𝑏11𝑝 − 𝑏12𝑞 (8)
𝐽𝑦𝑦 ¤𝑞 = 𝜏2 − 𝑎21𝑣𝑥 − 𝑎22𝑣𝑦 − 𝑏21𝑝 − 𝑎23 (𝜃𝑣𝑥 − 𝜙𝑣𝑦) − 𝑏22𝑞 (9)

The aerodynamic effects are captured in the terms which depend on 𝑑𝑥 and 𝑑𝑦 and matrices 𝐴 ∈ R3×3 and 𝐵 ∈ R3×3.
Here, 𝐴 = [𝑎𝑖 𝑗 ], and 𝑑𝑥 and 𝑑𝑦 are the components of 𝐷 which are mass-normalized rotor-drag coefficients reflecting
the force imbalance on the vehicle. Considering the assumptions regarding constant altitude 𝑧 and from the assumptions
regarding yaw that 𝜓 = 𝑟 = 0 all the time, the following equalities hold:

¤𝑣𝑧 = 0 = −𝑔 + 𝑐 + 𝑑𝑥𝜃𝑣𝑥 − 𝑑𝑦𝜙𝑣𝑦
¥𝜓 = 0 = 𝜏3 − 𝑎31𝑣𝑥 − 𝑎32𝑣𝑦 − 𝑎33 (𝜃𝑣𝑥 − 𝜙𝑣𝑦)

(10)

Eq. (10) gives the mass-normalized collective thrust 𝑐 and the torque 𝜏3 applied around the 𝑧-axis in the body frame.

B. Trajectory tracking
First a simple change of coordinates is used to decouple the 𝑥 and 𝑦 dynamics. The new coordinates

𝑢1 = 𝜏1 − 𝑎11𝑣𝑥 − 𝑏12𝑞 − 𝑎13 (𝜃𝑣𝑥 − 𝜙𝑣𝑦)
𝑢2 = 𝜏2 − 𝑎22𝑣𝑦 − 𝑏21𝑝 − 𝑎23 (𝜃𝑣𝑥 − 𝜙𝑣𝑦)

(11)

and applying the change of variables to the equations of motion result in two decoupled systems:
¤𝑥 = 𝑣𝑥

¤𝑣𝑥 = 𝑔𝜃 − 𝑑𝑥𝑣𝑥
¤𝜃 = 𝑞

𝐽𝑦𝑦 ¤𝑞 = 𝑢2 − 𝑎21𝑣𝑥 − 𝑏22𝑞

(12)
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and 
¤𝑦 = 𝑣𝑦

¤𝑣𝑦 = −𝑔𝜙 − 𝑑𝑦𝑣𝑦
¤𝜙 = 𝑝

𝐽𝑥𝑥 ¤𝑝 = 𝑢1 − 𝑎12𝑣𝑦 − 𝑏11𝑝

(13)

In the sequel, the decoupled systems in Eq. (12) and Eq. (13) are called the longitudinal and lateral motions, respectively.

1. Longitudinal tracking
For reasons that will become clear later when a reference governor is applied, the trajectory tracking problem in the

longitudinal plane is reformulated as a velocity tracking problem where the velocity 𝑣𝑥 can track a given time-varying
reference. Our analysis will use the output of the following position control loop:

𝑣𝑑𝑥 = −𝑘 𝑝 (𝑥 − 𝑥𝑐) + ¤𝑥𝑐 (14)

where 𝑥𝑐 (𝑡) is the desired reference trajectory for 𝑥(𝑡) to track, and 𝑘 𝑝 > 0 is a tuning gain.
The torque controller is then computed. Using Eq. (12), one obtains the third derivative

𝑣
(3)
𝑥 =

𝑔

𝐽𝑦𝑦
(𝑢2 − 𝑎21𝑣𝑥 − 𝑏22𝑞) − 𝑑𝑥 (𝑔𝑞 − 𝑑𝑥 (𝑔𝜃 − 𝑑𝑥𝑣𝑥)). (15)

We next specify 𝑢2 such that the 𝑣𝑥 dynamics enjoy suitable asymptotic tracking properties, through the specification of
roots of a polynomial differential operator. This will entail tracking a reference signal 𝑣lon. We pick 𝜏2 such that the
coordinate 𝑢2 in Eq. (11) is

𝑢2 = 𝑎21𝑣𝑥 + 𝑏22𝑞 +
𝐽𝑦𝑦

𝑔

[
𝑑𝑥 (𝑔𝑞 − 𝑑𝑥 (𝑔𝜃 − 𝑑𝑥𝑣𝑥)) − 𝑘3𝑣

(2)
𝑥 − 𝑘2 ¤𝑣𝑥 − 𝑘1𝑣𝑥 + 𝑘1𝑣lon

]
(16)

=

(
𝑎21 +

𝐽𝑦𝑦

𝑔
(𝑑3

𝑥 − 𝑘3𝑑
2
𝑥 + 𝑘2𝑑𝑥 − 𝑘1)

)
𝑣𝑥 +

𝐽𝑦𝑦

𝑔

(
−𝑑2

𝑥𝑔 + 𝑘3𝑑𝑥𝑔 − 𝑘2𝑔
)
𝜃 +

(
𝑏22 + 𝐽𝑦𝑦 (𝑑𝑥 − 𝑘3)

)
𝑞

+
𝐽𝑦𝑦

𝑔
𝑘1𝑣lon. (17)

This leads to

𝑣
(3)
𝑥 = −𝑘3𝑣

(2)
𝑥 − 𝑘2𝑣

(1)
𝑥 − 𝑘1𝑣𝑥 + 𝑘1𝑣lon (18)

where 𝑘1, 𝑘2, and 𝑘3 are chosen such that the following polynomial 𝑠3 + 𝑘3𝑠
2 + 𝑘2𝑠 + 𝑘1 is Hurwitz, i.e., all roots of

𝑄(𝑠) = 𝑠3 + 𝑘3𝑠
2 + 𝑘2𝑠 + 𝑘1 have negative real parts, so each solution of Eq. (18) asymptotically converges to the

particular solution 𝑣lon of the linear differential equation 𝑄(𝐷)𝑣𝑥 = 𝑘1𝑣lon when 𝑣lon is constant. We rewrite Eq. (16)
more concisely as

𝑢2 = −𝐾lon𝑋lon +
𝐽𝑦𝑦

𝑔
𝑘1𝑣lon (19)

with 𝑋lon = [𝑣𝑥 , 𝜃, 𝑞]𝑇 . The pre-stabilized 𝑋lon subsystem from Eq. (12) with the choice from Eq. (19) is then rewritten
as

¤𝑋lon = 𝐴lon𝑋lon + 𝐵lon𝑣lon (20)

Next, consider the case where 𝑣lon is time-varying and satisfies 𝑘1𝑣lon (𝑡) = 𝑟2 (𝑡) where in terms of Eq. (14),

𝑟2 (𝑡) = 𝑘1𝑣
𝑑
𝑥 + 𝑘2𝑣

(1) ,𝑑
𝑥 + 𝑘3𝑣

(2) ,𝑑
𝑥 + 𝑣 (3) ,𝑑𝑥 (21)

= −𝑘1𝑘 𝑝𝑥 + (−𝑘2𝑘 𝑝 + 𝑘3𝑘 𝑝𝑑𝑥 − 𝑘 𝑝𝑑2
𝑥)𝑣𝑥 + (−𝑘3𝑘 𝑝𝑔 + 𝑘 𝑝𝑔𝑑𝑥)𝜃 − 𝑘 𝑝𝑔𝑞 + 𝑘1𝑘 𝑝𝑥𝑐

+(𝑘1 + 𝑘2𝑘 𝑝) ¤𝑥𝑐 + (𝑘2 + 𝑘 𝑝𝑘3) ¥𝑥𝑐 + (𝑘 𝑝 + 𝑘3)𝑥 (3)𝑐 + 𝑥 (4)𝑐 , (22)

where the successive time derivatives 𝑣 (1) ,𝑑𝑥 , 𝑣 (2) ,𝑑𝑥 and 𝑣 (3) ,𝑑𝑥 of 𝑣𝑑𝑥 were computed as follows using Eqs. (12) and (14):

𝑣
(1) ,𝑑
𝑥 = −𝑘 𝑝 ( ¤𝑥 − ¤𝑥𝑐) + ¥𝑥𝑐 = −𝑘 𝑝 (𝑣𝑥 − ¤𝑥𝑐) + ¥𝑥𝑐 (23)
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𝑣
(2) ,𝑑
𝑥 = −𝑘 𝑝 ( ¥𝑥 − ¥𝑥𝑐) + 𝑥 (3)𝑐 = −𝑘 𝑝 (𝑔𝜃 − 𝑑𝑥𝑣𝑥 − ¥𝑥𝑐) + 𝑥 (3)𝑐 (24)

𝑣
(3) ,𝑑
𝑥 = −𝑘 𝑝 (𝑥 (3) − 𝑥 (3)𝑐 ) + 𝑥 (4)𝑐 = −𝑘 𝑝 (𝑔𝑞 − 𝑑𝑥 (𝑔𝜃 − 𝑑𝑥𝑣𝑥) − 𝑥 (3)𝑐 ) + 𝑥 (4)𝑐 (25)

Also, Eq. (18) with 𝑘1𝑣lon = 𝑟2 (𝑡) and Eq. (21) give 𝑣 (3)𝑥 = −𝑘3𝑣
(2)
𝑥 − 𝑘2𝑣

(1)
𝑥 − 𝑘1𝑣𝑥 + 𝑘1𝑣

𝑑
𝑥 + 𝑘2𝑣

(1) ,𝑑
𝑥 + 𝑘3𝑣

(2) ,𝑑
𝑥 + 𝑣 (3) ,𝑑𝑥

and so also

𝑣
(3)
𝑥 − 𝑣 (3) ,𝑑𝑥 = −𝑘3 (𝑣 (2)𝑥 − 𝑣 (2) ,𝑑𝑥 ) − 𝑘2 (𝑣 (1)𝑥 − 𝑣 (1) ,𝑑𝑥 ) − 𝑘1 (𝑣𝑥 − 𝑣𝑑𝑥 ) (26)

which, using Eqs. (2) and (14), can be rewritten as

𝑥 (4) − (−𝑘 𝑝 (𝑥 (3) − 𝑥 (3)𝑐 ) + 𝑥 (4)𝑐 ) = −𝑘3 (𝑥 (3) − (−𝑘 𝑝 ( ¥𝑥 − ¥𝑥𝑐) + 𝑥 (3)𝑐 )) − 𝑘2 (𝑥 (2) − (−𝑘 𝑝 ( ¤𝑥 − ¤𝑥𝑐) + ¥𝑥𝑐)) (27)
−𝑘1 ( ¤𝑥 − ¤𝑥𝑐 + 𝑘 𝑝 (𝑥 − 𝑥𝑐))

which means that 𝑥(𝑡) − 𝑥𝑐 (𝑡) exponentially converges to 0 as 𝑡 → +∞ when 𝑘 𝑝 , 𝑘1, 𝑘2, and 𝑘3 are chosen such that all
roots of the characteristic polynomial 𝑠4 + (𝑘3 + 𝑘 𝑝)𝑠3 + (𝑘2 + 𝑘3𝑘 𝑝)𝑠2 + (𝑘1 + 𝑘2𝑘 𝑝)𝑠 + 𝑘1𝑘 𝑝 for the 𝑥 − 𝑥𝑐 dynamics
have negative real parts.

Therefore, 𝑢2 was designed such that when 𝑣lon is constant, then 𝑣𝑥 asymptotically tracks the constant 𝑣lon, but when
𝑘1𝑣lon = 𝑟2 (𝑡), then 𝑥 asymptotically tracks 𝑥𝑐.

2. Lateral tracking
One can derive the same type of velocity controller in the lateral plane by essentially replacing 𝑔 by −𝑔 in the

calculations and use the lateral variables and Eqs. (11) and (13) instead of the longitudinal ones. Doing so, one gets:

𝑢1 =

(
𝑎12 +

𝐽𝑥𝑥

−𝑔 (𝑑3
𝑦 − 𝑘3𝑑

2
𝑦 + 𝑘2𝑑𝑦 − 𝑘1)

)
𝑣𝑦 +

𝐽𝑥𝑥

−𝑔

(
−𝑑2

𝑦 (−𝑔) + 𝑘3𝑑𝑦 (−𝑔) − 𝑘2 (−𝑔)
)
𝜙 (28)

+
(
𝑏11 + 𝐽𝑥𝑥 (𝑑𝑦 − 𝑘3)

)
𝑝 + 𝐽𝑥𝑥−𝑔 𝑘1𝑣lat

= −𝐾lat𝑋lat −
𝐽𝑥𝑥

𝑔
𝑘1𝑣lat (29)

where 𝑋lat = [𝑣𝑦 , 𝜙, 𝑝]𝑇 . Again, 𝑦 follows 𝑦𝑐 when 𝑘1𝑣lat (𝑡) = 𝑟1 (𝑡) where

𝑟1 (𝑡) = −𝑘1𝑘 𝑝𝑦 + (−𝑘2𝑘 𝑝 + 𝑘3𝑘 𝑝𝑑𝑦 − 𝑘 𝑝𝑑2
𝑦)𝑣𝑦 + (−𝑘3𝑘 𝑝 (−𝑔) + 𝑘 𝑝 (−𝑔)𝑑𝑦)𝜙 − 𝑘 𝑝 (−𝑔)𝑝 + 𝑘1𝑘 𝑝𝑦𝑐

+(𝑘1 + 𝑘2𝑘 𝑝) ¤𝑦𝑐 + (𝑘2 + 𝑘 𝑝𝑘3) ¥𝑦𝑐 + (𝑘 𝑝 + 𝑘3)𝑦 (3)𝑐 + 𝑦 (4)𝑐 (30)

and where 𝑣𝑑𝑦 = −𝑘 𝑝 (𝑦 − 𝑦𝑐) + ¤𝑦𝑐. The pre-stabilized lateral system is then finally denoted by:

¤𝑋lat = 𝐴lat𝑋lat + 𝐵lat𝑣lat (31)

C. Reformulation of the propellers thrust limitations as polynomial quadratic constraints
The collective thrust and torques are given by: 

𝑚𝑐

𝜏1

𝜏2

𝜏3


= 𝑀eff


𝑇1

𝑇2

𝑇3

𝑇4


(32)

where 𝑇𝑖 is the individual thrust of the rotor 𝑖, and where the control effectiveness matrix 𝑀eff is invertible and is one of
a quadrotor operating in the cross configuration:

𝑀eff =


1 1 1 1
𝑙 0 −𝑙 0
0 −𝑙 0 𝑙

𝜌 −𝜌 𝜌 −𝜌


(33)
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where 𝑙 > 0 is the length of each rotor from the center and 𝜌 =
𝐶𝑡

𝐶𝑚
> 0 is the thrust to torque ratio of the rotor blades [2].

Each 𝑇𝑖 is bounded within the range [0, 𝑇𝑚𝑎𝑥], which by virtue of Eqs. (10)-(11), (19), and (29), means that the
following constraints need to be satisfied:

𝑀−1
eff


𝑚𝑐

𝜏1

𝜏2

𝜏3


= 𝑀−1

eff


𝑚𝑔 − 𝑚𝑑𝑥𝜃𝑣𝑥 + 𝑚𝑑𝑦𝜙𝑣𝑦

−𝐾latt𝑋lat − 𝐽𝑥𝑥
𝑔
𝑘1𝑣lat + 𝑎11𝑣𝑥 + 𝑏12𝑞 + 𝑎13 (𝜃𝑣𝑥 − 𝜙𝑣𝑦)

−𝐾lon𝑋lon +
𝐽𝑦𝑦

𝑔
𝑘1𝑣lon + 𝑎22𝑣𝑦 + 𝑏21𝑝 + 𝑎23 (𝜃𝑣𝑥 − 𝜙𝑣𝑦)

𝑎31𝑣𝑥 + 𝑎32𝑣𝑦 + 𝑎33 (𝜃𝑣𝑥 − 𝜙𝑣𝑦)


∈ [0, 𝑇𝑚𝑎𝑥]4 (34)

Note that these constraints have both linear and quadratic terms in its variables 𝑋lon, 𝑣lon, 𝑋lat and 𝑣lat. This motivates
our application of ideas from [27] for augmenting the state vector to convert nonlinear constraints into linear ones. We
turn to this significant novel application next.

III. Reference governor design in the presence of polynomial constraints

A. Preliminaries
We next briefly summarize notation used in [27]. The Kronecker product of matrices 𝐴 and 𝐵 is denoted by 𝐴 ⊗ 𝐵.

Given a vector 𝑋 ∈ R𝑛𝑥 for a positive integer 𝑝, its powers 𝑋 𝑝⊗ ∈ R𝑝𝑛𝑥 are defined recursively using the Kronecker
product of two column vectors. Since 𝑋 𝑝⊗ possesses repeated entries, we find it more convenient to use a vector 𝑋 𝑝

that removes the repeated components of 𝑋 𝑝⊗ , i.e., 𝑋 𝑝 is a vector whose entries consist of all monomials 𝑋 𝑖1
1 . . . 𝑋

𝑖𝑥
𝑛𝑥

for which the indices satisfy 𝑖1 + . . . + 𝑖𝑛𝑥
= 𝑝. The preceding relations were used to convert polynomial constraints into

linear constraints in [27], which also entails augmenting the state space. We next illustrate how this can be done for the
tracking problem we considered above, using a novel application of reference governors.

B. Problem position
Based on the previous section, we have these equations of motion when one applies the controllers (19) and (29):{

¤𝑋lon = 𝐴lon𝑋lon + 𝐵lon𝑣lon
¤𝑋lat = 𝐴lat𝑋lat + 𝐵lat𝑣lat

(35)

We can also add the reference dynamics when one designs the reference governor that is defined by

¤𝑣lon = −𝛽𝑣lon and ¤𝑣lat = −𝛽𝑣lat (36)

where 𝛽 > 0 is a constant. The interpretation of the alternative add-on dynamics in Eq. (36) is as follows. The dynamics
of 𝑣lon and 𝑣lat are as specified in the previous section when no constraint violations occur. Then, they switch to the
dynamics in Eq. (36) when there is a constraint violation, and then they switch back to the dynamics from the previous
section when the violations cease to occur. The drone will track the desired trajectory (𝑥𝑐, 𝑦𝑐) when 𝑘1𝑣lon (𝑡) = 𝑟2 (𝑡)
and 𝑘1𝑣lat (𝑡) = 𝑟1 (𝑡). Hence, the main idea of the reference governor method is to change the reference signal to the
system from that of the nominal control whenever constraints are about to be violated according to Eq. (36) and remain
inactive otherwise.

By Eq. (12) and Eq. (13), the position is computed from the velocities by using
¤𝑥 =

[
1 0 0

]
𝑋lon

¤𝑦 =

[
1 0 0

]
𝑋lat

(37)

Here we follow the recently proposed method in [27] in order to consider polynomial constraints. The polynomial
constraints (34) are quadratic, so the state is augmented with [𝑋lon, 𝑣lon, 𝑋lat, 𝑣lat]2. This gives a system of the form:

¤𝑋𝑣 = Φ𝑋𝑣 (38)

where 𝑋𝑣 = [[𝑋lon, 𝑋lat, 𝑣lon, 𝑣lat], [𝑋lon, 𝑋lat, 𝑣lon, 𝑣lat]2]. Using this augmented state, the polynomial constraints (34)
are now expressed as linear constraints.

6

D
ow

nl
oa

de
d 

by
 7

2.
20

3.
13

3.
17

0 
on

 Ja
nu

ar
y 

19
, 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
23

-1
44

2 



C. Reference governor design
We use the reference governor design method that recently proposed in [27] after calculating the exact discretization

of system Eq. (38) for a given sampling period. We recall here the main idea of the algorithm proposed in [27]. The
reference governor design is based on the off-line calculation of two maximal output admissible sets (or MOAS).

• First, the MOAS 𝑂∞,𝑍1 is computed for Eq. (35) subject to linear constraints. The linear constraints are simple
min/max constraints on the pitch and roll angles, and collective thrust and torques. The calculation of this compact
set makes it possible to determine bounds on each component of the augmented state 𝑋𝑣 .

• Second, another MOAS, called 𝑂∞,𝑍 , is computed for the pre-stabilized and augmented system in Eq. (38)
subject to the original polynomial constraints in Eq. (34) (which are linear constraints of the augmented state)
plus additional linear constraints which are defined by the bounds of the augmented state 𝑋𝑣 .

• Finally, the reference governor solves a constrained nonlinear minimization problem at the initialization step
(which can be done off-line for a grid of initial states) and then runs a bisection algorithm on-line at the subsequent
time steps.

IV. Numerical results
We report numerical results when 𝑑𝑥 = 0.544, 𝑑𝑦 = 0.236, and the matrices 𝐴 and 𝐵 are all equal to zero. The

sampling period is 10𝑚𝑠 when one designs the reference governor for the discretization of the original continuous
time model. Following Section III and the algorithm of [27], we choose 𝛽 = 0.98 and first compute the MOAS 𝑂∞,𝑍1

in the presence of the linear constraints. This set is finitely determined in 𝑡∗ = 84 iterations and is defined by 252
non-redundant linear inequalities. Then, 𝑂∞,𝑍 is determined when we extend the state and add the nonlinear constraint.
Here, 𝑂∞,𝑍 is determined in 𝑡∗ = 142 iterations and is defined by 390 non-redundant linear inequalities.

In these simulations, the proposed reference governor is implemented and allows the thrust constraints 𝑇𝑖 ∈ [0, 𝑇max]
to be satisfied for 𝑖 = 1, 2, 3, 4, as well as the constraints 𝜃 ∈ [𝜃min, 𝜃max] and 𝜙 ∈ [𝜙min, 𝜙max] on the pitch and roll
angles with 𝜙max = 𝜃max = −𝜙min = −𝜃min = 25deg. The maximum thrust of each propeller is 𝑇max = 4.5𝑁 . The gains
of the nominal controllers are 𝑘 𝑝 = 2, 𝑘1 = 467, 𝑘2 = 196, and 𝑘3 = 24. The reference trajectory is a circular one
centered at (0, 0) with 𝑥𝑐 (𝑡) = 𝑅 cos(𝜔𝑡) and 𝑦𝑐 (𝑡) = 𝑅 sin(𝜔𝑡) with 𝑅 = 1.8𝑚.

A. Starting close to the reference trajectory and following it at moderate speed
First, an angular speed of 𝜔 = 1rad/s is chosen and the initial condition [𝑥(0), 𝑦(0)] = [𝑥𝑐 (0), 𝑦𝑐 (0)] + [0.5, 0.5]m

near the desired reference trajectory is also chosen. The other state variables are initially at 0. Figure 2 indicates that
the constrained variables are not in danger of being violated so that the reference governor is never activated and the
reference trajectory is quickly followed as can be seen in Fig. 1. Figure 3 illustrates the tracking accuracy of the
nominal controller. Here and in the sequel, we scale out the 𝑘1 factor in the figures from the conditions on 𝑣lon and 𝑣lat
when the reference governor is not active. Again, these results are only indicative of the performance of the nominal
controller as the constraints are not in danger of being violated and thus, the reference governor remains inactive.

B. Starting far from the reference trajectory and following it at moderate speed
Secondly, we choose 𝜔 = 1rad/s and an initial condition of [𝑥(0), 𝑦(0)] = [𝑥𝑐 (0), 𝑦𝑐 (0)] + [2, 2]m relatively far

from the desired reference trajectory, as seen in Fig. 4. The other state variables are initially at 0. During the transient
when the quadrotor UAV is far from the trajectory, the desire to move to the desired trajectory almost drives the vehicle
to violate propeller thrust and pitch angle limits. It can be seen in Fig. 5 that during this time, the pitch angle and thrust
approach their limits. The reference governor is activated during the transient to prevent the propeller thrusts and pitch
angle from violating their limits and then the reference trajectory is correctly tracked. The deviation of the reference
governor signal from that of the nominal governor is apparent during this time in Fig. 6.

C. Starting close to the reference trajectory and following it at high speed
Third, we choose𝜔 = 2rad/s, which is quite large, and an initial condition [𝑥(0), 𝑦(0)] = [𝑥𝑐 (0), 𝑦𝑐 (0)]+[0.5, 0.5]m

close to the desired trajectory. The other state variables are initially at 0. Figure 8 indicates the reference governor is
frequently activated to prevent the propeller thrusts, pitch and roll angles from violating their limits and the reference
trajectory is no longer tracked accurately. Comparison of the reference signals in Fig. 9 indicates that the changing
reference signal of the nominal controller consistently drives the constraints to be violated. The reference governor
is successful in ensuring that these constraints are satisfied at the cost of the accuracy of the trajectory following.
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Fig. 1 Trajectory tracking starting from [𝑥(0), 𝑦(0)] = [2.3, 0.5]𝑚

Fig. 2 Constrained variables starting from [𝑥(0), 𝑦(0)] = [2.3, 0.5]𝑚

Interestingly, it can be seen in Fig. 7 that the drone finally seems to follow smaller and almost circular trajectories at the
high speed 𝜔 = 2rad/s.
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Fig. 3 (𝑥, 𝑦) tracking and time evolution of the references 𝑣lon and 𝑣lat starting from [𝑥(0), 𝑦(0)] = [2.3, 0.5]m,
with 𝑟1 and 𝑟2 scaled by 1/𝑘1

Fig. 4 Trajectory tracking starting from [𝑥(0), 𝑦(0)] = [3.8, 2]𝑚
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Fig. 5 Constrained variables starting from [𝑥(0), 𝑦(0)] = [3.8, 2]𝑚

V. Conclusions
We demonstrated the value of state augmentation and reference governor approaches from [27]. For the first time,

we used these methods for flight envelope protection while following high-speed trajectories. The method proposed is
based on the computation a safe forward invariant set in which the state (and reference) of the quadrotor must remain
while tracking a circular trajectory. The safe forward invariant set is also referred to as the maximum output admissible
set (or MOAS) in the reference governor literature. In the future, we plan to extend our results to cases where we must
follow more complex trajectories and/or have modeling uncertainties and/or have wind disturbances. Also, we plan to
work on the real-time implementation of the proposed control algorithms on a physical drone.
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Fig. 9 (𝑥, 𝑦) tracking and time evolution of references 𝑣lon and 𝑣lat starting from [𝑥(0), 𝑦(0)] = [2.3, 0.5]𝑚, with
𝑟1 and 𝑟2 scaled by 1/𝑘1
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