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Abstract: In this paper we present a novel formulation of the multi-target tracking problem
in which the target represents a variable shape and size subset of the state space. Due to the
nonlinear nature of the system and the inherent multi-target nature of the problem, we provide
a solution based on the particle implementation of the PHD filter. Testing in simulations yields
promising results allowing a significant reduction of the errors with respect to measurements.
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1. INTRODUCTION

Autonomous robotic systems are a novel approach for
early-action response of natural or human-induced dis-
asters. These incidents typically occur in remote, harsh
environments which pose as a safety risk for human oper-
ators and involve great financial burden. Recent advances
in autonomous robotic systems have granted opportunities
for first responders to step away from the action and gather
real time information, all while improving the mission’s
cost efficiency.

One notorious example of a high-risk, large-scale disaster
is an oceanic crude oil spill. Autonomous robotic tech-
nology has been developed to provide a reliable and cost
effective option for tracking spatiotemporal environmental
phenomena (Pashna et al., 2020). Another environmental
hurdle under investigation is the emergence of harmful
cyanobacteria blooms. Cyanobacteria, also referred to as
blue green algae, are microorganisms that have existed
in water bodies such as lakes, rivers, and reservoirs since
the beginning of life on Earth. The term ”cyanobacteria
blooms” refers to when cyanobacteria populations begin
to multiply at a very quick pace. Cyanobacteria blooms
occur as circumstance of an excess of nutrients entering a
slow moving water environment and pose as a threat to the
health of all organisms within its community (Carmichael,
1994; Falconer, 1999; RI-DEM; van Halderen et al., 1995).
This paper was developed within the context of a larger
project to improve the knowledge and techniques of track-
ing and predicting cyanobacteria blooms. Despite this re-
search’s specific application, the developed methodology
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discussed in this paper is applicable to a large variety of
target tracking problems within and beyond the field of
natural science.

Current efforts in UAV-assisted cyanobacteria bloom mon-
itoring mainly focus on mere bloom identification. Since
cyanobacteria blooming events may ensue for several days,
weeks, or months, it is necessary to develop tracking
techniques that identify and follow bloom populations
over time. However, the underlying problem of track-
ing cyanobacteria blooms, or more in general pollutants,
within a water body has very peculiar characteristics that
call for ad-hoc methodologies. Although the problem is
inherently related to multitarget tracking, with respect
to canonical multitarget tracking problems there are def-
inite differences. In canonical problems, a finite number
of targets evolves in the state-space. In our case instead,
entire subsets of the state space constitutes the targets.
Furthermore, the evolution of these subsets includes not
only translations or rotations, but also changes in shape
and size. More practically, the large monitoring area re-
quire computationally efficient methodologies.

In this paper, we present a formalization of the novel
subset-tracking problem to take into account these specific
aspects. Furthermore, we propose a solution based on
a particle implementation of the Probability Hypothesis
Density (PHD) filter. In recent years, the PHD filter, par-
ticularly in its Gaussian Mixture (GM-PHD) implementa-
tion, has been employed in robotics mostly in localization
or canonical multi-target tracking problems. In our case,
the employment of the PHD filter is suggested by the
inherent multi-target tracking nature of the problem, and
its recursive filter formulation allows for the inclusion of
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Fig. 1. (left) Depiction of lake region, cyanobacteria population, UAV and region that the camera image captures.

(Right) UAV camera image of region ¥,

system dynamics. An additional desirable characteristic
that makes the PHD filter a good solution for this prob-
lem is its ability to cope with variable number of targets
through the birth, death, and spawning probabilities that
can be used to represent changes in shape and size of
the tracked targets. These probabilities can also be linked
to environmental factors that are known to increase or
decrease the likelihood of these phenomena to occur, hence
allowing for better tracking and prediction results.

The contribution of this paper is therefore twofold:

e we formalize a new instance of the multitarget track-
ing problem in which the targets are represented as
variable shape and size subsets of the state-space;

e we provide a solution based on the particle imple-
mentation of the PHD filter detailing the role of each
term.

The rest of this paper is organized as follows. In Section 2
we formulate the problem. In Section 3 we provide the
necessary background on the PHD filter. In Section 4 we
present our solution, that is tested in simulations presented
in Section 5. Section 6 concludes the paper.

2. PROBLEM SETTINGS

The phenomena we consider in Figure 1 consists of a target
set B moving on the surface of the water body L. Both
L and B are defined as sets in R? and are expressed
in a world reference frame FW. This simplification will
help with the descriptions of equations later on in this
paper. Furthermore, B is a subset of L such that B C L.
The size and shape of the target set B is unknown and
time variant. The evolution of B over time is driven by
environmental factors over n time steps (Reynolds and
Walsby, 1975). The generic time step will be indicated
through the letter k£, such that £ = 0,1,...,n — 1. In
the case of cyanobacteria blooms, these time steps can
be of several days or weeks, depending on the body of
water that is under investigation. After each time step,
noisy measurements of the average motion W (k) of B
are gathered as a pair W(k) = {W,, Wy}, expressing
the average speed W, and the average direction Wj.
Measurements of environmental factors T'(k) leading to
the growth or decline of B are summarized with a single
measurement T'(k).

A multi-rotor UAV D is used to collect measurements
of L at each time step. The UAV D gathers data along
a predetermined path within the world frame FW. D is
equipped with an attached reference frame denoted as
FP . The position of D in FW is denoted by the vector
DV = [DW DZV DW]T € R3. The orientation of D in
FW is denoted by the rotation matrix R} € SO(3). In
the following, when relevant we will indicate the reference
frame of a quantity * by using the right superscript " or
P, When the reference frame superscript is omitted, the
reference frame is assumed to be F"'. Noisy measurements
of the position and orientation of the UAV are available at
all times through GPS and IMU modules, and are referred
to as D" and RVDV respectively.

D is equipped with a camera that is oriented along the
negative Z axis of frame FP (i.e., towards the ground
plane) and captures images of L. For simplicity, we assume
that the camera’s position in F" corresponds to the
position of UAV DW. At each time step, the camera
captures a set of images X(k) = {01,09,...,0,} within
L. An arbitrary image o, is a set of pixels, where a
specific pixel can be identified as pn = {on,,0n,} for
x={0,1,2,...,639} and y = {0, 1,2,...,359}.

Let s, be the subset of L represented in image oy, then
the area surveyed by D during a flight is S(k) = s; U
s U...Us, C L. We further denote with By, = s, N
B the intersection of s, and B, i.e., Bj is the subset
of B that is represented in the image o. Furthermore,
the set of pixels within o, that correspond to By is
referred to as 8y, with 8, C op. We assume that through
color extraction it is possible to identify S5 within oy,
with a correct identification rate p, € [0, 1]. with respect
to our application, this is an idealization of the sensor
measurements. In fact, simple color extraction is unlikely
to yield good results in identifying cyanobacteria in the
water. However, several works have been done in the
identification of algal blooms through satellite and UAV
multi-spectral imagery (Richardson, 1996; Bostater Jr
et al., 2010; Wu et al., 2019; Kislik et al., 2018).

Following from the definitions above, we define the follow-
ing Subset tracking problem.

Problem 1: The Subset Tracking problem consists in
computing an estimate B(k) of B C L at all time steps
k =0,1,...,n — 1 given the measurements X(k), W (k),
T(k).
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3. BACKGROUND

This Section provides the necessary background on the
PHD filter and is mostly based on Vo and Ma (2006);
Junjie et al. (2015); Zajic and Mahler (2003); Vo et al.
(2003). There are n targets living in a space X, with n
unknown and varies over time. The goal of the PHD filter
is to compute an estimate of the PHD of the targets in
X. The PHD f(z) at time k is defined as the function
such that its integral over any subset S C X is the
expected number of targets N(S) in that subset, i.e.,
N(S) = [g fr(x)dz.

The structure of the PHD filter is that of a recursive
estimator composed of two main steps: the time update
and the measurement update. The time update produces
a prediction of the PHD fy 1 (z) at time step k given the
estimate fj,_1x—1(z) at time step k — 1, through the time
update equation:

Jrjk—1 = bgjp—1(z)+
/[PS(x/)fk\k—l(x|$/) + -1 (@]2)] fr—1jp—1 (") da’

where byjp—1(2) is the probability that a new target
appears in x between times k — 1 and k, Pg(z') is the
probability that a target in 2’ at time k — 1 will survive
into step k, frr—1(z|z’) is the probability density that
a target in x’ at time k — 1 moves to z at time k, and
bg|k—1(z|2") is the probability that a new target spawns in
z at time k from a target in z’ at time k — 1. Note that
both fi,_1x—1(z) and fix—1(z) are computed considering
only the measurements up to time k — 1.

(1)

Measurements Zj are incorporated in the estimate with
the measurements update to compute the posterior PHD:

Juik(®) = frjp—1(x) * [1 — Pp()

P()g(:le) @)
! zeZZk Ac(z2) + fPD(x/)Q(Z|z/)fk\k—1(:E’)dx’

where Pp(z) is the probability that a measurement is
collected from a target with state x, g(z|z) is the sensor
likelihood function, and Ac(z) expresses the probability
that a given measurement z is a false positive.

The implementation of equations (1)-(2) can be done using
a sequential Monte Carlo (SMC) method. The SMC-PHD
method approximates all PHD functions fj,_qjx—1(z),
Jrk—1(x), and frx(x) through sums of L, |, weighted sam-
ples (or particles) in the form:

L

where wil* is the weight of the i-th sample, and the Dirac
i
*| %

i

delta function 6(z—z},) centered in x
the position of the i-th particle.

is used to express

Introducing the SMC representation (3) in equation (1),
the Lj,_1)—1 particles composing the posterior fk,l‘k,l(;v)
can be propagated into time step k using the sampling
property of the Dirac delta:

Ly _1jk—1
Fup—r(@) = D Péwi_ e 10(x — ahp_y)
i=1
Ly _1jk—1+Jk (4)

>

=Ly _1jk—1+1

wyo(z — Z‘Z‘k,l)

where the birth target probability by_1 () is represented
using the sum of J; samples which are drawn from im-
portance function, and assigned weight constant w.. In
this step, the spawning probability by, (x|z") is assumed
to be zero, and the new i-th particle state z}c‘k_l,i =
1,..., Ly_1k—1 is arandom sample extracted from the dis-
tribution fy;—1 (x|}€_1|k_1). Note that the number of parti-

cles composing fr—1 () is therefore Lyj,_1 = Lyjp—1+Jk.

Introducing the SMC-PHD representation (3) in equation
(2), assuming Ac(z) = 0, the SMC-PHD filter measure-
ment update equation becomes:

Lyjk—1+Jk

Jre(@) = Z

i=1

w};‘ké(xf:n};‘k,) (5)

where
wy (@) = (1 = Pp)wy 1+

Z Pz)w;;lk_]_g(z“r;cw—l) (6)

i Ppwyy 1902175, _)

2€Zy

where P}, = PD(X,ilk_l). The equation (5) shows that
only the weights are updated while the particle state
remains unchanged.

The resampling of PHD posterior f(z) to time step k
is performed in two steps. In the first step, the particles
with weight lower than pruning weight w? is removed,
effectively reducing the number of samples in the posterior
Jrik- Secondly, Each particle that has weight over one

{w}%lk > 1} is copied N = w2|k71 times with a new weight
constant of one. The total number of particles are changed
from L1 + Ji to Ly after the resampling.

4. METHODOLOGY

In this study we use the particle implementation of the
PHD filter considering the nonlinear behavior of the tar-
gets, their variable shapes and sizes, and the lack of a
proven model to predict the behavior of B. Furthermore,
the particle PHD filter provides a computational edge over
other PHD implementations, particularly during the mea-
surement update where the only quantity that is updated
is the particle weight. In comparison, during the GM-PHD
filter measurement update, not only the mean value of
each Gaussian component must be updated, but also the
covariance matrix must be propagated in time.

The other side of the coin is the need for an additional
step, the resampling, that however can be computed of-
fline. Therefore, a generic target particle is only described
through its position z,|, € R in F'* and the weight “’2
In summary, our methodology consists with three main
steps that are iteratively executed at each time step: the
time update, using the environmental readings between
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flights, the measurement update, using the images, and
the resampling step.

4.1 Time Update

In the time update, the state of all components of the
PHD is updated using a noisy measurement {Ws, Wy}
of the average motion {W,, Wy} and Gaussian random
noise with zero mean and known covariance. Due to the
particular definition of the average motion as a magnitude
and an angle, the resulting update equations are as follows:

S'5?§|1<—1 =Tp_qp_1 T W, # sin(Wq) + N, (7)
Ynik—1 = Yi—1jp—1 + Ws * cos(Wa) + N, (®)
where N} and N, are noise samples extracted from a
NG NiT = N(30;c00)
N € R?. Whenever a particle would escape L by applying

(7)-(8), a reflection model is applied so that a the particle
is reflected from L’s boundary.

normal distribution N? =

Other environmental factors, here summarized in the tem-
perature, are used to estimate the variation of the weight
of the particles. For example, the average measured tem-
perature T between two UAV flights will be used to adjust
the weights of PHD components as it would affect blooms
to increase or decrease in size. We used 25 deg Celsius as
the mid margin to adjust the weight.

Whip—1 = Wi _qpp_1 + (T = 25) % 0.01 (9)

This is equivalent to selecting the survival probability in
the PHD filter through the measurements of environmen-
tal factors.

The last step in the time update is the introduction of new
components for birth targets. If no model is known (i.e.,
blooms can emerge anywhere in the water body), the new
components can be uniformly distributed across L:

(10)
(11)

where M; € L is a random sample from a uniform
distribution on L, and Ppe, is the uniform probability
of having a new target in any lek_l € L. In case a

i _ %
xklk_l =M

7 —
Wk k-1 = Prew

probability Ppe.(2) of new targets is known (e.g., by the
historic data), this can be utilized as wy,, ;| = Prew(z).

4.2 Measurement Extraction

The measurement extraction is executed between the time
update step and the measurement update step to extract
measurements Z = (G}, from the set of images X (k)
captured by D during a time step k. For each image oy,
a color extraction algorithm (using OpenCV) identifies
the set of pixels ), within the image o,. Among fy, a
set of discrete points I'y, = {Yn,s Vhas .- Th. } is selected,
where I', € Bi. The set I'y, is the intersection of 5, and
a lattice =, where I', = B, N Z,. The pixel locations
of Z;, within oj are located so that each lattice point of
=y, corresponds to one meter of distance between points
in sp. This technique limits the number of measurements
that are fed to the PHD filter.

Each pixel value v, is translated into a three-dimensional

position vector in reference frame F. This position vector
is referred to as gj, :

—-D

b Q}B-x 5 oy f -

ghj = |Ony| = (’thy_qsv)Dhy (12)
5] _—
ghjz Olyf

where v, ¢y, g, oy, and f are constants regarding the
camera parameters.

Next it is necessary to transform g2 into g/V'. This is done
J J
using the homogeneous transformation matrix T :

_ _ W RW DV [P
g, =an, =Tn g, = | P I, (13)
g g 0 1 1
The set G, = GhW is the determined set of positions

measurements of particles representing B in F", and is
used in the measurement update of the PHD filter.

4.3 Measurement Update

The measurement update is performed when the filter
receives a set of measurements Z = G}, from measurement
extraction algorithm. Note that each measurement update
is divided into a sequence of a consecutive updates, with
a equal to the number of images collected in a single
flight. Theoretically, each G} will be used to update all
the particles in the posterior according to (5)-(6). However,
the Pp(zj, ) for each particles 27, , is computed as:

i Pd ifzi, . €sp
Pp (1) = { kR (14)

0 otherwise

where 0 < pg < 11is a constant that reflects the probability
that a measurement is collected from a particle that is
within the field of view of the image op. Therefore, Pp
serves also the purpose of not updating the particles that
are outside of sp, and in order to drastically increase
the computational efficiency of the algorithm, before a
measurement update is performed only the particles such
that x}%‘k_l € sy, are selected for the update. Furthermore,
the computed Pp values are substituted into equations
(5)-(6) to perform the measurement update. In the same
equations, g(z|d6(x — $Z|k—1)) is assumed to be a Gaussian
distribution and is computed as:

9(Tn;|Thp—1) = N{Gn,s T 15 Co2} (15)
where Ca,o is a suitable covariance matrix to represent
target position measurement noise, and z = gn, € G.
With this definition we assume that the target position
measurements are affected by zero-mean Gaussian noise.
This is a realistic assumption as the UAV positioning
measurements utilized in (13), as well as the application
of the camera pinhole model in (12) introduce noise into
the measurement extraction process.



R.A. Thivanka Perera et al. / I[FAC PapersOnLine 55-37 (2022) 333-338

Estimates (Time step 0)

Estimate Error (time step = 0)

337

Measurement Error (time step = 0)

100 100
100 + + + » x  False Positive x  False Positive
% 7 75
7
x
. 50 X3 50 _ %
50 «‘, %%
L) + i‘ x
B2 L B 25 X 725 —
g . 8 % H
] + ° x °
E o 4+t E o XX E o
3 +* S B E
= 25 £ i s
o ’”‘ id x% X
“01 W -50 %fv -50 L
-15
e Ground truth =75 =75
_1004 + Estimates
-100 -100
-150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150 -150 -100 -50 o 50 100 150
X-Axis (meters) X-Axis (meters) X-Axis (meters)
Estimates (Time step 3) Estimate Error (time step = 3) Measurement Error (time step = 3)
100 100
100 + e Ground truth x  False Positive x  False Positive
+  Estimates x 3
‘e 7 75
” = * 5k ?
ge’ x% x }
50 e} 50 * 50 3
= 'Y X o Rk 7 x ¥
? 25 s 225 W w25
g w53 A+ 8 * oK ..
§ F Rt 3 o H bl
E o : ;_- E o x E §
2 » " £ 3 "
% S 2 ¥ 2
3 £ X x
= =25 e £ : 1 5 - -r. ,i
<30 -50 -s0
-75
-5 -75
-100 +
-100 -100
-150 -100 -50 0 50 100 150 -150 -100 -50 50 100 150 -150 -100 -50 0 50 100 150
X-Axis (meters) X-Axis (meters) X-Axis (meters)
Estimates (Time step 6) Estimate Error (time step = 6) Measurement Error (time step = 6)
100 100
100 + ‘e + X False Positive x  False Positive
7 75 M
7 o Roge ¥k x L
XX %
50 XX %o 50
20 X X
o - -
L 1 g 2 ! )‘z g o=
g R H LES H
o
S 0 < E o E o -
g a 2
I s 3 _ 4 -
* £ s $ 2
=30 -50 -50
-75
e Ground truth <13 2
~100{ + Estimates +
-100 -100
-150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150
X-Axis (meters) X-Axis (meters) X-Axis (meters)
Estimates (Time step 9) Estimate Error (time step = 9) Measurement Error (time step = 9)
100 100
100{ e Ground truth . X False Positive x x x  False Positive
+ Estimates * e 75 X X o 75
75 > x
o 50 * 50
50 LA W
. SR & |
= " o = =
@ 25 [ 1]
Z 2 . :Eg i
g ° °
E 0 E o E o
2 B 0 x "
g 2 2
3 5 5 =
-25 < =
> £ - : =
=50 -50 50
-15
-5 -75
-100 + +
-100 -100 1
-150 -100 -50 0 50 100 150 -150 -100 -50 50 100 150 -150 -100 -50 0 50 100 150

X-Axis (meters)

(a)

X-Axis (meters)

(b)

X-Axis (meters)

(c)

Fig. 2. Results of a simulation at four significant time steps. (a) Ground truth vs Estimates for step 0 , 3, 6, and 9. (b)
Estimation error for step 0, 3, 6, and 9. (¢) Measurement error for time steps 0, 3 , 6, and 9.

4.4 Resampling

The resampling step is performed after the measurement
update, i.e., after sequentially using all images to perform
partial measurement update. The resampling procedure
follows the standard resampling procedure explained in
the Section 3, where a pruning weight of w? = 0.001 was
used to remove particles with lower weights.

5. SIMULATIONS

We have tested the tracking system through numerical
simulations in ROS/Gazebo. In particular, through stan-

dard Gazebo functionalities we have simulated a UAV
surveying a lake environment. The UAV is equipped with a
camera and follows a predetermined trajectory of about 15
minutes to survey the entire lake. The survey is performed
on ten time steps, with each time step of the duration of
a week.

ROS/Gazebo does not have the functionality to simulate
a cyanobacteria bloom, or in general a subset evolving
on the water surface. Therefore, we have created a set
of (initially) six independent sub-targets (all included into
the set B) evolving on the water surface for ten time steps.
Each target is initially represented by a set of particles,
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each particle representing a 1m circle. Each sub-target
evolves with a different forcing term, and zero-mean fixed
covariance Gaussian noise is added to the particles at the
end of each time step evolution. A reflection model is
applied at the top boundary of the simulated lake, that
is set for y = 75m. The combination of additive noise,
different forcing terms, and the reflection model, makes
the target shape and area change and evolve over time,
as visible in Figure 2(a), were the simulated particles
are represented in blue. The target set is reprojected
online onto the images collected by the simulated UAV as
yellow circles of 1m radius to simulate appropriate image
measurements, therefore the covariance matrix Cayxo in
equation (15) is selected as the identity matrix.

The developed system takes as input the images with the
reprojected target B as input to perform a color extraction
algorithm and the filtering as detailed in Section 4. Note
that, in order to simulate a missed detections, 20% of the
measurements extracted following the methodology pre-
sented in Section 4.2 are removed before each measurement
update. Accordingly, the parameter py in equation (14) is
selected as pg = 0.8.

Figure 2(a) reports the ground truth particles in blue
and the estimated particles in red, showing a good ac-
cordance among the two sets. Figure 2(b) and 2(c) show
the locations were the filter and the raw measurements
respectively commit an estimation error. Together, the
two figures provide a comparison between the estimates
(Figure 2(b)) and the raw measurements (Figure 2(c)),
showing that the estimation system greatly reduce the
errors in the raw measurements. This is also confirmed
by a numerical analysis of these data, that confirms that
the PHD filter’s estimates yielded over 600 percent fewer
errors than the raw measurements from the RGB camera
and color-extraction.

6. CONCLUSIONS

In this paper we have presented a novel instance of the
multi-target tracking problem in which the tracked target
is a subset of the state space. A possible solution to
this problem has been identified in the application of the
particle implementation of the PHD filter. The proposed
solution has been tested in simulation and has shown
promising results in reducing the error with respect to the
direct use of the measurements.

On the other hand, the performance of PHD filters depend
on the knowledge of the system dynamics and several
parameters, including the system and measurement noise
intensities, and the new target and survival probabilities.
In the future we plan to improve the system model by
applying hydrodynamic libraries to create the ground
truth particles and to update the estimates in the time
update. More realistic survival and new target models from
historical data are also under investigation to improve the
weight estimation. Moreover, we will be collecting real
data with a UAV equipped with a multispectral camera
to test our system on actual lake images. Other natural
extensions that we will be working on include a multi-
robot multi-sensor setup, and a 3D implementation of the
filtering including also underwater measurements.
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