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3. BACKGROUND

This Section provides the necessary background on the
PHD filter and is mostly based on Vo and Ma (2006);
Junjie et al. (2015); Zajic and Mahler (2003); Vo et al.
(2003). There are n targets living in a space X , with n
unknown and varies over time. The goal of the PHD filter
is to compute an estimate of the PHD of the targets in
X . The PHD fk(x) at time k is defined as the function
such that its integral over any subset S ⊆ X is the
expected number of targets N(S) in that subset, i.e.,
N(S) =

∫

S
fk(x)dx.

The structure of the PHD filter is that of a recursive
estimator composed of two main steps: the time update
and the measurement update. The time update produces
a prediction of the PHD fk|k−1(x) at time step k given the
estimate fk−1|k−1(x) at time step k− 1, through the time
update equation:

fk|k−1 = bk|k−1(x)+
∫

[PS(x
′)fk|k−1(x|x

′) + bk|k−1(x|x
′)]fk−1|k−1(x

′)dx′ (1)

where bk|k−1(x) is the probability that a new target
appears in x between times k − 1 and k, PS(x

′) is the
probability that a target in x′ at time k − 1 will survive
into step k, fk|k−1(x|x

′) is the probability density that
a target in x′ at time k − 1 moves to x at time k, and
bk|k−1(x|x

′) is the probability that a new target spawns in
x at time k from a target in x′ at time k − 1. Note that
both fk−1|k−1(x) and fk|k−1(x) are computed considering
only the measurements up to time k − 1.

Measurements Zk are incorporated in the estimate with
the measurements update to compute the posterior PHD:

fk|k(x) = fk|k−1(x) ∗ [1− PD(x)

+
∑

z∈Zk

PD(x)g(z|x)

λc(z) +
∫

PD(x′)g(z|x′)fk|k−1(x′)dx′

]

(2)

where PD(x) is the probability that a measurement is
collected from a target with state x, g(z|x) is the sensor
likelihood function, and λc(z) expresses the probability
that a given measurement z is a false positive.

The implementation of equations (1)-(2) can be done using
a sequential Monte Carlo (SMC) method. The SMC-PHD
method approximates all PHD functions fk−1|k−1(x),
fk|k−1(x), and fk|k(x) through sums of L∗|∗ weighted sam-
ples (or particles) in the form:

f∗|∗(x) =

L∗|∗
∑

i=1

wi
∗|∗δ(x− xi

∗|∗) (3)

where wi
∗|∗ is the weight of the i-th sample, and the Dirac

delta function δ(x−xi
∗|∗) centered in xi

∗|∗ is used to express

the position of the i-th particle.

Introducing the SMC representation (3) in equation (1),
the Lk−1|k−1 particles composing the posterior fk−1|k−1(x)
can be propagated into time step k using the sampling
property of the Dirac delta:

fk|k−1(x) =

Lk−1|k−1
∑

i=1

P i
Sw

i
k−1|k−1δ(x− xi

k|k−1)

+

Lk−1|k−1+Jk
∑

i=Lk−1|k−1+1

wγδ(x− xi
k|k−1)

(4)

where the birth target probability bk|k−1(x) is represented
using the sum of Jk samples which are drawn from im-
portance function, and assigned weight constant wγ . In
this step, the spawning probability bk|k−1(x|x

′) is assumed

to be zero, and the new i-th particle state xi
k|k−1

, i =

1, . . . , Lk−1|k−1 is a random sample extracted from the dis-

tribution fk|k−1(x|
i
k−1|k−1

). Note that the number of parti-

cles composing fk|k−1(x) is therefore Lk|k−1 = Lk|k−1+Jk.

Introducing the SMC-PHD representation (3) in equation
(2), assuming λc(z) = 0, the SMC-PHD filter measure-
ment update equation becomes:

fk|k(x) =

Lk|k−1+Jk
∑

i=1

wi
k|kδ(x− xi

k|k) (5)

where

wi
k|k(x) = (1− P i

D)wi
k|k−1+

∑

z∈Zk

P i
Dwi

k|k−1
g(z|xi

k|k−1
)

∑Lk|k−1+Jk

i=1
P i
Dwi

k|k−1
g(z|xi

k|k−1
)

(6)

where P i
D = PD(Xi

k|k−1
). The equation (5) shows that

only the weights are updated while the particle state
remains unchanged.

The resampling of PHD posterior fk|k(x) to time step k
is performed in two steps. In the first step, the particles
with weight lower than pruning weight wp is removed,
effectively reducing the number of samples in the posterior
fk|k. Secondly, Each particle that has weight over one

{wi
k|k > 1} is copied N = wi

k|k−1
times with a new weight

constant of one. The total number of particles are changed
from Lk|k−1 + Jk to Lk|k after the resampling.

4. METHODOLOGY

In this study we use the particle implementation of the
PHD filter considering the nonlinear behavior of the tar-
gets, their variable shapes and sizes, and the lack of a
proven model to predict the behavior of B. Furthermore,
the particle PHD filter provides a computational edge over
other PHD implementations, particularly during the mea-
surement update where the only quantity that is updated
is the particle weight. In comparison, during the GM-PHD
filter measurement update, not only the mean value of
each Gaussian component must be updated, but also the
covariance matrix must be propagated in time.

The other side of the coin is the need for an additional
step, the resampling, that however can be computed of-
fline. Therefore, a generic target particle is only described
through its position x∗|∗ ∈ R in Fw and the weight wi

k.
In summary, our methodology consists with three main
steps that are iteratively executed at each time step: the
time update, using the environmental readings between
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flights, the measurement update, using the images, and
the resampling step.

4.1 Time Update

In the time update, the state of all components of the
PHD is updated using a noisy measurement {W̄s, W̄d}
of the average motion {Ws, Wd} and Gaussian random
noise with zero mean and known covariance. Due to the
particular definition of the average motion as a magnitude
and an angle, the resulting update equations are as follows:

xi
k|k−1

= xi
k−1|k−1

+ W̄s ∗ sin(W̄d) +N i
x (7)

yik|k−1
= yik−1|k−1

+ W̄s ∗ cos(W̄d) +N i
y (8)

where N i
x and N i

y are noise samples extracted from a

normal distribution N i = [N i
x N i

y]
T = N (.; 0; cov) ,

N i ∈ R
2. Whenever a particle would escape L by applying

(7)-(8), a reflection model is applied so that a the particle
is reflected from L’s boundary.

Other environmental factors, here summarized in the tem-
perature, are used to estimate the variation of the weight
of the particles. For example, the average measured tem-
perature T̄ between two UAV flights will be used to adjust
the weights of PHD components as it would affect blooms
to increase or decrease in size. We used 25 deg Celsius as
the mid margin to adjust the weight.

wi
k|k−1

= wi
k−1|k−1

+ (T − 25) ∗ 0.01 (9)

This is equivalent to selecting the survival probability in
the PHD filter through the measurements of environmen-
tal factors.

The last step in the time update is the introduction of new
components for birth targets. If no model is known (i.e.,
blooms can emerge anywhere in the water body), the new
components can be uniformly distributed across L:

xi
k|k−1

= M i (10)

wi
k|k−1

= Pnew (11)

where Mi ∈ L is a random sample from a uniform
distribution on L, and Pnew is the uniform probability
of having a new target in any xi

k|k−1
∈ L. In case a

probability Pnew(x) of new targets is known (e.g., by the
historic data), this can be utilized as wi

k|k−1
= Pnew(x).

4.2 Measurement Extraction

The measurement extraction is executed between the time
update step and the measurement update step to extract
measurements Z = Ḡh from the set of images Σ(k)
captured by D during a time step k. For each image σh,
a color extraction algorithm (using OpenCV) identifies
the set of pixels βh within the image σh. Among βh, a
set of discrete points Γh = {γh1

, γh2
, . . . , γhe

} is selected,
where Γh ⊆ βh. The set Γh is the intersection of βh and
a lattice Ξh, where Γh = βh ∩ Ξh. The pixel locations
of Ξh within σh are located so that each lattice point of
Ξh corresponds to one meter of distance between points
in sh. This technique limits the number of measurements
that are fed to the PHD filter.

Each pixel value γhj
is translated into a three-dimensional

position vector in reference frame FD. This position vector
is referred to as gDhj

:

ḡDhj
=







ḡDhjx

ḡDhjy

ḡDhjz






=















(γD
hjx

− ψv)D̄
W
hx

αxf
(γD

hjy
− φv)D̄

W
hy

αyf

D̄W
hz















(12)

where ψv, φv, αx, αy, and f are constants regarding the
camera parameters.

Next it is necessary to transform ḡDhj
into ḡWhj

. This is done

using the homogeneous transformation matrix TW
D :

ḡhj
= ḡWhj

= T̄W
D ḡDhj

=

[

R̄W
D D̄W

0 1

] [

ḡDhj

1

]

(13)

The set Ḡh = ḠW
h is the determined set of positions

measurements of particles representing B in FW , and is
used in the measurement update of the PHD filter.

4.3 Measurement Update

The measurement update is performed when the filter
receives a set of measurements Z = Ḡh from measurement
extraction algorithm. Note that each measurement update
is divided into a sequence of a consecutive updates, with
a equal to the number of images collected in a single
flight. Theoretically, each Ḡh will be used to update all
the particles in the posterior according to (5)-(6). However,
the PD(xi

k|k−1
) for each particles xi

k|k−1
is computed as:

PD(xi
k|k−1

) =

{

pd if xi
k|k−1

∈ sh

0 otherwise
(14)

where 0 < pd ≤ 1 is a constant that reflects the probability
that a measurement is collected from a particle that is
within the field of view of the image σh. Therefore, PD

serves also the purpose of not updating the particles that
are outside of sh, and in order to drastically increase
the computational efficiency of the algorithm, before a
measurement update is performed only the particles such
that xi

k|k−1
∈ sh are selected for the update. Furthermore,

the computed PD values are substituted into equations
(5)-(6) to perform the measurement update. In the same
equations, g(z|δ(x− xi

k|k−1
)) is assumed to be a Gaussian

distribution and is computed as:

g(ḡhj
|xi

k|k−1
) = N{ḡhj

;xi
k|k−1

, C2x2} (15)

where C2x2 is a suitable covariance matrix to represent
target position measurement noise, and z = ḡhj

∈ Ḡh.
With this definition we assume that the target position
measurements are affected by zero-mean Gaussian noise.
This is a realistic assumption as the UAV positioning
measurements utilized in (13), as well as the application
of the camera pinhole model in (12) introduce noise into
the measurement extraction process.
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each particle representing a 1m circle. Each sub-target
evolves with a different forcing term, and zero-mean fixed
covariance Gaussian noise is added to the particles at the
end of each time step evolution. A reflection model is
applied at the top boundary of the simulated lake, that
is set for y = 75m. The combination of additive noise,
different forcing terms, and the reflection model, makes
the target shape and area change and evolve over time,
as visible in Figure 2(a), were the simulated particles
are represented in blue. The target set is reprojected
online onto the images collected by the simulated UAV as
yellow circles of 1m radius to simulate appropriate image
measurements, therefore the covariance matrix C2×2 in
equation (15) is selected as the identity matrix.

The developed system takes as input the images with the
reprojected target B as input to perform a color extraction
algorithm and the filtering as detailed in Section 4. Note
that, in order to simulate a missed detections, 20% of the
measurements extracted following the methodology pre-
sented in Section 4.2 are removed before each measurement
update. Accordingly, the parameter pd in equation (14) is
selected as pd = 0.8.

Figure 2(a) reports the ground truth particles in blue
and the estimated particles in red, showing a good ac-
cordance among the two sets. Figure 2(b) and 2(c) show
the locations were the filter and the raw measurements
respectively commit an estimation error. Together, the
two figures provide a comparison between the estimates
(Figure 2(b)) and the raw measurements (Figure 2(c)),
showing that the estimation system greatly reduce the
errors in the raw measurements. This is also confirmed
by a numerical analysis of these data, that confirms that
the PHD filter’s estimates yielded over 600 percent fewer
errors than the raw measurements from the RGB camera
and color-extraction.

6. CONCLUSIONS

In this paper we have presented a novel instance of the
multi-target tracking problem in which the tracked target
is a subset of the state space. A possible solution to
this problem has been identified in the application of the
particle implementation of the PHD filter. The proposed
solution has been tested in simulation and has shown
promising results in reducing the error with respect to the
direct use of the measurements.

On the other hand, the performance of PHD filters depend
on the knowledge of the system dynamics and several
parameters, including the system and measurement noise
intensities, and the new target and survival probabilities.
In the future we plan to improve the system model by
applying hydrodynamic libraries to create the ground
truth particles and to update the estimates in the time
update. More realistic survival and new target models from
historical data are also under investigation to improve the
weight estimation. Moreover, we will be collecting real
data with a UAV equipped with a multispectral camera
to test our system on actual lake images. Other natural
extensions that we will be working on include a multi-
robot multi-sensor setup, and a 3D implementation of the
filtering including also underwater measurements.
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