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An Intermediate Language for General Sparse Format
Customization
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Abstract—The inevitable trend of hardware specialization drives an increasing use of custom data formats in processing sparse workloads,
which are typically memory-bound. These formats facilitate the automated generation of target-aware data layouts to improve memory access
latency and bandwidth utilization. However, existing sparse tensor programming models and compilers offer little or no support for productively
customizing the sparse formats. Moreover, since these frameworks adopt an attribute-based approach for format abstraction, they cannot
easily be extended to support general format customization. To overcome this deficiency, we propose UniSparse, an intermediate language
that provides a unified abstraction for representing and customizing sparse formats. More concretely, we express a sparse format as a map
from dense coordinates to a layout tree using a small set of well-defined query and mutation primitives. We also develop a compiler leveraging
the MLIR infrastructure, which supports adaptive customization of formats, and automatic code generation of format conversion and compute
operations for heterogeneous architectures. We demonstrate the efficacy of our approach through experiments running commonly-used
sparse linear algebra operations with hybrid formats on multiple different hardware targets, including an Intel CPU, an NVIDIA GPU, and a

simulated processing-in-memory (PIM) device.

Index Terms—compilers, specialized application languages, heterogeneous (hybrid) systems, sparse linear algebra

1 INTRODUCTION

A S Dennard scaling ended in the mid-2000s and Moore’s Law
is approaching its limit, computer engineers are increasingly
turning to special-purpose hardware accelerators to meet the
ever-growing computational demands of emerging application
domains such as graph analytics, machine learning, and robotics.
At the same time, there has been an explosion in the amount of
data that domain experts have to manage. Notably, much of this
big data is sparse in nature. For example, Amazon co-purchase
graphs have 400K nodes and a density of 0.002%, and arXiv
graph datasets have 100M papers and a density of 0.00002%.
These evident trends in technology and applications are driving
computing systems towards heterogeneity that can process sparse
data in an efficient and high-performance manner.

Many important operations (i.e., kernels) of sparse processing
are performed on sparse tensors, a generalization of sparse matri-
ces. A sparse tensor is commonly represented in a specialized data
structure, also known as a sparse format, which exploits the sparsity
of the tensor to reduce storage size and/or memory footprint.
These sparse formats only store the non-zero elements (or non-
zero blocks) of the tensor, along with the associated coordinates.
These coordinates are encoded in a compressed form as metadata.
Conceptually, the metadata can be viewed as a tree that captures
the multi-dimensional coordinates hierarchically; thus it requires
multiple indirect memory accesses to “walk” the tree in order to
reconstruct the original coordinates of a non-zero element. Due
to the extensive use of such data structures, sparse workloads
typically exhibit irregular and input-dependent compute and data
access patterns, which make them memory-bound.

To efficiently utilize memory bandwidth, reduce memory ac-
cesses, and exploit data parallelism to boost the performance of
sparse tensor computation, researchers are increasingly using cus-
tom sparse formats optimized for particular application domains
and/or target hardware architectures. Examples include hybrid
formats for GPUs [1], [4], [12] and banked formats for FPGAs [9],
[14] and dedicated accelerators [21]. While format customization
can significantly improve performance, we recognize two pressing
issues: i) productivity — it takes substantial engineering effort to
design a custom sparse format and adapt the implementation
of related compute operations that must interact with the new
format. ii) permutability — there lacks a unified abstraction that can
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systematically encode different variants (or permutations) of exist-
ing sparse formats to facilitate the exploration of a complex design
space, where the search of the custom formats needs to account
for input-dependent sparsity patterns, inherent parallelism of the
dominant compute kernels and the target hardware.

Prior research has attempted to address the productivity
challenge by using either manually optimized libraries or auto-
matic compilers. Sparse linear/tensor algebra libraries (e.g., sparse
BLAS, Intel MKL, NVIDIA cuSPARSE) provide highly optimized
target-specific sparse kernels. While library functions achieve high
performance, they only support a limited set of sparse formats. Re-
cent efforts on sparse tensor algebra compilers such as TACO [5],
[15], COMET [22], and SparseTIR [23] describe tensor dimensions
in attributes (e.g., sparse or dense), and generate sparse tensor
algebra kernels assisted by pre-defined code generation templates.
This attribute-based format abstraction limits their extensibility to
custom formats, with memory access patterns and index-matching
schemes dictated by the code generation templates. Moreover,
attribute-based encoding increases barriers to automating the
conversion (and permutation) among different formats, as the
coordinate layout of non-zeros is not directly expressed.

This work proposes UniSparse, the first intermediate lan-
guage for general sparse format customization, which can (1)
systematically express an unlimited number of custom formats,
(2) support format customization with the awareness of input
sparsity, compute operations, and hardware targets, and (3) for
the new formats, automate code generation of their compute
operations and conversion with other formats. We observe that
the storage layout of a sparse tensor can generally be viewed
as a map from the non-zeros’ coordinates to a tree of indices.
More importantly, this map can be expressed using a few queries
and storage mutations, which we call primitives. These primitives
are the key ingredients of a concise, language-based abstraction
for specifying custom sparse formats, including but not limited
to many previously proposed high-performance formats. This
abstraction further enables the compiler to formally reason about
the correspondence of layouts between different formats and auto-
mate the code generation of format conversion. We implement the
compiler on top of a multi-level compiler infrastructure, namely
MLIR [18]. Our automation flow demonstrates significant produc-
tivity improvement and high performance on multiple hardware
backends including CPUs, GPUs, and a simulated PIM device [8].

2 BACKGROUND AND MOTIVATION

In this section, we discuss several high-performance sparse for-
mats and prior work on sparse format abstraction.
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Fig. 1. Selected custom formats of a tensor (here the matrix A). The root of
a metadata tree is the symbol of the tensor. Ag and A; are sub-matrices
of the matrix A. Circular nodes contain indices inside. Arrows are pointers
from a higher major dimension to a lower one. There are index expressions
next to a tree, which will be discussed in Section 3.1.

A sparse format consists of two parts: element values and meta-
data. The metadata captures the correspondence between the
elements and their coordinates, typically in a compressed form.
While different formats have different ways to implement the
metadata, it is conceptually organized in a tree structure, where
each path from the root to a leaf node indexes an element.

Fig. 1 illustrates several sparse formats of the matrix A in
Fig. 1a. Fig. 1b shows the traditional coordinate (COO) format.
Fig. 1c and 1d illustrate two hardware-friendly banking formats:
the cyclic channel sparse row (C?SR) format [21] interleaves the
rows of a tensor into sub-tensors, one sub-tensor for one mem-
ory bank, so as to increase memory bandwidth utilization; the
compressed interleaved sparse row (CISR) format [9] distributes
rows to memory channels in a list-scheduling manner to improve
load balancing among compute units accessing these channels.
Fig. 1e and 1f show the hybrid blocked-diagonal (BDIA)/CSR [10]
and the hybrid blocked-ELLPACK (BELL)/COOQO format [1], [12].
The BDIA format partitions the rows of a tensor and stores the
non-zeros along a diagonal for each partition with their offsets
in memory. The BELL format stores the non-zeros in blocks and
every row has the same number of blocks — it helps improve the
performance of sparse compute kernels on GPUs by exploiting
data-level parallelism and balancing the work across different
rows [4]. By customizing the layout for sub-tensors with different
sparsity patterns, hybrid formats can often achieve higher perfor-
mance than using a single format on the entire tensor [1], [10] .

2.2 Prior Work on Sparse Format Abstraction

Early research on sparse tensor algebra compilers [3], [19] gener-
ates compute kernels with hard-coded storage formats. The idea
of supporting different data structures with a format abstraction
was pioneered by the Bernoulli Compiler [16]. In Table 1, we
summarize recent work on sparse tensor algebra compilers with
format abstraction and categorize them into two classes.

Attribute-Based Abstraction. Prior work such as TACO [5], [15],
MLIR’s SparseTensor dialect [2], COMET [22] and SparseTIR [23]
describe formats using per-dimension attributes to determine
the iteration and access patterns for code generation. However,
the attribute-based format abstraction does not scale to express
novel formats, as an increasing amount of attributes and lowering
routines will be introduced. MLIR’s SparseTensor dialect and
SparseTIR leverage index maps to improve the expressibility; but
the limited combination of axis attributes still prevents them from
supporting an unlimited number of new possible formats. More-
over, it is difficult to support fully automated format conversion in
these efforts since attributes do not directly reflect the data layouts.

Language-Based Abstraction. Recent work [6] describes sparse
formats using a language-based approach to assist format conver-
sion, but the language is not well-defined as a format abstraction.
Additionally, this work does not support many specialized for-
mats such as hybrid formats. To the best of our knowledge, UniS-
parse is the first language-based formulation of format abstraction.
Our work complements prior approaches on format customization
and decouples format pre-processing from kernel generation.

TABLE 1
State-of-the-art sparse tensor algebra compilers.

Input- Hardware-  Auto format

Prior Work awareness awareness Conversion
TACO [8], [15] O - O
Attribute-  MLIR SparseTensor [2] O [ [
based COMET [22] O [ O
SparseTIR [23] [ [ [
Language-  TACO-conversion [6] O (=) [ ]
based UniSparse o [ ) o

3 UNISPARSE: A UNIFIED ABSTRACTION FOR CUSTOMIZ-
ING SPARSE DATA FORMATS
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Fig. 2. An overview of the automated compiler flow.

To address the aforementioned limitations of the prior arts, we
propose UniSparse, an intermediate language that can formally
and concisely describe various sparse formats, facilitating both
format conversion and customization (Section 3.1). Fig. 2 outlines
the overall compilation flow based on UniSparse. In our approach,
a sparse tensor format is encoded as an index map and a set
of storage mutation and query primitives, which is decoupled
from the compute kernel specification. The compiler decodes how
formats are stored internally and generates code for format pre-
processing (Section 3.2). Then it can interface with any code
generation algorithms to lower compute operations, where we
leverage the MLIR SparseTensor work. The intermediate language
is implemented as an independent MLIR dialect and lowered to
multiple targets, including CPUs, GPUs, and a PIM simulator [8].

3.1 Format Abstraction

With UniSparse, the format of a sparse tensor is described by
an index map and storage mutation primitives. Further, sparsity
patterns can be obtained through queries, which are instrumental
for format customization.

Index Maps. For a sparse tensor, an index map directly de-
termines the storage layout of the coordinate information in the
metadata tree. The map takes a list of source indices as inputs
and returns a list of destination arithmetic expressions as results.
The order of the index expressions dictates the order of storage.
A trivial case of an index map is (d@, d1)-> (d1, d0), which
represents a column-major matrix layout.

If we revisit the example in Fig. 1a, where the matrix is indexed
by do and d;, we can find the destination index expressions asso-
ciated with each level of the metadata tree for different formats
in Fig. 1b-1f. For example, the C2SR format in Fig. 1c is expressed
by an index map of (d@, d1)-> (de%2, do/2, d1), which indicates
that the first dimension of the matrix is divided into two partitions
in a cyclic way; the BDIA portion of the hybrid format in Fig. 1le
(i.e., a sub-matrix on the left) is expressed by an index map of (do,
d1)-> (de/3, d1-d@, de%3), which partitions the first dimension
before grouping data along the diagonals within each partition.

The destination indices are typically expressed as closed-form
functions using basic arithmetic operations (e.g., add/sub, mul-
tiply, divide, modulo), which we call direct maps. For generality,
we further allow user-defined functions, namely indirect maps, to
be used in an index expression. Functions fo for the CISR format
in Fig. 1d and f; for the BELL portion of the hybrid format in
Fig. 1f, are such examples. We omit detailed definitions of these
indirect maps due to space constraints. At a high-level, function
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Fig. 3. Examples of storage mutation primitives. Format A, B, C, and D
represent four different storage layouts of matrix A in Fig. 1a.

fo distributes rows in a way to balance the number of non-zeros
among a set of sub-tensors; these sub-tensors will be assigned to
different memory channels and processed in parallel. The function
f1 computes a new set of indices by enumerating non-zero blocks
along the row dimension.

Storage Mutation Primitives. The metadata tree can be further
compressed in size using two mutation primitives: trim and merge.
The trim primitive prunes away zero values (at the bottom of
the tree) and their associated metadata (on the path from the
root to the bottom of the tree) between a starting level S and an
ending level E, where S<E (i.e,, S is closer to the root than E).
The merge primitive merges equivalent paths at specified levels
to save storage space. To support format conversion, we further
introduce fill and split, which are the reverse of trim and merge,
respectively. They have exactly the opposite effect on the metadata
tree. Fig. 3 illustrates the four primitives using a simple example.

Query Primitives. UniSparse further provides methods to obtain
statistics of a sparse tensor through query primitives, each of
which consists of a reduction map and an aggregation function.

A reduction map divides tensor elements into groups using the
same syntax as an index map. However, the destination expression
of a reduction map typically has fewer dimensions than the source
expression. For example, the reduction map (d0, d1)-> (d0%2)
assigns the values in the even rows into one group and the values
in the odd rows into the other group; another map (do, d1)->
(d1-do) groups elements on the same diagonals together.

An aggregate function calculates statistics of the groups. We
pre-define several aggregation functions: count returns the num-
ber of non-zeros within a group, which can be used to determine
sparsity patterns before decomposing a tensor in a hybrid format;
count-distinct computes the number of unique non-zeros within
a group, which is useful for tensor value compression [17]; min/max
functions return a minimum/maximum coordinate of a group,
useful to express banded formats such as the skyline format [20].

With the above primitives, UniSparse can express both input-
aware formats (e.g., hybrid formats in Fig. 1e/1f) and hardware-
aware formats (e.g., blocking formats in Fig. 1c/1d). Fig. 4a
lists the abstractions of the formats in Fig. 1. We further define
format pre-processing operations, decompose and convert, to en-
able declarative specification of tensor decomposition and format
conversion. We omit the details here due to space constraints.

3.2 Automation

Analysis. The compiler infers how sparse tensors are stored in
memory, i.e., data structures shown in Fig. 4b, from format abstrac-
tions in Fig. 4a. In general, a metadata tree of a sparse tensor can
be stored level by level, and each level by an array of indices (idx)
and an array of pointers (ptr). An element in an idx array identifies
anode at the current tree level. An element in a ptr array indicates
how many nodes are connected to a parent node, i.e., it encodes a
down arrow | in Fig. 1. In the special case that the indices at the
current level are contiguous numbers starting from 0, the idx array
can simply be replaced by a size. In another case when nodes have
a one-to-one correspondence with their parents. the ptr array can
be skipped. Indirect maps introduce less regular index patterns
and always require an explicit idx array. The trim(S,E) primitive
also calls for idx arrays for level S to level E, since the indices
at these levels are not continuous after being trimmed. The merge
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Fig. 4. The abstractions and storage data structures of the selected custom
formats of matrix A in Fig. 1. Here list_schedule and pack are two
indirect map functions. list_schedule(d0,2) schedules the rows (d0) of
a tensor to 2 banks, and pack(d0/2,d1/2|d0/2) packs non-zeros in the
same dimension (with the same d0/2) together in storage. |d0/2 marks
that the output index is independent of the level do/2 and thus, the level
d0/2 is stored in size.

primitive adds a ptr array to the descendant levels of specified
levels.

Code Generation. The compiler lowers the declarative convert
operation into a sequence of atomic mutation primitives (i.e.,
trim/fill, merge/split) and arithmetic operations (e.g., add/sub,
multiply, divide, modulo). The mutation primitives are applied to
the storage of the source format to make it align with the target
format. The arithmetic operations are generated to transform from
the source index list to target index expressions. As for indirect
maps, we only support converting from regular formats to formats
with user-defined map functions, but not vice versa.

3.3 An lllustration of the Intermediate Language

Fig. 5 illustrates UniSparse with sparse matrix-vector multipli-
cation (SpMV) described in MLIR. The original format of the
input tensor, COO, and the target hybrid BDIA/CSR format are
abstractly specified. Then the tensor is converted from the original
format to the target format. Finally, the SpMV compute is defined
with the format-converted tensor as an argument.

// Format abstraction

#C00 = #encoding<{
indMap=#map<(i,j)->(i,j)>,stgPrim=#prim<trim(0,1)> }>

#CSR = #encoding<{
indMap=#map<(i,j)->(1i,j)>,stgPrim=#prim<merge(0), trim(1,1)> }>

#BDIA = #encoding<{
indMap=#map<(i,j)->(i div 50, j-i, i mod 50)>,
stgPrim=#prim<merge(0), trim(1,1)> }>

#C00_C00 = #hybrid<{ fmats=[#C00, #C00] }>

10 #BDIA CSR = #hybrid<{ fmats=[#BDIA, #CSR] }>

O 0N NU = WN -

12 // Format pre-processing

13 %Al = unisparse.decompose (%in_A, %thld) {

14 rmap=(i,j)->(i div 50, j-i)}: <?X?X , #C00_C00>
15 %A2 = unisparse.convert (%Al): <?X?X , #BDIA_CSR>

17 // Compute operation

18 #spmv = { indexing_maps = [

19 affine map<(i,j)->(i,j)>, // for argument %A2
20 affine_map<(i,j)->(j)>, // for argument %in_X
21 affine_map<(i,j)->(i)>], // for argument %out_ Y
22 iterator_types = ["parallel", "reduction"] }
23 %0 = linalg.generic #spmv

24 ins(%A2, %in_X : <?X?X , #BDIA_CSR>, <?X >)
25 outs(%sout_Y: <?X >) {

26 ~bb0 (%a: , %b: , %X ):

27 %2 = arith.mulf %a, %b :

28 %3 = arith.addf %x, %2 :

29 linalg.yield %3 :

30 } -> <?xf32>

Fig. 5. A UniSparse program for SpMV. Assume the format of the input
tensor A is COO. A decompose operation in Line 13 divides the tensor into
two sub-tensors adaptively by embedding a sparsity query with a reduction
map (rmap) in Line 14, and a convert operation in Line 15 translates
the original format into a hybrid BDIA/CSR format. All these formats have
been abstractly specified beforehand in index maps (indMap) and storage
mutation primitives (stgPrim) in Line 2 - 10. The SpMV kernel is specified
using a linalg.generic operation in Line 23 - 30.
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4 EVALUATION

We demonstrate the benefits of UniSparse by evaluating the pro-
ductivity improvement and the performance of supported custom
formats over traditional formats on an Intel CPU, an NVIDIA
GPU, and a simulated PIM device. We use sparse matrices from
popular datasets including SuiteSparse [7] and OGB [13]. We
further obtain a set of sparse weight tensors/matrices from a
pruned Transformer model [11].

Productivity. A single decompose operation in the UniSparse
program of Fig. 5 lowers to 158 lines of code (LOC) in C++, and
an equivalent implementation in Python is 105 LOC. Thus much
less effort is required in designing and pre-processing formats;
switching between formats is easier too, since the specification of
the compute kernel is decoupled from format customization.

CPU Execution. We test the SpMV kernel with the hybrid
BDIA /CSR format (program in Fig. 5) on a 48-core Intel Xeon Gold
6248R CPU at 3.00GHz. The compute kernel is parallelized using
OpenMP and implemented as a runtime library linked to the pro-
gram. The baseline is a highly optimized SpMV implementation in
Intel MKL using the CSR format. Fig 6 shows the execution time
of the kernel normalized against the baseline. Using the hybrid
format leads to a 1.44x speedup in geomean.

GPU Execution. We evaluate sparse matrix-matrix multiplica-
tion (SpMM) using the hybrid BELL/COO format and compare
it with the one using the CSR format. The compute kernel is
deployed on an NVIDIA RTX A6000 GPU through APIs provided
by the cuSPARSE library. Fig. 7 shows the normalized runtime
of the SpMM kernel using the CSR format vs. the BELL/COO
format. The decomposition parameters (block size/density thresh-
old) are shown above each bar of the BELL/COO format. The
hybrid BELL/COO format on the selected sparse matrices leads
to a 2.7x geomean speedup. Furthermore, we expect to see a
higher speedup through additional parameter tuning in matrix

decomposition.
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Fig. 7. Normalized run time of cuSPARSE SpMM using the BELL/COO de-
composed by UniSparse vs. CSR on NVIDIA A6000. Datasets transformer-
50 to 95 are pruned weight matrices of Transformer [11] with sparsity
ranging from 50% to 95%.

PIM Simulation. We evaluate SpMV using the CSR and CISR
formats on a simulated PIM device [8] with 256, 512, and 1024
cores. Each PIM core has a copy of the input dense vector and
computes a subset of the output vector in a lock-free execution
pattern. Fig. 8 shows the maximum vs. the average number of
non-zeros. As the number of cores increases, the load imbalance
introduced by the C?SR format gradually becomes a bottleneck,
whereas the CISR format mitigates this issue. Fig. 9 shows the
normalized runtime of SpMV on 1024 PIM cores using the C?SR
vs. the CISR format. Compared with the C?SR format, using the
CISR format improves the performance by 1.24x in geomean.

5 CONCLUSION

We present UniSparse, an intermediate language for general
sparse format customization, and a compiler automating both
format pre-processing and compute kernel generation. UniSparse
achieves significant productivity and performance improvement
over the state-of-the-art with important sparse kernels and various
custom formats on multiple platforms, including CPUs, GPUs and
a simulated PIM device.
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