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ABSTRACT
We present ResilienC, a framework for resilient control of Cyber-
Physical Systems subject to STL-based requirements. ResilienC uti-
lizes a recently developed formalism for specifying CPS resiliency
in terms of sets of (rec, dur) real-valued pairs, where rec repre-
sents the system’s capability to rapidly recover from a property
violation (recoverability), and dur is re�ective of its ability to avoid
violations post-recovery (durability). We de�ne the resilient STL
control problem as one of multi-objective optimization, where the
recoverability and durability of the desired STL speci�cation are
maximized. When neither objective is prioritized over the other, the
solution to the problem is a set of Pareto-optimal system trajectories.
We present a precise solution method to the resilient STL control
problem using a mixed-integer linear programming encoding and
an a posteriori n-constraint approach for e�ciently retrieving the
complete set of optimally resilient solutions. In ResilienC, at each
time-step, the optimal control action selected from the set of Pareto-
optimal solutions by a Decision Maker strategy realizes a form of
Model Predictive Control. We demonstrate the practical utility of the
ResilienC framework on two signi�cant case studies: autonomous
vehicle lane keeping and deadline-driven, multi-region package
delivery.
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1 INTRODUCTION
Resiliency is of fundamental importance in Cyber-Physical Systems
(CPS), as such systems are expected to ful�ll safety- and mission-
critical requirements even in the presence of external disturbances
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or internal faults. Although various notions of resiliency have been
proposed within a control setting [5, 27], a general formal charac-
terization has been lacking. Recently, Chen et al. [6] used Signal
Temporal Logic (STL) [16] to formally reason about resiliency in
CPS. Given an STL property i expressing a CPS requirement, the
notion of resiliency introduced in [6] permits violations of i as long
as: 1) the CPS quickly recovers from the violation, and then 2) sat-
is�es i for an extended period of time. These two requirements are
called recoverability and durability, respectively.

The results of [6] naturally suggest the following problem of
resilient STL control: �nd an optimal control strategy that maximizes
the system’s resilience in terms of recoverability and durability.
These two objectives are often at odds with each other. For example,
in the lane-keeping problem (see Figure 2), an aggressive control
strategy can quickly return the vehicle to the lane after a violation
(good recoverability) but might fail to keep the vehicle in the lane
for an extended period of time due to overshooting (poor durability).
On the other hand, with a cautious strategy, the vehicle might take
longer to re-enter the lane (poor recoverability) but subsequently
manage to remain in the lane longer (good durability). In other
words, without prioritizing one requirement over the other, the
aggressive and cautious strategies aremutually non-dominated and,
hence, equally resilient.

In this paper, we present a control framework called ResilienC
(the ‘C’ stands for control), where the resilient STL control problem
is formulated as one of multi-objective optimization, designed to
maximize both the recoverability and durability of the CPS. Unlike
existing techniques for STL-based control [21, 24] which focus on
optimizing a single objective (e.g., spatial robustness in [21] and
time robustness in [24]) and thus produce a single solution, our
method results in a set of non-dominated, aka Pareto-optimal, solu-
tions. Such a method is also called a posteriori as it avoids making
any a priori assumptions about the relative importance of the two
objectives (recoverability and durability). We achieve a Model Pre-
dictive Control (MPC) scheme with our method by deploying a
Decision Maker (DM) strategy that, at each time step, selects the
next optimal control action from among the set of Pareto-optimal
solutions for execution by the plant. See Figure 1 for an overview
of the ResilienC framework.

We solve the resilient STL control problem in a precise manner,
in that our method can retrieve the entire set of non-dominated
resilient points. To do so, we focus on CPS with linear dynamics and
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Figure 1: Overview of ResilienC architecture.

encode the problem as one of mixed-integer linear programming
(MILP). In particular, the solution set of the multi-objective prob-
lem is found by solving multiple single-objective MILP instances
through an n-constraint approach [11].

From a theoretical standpoint, besides proving the correctness
and characterizing the complexity of our algorithm, we establish an
important relationship between our resilient STL control problem
and the time-robust STL control problem recently introduced in [24].
Time-robust STL control seeks to optimize time robustness, i.e., the
extent to which a trajectory can be shifted in time without a�ecting
the satisfaction of the STL speci�cation. We prove that any time-
robust solution is also a resilient solution, making resilient STL
control a generalization of time-robust STL control.

We evaluate ResilienC on two case studies: lane keeping and
deadline-driven multi-region package delivery. Our results clearly
demonstrate the e�ectiveness of our solution method, which pro-
vides a comprehensive view of the recoverability-durability tradeo�.
Furthermore, we use case studies to assess and compare the various
DM strategies.

In summary, our main contributions are the following.
• We present ResilienC, a resilient control framework for CPS
with STL-based requirements. We de�ne the resilient con-
trol problem as one of multi-objective optimization such that
the recoverability and durability metrics associated with the
STL speci�cations are maximized and a set of Pareto-optimal
solutions is generated. We also propose various DM strate-
gies for selecting a single optimal solution, used to generate
MPC-based control actions. To the best of our knowledge,
we are the �rst to investigate a resilient control framework
that co-optimizes recoverability and durability.

• We present a precise solution method, based on an MILP
encoding and an a posteriori n-constraint approach, for ef-
�ciently retrieving the complete set of optimally resilient
solutions.

• We prove that our resilient control framework is a general-
ization of time-robust STL control.

• We conducted two case studies for which we considered
various control strategies that induce vastly di�erent but
equivalently resilient trajectories. We also illustrate the ef-
fects of multiple DM preferences on ResilienC-based control.

2 BACKGROUND
In this section, we provide background on the syntax and semantics
of both STL and the STL-based Resiliency Speci�cations of [6]. Let
b : T! R= be a signal where T = Z�0 is the (discrete) time domain.

We denote by |b | the length of b . Given C 2 T and interval � on T,
C + � is used to denote the set {C + C 0 | C 0 2 � }.

2.1 Signal Temporal Logic
STL is a logical formalism for specifying temporal properties over
real-valued signals. An STL atomic proposition ? 2 AP is de�ned
over b and is of the form ? ⌘ ` (b (C)) � 2 , 2 2 R, and ` : R= ! R.
STL formulas i are de�ned according to the following grammar [9]:

i ::= ? | ¬i | i1 ^ i2 | i1 U� i2

where U is the until operator and � is an interval on T. Logical
disjunction is derived from ^ and ¬ as usual, and operators even-
tually and always are derived from U as usual: F�i = >U� i and
G�i = ¬ (F�¬i). The satisfaction relation (b, C) |= i , indicating
whether b satis�es i at time C , is de�ned as follows:

(b, C) |= ? , ` (b (C)) � 2

(b, C) |= ¬i , ¬((b, C) |= i)
(b, C) |= i1 ^ i2 , (b, C) |= i1 ^ (b, C) |= i2

(b, C) |= i1U�i2 , 9 C 0 2 C + � s.t. (b, C 0) |= i2^
8 C 00 2 [C, C 0), (b, C 00) |= i1

The characteristic function j of i relative to b at time C is de�ned
such that j (i, b, C) = 1 when (b, C) |= i and �1 otherwise [9].

STL admits a quantitative semantics called (space) robustness [9]
that quanti�es the extent to which b satis�esi at time C . Its absolute
value can be seen as the distance of b from the set of trajectories
satisfying (positive value) or violating (negative value) i .

STL also admits a quantitative semantics called time robust-
ness [9], which is used to quantify the extent to which a trajectory
can be shifted in time without a�ecting the satisfaction (or viola-
tion) of the STL speci�cation. Its de�nition is given in terms of the
real-valued function \+:
\+(?, b, C) = j (?, b, C) ·max{3 � 0 B .C . 8 C 0 2 [C, C + 3],

j (?, b, C 0) = j (?, b, C)}
\+(¬i, b, C) = � \+(i, b, C)
\+(i1 ^ i2, b, C) = min(\+(i1, b, C), \+(i2, b, C))
\+(i1U�i2, b, C) = max

C 0 2C+�
min(\+(i2, b, C 0), min

C 00 2 [C ,C 0 )
\+(i1, b, C 00))

As with space robustness, STL time robustness is sound in that pos-
itive or negative values of \+ correspond to satisfaction or violation
in the usual Boolean interpretation.

2.2 STL-based Resilience
We now give an overview of the formulation of STL resilience in-
troduced in [6]. The intuition is that given an STL formula i , two
properties characterize its resilience: recoverability and durability.
Recoverability requires a signal to recover from a violation of i
within time U ; durability requires a signal to maintain the satisfac-
tion of i for at least a duration of V . A signal is resilient if it satis�es
both properties. Given an STL formula i and U, V 2 T, V > 0, the
formula

'U,V (i) ⌘ ¬iU[0,U ]G[0,V )i
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captures both temporal requirements (recoverability and durability).
In [6], 'U,V (i) expressions are the atomic formulas of an STL-like
logic called STL-based Resiliency Speci�cations (SRS).

Akin to space and time robustness, a quantitative semantics in
the form of a Resilience Satisfaction Value (ReSV) is proposed to
measure the resilience of SRS formulas. The ReSV of 'U,V (i) w.r.t.
b at time C is a (rec, dur) pair given by:

(�CA42 (i, b, C) + U, C3DA (i, b, C) � V)
where

CA42 (i, b, C) = min ({3 2 T | (b, C + 3) |= i} [ {|b | � C})
C3DA (i, b, C) = min

�
{3 2 T | (b, C 0 + 3) |= ¬i} [ {|b | � C 0}

�
,

C 0 = C + CA42 (i, b, C)
The value of CA42 (i, b, C) quanti�es the time needed for b to recover
from a violation of i at time C , and C 0 = C + CA42 (i, b, C) is the
(absolute) recovery time. The value of C3DA (i, b, C) quanti�es the
time period after C 0 during which i remains true. Thus, rec tells
us how early before U we recover, and dur how long after V i is
maintained true. Going forward, we often abbreviate CA42 (i, b, 0)
and C3DA (i, b, 0) with CA42 and C3DA , respectively.

Akin to space and time STL robustness, the authors of [6] prove
that the ReSV semantics is sound in that (b, C) |= 'U,V (i) holds if
�CA42 (i, b, C) + U � 0 and C3DA (i, b, C) � V � 0, with at least one of
the two inequalities strictly holding. Thus, the resilience of i w.r.t.
b at time C can be represented by a (rec, dur) pair.

The ReSV de�nition and the soundness result extend to com-
posite SRS formulas. The intuition behind this extension is that
the ReSV of e.g., an always (eventually) formula with bound � , rep-
resents the worst-case (best-case) resilience value attained by the
subformula within � . For control purposes, however, we are only
interested in SRS atoms. See also Remark 1.

For �nding an optimally resilient control strategy, it is necessary
to compare the resilience of i w.r.t. two signals. In [6], an order-
ing relation �A4 is introduced speci�cally for this purpose.1 The
intuition is that usual Pareto-dominance � over the reals is not
consistent with resiliency satisfaction. Recall that given two real-
valued tuples G,~ 2 R= , G Pareto-dominates ~, denoted by G � ~,
if G8 � ~8 , 1  8  =, and G8 > ~8 for at least one such 8 , under
the usual ordering >. Now consider the (rec, dur) pairs (�1, 2) and
(1, 1). By usual Pareto-dominance, (�1, 2) and (1, 1) are mutually
non-dominated, but an ReSV of (�1, 2) indicates that the system
does not satisfy recoverability; namely it recovers one time unit
too late. On the other hand, an ReSV of (1, 1) implies satisfaction
of both recoverability and durability bounds, and thus should be
preferred to (�1, 2). This intuition is formalized in the de�nition of
the �A4 relation.

De�nition 2.1 (Resiliency Binary Relations [6]). We de�ne binary
relations �A4 , =A4 , and �A4 in Z2. Let G,~ 2 Z2 with G = (GA , G3 ),
~ = (~A ,~3 ), and sign is the signum function. We have that G �A4 ~
if one of the following holds:

(1) B86=(GA ) + B86=(G3 ) = B86=(~A ) + B86=(~3 ), and G � ~.
(2) B86=(GA ) + B86=(G3 ) > B86=(~A ) + B86=(~3 ).

1The motivation for introducing the ordering relation �A4 in [6] is a di�erent one,
namely for computing the semantics of composite SRS formulas.

We denote by �A4 the dual of �A4 . If neither G �A4 ~ nor ~ �A4 G ,2
then G and ~ are mutually non-dominated, denoted G =A4 ~. Under
this ordering, a non-dominated set ( is such that G =A4 ~ for all
G,~ 2 ( .

Given a binary relation B and a non-empty set % ✓ Z2, we
denote with maxB (%) the maximum set induced by the ordering
B, i.e., the largest subset ( ✓ % such that 8G 2 ( , 8~ 2 % , G 6C ~.
The minimum set is de�ned analogously as minB (%) = maxC (%).
In the following, we will use the so-called maximum resilience
set max�A4 (%), abbreviated as maxA4 (%), and the one induced by
canonical Pareto-dominance max� (%), abbreviated as max(%).

3 PROBLEM FORMULATION
Consider a discrete-time, linear dynamical system (� ,⌧, G0) with
dynamics GC+1 = �GC +⌧DC , where � 2 R=⇥= , ⌧ 2 R=⇥< , GC 2 R=
is the system state, and DC 2 * ✓ R< is the control input at time C ,
with the control space* de�ned as a closed polytope. Any sequence
of control actions ÆD = [D0, . . . ,D��1] induces a sequence of system
states ÆG = [G0, . . . , G� ] starting at G0 and generated by the system
dynamics.

We now de�ne the Resilient STL Control problem as a bi-objective
optimization problem aimed at maximizing the recoverability and
durability of ÆG with respect to i at time 0.3

P������ 1 (R�������� STL C������). Let i be an STL formula,
(� ,⌧, G0) the control system, � the control horizon, and U, V 2 T,
V > 0. Solve

S⇤ =<0GA4
ÆD

(U � CA42 (i, ÆG, 0), C3DA (i, ÆG, 0) � V)

s.t. GC+1 = �GC +⌧DC , DC 2 * , C 2 [0, . . . ,� � 1].
R����� 1. Time C = 0 represents the o�set of ÆG at which i is

evaluated. The formulation of the problem is still general because we
can consider trajectories starting at any state G0. The optimization
objectives of Problem 1 correspond to the ReSV semantics of 'U,V (i)
formulas, which is an atom in the SRS temporal logic of [6]. In this
way, we focus on optimizing the recoverability and durability of the
�rst recovery episode w.r.t. i over an MPC-style prediction horizon
� [23]. This is arguably more useful for control purposes than op-
timizing the ReSV of SRS formulas with temporal operators, where
optimizing the ReSV of G�'U,V (i) ( F�'U,V (i)) corresponds to opti-
mizing the worst-case (best-case) recovery episode w.r.t. i within � .
From a technical perspective, the ReSV of a composite formula is itself
a set of non-dominated (rec, dur) pairs (as opposed to a single pair for
'U,V (i) atoms), which would unnecessarily complicate the de�nition
of Problem 1.

The optimal solution to Problem 1 is a set S⇤ ✓ R2 of non-
dominated (rec, dur) pairs, i.e., the maximum resilience set (maxA4 )
of all (rec, dur) pairs induced by all possible sequences of control
inputs. We denote by U⇤

1 ✓ *� the set of optimal points in the
decision (control) space, where each point induces one optimal
solution in S⇤.

E������ 1. In the lane-keeping problem, a vehicle is required to
stay within its lane (colored grey in Figure 2) at all times. When the
2This is equivalent to saying that B86= (GA ) + B86= (G3 ) = B86= (~A ) + B86= (~3 ) and
neither G � ~ nor ~ � G .
3We slightly abuse notation and use sequences instead of signals.
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Figure 2: Vehicle trajectories corresponding to three optimal
solutions provided by our ResilienC framework. (The �gure
is for illustrative purposes only and does not directly re�ect
our experimental results.)

vehicle is forced to exit the lane due to e.g. an external disturbance,
the resilient STL controller predicts multiple optimal trajectories for
the vehicle. Three such trajectories are shown in Figure 2. The initial
location of the vehicle, marked by a star, is outside the lane, so it
violates the lane-keeping speci�cation i . Trajectory 1 is the slowest to
recover from its violation of i , resulting in the worst recoverability
among the three. However, the vehicle subsequently maintains i
until the end of the trajectory, resulting in the best durability. In
trajectory 3, the vehicle aggressively steers back into the lane whenever
i is violated; so it exhibits the best recoverability. It cannot, however,
maintain i after satisfaction due to overshooting; it thus has the worst
durability. The behavior of trajectory 2 lies in-between trajectories 1
and 3. In our approach, the (rec, dur) values of these three trajectories
are mutually non-dominated and hence, equally resilient.

Proposition 3.1 establishes the relationship between the sets of
Pareto-optimal solutions obtained under the �A4 ordering and the
usual � ordering. This result is useful per se andwill be also required
in Section 4 to prove the correctness of our algorithm.

P���������� 3.1. For any % ✓ Z2 with % < ;, maxA4 (%) ✓
max(%).

P����. We prove that any G in maxA4 (%) is also in max(%). Let
us remark that, if G = (GA , G3 ) 2 maxA4 (%), then G �A4 ~ or G =A4 ~
for all ~ = (~A ,~3 ) 2 % . Similarly, if G 2 max(%), then for all ~ 2 % ,
G � ~ or G and ~ are mutually non-dominated w.r.t. �. We distin-
guish two cases: (i) if B86=(GA ) +B86=(G3 ) = B86=(~A ) +B86=(~3 ), we
have G � ~ (when G �A4 ~) or G and ~ are mutually non-dominated
(when G =A4 ~). (ii) if B86=(GA ) +B86=(G3 ) > B86=(~A ) +B86=(~3 ), we
show that G ⌃ ~ (i.e., G � ~ or G and~ are mutually non-dominated).
If, by contradiction, ~ Pareto-dominates G then we have ~A � GA
and ~3 � G3 with at least one inequality holding strictly. This con-
tradicts the assumption B86=(GA ) + B86=(G3 ) > B86=(~A ) + B86=(~3 )
because B86= function is monotonic non-decreasing. ⇤

The related problem of Time-Robust STL Control Synthesis [24]
seeks to maximize a single objective: the STL time robustness of ÆG
with respect to i at time 0. For this reason, its optimal solution is a
single value (if one exists).

P������ 2 (T����R����� STL C������ S��������). Let i be an
STL formula, (� ,⌧, G0) the control system, and � the control horizon.
Solve

\⇤ =<0G
ÆD

\+(i, ÆG, 0)

s.t. GC+1 = �GC +⌧DC , DC 2 * , C 2 [0, . . . ,� � 1] and \+(i, ÆG, 0) �
\; > 0.

We note that the time robustness \+(i, ÆG, 0) is constrained by
a positive lower bound \; , meaning that the above problem is not
always feasible. The result \⇤ is the optimal solution to the problem.
We denote withU⇤

2 the corresponding set of optimal points in the
decision/control space.

R����� 2 (O������ ������). In Problem 1, there are in general
multiple optimal points in U⇤

1 for two reasons: (1) S⇤ may contain
multiple optimal solutions; (2) even if S⇤ contains only one solution,
there might be multiple control strategies inducing the same optimal
solution.4 In Problem 2, there may be multiple points inU⇤

2 for a sim-
ilar reason: it possibly contains multiple ÆD yielding the same optimal
time robustness \⇤.

P���������� 3.2. Problem 1 is solvable, i.e., an optimal point
exists. Problem 2 is solvable if feasible.

P����. Problem 1 has a closed-polytope feasible region. Its ob-
jectives are integers and bounded, so there exists an optimal point
such that the optimal values are achieved, hence solvable. Similar
reasoning applies to Problem 2; thus it is solvable if feasible. ⇤

Although the two problems seem di�erent, we emphasize that
Problem 1 generalizes Problem 2 in the sense that solving the latter
is equivalent to �nding a particular optimal solution to the former.5
See the following proposition.

P���������� 3.3. For a system (� ,⌧, G0), control horizon � , and
STL formula i , we haveU⇤

2 ✓ U⇤
1 .

P����. If Problem 2 is infeasible, it is trivial that U⇤
2 = ; ✓ U⇤

1 .
Otherwise, we prove that ÆD 2 U⇤

1 for all ÆD 2 U⇤
2 . Because of the

constraint \+(i, ÆG, 0) > 0, the initial state of (� ,⌧, G0) must satisfy
i . A solution ÆD 2 U⇤

2 maximizes \+(i, ÆG, 0), and thus induces a
trajectory on (� ,⌧, G0) wherei is maintained for as long as possible
from time 0. This indicates that ÆD maximizes U � CA42 and C3DA �V to
their global maximum simultaneously (CA42 reaches its lower bound
0 and C3DA is maximized to \⇤ + 1), which is an optimal solution in
S⇤. Therefore, we have ÆD 2 U⇤

1 . ⇤

4 SOLUTION METHOD FOR RESILIENT STL
CONTROL

In this section, we introduce our solution method for solving Prob-
lem 1. We note that both the STL Boolean semantics and the re-
siliency objectives U � CA42 and C3DA � V are discrete (hence, non-
smooth), which makes gradient-based methods unsuitable. Meta-
heuristics similarly tend to perform poorly and do not provide
optimality guarantees. For linear systems, however, prior work
4Even if two di�erent controllers generate two di�erent trajectories, these trajectories
might have the same recoverability and durability.
5With this result at hand, we will skip any experimental comparison between time-
robust and resilient controllers, as the former is a special case of the latter.
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has shown that (single-objective) optimization of STL space and
time robustness can be formulated and precisely solved as an MILP
problem [21, 24].

Here, we take a similar approach and encode CA42 and C3DA using
MILP constraints, building on the encoding of the Boolean STL
semantics of Raman et al. [21]. To retrieve the full set of Pareto-
optimal solutions, we de�ne an n-constraint approach [11] that
solves the bi-objective problem through multiple single-objective
MILP instances, where one of the objectives is optimized and the
other is constrained above some given level.

Section 4.1 presents our MILP encoding of the Boolean STL
semantics and the resiliency objectives. In Section 4.2, we present
an n-constraint approach for e�ciently computing the set of non-
dominated optimal solutions, and provide a proof of its correctness.
Section 4.3 analyzes our algorithm’s computational complexity.

4.1 MILP Encoding
The encoding method consists of the following three main steps.
(1) Boolean semantics for STL atomic propositions. Let ? =
` (GC ) � 2 be an STL atomic proposition. We use binary variables
I`C 2 {0, 1} to represent Boolean satisfaction (I`C = 1) or violation
(I`C = 0) of ? over the control horizon at every time step C = 0, . . . ,� .
Assuming that the STL atomic propositions are linear w.r.t. GC (i.e.,
` is a linear function), we can encode the Boolean semantics of STL
atomic propositions with MILP constraints.

(I`C � 1) ·"  ` (GC ) � 2  I`C ·" (1)
where" is a signi�cantly large value.
(2) Boolean semantics for STL composite formulas.The Boolean
semantics for STL composite formulas are derived from STL atomic
propositions using Boolean conjunction and disjunction. For a given
STL formula i , we introduce binary variables IiC to represent the
Boolean semantics of i at time C = 0, . . . ,� ; i.e., IiC = 1 if i holds at
time C , 0 otherwise. The MILP encoding of IiC using only Boolean
operators can be derived inductively [21].

Negation i = ¬i 0:
IiC = 1 � Ii

0

C (2)
Conjunction i =

”<
8=1 i8 :

IiC  Ii8
C , 8 = 1, . . . ,<

IiC � 1 �< +Õ<
8=1I

i8
C

(3)

Disjunction i =
‘<

8=1 i8 :

IiC � Ii8
C , 8 = 1, . . . ,<

IiC  Õ<
8=1I

i8
C

(4)

We now consider the encoding for STL formulas with temporal
operators [21]. In particular, the always and eventually operators
are respectively encoded as �nite conjunctions and disjunctions
using (3) and (4). Below, we use the notation 0�C = min(0 + C,� )
and 1�C = min(1 + C,� ). Note that 0�C and 1�C are not additional
MILP variables.

Always i = G[0,1 ]i 0: we encode I
i
C as

”1�C
8=0�C

Ii
0

C .

Eventually i = F[0,1 ]i 0: we encode I
i
C as

‘1�C
8=0�C

Ii
0

C .

Until i = i1U[0,1 ]i2: the satisfaction of i at C can be derived
from those of the following formulas, including an unbounded U,
to achieve a linear encoding w.r.t. � [2]. In particular, we encode
IiC as Ii

0

C given that i is equivalent to i 0, where
i 0 = G[0,0�1]i1 ^ F[0,1 ]i2 ^ F[0,0] (i1Ui2). (5)

We note that i1U[0,1 ] i2 holds if i1 holds before 0, after which
i1Ui2 holds when i2 is satis�ed before 1. The �rst two conjuncts
of (5) can be derived using the MILP encoding for the always and
eventually operators. The unbounded until in the last conjunct is
encoded as follows [21].

Ii1Ui2
C = Ii2

C _ (Ii1
C ^ Ii1Ui2

C+1 )

for all C = 1, . . . ,� � 1, and Ii1Ui2
� = Ii2

� .
(3) Resilient STL control objectives. Given an SRS expression
'U,V (i), i an STL formula, we introduce variables 2i,A42C and 2i,3DAC
(and associatedMILP constraints) to encode CA42 (i, ÆG, C) and C3DA (i, ÆG, C),
respectively. Inspired by the encoding in [24], 2i,A42C and 2i,3DAC are
de�ned as counters that, informally, keep track of the number of
time units i remains violated and satis�ed, respectively.

2i,A42C = (1 � IiC ) · (2
i,A42
C+1 + 1), 2i,A42� = 0 (6)

Variable 2i,A42C is de�ned in reverse-temporal order; we �rst set
2i,A42� = 0. At time C , if IiC = 1 (i.e., (ÆG, C) |= i holds), we have
2i,A42C = 0; if IiC = 0 (i.e., (ÆG, C) |= i does not hold), we have
2i,A42C = 2i,A42C+1 +1. Thus, ifi does not hold at time C , 2i,A42C represents
the time needed for i to recover (or the time until the end of ÆG
if i never recovers); or 0 if i holds at C . We can see that 2i,A42C
follows exactly the de�nition of CA42 (i, ÆG, C) in Section 2.2, whereby
if (ÆG, C) |= i holds, we have CA42 (i, ÆG, C) = 0; otherwise, CA42 (i, ÆG, C)
is the time needed for i to recover from violation.

To de�ne 2i,3DAC , we employ additional counter variables 21C , 2
2
C 2

Z�0 for C = 0, . . . ,� , which are similarly de�ned in reverse order
as follows.

21C = IiC · (21C+1 + 1), 21� = 0

22C = (1 � IiC ) · (21C+1 + 22C+1), 22� = 0
(7)

At time C , if IiC = 1, we have 21C = 21C+1 + 1, meaning that 21C counts
how many time units i remains true after C ; if IiC = 0, i.e., i is
false at C , we have 21C = 0. At time C , if IiC = 1, we have 22C = 0; if
IiC = 0, we have 22C = 21C+1 + 22C+1. This variable keeps track, when i
is false at C , for how long i will remain true after the next recovery
episode.

By the de�nition of C3DA (i, ÆG, C) in Section 2.2, if (ÆG, C) |= i holds,
then C3DA (i, ÆG, C) is the time duration until a violation of i (or the
end of ÆG ); if instead (ÆG, C) 6|= i , C3DA (i, ÆG, C) refers to the duration-to-
violation after the next recovery, and hence remains constant until
recovery. We can see that 21C , 2

2
C respectively represent the behaviors

of C3DA (i, ÆG, C) during satisfaction and violation of i , thus

2i,3DAC = 21C + 22C (8)

R����� 3. The MILP encoding for resilience objectives involves
the multiplication of binary variables and (integer) counter variables,
which is nonlinear. Nonetheless, we can convert them to MILP in-
equality constraints using the translation of the if-then-else logic
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C 0 1 2 3 4 5 6 7 8 9

6 (>, Æx, t) -1 1 1 -1 -1 -1 1 1 1 -1

IiC 0 1 1 0 0 0 1 1 1 0

21C = IiC · (21C+1 + 1) 0 2 1 0 0 0 3 2 1 0

22C = (1 � IiC ) · (21C+1 + 22C+1) 2 0 0 3 3 3 0 0 0 0

c>,rect = (1 � z>t ) · (c
>,rec
t+1 + 1) 1 0 0 3 2 1 0 0 0 0

c>,durt = c1t + c2t 2 2 1 3 3 3 3 2 1 0

Table 1: Example of MILP encoding 2i,A42C , 2i,3DAC of the re-
siliency objectives.

relation [4]. Let I be a binary variable and 2 an integer variable. Then
the relation ~ = I · 2 is equivalent to the following inequalities:

< · I  ~  " · I
2 �" · (1 � I)  ~  2 �< · (1 � I) (9)

where" and< are the upper and lower bounds for 2 , respectively.

Table 1 provides an example of the encoding method. Consider
ÆG with � = 9 and STL formula i ; characteristic function j (i, ÆG, C)
is given in the table. A step-by-step computation of 2i,A42C and
2i,3DAC is provided; the results so obtained are the same as those
for CA42 (i, ÆG, C) and C3DA (i, ÆG, C), computed using their de�nitions
provided in Section 2.2. We de�ne the function

(2i,A42C , 2i,3DAC , C<) = milp_encoding(i, ÆG)
that takes an STL formula i and a sequence of system states ÆG as
input, and outputs the set of encoded MILP constraints C< and
encoded variables 2i,A42C , 2i,3DAC using Eqs. (1)-(8).

4.2 Multi-Objective Optimization
To address the challenge of multi-objective optimization, we pro-
pose an a posteriori method to reduce Problem 1 to a sequence of
single-objective MILP instances (by optimizing one of the objectives
and constraining the other above some given level) and to e�ciently
generate the exact set of non-dominated optimal solutions. The
single-objectives MILP instances can be solved by standard tech-
niques such as branch-and-bound methods [12].

A particular property of the resilient STL control problem is that
both objective functions are discrete and bounded by the length
of the horizon, so the number of optimal solutions is �nite. Also,
the optimal solutions are non-dominated with respect to the �A4
relation (which may not be the case with conventional Pareto dom-
inance). We propose an algorithm for computing S⇤ taking these
properties into account. First, we de�ne the following problem.
%n : ÆD⇤n = 0A6<0G

ÆD
C3DA (i, ÆG, 0) � V

subject to the constraints of Problem 1 and an additional n-constraint
U�CA42 (i, ÆG, 0) � n . (One could equivalentlymaximizeU�CA42 (i, ÆG, 0)
and constrain C3DA (i, ÆG, 0) � V � n .) We respectively denote by 5 ⇤n
and 6⇤n the values of U � CA42 (i, ÆG, 0) and C3DA (i, ÆG, 0) � V corre-
sponding to ÆD⇤n . Our algorithm consists of the following steps.

(1) Let S⇤ = ; and n = U � (� � 1).
(2) If %n is feasible, go to step (3); otherwise, go to step (5).
(3) Solve %n , then S⇤ = S⇤ [ {(5 ⇤n ,6⇤n )}. Set n = 5 ⇤n + 1.
(4) If n < U + 1, go to step (2); otherwise, go to step (5).

Algorithm 1: Solution Method for Resilient STL Control

input STL formula i , control system (� ,⌧, G0), control
horizon � , time bounds U, V .

output The sets S⇤ andU⇤
1 of Problem 1.

1: Initialize S⇤ = ; and n = U � (� � 1).
2: while n < U + 1 do
3: Let ÆD be the decision variables.
4: (ÆG, CB ) = system_constraints((� ,⌧, G0), ÆD).
5: (2i,A420 , 2i,3DA0 , C<) = milp_encoding(i, ÆG).
6: if %n is feasible then
7: Solve %n as MILP and obtain ÆD⇤n , 5 ⇤n and 6⇤n .
8: S⇤ = S⇤ [ {(5 ⇤n ,6⇤n )} andU⇤

1 = U⇤
1 [ {ÆD⇤n }.

9: n = 5 ⇤n + 1.
10: else
11: n = +1.
12: end if
13: end while
14: S⇤ =<0GA4 S⇤ and updateU⇤

1 correspondingly.
15: Return S⇤ andU⇤

1 .

(5) Return S⇤ = maxA4 S⇤.
The overall solution method is summarized in Algorithm 1. To solve
problem %n , we encode it into MILP. To do so, we �rst generate the
encoding for the control system through function system_constraints,
which takes as input the system (� ,⌧, G0) and decision variables
ÆD, and outputs the signal ÆG (as a sequence of real variables) and
the constraints CB determined by the system dynamics. Second, we
generate the encoding for the resiliency objectives through function
milp_encoding as described in Section 4.1.

P���������� 4.1. Algorithm 1 computes the exact set of optimal
solutions S⇤ of Problem 1 in a �nite number of steps.

P����. To prove the correctness of Algorithm 1, we �rst prove
that the points in S⇤ upon entry to step (5) above include all Pareto-
optimal solutions according to the traditional ordering �. Then we
prove that step (5) computes the exact set of optimally resilient
solutions (according to �A4 ).

To prove the �rst statement, it is enough to observe that at each
iteration of the above while-loop, 5 ⇤n is strictly increasing and 6⇤n
is non-increasing w.r.t. n , meaning that the (5 ⇤n ,6⇤n ) pair at one
iteration either dominates or is mutually non-dominated by the
one at the previous iteration (according to �). Hence, S⇤ include all
(but not necessarily only) the Pareto-optimal solutions according
to �.

For the second statement, we know that by Proposition 3.1, the
maximum resilience set of the Pareto front is equivalent to that
of the whole solution space. Thus, by performing maxA4 S⇤, the
output of Algorithm 1 is the set of optimal solutions (according
to �A4 ). Algorithm 1 terminates in a �nite number of steps both
because it requires solving at most � instances of %n , and each
instance terminates in a �nite number of steps. ⇤

P���������� 4.2. In the worst case, Algorithm 1 computes � in-
stances of problem %n .
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In the worst case, the number of increments of n is � (see line 9
of Algorithm 1), resulting in � instances of solving %n at line 7.

4.3 Computation Complexity
The computation complexity of Algorithm 1 consists of two major
sources: the MILP problem and the multi-objective problem. MILP
problems are NP-hard and the computational complexity is highly
dependent on the number of variables. In the worst case, a MILP
problem solves a number of LP problems that are exponential in
the number of binary and discrete variables. The complexity of LP
is polynomial in the number of (real) variables.

Let i be an STL formula with a set of atomic propositions �% .
The Boolean semantics computation for STL atomic propositions
introduces $ (� · |�% |) binary variables; the Boolean semantics
computation fori introduces$ (� ·|i |) binary variables [21]. Hence,
the number of binary and discrete variables is $ (( |�% | + |i |) · � ).
The MILP encoding for the resiliency objectives introduces exactly
3 ·� counter variables (i.e., 2i,A42C , 21C , 2

2
C ), hence this term is omitted.

Note that the continuous variables are the sequences ÆG 2 R= ·� and
ÆD 2 R< ·� . Since we need to solve at most � MILP instances for %n ,
then the overall complexity is$ (� · (2( |�% |+|i | ) ·� · (� · (<+=)): ))
for some : � 1. Note that computing maxA4 S⇤ in step (5) adds a
cost quadratic in � (see [6]) and hence is negligible compared to
the overall complexity.

R����� 4 (L����� �� ������� �������). The length of the con-
trol horizon � of the resilient STL control problem should be carefully
chosen. An excessively large � introduces unnecessary computational
complexity without signi�cant performance improvement: since we
optimize recoverability and durability relative to the �rst recovery
episode, what happens after the durability period does not a�ect these
two objectives. On the other hand, insu�ciently large � can make it
di�cult for the controller to provide an e�ective control action: if i is
initially violated and � is too small, it might be impossible to satisfy
i within � , and so all control strategies will have the same objective
values (worst possible (rec, dur) values).

5 CLOSED-LOOP CONTROL
In this section, we describe the remaining components of the Re-
silienC framework: the MPC control strategy and DMs that selects
a single solution from the set of optimal solutions.

5.1 Model Predictive Control
In the MPC setting, at each time step C , we solve Problem 1 by
setting G0 to the current system state. The resilient STL controller
computes a set of optimal solutionsS⇤. ADM selects a solution from
S⇤ and then implements only the �rst step of the corresponding
optimal control strategy. The control system evolves following its
dynamics. At time C + 1, G0 is set to the evolved system state; the
next implemented control action is calculated similarly using the
resilient STL controller and a DM. This process is repeated at every
remaining time step.

5.2 Decision-Maker Design
The optimal solutions S⇤ of Problem 1 is a set of non-dominated
(rec, dur) pairs. At each step, an optimal solution is selected from

S⇤ by a DM. We propose the following DM strategies represent-
ing di�erent preferences in solution selection. Pro-recoverability
DM: selects the solution with maximum recoverability, represent-
ing a preference for rapid recovery. Pro-durability DM: selects
the solution with maximum durability, representing a preference
for property maintenance post-recovery. Minimal-distance DM:
selects the optimal solution with minimal !2-distance to the point
(U,� � V) (the best attainable value of (rec, dur)). Adaptive DM:
respectively switches to pro-recoverability or pro-durability when
maximum recoverability is less or greater than maximum durability.
It represents a preference for the objective that is harder to achieve.

We note that a DM strategy can also represent application-
speci�c preferences beyond recoverability and durability (e.g., the
average distance to the centerline of the lane in a lane-keeping
problem). We leave this extension for future work.

R����� 5 (� ���������� �������). The current design of Re-
silienC uses an a posteriori method: the complete set of optimal solu-
tions S⇤ is �rst computed, then a DM chooses one of them. However,
we note that the above-de�ned minimal distance solution can be found
without computing the Pareto front, but by solving the single-objective
problem below:

B⇤ =<8=
ÆD

| | (U � CA42 , C3DA � V) � (U,� � V) | | (10)

where U,� � V are upper bounds on U � CA42 , C3DA � V . The solution
B⇤ is Pareto-optimal according to � because, if it was not, there would
exist B0 � B⇤ with B01 � B⇤1 and B

0
2 � B⇤2 , of which at least one is a strict

inequality. Hence, B0 would be closer to (U,� � V) than B⇤, which
contradicts the fact that B⇤ is the optimal solution of (10). However,
B⇤ is not guaranteed to be an optimal solution to Problem 1, i.e., be
Pareto-optimal according to �A4 , unless we set U = 0 and V = � . We
note that the latter is a perfectly reasonable choice for the bounds,
representing the strictest possible requirements for both recoverability
and durability.

6 CASE STUDIES
In this section, we demonstrate the bene�ts of the STL-based re-
silient controller via two case studies. Experiments were performed
on an Intel Core i7-12700H CPU with 32GB of DDR5 RAM and a
Windows 11 operating system. Our case studies have been imple-
mented in MATLAB with YALMIP [15]; our implementation and
case studies can be found in a publicly-available library. 6

6.1 Lane Keeping
We study resilient control in a lane-keeping problem. We consider
a linear, time-invariant single-track model for the vehicle with a
constant nominal longitudinal speed [17]. The state-space repre-
sentation of the model can be written as follows.

§xC =

26666664

0 1 0 0
0 021 0 022
0 0 0 1
0 023 0 024

37777775
xC +

266666664

0
2⇠U�
<
0

2;�⇠U�
�I

377777775
DC , G0 = [5, 6, 0, 2])

where the state vector xC = [~,~E,l,lE]) with ~ being the lateral
position, ~E the lateral velocity, l the yaw angle, and lE the yaw

6See https://github.com/hongkaichensbu/resilient-stl-control

https://github.com/hongkaichensbu/resilient-stl-control
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parameters ;� ;' ⇠U� ⇠U' �I < E

values 1.4 2.55 2200 2200 5757 2200 10

units m m N/rad N/rad kg/m2 kg m/s
Table 2: Selected vehicle parameters.

velocity. Control actionsDC are steering angles of the vehicle, which
are bounded by the physical limitation of the vehicle:

|DC |  0.72 rad, |DC � DC+1 |  0.72 rad
The parameters are de�ned as follows.

021 = �2⇠U� + 2⇠U'
<E

, 022 = �2;�⇠U� � 2;'⇠U'
<E

� E,

023 = �2;�⇠U� � 2;'⇠U'
�IE

, 024 = �
2;2�⇠U� + 2;2'⇠U'

�IE
where �I is the inertial moment around the vehicle’s I axis; ;�
and ;' are the distances between the CoG and the front and rear
axles respectively. The constants ⇠U� and ⇠U' are front and rear
cornering sti�ness; E is the constant nominal longitudinal speed.
Our parameter selection is shown in Table 2. Letting �C = 0.1 secs
be the length of one time-step, we have xC+1 = xC + §xC · �C .
Lane Keeping Property: the vehicle should always remain within
the lane boundaries in a time interval.

i;: = G[0,⌘] (? ^ @) = G[0,⌘] ((~4 � ~; ) ^ (~4  ~D ))
where~4 is the lateral di�erence between the vehicle and the center
line of the lane. We set~D = 1m,~; = �1m, control horizon� = 60,
⌘ = 2, U = 1.8 secs, and V = 2.5 secs. We apply ResilienC to our
vehicle model on a curvy track.

We �rst evaluate the ResilienC solution method by using Algo-
rithm 1 to compute the optimal solutions at the initial step. The re-
sulting optimal solutions areS⇤ = {(�0.2, 1.5), (0.1,�2.2), (0.2,�2.3)};
see Figure 3. In the top �gure, the lane is indicated by the grey area
and the starting location of the vehicle, marked by a star, is outside
the lane. Each trajectory represents a predicted optimal trajectory
for the vehicle and an optimal solution in S⇤. The middle �gure
shows the sequences of control actions for three optimal trajecto-
ries. The bottom �gure shows the evolution of the lane-keeping
requirement i;: over time for the three optimal trajectories.

We now compare the di�erent behaviors of the three optimal
solutions. In the top �gure, trajectory 1 represents a situation where
the vehicle enters the lane the latest, and yet it remains in the lane
till the end of the trajectory. We can also see that from the blue solid
line in the bottom �gure, Ii;: recovers to 1 later than the others
(CA42 = 2 secs), but subsequently remains 1 for the longest duration
(C3DA = 4 secs); it thus results in the optimal solution (�0.2, 1.5).
Trajectory 3 represents a vastly di�erent situation where the vehicle
aggressively enters the lane �rst and stays in the lane, but quickly
exits the lane due to overshooting. The yellow dashed line in the
bottom �gure re�ects this situation: Ii;: recovers to 1 the earliest
(CA42 = 1.6 secs) with the shortest subsequent duration (C3DA = 0.2
secs), resulting in the optimal solution (0.2,�2.3). Trajectory 2
represents an intermediate situation: the vehicle returns to satisfy
i;: with the second fastest recovery (CA42 = 1.7 secs) and the second
longest subsequent duration (C3DA = 0.3 secs), yielding the optimal
solution (0.1,�2.2).

Figure 3: The optimal solutions provided by our ResilienC
framework at the initial step in a lane-keeping problem.

Figure 4: Simulated vehicle trajectories in ResilienC.

We then evaluate various DM strategies of our ResilienC frame-
work in the MPC setting. Solving Problem 1 and selecting a control
action took, on average, 78 msec on our machine. We roll out the
MPC controller for a trajectory of 60 time steps for each DM. The
(rec, dur) pair for the property i;: for the pro-recoverability DM,
pro-durability DM, adaptive DM, and minimal-distance DM are
respectively: (0.3,�2.2), (�0.2, 1.5), (0,�2), and (�0.2, 1.5). See the
results in Figure 4. As expected, the trajectory generated by the
pro-recoverability DM has better recoverability yet worse dura-
bility compared to the pro-durability DM. The trajectory gener-
ated with the adaptive DM has better recoverability compared
to the pro-durability DM and better durability compared to the
pro-recoverability DM, re�ecting a balanced preference between
recoverability and durability. The minimal-distance DM usually
selects the same optimal solution as the pro-durability DM. This is
because solutions with good recoverability often exhibit extremely
bad durability due to overshooting, thus making them the farthest
from the ideal resiliency value (U,� � V). This result evidences the
usefulness of our approach in presenting the DM multiple, equally
resilient, control strategies. In particular, we can see that optimizing
for a fast recovery, which is roughly equivalent to maximizing STL
time robustness, is not always the best strategy.
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6.2 Deadline-Driven Package Delivery
We study a deadline-driven, multi-region cooperative package-
delivery problem. The problem involvesmultiple controllable robots
performing package deliveries by deadlines at multiple regions in a
two-dimensional space. The robots are equipped with chargeable
batteries.

We extend a robot model in [24] with a battery state component.
In an # -robot system, we denote the state vector of the 8-th robot
as x8 = [;8G , E8G ,~8 , ;8~, 48 , E84 ] 2 R6, where ;8G , ;8~ are G , ~ coordinates,
E8G , E

8
~ are the G , ~ velocities components, 48 the battery level, and

E84 the battery charging rate. The full state vector of the multi-robot
system is x = [x1, . . . , x# ]) . Similarly, the control actions of the
8-th robot are denoted by u8 = [D81,D82,D83, 42>=], where D81,D82 2 R
associate to coordinates, D83 2 {0, 1} indicates the charging status,
and 42>= = �1 is the battery consumption rate; the control actions
of the multi-robot system are u = [u1, . . . , u# ]) . The state-space
representation of an # -robot system at time C is denoted as follows.

xC+1 = �# · xC +⌧# · uC
where xC and uC are the system state and control actions, respec-
tively. Matrices �# and ⌧# are de�ned as follows.

�# = �# ⌦
266664
�2 ⌦ � 0 0

0 1 CB
0 0 0

377775
, � =


1 CB
0 1

�

⌧# =

266666664

⌫1 0 . . . 0
0 ⌫2 . . . 0
...

...
. . .

...
0 0 . . . ⌫#

377777775
, ⌫8 =

266664
�2 ⌦ 1 0 0
0 3D 0
0 482⌘ 1

377775
, 1 =


3D
CB

�

where ⌦ is the Kronecker product and �# is the identity matrix of
size # . Parameter 482⌘ is the battery charging rate of the 8-th robot,
CB = 0.1 is the time-step size, and 3D = 0.005.

Consider two robots (i.e., # = 2), denoted by robot1 and robot2,
with 412⌘ = 7 and 422⌘ = 2 respectively representing an advanced
and fast, and an outdated and slow, battery charging system.
Deadline-driven Package Delivery: A package must be delivered by a
robot by a deadline at a delivery region. Each of the two rectangular
delivery regions, '1 and '2, has two deadlines de�ned by the time
intervals of the F operators.

iB1 = F[0,�/2] (robot1 2 '1 _ robot2 2 '1) ^
F[�/2,� ] (robot1 2 '1 _ robot2 2 '1)

iB2 = F[0,�/2] (robot1 2 '2 _ robot2 2 '2) ^
F[�/2,� ] (robot1 2 '2 _ robot2 2 '2)

where robot8 2 ' 9 indicates the 8-th robot is inside ' 9 , 8 = 1, 2,
9 = 1, 2. The requirements robot8 2 ' 9 can be expressed by a set of
four linear constraints.7

Battery power requirement: the battery power of the robots should
remain above ⇢; = 10.

i21 = (41 � ⇢; ), i22 = (42 � ⇢; )
Robots’ batteries can be charged in either of the two rectangular
charging regions ⇠1 and ⇠2. Therefore, D13 = 1 when (robot1 2

7For example, robot1 2 '1 requires the G1 to be greater than '1’s lower bound on G ,
denoted by GD1 . Thus, we have r1 · ; � GD1 , where ; = [1, 0, 0, 0, 0, 0]) .

⇠1) _ (robot1 2 ⇠2) holds, and 0 otherwise; similarly, D23 = 1
if and only if (robot2 2 ⇠1) _ (robot2 2 ⇠2) holds. Constraints
robot8 2 ⇠ 9 can be expressed as a set of four linear constraints
similar to robot8 2 ' 9 . The overall requirement for the deadline-
driven multi-region package delivery problem is de�ned as

i34; = iB1 ^ iB2 ^ i21 ^ i22

We set � = 60, U = 25, V = 20, G10 = [1.1, 0, 0.5, 0, 5,�1] and
G20 = [7, 0, 2, 0, 13,�1]. The vectors specifying the lower and upper
bounds on G and those on ~ of '1, '2, ⇠1, and ⇠2 are [0, 4, 7, 11],
[6, 10, 7, 11], [0, 1, 0, 1] and [9, 10, 0, 1], respectively. We restrict the
control actions | |D81 | |, | |D82 | |  1 for 8 = 1, 2.

We �rst compute the optimal solutions at the initial time-step in
our ResilienC framework using Algorithm 1. The optimal solutions
are S⇤ = {(�4, 4), (9,�5), (�3, 1)}. Figure 5 shows the �rst two
optimal solutions. Also, Figure 6 shows the evolution of the systems:
in each sub-�gure, from left to right, the top row shows the charging
status of robot1, package-delivery status at '1, and the battery
power level of robots; the bottom row shows the charging status
of robot2, package-delivery status at '2, and the overall problem
requirement i34; .

In Figure 5(a), an optimal situation needs robot2 to go to ⇠2 for
charging before package delivery at '2 to ensure it has su�cient
battery power for the deliveries. Meanwhile, robot1 does not charge
its battery in ⇠1 at full charging speed. This is because fast charg-
ing will not lead to quick satisfaction of i34; because of the slow
package delivery at '2 by robot2. In Figure 6(a), we can examine
the system via the evolution of requirements: robot2 2 ⇠2 holds
between C = 21 and C = 33, after which robot2 2 '2 is true at C = 60;
robot1 2 ⇠1 holds irregularly, after which robot1 2 '1 is true at
C = 59. Overall, in the bottom-right �gure, i34; is recovered late
(CA42 = 29), but remains true for a long period of time (C3DA = 24);
hence the solution (�4, 4).

In contrast, Figure 5(b) depicts another optimal trajectory where
robot2 goes to '2 and in turn '1 for package deliveries without
charging the battery, so to meet the deadlines. Meanwhile, robot1
goes to ⇠1 and charges the battery at full charging speed to satisfy
the battery power requirement as fast as possible; hence a quick
recoverability w.r.t. i34; . However, i34; does not remain true as
long as in the �rst trajectory because robot2 never charges the bat-
tery and thus its battery power quickly drops below ⇢; . Figure 6(b)
describes the system evolution: quick satisfaction of robot2 2 '2,
robot1 2 '1, and 41 � ⇢; collectively create the best recoverability
of i34; (CA42 = 16). However, even though two package deliveries
at '1 and '2 meet the deadlines after recovery, 42 � ⇢; cannot
hold long enough because robot2 2 ⇠1 or robot2 2 ⇠2 never holds,
causing the worst durability (C3DA = 15). Hence the solution (9,�5).

We then evaluate our DM strategies. We roll out the MPC con-
troller for 60 steps and assess the recoverability and durability of
the trajectories w.r.t. i34; . Solving Problem 1 and selecting a control
action took, on average, 11.5 seconds on our machine. The com-
putational complexity is due in large part to the extensive nature
of the STL requirements needed for this case study. A strategy for
reducing the execution time is under investigation as mentioned
in the conclusion (see Section 8). The (rec, dur) pair of the trajec-
tory with the pro-recoverability DM, the pro-durability DM, the
adaptive DM, and the minimal-distance DM are respectively (9,�5),
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(a) Trajectory 1 (b) Trajectory 2

Figure 5: Optimal solutions provided by ResilienC at the initial step in a deadline-driven, multi-region package-delivery
problem.

(a) Trajectory 1: i34; has bad recoverability but good durability. (b) Trajectory 2: : i34; has good recoverability but bad durability.

Figure 6: Evolution of the system states of two trajectories.

(�4, 4), (2,�1), and (�4, 4). As expected, the trajectories generated
by the �rst three DM strategies respectively re�ect a preference for
recoverability, durability, and the recoverability-durability tradeo�.
The minimal-distance DM shows a preference for good durability
over good recoverability with overshooting.

7 RELATEDWORK
Resilience in CPS. Logic-based formulations of resilience in CPS
have been proposed. The time robustness semantics for STL is
considered equivalent to resilience in [18]. However, it can only
quantify the recoverability of STL violations but not the subsequent
durability. Aksaray et al. [1] propose a “time shifting” STL and
a resilient controller that maximizes the robustness value of the
shifted formula as quickly as possible. This approach, however, does
not consider the STL satisfaction durability post-recovery. Resilient
control frameworks include work by Bouvier et al. [5] and Zhu
et al. [27]. Their non-logic-based notions of resilience, however,
do not readily lend themselves to systems subject to diverse and

sophisticated temporal requirements. A survey on resilient multi-
robot systems [20] discusses how resilience is de�ned, measured,
and maintained across various robotics domains. Our work is based
on the STL-based formulation of resiliency proposed by Chen et
al. [6]. In this approach, the resilience of an STL formula takes into
account both its recoverability and durability, which are quanti�ed
by sets of real-valued pairs.

Control under STL speci�cations. In [3], a controller synthe-
sis problem is solved to ensure that the behavior of the resulting
control system satis�es the desired STL speci�cations. The STL
robustness controller [21] uses a MILP encoding of an optimiza-
tion problem to maximize the space robustness [9] of the target
STL speci�cation. The controller synthesis problem for CPS sub-
ject to STL speci�cations has been considered in the context of
reactive control [22], relaxed constrained MPC control [26], and
“STL-based requirements priorities learning” via robustness slack-
ness [8]. Extensions to the original robustness de�nition of STL
speci�cations are used to tackle its disadvantages in optimization
problems [10, 14].



An STL-based Approach to Resilient Control for Cyber-Physical Systems HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

Instead of space robustness, the time-robust control problem [24]
focuses on right-time robustness, which is critical in the presence of
timing uncertainty. It maximizes the right-time robustness of an STL
speci�cation of a discrete linear system. A left-right combined time
robustness notion is proposed in [25] to address theweakness of left-
and right-time robustness for a single-directional time shift. It also
proposes a control algorithm for linear systems that maximizes the
combined time robustness using MILP. An event-triggered MILP-
based MPC framework [13] has been designed to maximize the
overall space and time tolerances of the robustness degree of STL
speci�cations for robot agents.

In contrast, we formally de�ne the resilient STL control problem
for CPS with STL-based requirements as one that maximizes recov-
erability and durability, resulting in a multi-objective optimization
problem. To the best of our knowledge, we are the �rst to consider
a resilient control framework that co-maximizes recoverability and
durability.

8 CONCLUSION
We presented ResilienC, a resilient control framework for CPS sub-
ject to STL requirements. In ResilienC, we de�ned the problem of
resilient control as one of multi-objective optimization that maxi-
mizes both CPS recoverability and durability w.r.t the desired STL
properties. We proposed a solution method that uses a MILP en-
coding and an a posteriori method for computing the precise set
of non-dominated optimal solutions. Each optimal solution repre-
sents an optimally resilient trajectory of the control system. We
also proposed a number of DM strategies that represent various
preferences for selecting a single optimal solution. We illustrated
ResilienC on two case studies: lane keeping and deadline-driven
multi-region package delivery. Collectively, our results showed the
e�ectiveness of our solution methods in achieving resilient control
and demonstrated the e�ects of DM preferences.

Future work will consider application-speci�c DM strategies that
go beyond recoverability and durability; e.g., in the lane-keeping
problem, the average distance to the centerline of the lane. We will
also investigate learning a neural controller (NC) for our ResilienC
setup. The controller presented in this paper can be run repeat-
edly in simulation mode to provide the training data for the NC.
Approaches of this nature can be found in [7, 19]. Such an NC is
expected to improve upon the execution time of the MPC controller
(which has to solve a multi-objective MILP problem at every time
step) for the package-delivery case study by orders of magnitude.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback
and suggestions for improving the quality of this paper. Research
supported in part by NSF CNS-1952096, CNS-1553273 (CAREER),
OIA-2134840, OIA-2040599, CCF-1918225, and CPS-1446832.

REFERENCES
[1] Derya Aksaray. 2021. Resilient Satisfaction of Persistent and Safety Speci�cations

by Autonomous Systems. In AIAA Scitech 2021 Forum. AIAA, Virtual Conference,
1124–1134. https://doi.org/10.2514/6.2021-1124

[2] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded
Maler, Dejan Ničković, and Sriram Sankaranarayanan. 2018. Speci�cation-based
Monitoring of Cyber-Physical Systems: A Survey on Theory, Tools and Applica-
tions. Lectures on Runtime Veri�cation: Introductory and Advanced Topics 10457
(2018), 135–175. https://doi.org/10.1007/978-3-319-75632-5_5

[3] Calin Belta and Sadra Sadraddini. 2019. FormalMethods for Control Synthesis: An
Optimization Perspective. Annual Review of Control, Robotics, and Autonomous
Systems 2 (2019), 115–140. https://doi.org/10.1146/annurev-control-053018-
023717

[4] Alberto Bemporad, Fabio Danilo Torrisi, and Manfred Morari. 2001. Discrete-time
Hybrid Modeling and Veri�cation of the Batch Evaporator Process Benchmark.
European Journal of Control 7, 4 (2001), 382–399. https://doi.org/10.3166/ejc.7.382-
399

[5] Jean-Baptiste Bouvier, Kathleen Xu, and Melkior Ornik. 2021. Quantitative
Resilience of Linear Driftless Systems. In Proceedings of the Conference on Control
and its Applications. SIAM, SIAM, Virtual Conference, 32–39. https://doi.org/10.
1137/1.9781611976847.5

[6] Hongkai Chen, Shan Lin, Scott A. Smolka, and Nicola Paoletti. 2022. An STL-
based Formulation of Resilience in Cyber-Physical Systems. In Proceedings of the
20th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS ’22). Springer, Warsaw, Poland, 117–135. https://doi.org/10.1007/978-
3-031-15839-1_7

[7] Hongkai Chen, Nicola Paoletti, Scott A Smolka, and Shan Lin. 2021. MPC-guided
Imitation Learning of BayesianNeural Network Policies for theArti�cial Pancreas.
In 2021 60th IEEE Conference on Decision and Control (CDC ’21). IEEE, Austin, TX,
USA, 2525–2532. https://doi.org/10.1109/CDC45484.2021.9683240

[8] Kyunghoon Cho and Songhwai Oh. 2018. Learning-based Model Predictive
Control under Signal Temporal Logic Speci�cations. In 2018 IEEE International
Conference on Robotics and Automation (ICRA ’18). IEEE, Brisbane, QLD, Australia,
7322–7329. https://doi.org/10.1109/ICRA.2018.8460811

[9] Alexandre Donzé and Oded Maler. 2010. Robust Satisfaction of Temporal Logic
over Real-Valued Signals. In Proceedings of International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS ’10). Springer, Klosterneuburg,
Austria, 92–106. https://doi.org/10.1007/978-3-642-15297-9_9

[10] Iman Haghighi, Noushin Mehdipour, Ezio Bartocci, and Calin Belta. 2019. Control
from Signal Temporal Logic Speci�cations with Smooth Cumulative Quantitative
Semantics. In 2019 IEEE 58th Conference on Decision and Control (CDC ’19). IEEE,
Nice, France, 4361–4366. https://doi.org/10.1109/CDC40024.2019.9029429

[11] Marco Laumanns, Lothar Thiele, and Eckart Zitzler. 2006. An e�cient, adaptive
parameter variation scheme for metaheuristics based on the epsilon-constraint
method. European Journal of Operational Research 169, 3 (2006), 932–942. https:
//doi.org/10.1016/j.ejor.2004.08.029

[12] Eugene L Lawler and David EWood. 1966. Branch-and-bound methods: A survey.
Operations research 14, 4 (1966), 699–719. https://doi.org/10.1287/opre.14.4.699

[13] Zhenyu Lin and John S Baras. 2020. Optimization-based Motion Planning and
Runtime Monitoring for Robotic Agent with Space and Time Tolerances. IFAC-
PapersOnLine 53, 2 (2020), 1874–1879. https://doi.org/10.1016/j.ifacol.2020.12.2606

[14] Lars Lindemann and Dimos V Dimarogonas. 2019. Robust control for signal
temporal logic speci�cations using discrete average space robustness. Automatica
101 (2019), 377–387. https://doi.org/10.1016/j.automatica.2018.12.022

[15] Johan Löfberg. 2004. YALMIP: A Toolbox for Modeling and Optimization in
MATLAB. In Proceedings of IEEE International Symposium on Computer Aided
Control Systems Design (CACSD ’04). IEEE, Taipei, Taiwan, 284–289. https:
//doi.org/10.1109/CACSD.2004.1393890

[16] Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of
Continuous Signals. In Proceedings of Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems (FTRTFT ’04). Springer, Grenoble, France,
152–166. https://doi.org/10.1007/978-3-540-30206-3_12

[17] Sara Mata, Asier Zubizarreta, and Charles Pinto. 2019. Robust Tube-Based Model
Predictive Control for Lateral Path Tracking. IEEE Transactions on Intelligent
Vehicles 4, 4 (2019), 569–577. https://doi.org/10.1109/TIV.2019.2938102

[18] Noushin Mehdipour. 2021. Resilience for Satisfaction of Temporal Logic Speci�-
cations by Dynamical Systems. Ph. D. Dissertation. Boston University. https:
//open.bu.edu/handle/2144/41871

[19] Usama Mehmood, Shouvik Roy, Radu Grosu, Scott A Smolka, Scott D Stoller,
and Ashish Tiwari. 2020. Neural Flocking: MPC-based Supervised Learning of
Flocking Controllers. Foundations of Software Science and Computation Structures.
FoSSaCS 2020. Lecture Notes in Computer Science 12077 (2020), 1–16. https:
//doi.org/10.1007/978-3-030-45231-5_1

[20] Amanda Prorok, Matthew Malencia, Luca Carlone, Gaurav S Sukhatme, Brian M
Sadler, and Vijay Kumar. 2021. Beyond Robustness: A Taxonomy of Approaches
towards Resilient Multi-Robot Systems. arXiv preprint. https://doi.org/10.48550/
arXiv.2109.12343

[21] Vasumathi Raman, Alexandre Donzé, Mehdi Maasoumy, Richard M. Murray,
Alberto Sangiovanni-Vincentelli, and Sanjit A. Seshia. 2014. Model Predictive
Control with Signal Temporal Logic Speci�cations. In Proceedings of the IEEE
Conference on Decision and Control (CDC ’14). IEEE, Los Angeles, USA, 81–87.
https://doi.org/10.1109/CDC.2014.7039363

[22] Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M Murray, and
Sanjit A Seshia. 2015. Reactive Synthesis from Signal Temporal Logic Spec-
i�cations. In Proceedings of the 18th international conference on hybrid sys-
tems: Computation and control (HSCC ’15). ACM, Seatle, USA, 239–248. https:
//doi.org/10.1145/2728606.2728628

https://doi.org/10.2514/6.2021-1124
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1146/annurev-control-053018-023717
https://doi.org/10.1146/annurev-control-053018-023717
https://doi.org/10.3166/ejc.7.382-399
https://doi.org/10.3166/ejc.7.382-399
https://doi.org/10.1137/1.9781611976847.5
https://doi.org/10.1137/1.9781611976847.5
https://doi.org/10.1007/978-3-031-15839-1_7
https://doi.org/10.1007/978-3-031-15839-1_7
https://doi.org/10.1109/CDC45484.2021.9683240
https://doi.org/10.1109/ICRA.2018.8460811
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1109/CDC40024.2019.9029429
https://doi.org/10.1016/j.ejor.2004.08.029
https://doi.org/10.1016/j.ejor.2004.08.029
https://doi.org/10.1287/opre.14.4.699
https://doi.org/10.1016/j.ifacol.2020.12.2606
https://doi.org/10.1016/j.automatica.2018.12.022
https://doi.org/10.1109/CACSD.2004.1393890
https://doi.org/10.1109/CACSD.2004.1393890
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1109/TIV.2019.2938102
https://open.bu.edu/handle/2144/41871
https://open.bu.edu/handle/2144/41871
https://doi.org/10.1007/978-3-030-45231-5_1
https://doi.org/10.1007/978-3-030-45231-5_1
https://doi.org/10.48550/arXiv.2109.12343
https://doi.org/10.48550/arXiv.2109.12343
https://doi.org/10.1109/CDC.2014.7039363
https://doi.org/10.1145/2728606.2728628
https://doi.org/10.1145/2728606.2728628


HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Hongkai Chen, Sco� A. Smolka, Nicola Paole�i, and Shan Lin

[23] James B. Rawlings. 2000. Tutorial Overview of Model Predictive Control. IEEE
Control Systems Magazine 20, 3 (2000), 38–52. https://doi.org/10.1109/37.845037

[24] Alena Rodionova, Lars Lindemann, Manfred Morari, and George J. Pappas. 2021.
Time-Robust Control for STL Speci�cations. In Proceedings of IEEE Conference on
Decision and Control (CDC ’21). IEEE, Austin, USA, 572–579. https://doi.org/10.
1109/CDC45484.2021.9683477

[25] Alëna Rodionova, Lars Lindemann, Manfred Morari, and George J Pappas. 2022.
Combined Left and Right Temporal Robustness for Control under STL Speci�ca-
tions. IEEE Control Systems Letters 7 (2022), 619–624. https://doi.org/10.1109/
LCSYS.2022.3209928

[26] Sadra Sadraddini and Calin Belta. 2015. Robust Temporal Logic Model Predictive
Control. In 2015 53rd Annual Allerton Conference on Communication, Control, and
Computing (Allerton ’15). IEEE, Monticello, IL, USA, 772–779. https://doi.org/10.
1109/ALLERTON.2015.7447084

[27] Quanyan Zhu and Tamer Başar. 2011. Robust and Resilient Control Design for
Cyber-Physical Systems with an Application to Power Systems. In Proceedings
of IEEE Conference on Decision and Control and European Control Conference
(CDC-ECC ’11). IEEE, Orlando, FL, USA, 4066–4071. https://doi.org/10.1109/CDC.
2011.6161031

https://doi.org/10.1109/37.845037
https://doi.org/10.1109/CDC45484.2021.9683477
https://doi.org/10.1109/CDC45484.2021.9683477
https://doi.org/10.1109/LCSYS.2022.3209928
https://doi.org/10.1109/LCSYS.2022.3209928
https://doi.org/10.1109/ALLERTON.2015.7447084
https://doi.org/10.1109/ALLERTON.2015.7447084
https://doi.org/10.1109/CDC.2011.6161031
https://doi.org/10.1109/CDC.2011.6161031

	Abstract
	1 Introduction
	2 Background
	2.1 Signal Temporal Logic
	2.2 STL-based Resilience

	3 Problem Formulation
	4 Solution method for Resilient STL Control
	4.1 MILP Encoding
	4.2 Multi-Objective Optimization
	4.3 Computation Complexity

	5 Closed-loop control
	5.1 Model Predictive Control
	5.2 Decision-Maker Design

	6 Case Studies
	6.1 Lane Keeping
	6.2 Deadline-Driven Package Delivery

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

