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ABSTRACT

We present ResilienC, a framework for resilient control of Cyber-
Physical Systems subject to STL-based requirements. ResilienC uti-
lizes a recently developed formalism for specifying CPS resiliency
in terms of sets of (rec, dur) real-valued pairs, where rec repre-
sents the system’s capability to rapidly recover from a property
violation (recoverability), and dur is reflective of its ability to avoid
violations post-recovery (durability). We define the resilient STL
control problem as one of multi-objective optimization, where the
recoverability and durability of the desired STL specification are
maximized. When neither objective is prioritized over the other, the
solution to the problem is a set of Pareto-optimal system trajectories.
We present a precise solution method to the resilient STL control
problem using a mixed-integer linear programming encoding and
an a posteriori e-constraint approach for efficiently retrieving the
complete set of optimally resilient solutions. In ResilienC, at each
time-step, the optimal control action selected from the set of Pareto-
optimal solutions by a Decision Maker strategy realizes a form of
Model Predictive Control. We demonstrate the practical utility of the
ResilienC framework on two significant case studies: autonomous
vehicle lane keeping and deadline-driven, multi-region package
delivery.
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1 INTRODUCTION

Resiliency is of fundamental importance in Cyber-Physical Systems
(CPS), as such systems are expected to fulfill safety- and mission-
critical requirements even in the presence of external disturbances
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or internal faults. Although various notions of resiliency have been
proposed within a control setting [5, 27], a general formal charac-
terization has been lacking. Recently, Chen et al. [6] used Signal
Temporal Logic (STL) [16] to formally reason about resiliency in
CPS. Given an STL property ¢ expressing a CPS requirement, the
notion of resiliency introduced in [6] permits violations of ¢ as long
as: 1) the CPS quickly recovers from the violation, and then 2) sat-
isfies ¢ for an extended period of time. These two requirements are
called recoverability and durability, respectively.

The results of [6] naturally suggest the following problem of
resilient STL control: find an optimal control strategy that maximizes
the system’s resilience in terms of recoverability and durability.
These two objectives are often at odds with each other. For example,
in the lane-keeping problem (see Figure 2), an aggressive control
strategy can quickly return the vehicle to the lane after a violation
(good recoverability) but might fail to keep the vehicle in the lane
for an extended period of time due to overshooting (poor durability).
On the other hand, with a cautious strategy, the vehicle might take
longer to re-enter the lane (poor recoverability) but subsequently
manage to remain in the lane longer (good durability). In other
words, without prioritizing one requirement over the other, the
aggressive and cautious strategies are mutually non-dominated and,
hence, equally resilient.

In this paper, we present a control framework called ResilienC
(the ‘C’ stands for control), where the resilient STL control problem
is formulated as one of multi-objective optimization, designed to
maximize both the recoverability and durability of the CPS. Unlike
existing techniques for STL-based control [21, 24] which focus on
optimizing a single objective (e.g., spatial robustness in [21] and
time robustness in [24]) and thus produce a single solution, our
method results in a set of non-dominated, aka Pareto-optimal, solu-
tions. Such a method is also called a posteriori as it avoids making
any a priori assumptions about the relative importance of the two
objectives (recoverability and durability). We achieve a Model Pre-
dictive Control (MPC) scheme with our method by deploying a
Decision Maker (DM) strategy that, at each time step, selects the
next optimal control action from among the set of Pareto-optimal
solutions for execution by the plant. See Figure 1 for an overview
of the ResilienC framework.

We solve the resilient STL control problem in a precise manner,
in that our method can retrieve the entire set of non-dominated
resilient points. To do so, we focus on CPS with linear dynamics and
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Figure 1: Overview of ResilienC architecture.

encode the problem as one of mixed-integer linear programming
(MILP). In particular, the solution set of the multi-objective prob-
lem is found by solving multiple single-objective MILP instances
through an e-constraint approach [11].

From a theoretical standpoint, besides proving the correctness
and characterizing the complexity of our algorithm, we establish an
important relationship between our resilient STL control problem
and the time-robust STL control problem recently introduced in [24].
Time-robust STL control seeks to optimize time robustness, i.e., the
extent to which a trajectory can be shifted in time without affecting
the satisfaction of the STL specification. We prove that any time-
robust solution is also a resilient solution, making resilient STL
control a generalization of time-robust STL control.

We evaluate ResilienC on two case studies: lane keeping and
deadline-driven multi-region package delivery. Our results clearly
demonstrate the effectiveness of our solution method, which pro-
vides a comprehensive view of the recoverability-durability tradeoff.
Furthermore, we use case studies to assess and compare the various
DM strategies.

In summary, our main contributions are the following.

o We present ResilienC, a resilient control framework for CPS
with STL-based requirements. We define the resilient con-
trol problem as one of multi-objective optimization such that
the recoverability and durability metrics associated with the
STL specifications are maximized and a set of Pareto-optimal
solutions is generated. We also propose various DM strate-
gies for selecting a single optimal solution, used to generate
MPC-based control actions. To the best of our knowledge,
we are the first to investigate a resilient control framework
that co-optimizes recoverability and durability.

e We present a precise solution method, based on an MILP
encoding and an a posteriori e-constraint approach, for ef-
ficiently retrieving the complete set of optimally resilient
solutions.

e We prove that our resilient control framework is a general-
ization of time-robust STL control.

e We conducted two case studies for which we considered
various control strategies that induce vastly different but
equivalently resilient trajectories. We also illustrate the ef-
fects of multiple DM preferences on ResilienC-based control.

2 BACKGROUND

In this section, we provide background on the syntax and semantics
of both STL and the STL-based Resiliency Specifications of [6]. Let
&: T — R" be asignal where T = Z3 is the (discrete) time domain.
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We denote by |¢| the length of &. Given t € T and interval I on T,
t + I is used to denote the set {t +t’ | t’ € I}.

2.1 Signal Temporal Logic

STL is a logical formalism for specifying temporal properties over
real-valued signals. An STL atomic proposition p € AP is defined
over ¢ and is of the form p = p(é(t)) > ¢,c € R,and u: R® — R.
STL formulas ¢ are defined according to the following grammar [9]:

¢ ==ploeler Aozl eiUre:
where U is the until operator and I is an interval on T. Logical
disjunction is derived from A and — as usual, and operators even-
tually and always are derived from U as usual: Fr¢ = T Uy ¢ and
Grp = = (Fr= ¢). The satisfaction relation (¢, t) | ¢, indicating
whether ¢ satisfies ¢ at time ¢, is defined as follows:

& Ep & uE®) zc

(&0 F o e (&) Fe)

EDEmAe o EDFEaAEDEe

EDE@eUp: o 3t et+Ist (E1) E pan

Vi eltt), (&17) E o
The characteristic function y of ¢ relative to £ at time ¢ is defined
such that y(¢, & t) = 1 when (&, t) ¢ and —1 otherwise [9].

STL admits a quantitative semantics called (space) robustness [9]
that quantifies the extent to which ¢ satisfies ¢ at time ¢. Its absolute
value can be seen as the distance of ¢ from the set of trajectories
satisfying (positive value) or violating (negative value) ¢.

STL also admits a quantitative semantics called time robust-
ness [9], which is used to quantify the extent to which a trajectory
can be shifted in time without affecting the satisfaction (or viola-
tion) of the STL specification. Its definition is given in terms of the
real-valued function 0*:

0% (p, & 1) = x(p,&t) -max{d > 0s.t.Vt' € [t,t+d],
x(p. &) = x(p. &)}

0" (=g, & 1) = —0%(p.&0)

0 (g1 A2, &t) = min(0" (g1, &1),0% (92,5 1))

0" (p1Urga. £1) =

As with space robustness, STL time robustness is sound in that pos-
itive or negative values of 6% correspond to satisfaction or violation
in the usual Boolean interpretation.

max min(9* (g2, & t), min 0% (@1, & 1))
t' e+l t"eltt’)

2.2 STL-based Resilience

We now give an overview of the formulation of STL resilience in-
troduced in [6]. The intuition is that given an STL formula ¢, two
properties characterize its resilience: recoverability and durability.
Recoverability requires a signal to recover from a violation of ¢
within time a; durability requires a signal to maintain the satisfac-
tion of ¢ for at least a duration of . A signal is resilient if it satisfies
both properties. Given an STL formula ¢ and o, f € T, f > 0, the
formula

Ry p(0) = ~9U[0,4]G[o,p)¢
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captures both temporal requirements (recoverability and durability).
In [6], R, g(¢) expressions are the atomic formulas of an STL-like
logic called STL-based Resiliency Specifications (SRS).

AKkin to space and time robustness, a quantitative semantics in
the form of a Resilience Satisfaction Value (ReSV) is proposed to
measure the resilience of SRS formulas. The ReSV of R, () w.r.t.
£ at time ¢ is a (rec, dur) pair given by:

(=trec(@, & 1) + a, gy, (0. &) = )
where

trec(@.&,0) =min({d € T| ({1 +d) [ o} U {I¢] -1}
taur (9. &) =min ({d € T| (&' +d) E -} U{lE] - t'}),
' =t+trec(p, & 1)

The value of t¢c (¢, & t) quantifies the time needed for ¢ to recover
from a violation of ¢ at time ¢, and ' = t + trec(9, &, t) is the
(absolute) recovery time. The value of ty,, (¢, &, t) quantifies the
time period after ¢’ during which ¢ remains true. Thus, rec tells
us how early before @ we recover, and dur how long after § ¢ is
maintained true. Going forward, we often abbreviate t,¢¢ (¢, £, 0)
and tgy,, (@, £ 0) with tyec and tg,,, respectively.

Akin to space and time STL robustness, the authors of [6] prove
that the ReSV semantics is sound in that (,t) |= Ry g(¢) holds if
—trec(@, & t) + @ > 0 and tg,, (¢, & t) — f > 0, with at least one of
the two inequalities strictly holding. Thus, the resilience of ¢ w.r.t.
£ at time ¢ can be represented by a (rec, dur) pair.

The ReSV definition and the soundness result extend to com-
posite SRS formulas. The intuition behind this extension is that
the ReSV of e.g., an always (eventually) formula with bound I, rep-
resents the worst-case (best-case) resilience value attained by the
subformula within I. For control purposes, however, we are only
interested in SRS atoms. See also Remark 1.

For finding an optimally resilient control strategy, it is necessary
to compare the resilience of ¢ w.r.t. two signals. In [6], an order-
ing relation >, is introduced specifically for this purpose.! The
intuition is that usual Pareto-dominance > over the reals is not
consistent with resiliency satisfaction. Recall that given two real-
valued tuples x,y € R", x Pareto-dominates y, denoted by x > y,
if x; > yi, 1 <i < n,and x; > y; for at least one such i, under
the usual ordering >. Now consider the (rec, dur) pairs (-1, 2) and
(1,1). By usual Pareto-dominance, (-1, 2) and (1, 1) are mutually
non-dominated, but an ReSV of (-1, 2) indicates that the system
does not satisfy recoverability; namely it recovers one time unit
too late. On the other hand, an ReSV of (1, 1) implies satisfaction
of both recoverability and durability bounds, and thus should be
preferred to (—1, 2). This intuition is formalized in the definition of
the >, relation.

Definition 2.1 (Resiliency Binary Relations [6]). We define binary
relations >ye, =re, and <, in Z2. Let X,y € 72 with x = (xr, xg),
y = (yr, yq), and sign is the signum function. We have that x >, y
if one of the following holds:

(1) sign(xy) + sign(xg) = sign(yr) + sign(yy), and x > y.
(2) sign(x,) + sign(xg) > sign(yr) + sign(ya).

The motivation for introducing the ordering relation >, in [6] is a different one,
namely for computing the semantics of composite SRS formulas.
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We denote by <, the dual of >,. If neither x >, y nor y <ye x,2
then x and y are mutually non-dominated, denoted x =, y. Under
this ordering, a non-dominated set S is such that x =,, y for all
x,y €8S.

Given a binary relation > and a non-empty set P C Z2, we
denote with max; (P) the maximum set induced by the ordering
>, i.e., the largest subset S C P such that Vx € S,Vy € P, x 4 y.
The minimum set is defined analogously as min, (P) = max4(P).
In the following, we will use the so-called maximum resilience
set maxs  (P), abbreviated as max,, (P), and the one induced by
canonical Pareto-dominance maxs (P), abbreviated as max(P).

3 PROBLEM FORMULATION

Consider a discrete-time, linear dynamical system (F, G, xp) with
dynamics x441 = Fx; + Guy, where F € R G € R™™ x, € R"
is the system state, and u; € U C R is the control input at time t,
with the control space U defined as a closed polytope. Any sequence
of control actions # = [uy, . .., uy—1] induces a sequence of system
states X = [xo, ..., x| starting at xo and generated by the system
dynamics.

We now define the Resilient STL Control problem as a bi-objective
optimization problem aimed at maximizing the recoverability and
durability of ¥ with respect to ¢ at time 0.3

ProBLEM 1 (RESILIENT STL CoNTROL). Let ¢ be an STL formula,
(F, G, xq) the control system, H the control horizon, and a, f € T,
B > 0. Solve

S = mafcre(“ — trec(¢, %, 0), tgur(9,%,0) = B)
i

st xp+1 = Fx +Guy, up €U, t € [0,...,H—1].

REMARK 1. Time t = 0 represents the offset of X at which ¢ is
evaluated. The formulation of the problem is still general because we
can consider trajectories starting at any state xo. The optimization
objectives of Problem 1 correspond to the ReSV semantics of Ry, ()
formulas, which is an atom in the SRS temporal logic of [6]. In this
way, we focus on optimizing the recoverability and durability of the
first recovery episode w.r.t. ¢ over an MPC-style prediction horizon
H [23]. This is arguably more useful for control purposes than op-
timizing the ReSV of SRS formulas with temporal operators, where
optimizing the ReSV of GIR,, g(¢) (F1Ry g(¢)) corresponds to opti-
mizing the worst-case (best-case) recovery episode w.r.t. ¢ within I.
From a technical perspective, the ReSV of a composite formula is itself
a set of non-dominated (rec, dur) pairs (as opposed to a single pair for
Ry (@) atoms), which would unnecessarily complicate the definition
of Problem 1.

The optimal solution to Problem 1 is a set S* C R? of non-
dominated (rec, dur) pairs, i.e., the maximum resilience set (maxy)
of all (rec, dur) pairs induced by all possible sequences of control
inputs. We denote by U C U™ the set of optimal points in the
decision (control) space, where each point induces one optimal
solution in S*.

EXAMPLE 1. In the lane-keeping problem, a vehicle is required to
stay within its lane (colored grey in Figure 2) at all times. When the
2This is equivalent to saying that sign(x, ) + sign(xg) = sign(y,) + sign(yy) and

neither x > ynor y > x.
3We slightly abuse notation and use sequences instead of signals.
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Figure 2: Vehicle trajectories corresponding to three optimal
solutions provided by our ResilienC framework. (The figure
is for illustrative purposes only and does not directly reflect
our experimental results.)

vehicle is forced to exit the lane due to e.g. an external disturbance,
the resilient STL controller predicts multiple optimal trajectories for
the vehicle. Three such trajectories are shown in Figure 2. The initial
location of the vehicle, marked by a star, is outside the lane, so it
violates the lane-keeping specification ¢. Trajectory 1 is the slowest to
recover from its violation of ¢, resulting in the worst recoverability
among the three. However, the vehicle subsequently maintains ¢
until the end of the trajectory, resulting in the best durability. In
trajectory 3, the vehicle aggressively steers back into the lane whenever
@ is violated; so it exhibits the best recoverability. It cannot, however,
maintain ¢ after satisfaction due to overshooting; it thus has the worst
durability. The behavior of trajectory 2 lies in-between trajectories 1
and 3. In our approach, the (rec, dur) values of these three trajectories
are mutually non-dominated and hence, equally resilient.

Proposition 3.1 establishes the relationship between the sets of
Pareto-optimal solutions obtained under the >, ordering and the
usual > ordering. This result is useful per se and will be also required
in Section 4 to prove the correctness of our algorithm.

PROPOSITION 3.1. For any P C Z? with P # 0, max,e(P) C
max(P).

Proor. We prove that any x in max,. (P) is also in max(P). Let
us remark that, if x = (x, x4) € max,e(P), thenx >,c yorx =, y
for all y = (yr, yq) € P. Similarly, if x € max(P), then forally € P,
x > y or x and y are mutually non-dominated w.r.t. >. We distin-
guish two cases: (i) if sign(x,) +sign(xg) = sign(y,) +sign(yg), we
have x > y (when x >, y) or x and y are mutually non-dominated
(when x = y). (ii) if sign(x,) +sign(xgq) > sign(y,) +sign(yy), we
show that x # y (i.e, x > y or x and y are mutually non-dominated).
If, by contradiction, y Pareto-dominates x then we have y, > x,
and y4 > x4 with at least one inequality holding strictly. This con-
tradicts the assumption sign(x,) + sign(xg) > sign(y,) + sign(yq)
because sign function is monotonic non-decreasing. O

The related problem of Time-Robust STL Control Synthesis [24]
seeks to maximize a single objective: the STL time robustness of X
with respect to ¢ at time 0. For this reason, its optimal solution is a
single value (if one exists).
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PrROBLEM 2 (TIME-RoBUST STL CONTROL SYNTHESIS). Let ¢ be an
STL formula, (F, G, xo) the control system, and H the control horizon.
Solve

0" = max 0% (¢, %,0)
u

s.t. xp41 = Fxp +Guy, up €U, t € [0,...,H—1] and 0 (¢,%,0) >
91 > 0.

We note that the time robustness 0% (g, X, 0) is constrained by
a positive lower bound 0;, meaning that the above problem is not
always feasible. The result 6" is the optimal solution to the problem.
We denote with U the corresponding set of optimal points in the
decision/control space.

REMARK 2 (OPTIMAL POINTS). In Problem 1, there are in general
multiple optimal points in U for two reasons: (1) S* may contain
multiple optimal solutions; (2) even if S* contains only one solution,
there might be multiple control strategies inducing the same optimal
solution.* In Problem 2, there may be multiple points in U; for a sim-
ilar reason: it possibly contains multiple il yielding the same optimal
time robustness 6*.

PROPOSITION 3.2. Problem 1 is solvable, i.e., an optimal point
exists. Problem 2 is solvable if feasible.

ProoF. Problem 1 has a closed-polytope feasible region. Its ob-
jectives are integers and bounded, so there exists an optimal point
such that the optimal values are achieved, hence solvable. Similar
reasoning applies to Problem 2; thus it is solvable if feasible. O

Although the two problems seem different, we emphasize that
Problem 1 generalizes Problem 2 in the sense that solving the latter
is equivalent to finding a particular optimal solution to the former.
See the following proposition.

PRrOPOSITION 3.3. For a system (F, G, xo), control horizon H, and
STL formula ¢, we have U; < U;.

Proor. If Problem 2 is infeasible, it is trivial that "L(; =0c 71;“ .
Otherwise, we prove that ii € U; for all i € U;. Because of the
constraint 0% (¢, X, 0) > 0, the initial state of (F, G, xo) must satisfy
@. A solution # € U, maximizes 6% (¢,%,0), and thus induces a
trajectory on (F, G, x9) where ¢ is maintained for as long as possible
from time 0. This indicates that ¥ maximizes a — t,ec and tg,,, — ff to
their global maximum simultaneously (tr¢c reaches its lower bound
0 and t4,,, is maximized to 6* + 1), which is an optimal solution in
S*. Therefore, we have i € us. O

4 SOLUTION METHOD FOR RESILIENT STL
CONTROL

In this section, we introduce our solution method for solving Prob-
lem 1. We note that both the STL Boolean semantics and the re-
siliency objectives @ — trec and tg,, — p are discrete (hence, non-
smooth), which makes gradient-based methods unsuitable. Meta-
heuristics similarly tend to perform poorly and do not provide
optimality guarantees. For linear systems, however, prior work

“Even if two different controllers generate two different trajectories, these trajectories
might have the same recoverability and durability.

SWith this result at hand, we will skip any experimental comparison between time-
robust and resilient controllers, as the former is a special case of the latter.
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has shown that (single-objective) optimization of STL space and
time robustness can be formulated and precisely solved as an MILP
problem [21, 24].

Here, we take a similar approach and encode t,¢¢ and tz,,, using
MILP constraints, building on the encoding of the Boolean STL
semantics of Raman et al. [21]. To retrieve the full set of Pareto-
optimal solutions, we define an e-constraint approach [11] that
solves the bi-objective problem through multiple single-objective
MILP instances, where one of the objectives is optimized and the
other is constrained above some given level.

Section 4.1 presents our MILP encoding of the Boolean STL
semantics and the resiliency objectives. In Section 4.2, we present
an e-constraint approach for efficiently computing the set of non-
dominated optimal solutions, and provide a proof of its correctness.
Section 4.3 analyzes our algorithm’s computational complexity.

4.1 MILP Encoding

The encoding method consists of the following three main steps.
(1) Boolean semantics for STL atomic propositions. Let p =
p(xt) > c be an STL atomic proposition. We use binary variables
zf € {0, 1} to represent Boolean satisfaction (z‘;l = 1) or violation
(z’f = 0) of p over the control horizon at every time step t = 0, ..., H.
Assuming that the STL atomic propositions are linear w.r.t. x; (i.e.,
1 is a linear function), we can encode the Boolean semantics of STL
atomic propositions with MILP constraints.

(# 1) M<p(x)-c<2 M 1)
where M is a significantly large value.
(2) Boolean semantics for STL composite formulas. The Boolean
semantics for STL composite formulas are derived from STL atomic
propositions using Boolean conjunction and disjunction. For a given
STL formula ¢, we introduce binary variables zf to represent the
Boolean semantics of ¢ at time t = 0,..., H; i.e., zf = 1if ¢ holds at
time ¢, 0 otherwise. The MILP encoding of z;p using only Boolean
operators can be derived inductively [21].

Negation ¢ = —¢’:

’

¢ _ ¢
z; =1-2z/ 2)
Conjunction ¢ = \IZ, @i
zfngi,izl, ..,m )
3
¢ m Qi
z; 21-m+ Y11z,

Disjunction ¢ = \/T%, i

@
Zt

@
2t

zt(pi,izl,...,m

, 4
e
We now consider the encoding for STL formulas with temporal
operators [21]. In particular, the always and eventually operators
are respectively encoded as finite conjunctions and disjunctions
using (3) and (4). Below, we use the notation afl = min(a + t, H)
and bf[ = min(b + ¢, H). Note that a? and b{i are not additional
MILP variables.

H
Always ¢ = G[4p1¢": we encode zf as /\ib_‘aH z
"t

\

IA

’

¢
: -
o

H
Eventually ¢ = F[a,b](l’/l we encode zt‘p as \/i;taH FARN
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Until ¢ = 1Uj4 @2 the satisfaction of ¢ at ¢ can be derived
from those of the following formulas, including an unbounded U,

to achieve a linear encoding w.r.t. H [2]. In particular, we encode

zf as z?) given that ¢ is equivalent to ¢’, where

¢ =Gloa-1191 A Flap)02 AF[44) (01U 2). ©)
We note that 91U 4] @2 holds if ¢1 holds before a, after which
01U @2 holds when ¢ is satisfied before b. The first two conjuncts
of (5) can be derived using the MILP encoding for the always and
eventually operators. The unbounded until in the last conjunct is
encoded as follows [21].

o U@z _ 2 o1, U2
Z =z V(z Azpyy )

forallt=1,...,H—-1, andzijlU(p2 = zz[z.
(3) Resilient STL control objectives. Given an SRS expression

Ry (), ¢ an STL formula, we introduce variables c; "€ and cf’dur

(and associated MILP constraints) to encode tyec (¢, X, t) and t g, (¢, X, t),

respectively. Inspired by the encoding in [24], c;p’rec and c,‘p’dur are
defined as counters that, informally, keep track of the number of
time units ¢ remains violated and satisfied, respectively.

,rec ,rec rec
el = (1=20) (P ), =0 (6)

. rec . .
Variable c, is defined in reverse-temporal order; we first set

BT — 0. At time ¢, if zt(p =1 (ie, (X, t) F ¢ holds), we have
Ct(p,rec = 0; if zf = 0 (ie, (X,t) E ¢ does not hold), we have
cf’rec = cfflecﬂ. Thus, if ¢ does not hold at time ¢, ¢, "¢ represents

the time needed for ¢ to recover (or the time until the end of ¥
if ¢ never recovers); or 0 if ¢ holds at t. We can see that ct’rec
follows exactly the definition of t,¢c (¢, X, t) in Section 2.2, whereby
if (X,t) | ¢ holds, we have trec (¢, X, t) = 0; otherwise, trec (¢, X, t)
is the time needed for ¢ to recover from violation.

To define cf’dw, we employ additional counter variables c}, c?

€
t
Zso fort =0,...,H, which are similarly defined in reverse order
as follows.
1 1 1
¢ = zf “(epq + 1), cg=0 "
2 1 2 2
c;=(1- th]) (1 1), g =0

1
t+1

how many time units ¢ remains true after ¢; if z;p =0,ie, ¢is

At time ¢, if zf =1, we have c} =c,,, + 1, meaning that c} counts

false at t, we have c} = 0. At time ¢, if zt('a = 1, we have c? = 0;if
z?) =0, we have ¢ = c} a7t cf +1- This variable keeps track, when ¢
is false at t, for how long ¢ will remain true after the next recovery
episode.

By the definition of 4, (¢, X, ) in Section 2.2, if (X, ) = ¢ holds,
then tg,,, (¢, %, t) is the time duration until a violation of ¢ (or the
end of X); if instead (X, t) [ ¢, tgyr (@, X, t) refers to the duration-to-
violation after the next recovery, and hence remains constant until
recovery. We can see that c}, cf respectively represent the behaviors
of tg,, (¢, X, t) during satisfaction and violation of ¢, thus

cf’dur =c; +c? 3)

REMARK 3. The MILP encoding for resilience objectives involves
the multiplication of binary variables and (integer) counter variables,
which is nonlinear. Nonetheless, we can convert them to MILP in-
equality constraints using the translation of the if-then-else logic
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t 0 1 23 4 5 67 89
x(@,%,t) 111 -1 -1 -1 1 1 1 -1
zf 00110 0 0 1 1 1 0
=20 (el +1) 00210 0 0 3 2 10
Z=(1-2) (c} +c) 2 00 3 3 3 00 00
P = =20) (el 41) 1 0 0 3 2 1 0 0 0 0
D T 2 213 3 3 3 210
Table 1: Example of MILP encoding c, e ctq”dur of the re-

siliency objectives.

relation [4]. Let z be a binary variable and c an integer variable. Then

the relation y = z - ¢ is equivalent to the following inequalities:
m-z<sysM-z

9

c-M-(1-z)<y<c-m-(1-2) ©)

where M and m are the upper and lower bounds for c, respectively.

Table 1 provides an example of the encoding method. Consider
X with H = 9 and STL formula ¢; characteristic function y(¢, X, t)
is given in the table. A step-by-step computation of cf’rec and

c;p’dur is provided; the results so obtained are the same as those

for trec (¢, X, t) and tgy,, (¢, X, t), computed using their definitions
provided in Section 2.2. We define the function

(c;p’rec, c;’)’dur, Cm) = milp_encoding(gp, X)

that takes an STL formula ¢ and a sequence of system states X as
input, and outputs the set of encoded MILP constraints Cy, and

encoded variables cf’rec, cf’dur using Egs. (1)-(8).

4.2 Multi-Objective Optimization

To address the challenge of multi-objective optimization, we pro-
pose an a posteriori method to reduce Problem 1 to a sequence of
single-objective MILP instances (by optimizing one of the objectives
and constraining the other above some given level) and to efficiently
generate the exact set of non-dominated optimal solutions. The
single-objectives MILP instances can be solved by standard tech-
niques such as branch-and-bound methods [12].

A particular property of the resilient STL control problem is that
both objective functions are discrete and bounded by the length
of the horizon, so the number of optimal solutions is finite. Also,
the optimal solutions are non-dominated with respect to the >,
relation (which may not be the case with conventional Pareto dom-
inance). We propose an algorithm for computing S* taking these
properties into account. First, we define the following problem.

Pe: iy = argmax tg,, (9, %,0) —
u

subject to the constraints of Problem 1 and an additional e-constraint
a—trec (9, X,0) > €.(One could equivalently maximize a—trec (¢, X, 0)
and constrain tg,,, (¢, X, 0) — f > €.) We respectively denote by f
and g} the values of a — trec(¢,X,0) and tg,,(¢,%,0) — § corre-
sponding to #}. Our algorithm consists of the following steps.

(1) LetS*=0ande =a— (H-1).

(2) If P is feasible, go to step (3); otherwise, go to step (5).

(3) Solve Pe, then S* = S* U {(f¥,g5)}. Sete = fF + 1.

(4) If e < a + 1, go to step (2); otherwise, go to step (5).

Hongkai Chen, Scott A. Smolka, Nicola Paoletti, and Shan Lin

Algorithm 1: Solution Method for Resilient STL Control

input STL formula ¢, control system (F, G, xo), control
horizon H, time bounds «, f.
output The sets S* and U] of Problem 1.
1: Initialize S* =0 ande =a — (H - 1).
2: whilee < a+1do
3. Let i be the decision variables.

4 (%, Cs) = system_constraints((F, G, xo), ).
5 (co(p’rec,c((f’dur,Cm) =milp_encoding(gp,x).

6 if P, is feasible then

7: Solve P¢ as MILP and obtain #, f* and g;.
8 S*=8"U{(f 95)} and U = UT U {uig}.
9 €=fr+1.

10: else

11: € = +00.

122 endif

13: end while
14 8* = maxye S* and update U] correspondingly.
15: Return 8* and UJ.

(5) Return 8* = max,, S*.

The overall solution method is summarized in Algorithm 1. To solve
problem Pe, we encode it into MILP. To do so, we first generate the

encoding for the control system through function system_constraints,

which takes as input the system (F, G, xo) and decision variables
i, and outputs the signal X (as a sequence of real variables) and
the constraints Cs determined by the system dynamics. Second, we
generate the encoding for the resiliency objectives through function
milp_encoding as described in Section 4.1.

PROPOSITION 4.1. Algorithm 1 computes the exact set of optimal
solutions 8* of Problem 1 in a finite number of steps.

Proor. To prove the correctness of Algorithm 1, we first prove
that the points in S* upon entry to step (5) above include all Pareto-
optimal solutions according to the traditional ordering >. Then we
prove that step (5) computes the exact set of optimally resilient
solutions (according to >).

To prove the first statement, it is enough to observe that at each
iteration of the above while-loop, f is strictly increasing and g
is non-increasing w.r.t. ¢, meaning that the (f7, g%) pair at one
iteration either dominates or is mutually non-dominated by the
one at the previous iteration (according to >). Hence, S* include all
(but not necessarily only) the Pareto-optimal solutions according
to >.

For the second statement, we know that by Proposition 3.1, the
maximum resilience set of the Pareto front is equivalent to that
of the whole solution space. Thus, by performing max,. S*, the
output of Algorithm 1 is the set of optimal solutions (according
to >r¢). Algorithm 1 terminates in a finite number of steps both
because it requires solving at most H instances of P, and each
instance terminates in a finite number of steps. O

PROPOSITION 4.2. In the worst case, Algorithm 1 computes H in-
stances of problem Pe.
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In the worst case, the number of increments of ¢ is H (see line 9
of Algorithm 1), resulting in H instances of solving P at line 7.

4.3 Computation Complexity

The computation complexity of Algorithm 1 consists of two major
sources: the MILP problem and the multi-objective problem. MILP
problems are NP-hard and the computational complexity is highly
dependent on the number of variables. In the worst case, a MILP
problem solves a number of LP problems that are exponential in
the number of binary and discrete variables. The complexity of LP
is polynomial in the number of (real) variables.

Let ¢ be an STL formula with a set of atomic propositions AP.
The Boolean semantics computation for STL atomic propositions
introduces O(H - |AP|) binary variables; the Boolean semantics
computation for ¢ introduces O(H-|¢|) binary variables [21]. Hence,
the number of binary and discrete variables is O((|AP| + |¢|) - H).
The MILP encoding for the resiliency objectives introduces exactly
3- H counter variables (i.e., cf’rec, c%, c?), hence this term is omitted.
Note that the continuous variables are the sequences ¥ € R and
% € R™H Since we need to solve at most H MILP instances for P,
then the overall complexity is O(H - (2(API+eD-H . (H . (m+n))k))
for some k > 1. Note that computing max,. S* in step (5) adds a
cost quadratic in H (see [6]) and hence is negligible compared to
the overall complexity.

REMARK 4 (LENGTH OF CONTROL HORIZON). The length of the con-
trol horizon H of the resilient STL control problem should be carefully
chosen. An excessively large H introduces unnecessary computational
complexity without significant performance improvement: since we
optimize recoverability and durability relative to the first recovery
episode, what happens after the durability period does not affect these
two objectives. On the other hand, insufficiently large H can make it
difficult for the controller to provide an effective control action: if ¢ is
initially violated and H is too small, it might be impossible to satisfy
@ within H, and so all control strategies will have the same objective
values (worst possible (rec, dur) values).

5 CLOSED-LOOP CONTROL

In this section, we describe the remaining components of the Re-
silienC framework: the MPC control strategy and DMs that selects
a single solution from the set of optimal solutions.

5.1 Model Predictive Control

In the MPC setting, at each time step ¢, we solve Problem 1 by
setting xp to the current system state. The resilient STL controller
computes a set of optimal solutions S*. A DM selects a solution from
S* and then implements only the first step of the corresponding
optimal control strategy. The control system evolves following its
dynamics. At time ¢ + 1, x is set to the evolved system state; the
next implemented control action is calculated similarly using the
resilient STL controller and a DM. This process is repeated at every
remaining time step.

5.2 Decision-Maker Design

The optimal solutions S* of Problem 1 is a set of non-dominated
(rec, dur) pairs. At each step, an optimal solution is selected from
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S* by a DM. We propose the following DM strategies represent-
ing different preferences in solution selection. Pro-recoverability
DM: selects the solution with maximum recoverability, represent-
ing a preference for rapid recovery. Pro-durability DM: selects
the solution with maximum durability, representing a preference
for property maintenance post-recovery. Minimal-distance DM:
selects the optimal solution with minimal L-distance to the point
(a, H — p) (the best attainable value of (rec, dur)). Adaptive DM:
respectively switches to pro-recoverability or pro-durability when
maximum recoverability is less or greater than maximum durability.
It represents a preference for the objective that is harder to achieve.

We note that a DM strategy can also represent application-
specific preferences beyond recoverability and durability (e.g., the
average distance to the centerline of the lane in a lane-keeping
problem). We leave this extension for future work.

REMARK 5 (A POSTERIORI METHODS). The current design of Re-
silienC uses an a posteriori method: the complete set of optimal solu-
tions S* is first computed, then a DM chooses one of them. However,
we note that the above-defined minimal distance solution can be found
without computing the Pareto front, but by solving the single-objective
problem below:

st = min [1(a = trec: taur = ) = (. H = P)| (10)

where o, H — 8 are upper bounds on & — trec, tgy, — B The solution
s* is Pareto-optimal according to > because, if it was not, there would
exist s’ > s* with s; > s;‘ and sé > s;, of which at least one is a strict
inequality. Hence, s’ would be closer to (a, H — ) than s*, which
contradicts the fact that s* is the optimal solution of (10). However,
s* is not guaranteed to be an optimal solution to Problem 1, i.e., be
Pareto-optimal according to >y, unless we set @ = 0 and f = H. We
note that the latter is a perfectly reasonable choice for the bounds,
representing the strictest possible requirements for both recoverability
and durability.

6 CASE STUDIES

In this section, we demonstrate the benefits of the STL-based re-
silient controller via two case studies. Experiments were performed
on an Intel Core i7-12700H CPU with 32GB of DDR5 RAM and a
Windows 11 operating system. Our case studies have been imple-
mented in MATLAB with YALMIP [15]; our implementation and
case studies can be found in a publicly-available library. ©

6.1 Lane Keeping

We study resilient control in a lane-keeping problem. We consider
a linear, time-invariant single-track model for the vehicle with a
constant nominal longitudinal speed [17]. The state-space repre-
sentation of the model can be written as follows.

0 1 0 O , CO
0 a 0 a —al

2=, 31 o ;Z xe+| W |u x0 =560, 21T
0 a3 0 acq —ZIFICD‘F

where the state vector x; = [y, Yo, @, wy] T with y being the lateral
position, y, the lateral velocity, @ the yaw angle, and w, the yaw

®See https://github.com/hongkaichensbu/resilient-stl-control
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parameters I Ig Cur Car I m v
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N/rad N/rad kg/m?

Table 2: Selected vehicle parameters.

values

units m m

kg m/s

velocity. Control actions u; are steering angles of the vehicle, which

are bounded by the physical limitation of the vehicle:
|uz] < 0.72 rad, lur — ups1| < 0.72 rad

The parameters are defined as follows.

_ 2CqF +2CqR _ 2lpCyur — 2IRCyr
dc1 = — — a2 =—"—"—— ___——  _~0
mo mo
2lpCyqr — 2IRCyR ZIIZ:CG:F + 21123CaR
a3 = ——mmm—, Aeg = ————mm————
Lv Lo

where I, is the inertial moment around the vehicle’s z axis; Ip
and [ are the distances between the CoG and the front and rear
axles respectively. The constants C,r and Cyr are front and rear
cornering stiffness; v is the constant nominal longitudinal speed.
Our parameter selection is shown in Table 2. Letting At = 0.1 secs
be the length of one time-step, we have x;41 = x; + X; - At.

Lane Keeping Property: the vehicle should always remain within
the lane boundaries in a time interval.

¢tk = Gpon) (P A Q) = Gron ((Ye = y1) A (Ye < yu))
where y, is the lateral difference between the vehicle and the center
line of the lane. We set y,, = 1 m, y; = —1 m, control horizon H = 60,
h =2, a = 1.8 secs, and = 2.5 secs. We apply ResilienC to our
vehicle model on a curvy track.
We first evaluate the ResilienC solution method by using Algo-
rithm 1 to compute the optimal solutions at the initial step. The re-

sulting optimal solutions are S* = {(-0.2, 1.5), (0.1, -2.2), (0.2, -2.3) };

see Figure 3. In the top figure, the lane is indicated by the grey area
and the starting location of the vehicle, marked by a star, is outside
the lane. Each trajectory represents a predicted optimal trajectory
for the vehicle and an optimal solution in S*. The middle figure
shows the sequences of control actions for three optimal trajecto-
ries. The bottom figure shows the evolution of the lane-keeping
requirement @i over time for the three optimal trajectories.

We now compare the different behaviors of the three optimal
solutions. In the top figure, trajectory 1 represents a situation where
the vehicle enters the lane the latest, and yet it remains in the lane
till the end of the trajectory. We can also see that from the blue solid
line in the bottom figure, z#* recovers to 1 later than the others
(trec = 2 secs), but subsequently remains 1 for the longest duration
(tgur = 4 secs); it thus results in the optimal solution (—0.2, 1.5).
Trajectory 3 represents a vastly different situation where the vehicle
aggressively enters the lane first and stays in the lane, but quickly
exits the lane due to overshooting. The yellow dashed line in the
bottom figure reflects this situation: z#* recovers to 1 the earliest
(trec = 1.6 secs) with the shortest subsequent duration (¢4, = 0.2
secs), resulting in the optimal solution (0.2, —2.3). Trajectory 2
represents an intermediate situation: the vehicle returns to satisfy
@1 with the second fastest recovery (¢,¢¢ = 1.7 secs) and the second
longest subsequent duration (tg,,, = 0.3 secs), yielding the optimal
solution (0.1, -2.2).
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Figure 3: The optimal solutions provided by our ResilienC
framework at the initial step in a lane-keeping problem.
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Figure 4: Simulated vehicle trajectories in ResilienC.

We then evaluate various DM strategies of our ResilienC frame-
work in the MPC setting. Solving Problem 1 and selecting a control
action took, on average, 78 msec on our machine. We roll out the
MPC controller for a trajectory of 60 time steps for each DM. The
(rec, dur) pair for the property ¢y for the pro-recoverability DM,
pro-durability DM, adaptive DM, and minimal-distance DM are
respectively: (0.3, -2.2), (0.2, 1.5), (0, —2), and (—0.2,1.5). See the
results in Figure 4. As expected, the trajectory generated by the
pro-recoverability DM has better recoverability yet worse dura-
bility compared to the pro-durability DM. The trajectory gener-
ated with the adaptive DM has better recoverability compared
to the pro-durability DM and better durability compared to the
pro-recoverability DM, reflecting a balanced preference between
recoverability and durability. The minimal-distance DM usually
selects the same optimal solution as the pro-durability DM. This is
because solutions with good recoverability often exhibit extremely
bad durability due to overshooting, thus making them the farthest
from the ideal resiliency value (o, H — f8). This result evidences the
usefulness of our approach in presenting the DM multiple, equally
resilient, control strategies. In particular, we can see that optimizing
for a fast recovery, which is roughly equivalent to maximizing STL
time robustness, is not always the best strategy.
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6.2 Deadline-Driven Package Delivery

We study a deadline-driven, multi-region cooperative package-
delivery problem. The problem involves multiple controllable robots
performing package deliveries by deadlines at multiple regions in a
two-dimensional space. The robots are equipped with chargeable
batteries.

We extend a robot model in [24] with a battery state component.
In an N-robot system, we denote the state vector of the i-th robot
as x’: = [l,ic,v,ic,yi, l;, Ei,Ué] € RS, where l,ic, l; are x, y coordinates,
vy, U’y are the x, y velocities components, e’ the battery level, and

ol the battery charging rate. The full state vector of the multi-robot
system is x = [xl, N ]T. Similarly, the control actions of the
i-th robot are denoted by ul = [ui, ué, ué, econ|, where ui, u; eR
associate to coordinates, ué € {0, 1} indicates the charging status,
and econ = —1 is the battery consumption rate; the control actions
of the multi-robot system are u = [ul,.. .,uN]T. The state-space

representation of an N-robot system at time ¢ is denoted as follows.
X1 =FN % +GN - uy

where x; and u; are the system state and control actions, respec-
tively. Matrices Fy and G are defined as follows.

LA 0 0 1t
Fn=Iy®]| 0 1 s, A:[O 15]
0 0 0
By 0
0 B 0 L®e®b 0 0 d
GN = ,Bi=| 0 dy 0,b=[“]
: : . : 0 eéh 1 ts
0 0 ... BN

where ® is the Kronecker product and I is the identity matrix of
size N. Parameter eé is the battery charging rate of the i-th robot,
ts = 0.1 is the time-step size, and d;, = 0.005.

Consider two robots (i.e., N = 2), denoted by robot; and robots,
with e!, =7 and e?h = 2 respectively representing an advanced
and fast, and an outdated and slow, battery charging system.
Deadline-driven Package Delivery: A package must be delivered by a
robot by a deadline at a delivery region. Each of the two rectangular
delivery regions, Ry and Rg, has two deadlines defined by the time
intervals of the F operators.

os1 = Fom/2 (robot1 € Ry V robotz € Ry) A

Fra/2,m] (robot1 € Ry V robotz € Ry)
@s2 = Fo g2 (roboty € Ry V roboty € Rz) A

Flr/2,H] (robot; € Ry V roboty € Ry)

where robot; € R; indicates the i-th robot is inside R;, i = 1,2,
J = 1,2. The requirements robot; € R; can be expressed by a set of
four linear constraints.”

Battery power requirement: the battery power of the robots should
remain above E; = 10.

Pc1 = (el > Ep), Pc2 = (32 > Ep)

Robots’ batteries can be charged in either of the two rectangular
charging regions C; and C,. Therefore, u% = 1 when (robot; €

"For example, robot; € Ry requires the x! to be greater than R;’s lower bound on x,
denoted by x,,. Thus, we have r! - I > x5, where [ = [1,0,0,0,0, O]T.
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C1) V (robot; € C3) holds, and 0 otherwise; similarly, u% =1
if and only if (robotz € C1) V (robot; € Cz) holds. Constraints
robot; € Cj can be expressed as a set of four linear constraints
similar to robot; € Rj. The overall requirement for the deadline-
driven multi-region package delivery problem is defined as

@del = Ps1 N Ps2 N @c1 N @c2

We set H = 60, @ = 25, f = 20, xé = [1.1,0,0.5,0,5,—1] and
xg =[7,0,2,0,13,—1]. The vectors specifying the lower and upper
bounds on x and those on y of Ry, Rz, C1, and Cy are [0,4,7,11],
[6,10,7,11], [0,1,0,1] and [9, 10,0, 1], respectively. We restrict the
control actions ||ui||, ||u;|| <1fori=1,2.

We first compute the optimal solutions at the initial time-step in
our ResilienC framework using Algorithm 1. The optimal solutions
are S* = {(-4,4),(9,-5), (-3, 1)}. Figure 5 shows the first two
optimal solutions. Also, Figure 6 shows the evolution of the systems:
in each sub-figure, from left to right, the top row shows the charging
status of robot;, package-delivery status at Ry, and the battery
power level of robots; the bottom row shows the charging status
of robot,, package-delivery status at R, and the overall problem
requirement ¢ge;.

In Figure 5(a), an optimal situation needs robot; to go to Cy for
charging before package delivery at R to ensure it has sufficient
battery power for the deliveries. Meanwhile, robot; does not charge
its battery in C; at full charging speed. This is because fast charg-
ing will not lead to quick satisfaction of ¢g4.; because of the slow
package delivery at Ry by robot,. In Figure 6(a), we can examine
the system via the evolution of requirements: robot; € Cy holds
between t = 21 and t = 33, after which robot, € Ry is true at t = 60;
robot; € C; holds irregularly, after which robot; € R; is true at
t = 59. Overall, in the bottom-right figure, ¢4, is recovered late
(trec = 29), but remains true for a long period of time (g, = 24);
hence the solution (-4, 4).

In contrast, Figure 5(b) depicts another optimal trajectory where
robot, goes to Ry and in turn R; for package deliveries without
charging the battery, so to meet the deadlines. Meanwhile, robot;
goes to C; and charges the battery at full charging speed to satisfy
the battery power requirement as fast as possible; hence a quick
recoverability w.r.t. ¢4,;. However, ¢4,; does not remain true as
long as in the first trajectory because robot, never charges the bat-
tery and thus its battery power quickly drops below E;. Figure 6(b)
describes the system evolution: quick satisfaction of robot; € Ry,
robot; € Ry, and e! > Ej collectively create the best recoverability
of ge1 (trec = 16). However, even though two package deliveries
at Ry and R, meet the deadlines after recovery, e? > E; cannot
hold long enough because robot; € C; or robot; € Cz never holds,
causing the worst durability (¢4, = 15). Hence the solution (9, —5).

We then evaluate our DM strategies. We roll out the MPC con-
troller for 60 steps and assess the recoverability and durability of
the trajectories w.r.t. ¢ 4.;. Solving Problem 1 and selecting a control
action took, on average, 11.5 seconds on our machine. The com-
putational complexity is due in large part to the extensive nature
of the STL requirements needed for this case study. A strategy for
reducing the execution time is under investigation as mentioned
in the conclusion (see Section 8). The (rec, dur) pair of the trajec-
tory with the pro-recoverability DM, the pro-durability DM, the
adaptive DM, and the minimal-distance DM are respectively (9, —5),
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Figure 5: Optimal solutions provided by ResilienC at the initial step in a deadline-driven, multi-region package-delivery

problem.
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(b) Trajectory 2: : ¢4.; has good recoverability but bad durability.

Figure 6: Evolution of the system states of two trajectories.

(—4,4), (2,-1), and (—4,4). As expected, the trajectories generated
by the first three DM strategies respectively reflect a preference for
recoverability, durability, and the recoverability-durability tradeoff.
The minimal-distance DM shows a preference for good durability
over good recoverability with overshooting.

7 RELATED WORK

Resilience in CPS. Logic-based formulations of resilience in CPS
have been proposed. The time robustness semantics for STL is
considered equivalent to resilience in [18]. However, it can only
quantify the recoverability of STL violations but not the subsequent
durability. Aksaray et al. [1] propose a “time shifting” STL and
a resilient controller that maximizes the robustness value of the
shifted formula as quickly as possible. This approach, however, does
not consider the STL satisfaction durability post-recovery. Resilient
control frameworks include work by Bouvier et al. [5] and Zhu
et al. [27]. Their non-logic-based notions of resilience, however,
do not readily lend themselves to systems subject to diverse and

sophisticated temporal requirements. A survey on resilient multi-
robot systems [20] discusses how resilience is defined, measured,
and maintained across various robotics domains. Our work is based
on the STL-based formulation of resiliency proposed by Chen et
al. [6]. In this approach, the resilience of an STL formula takes into
account both its recoverability and durability, which are quantified
by sets of real-valued pairs.

Control under STL specifications. In [3], a controller synthe-
sis problem is solved to ensure that the behavior of the resulting
control system satisfies the desired STL specifications. The STL
robustness controller [21] uses a MILP encoding of an optimiza-
tion problem to maximize the space robustness [9] of the target
STL specification. The controller synthesis problem for CPS sub-
ject to STL specifications has been considered in the context of
reactive control [22], relaxed constrained MPC control [26], and
“STL-based requirements priorities learning” via robustness slack-
ness [8]. Extensions to the original robustness definition of STL
specifications are used to tackle its disadvantages in optimization
problems [10, 14].
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Instead of space robustness, the time-robust control problem [24]
focuses on right-time robustness, which is critical in the presence of
timing uncertainty. It maximizes the right-time robustness of an STL
specification of a discrete linear system. A left-right combined time
robustness notion is proposed in [25] to address the weakness of left-
and right-time robustness for a single-directional time shift. It also
proposes a control algorithm for linear systems that maximizes the
combined time robustness using MILP. An event-triggered MILP-
based MPC framework [13] has been designed to maximize the
overall space and time tolerances of the robustness degree of STL
specifications for robot agents.

In contrast, we formally define the resilient STL control problem
for CPS with STL-based requirements as one that maximizes recov-
erability and durability, resulting in a multi-objective optimization
problem. To the best of our knowledge, we are the first to consider
a resilient control framework that co-maximizes recoverability and
durability.

8 CONCLUSION

We presented ResilienC, a resilient control framework for CPS sub-
ject to STL requirements. In ResilienC, we defined the problem of
resilient control as one of multi-objective optimization that maxi-
mizes both CPS recoverability and durability w.r.t the desired STL
properties. We proposed a solution method that uses a MILP en-
coding and an a posteriori method for computing the precise set
of non-dominated optimal solutions. Each optimal solution repre-
sents an optimally resilient trajectory of the control system. We
also proposed a number of DM strategies that represent various
preferences for selecting a single optimal solution. We illustrated
ResilienC on two case studies: lane keeping and deadline-driven
multi-region package delivery. Collectively, our results showed the
effectiveness of our solution methods in achieving resilient control
and demonstrated the effects of DM preferences.

Future work will consider application-specific DM strategies that
go beyond recoverability and durability; e.g., in the lane-keeping
problem, the average distance to the centerline of the lane. We will
also investigate learning a neural controller (NC) for our ResilienC
setup. The controller presented in this paper can be run repeat-
edly in simulation mode to provide the training data for the NC.
Approaches of this nature can be found in [7, 19]. Such an NC is
expected to improve upon the execution time of the MPC controller
(which has to solve a multi-objective MILP problem at every time
step) for the package-delivery case study by orders of magnitude.
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