
Multi-Agent Spatial Predictive Control

with Application to Drone Flocking

Andreas Brandstätter1a, Scott A. Smolka2, Scott D. Stoller2, Ashish Tiwari3, Radu Grosu1

Abstract— We introduce Spatial Predictive Control (SPC),

a technique for solving the following problem: given a collection

of robotic agents with black-box positional low-level controllers

(PLLCs) and a mission-specific distributed cost function, how can a

distributed controller achieve and maintain cost-function minimiza-

tion without a plant model and only positional observations of the

environment? Our fully distributed SPC controller is based strictly

on the position of the agent itself and on those of its neighboring

agents. This information is used in every time step to compute the

gradient of the cost function and to perform a spatial look-ahead

to predict the best next target position for the PLLC. Using a

simulation environment, we show that SPC outperforms Potential

Field Controllers, a related class of controllers, on the drone flock-

ing problem. We also show that SPC works on real hardware, and

is therefore able to cope with the potential sim-to-real transfer gap.

We demonstrate its performance using as many as 16 Crazyflie 2.1

drones in a number of scenarios, including obstacle avoidance.

I. INTRODUCTION
A collection of drones can perform tasks that cannot be
accomplished by individual drones alone [1]. It can, for
example, carry a heavy load while still being much more
agile than a single larger drone [2], [3]. In search-and-rescue
applications, the drones can explore unknown terrain by
covering individual paths that jointly cover the entire
area [4]–[6]. These collective maneuvers can be expressed
as the problem of minimizing a positional cost function, i.e.,
a cost function that depends on the positions of the drones
(and possibly information about their environment). Such a
problem formulation requires a method to localize each drone
within a common reference frame, e.g. a Global Navigation
Satellite System (GNSS) or an indoor localization system.

Off-the-shelf drones, such as Crazyflie [7], DJI [8], and
Parrot [9], come equipped with a positional low-level controller
(PLLC). Such a controller takes a position argument as input
and maneuvers the drone to this position, where it then hovers.
PLLCs are common in other types of robotic systems, including
the Landshark [10] and Taurob [11] unmanned ground vehicles,
and the Bluefin®-12 [12] unmanned underwater vehicle.
Unfortunately, the PLLC’s code is often proprietary, and the
exact parameters of the physical drone model might not be
available. Since the PLLC and physical drone together form
the plant to be controlled, a dynamic model of the plant is
often unavailable, for one or both of these reasons.

In this paper, we address the following problem: Design a
distributed controller that minimizes a given positional cost
function for robotic agents with black-box PLLCs, no available

1 CPS, Technische Universität Wien (TU Wien), Austria
2 Department of Computer Science, Stony Brook University, USA
3 Microsoft, USA
a Correspondence: andreas.brandstaetter@tuwien.ac.at

Fig. 1: Given the positions shown for drones 0 to 3, the greyscale heatmap
indicates the value of the cost function for a drone i at each point, if it was
placed at that point. The direction in which drone i should move is determined
by the gradient of the cost function (shown for positions a, b, and c). SPC eval-
uates the cost at the spatial lookahead (indicated by the colored dots) along this
direction and chooses the best value for drone i’s next position (the red arrow).

model of the plant dynamics, and only positional observations
of their environment.

To solve this problem, we introduce Spatial Predictive
Control (SPC), a novel distributed high-level approach to
multi-agent control. In SPC, each agent’s controller identifies
N equally-spaced points within a maximum look-ahead
distance ✏ ·N from its current position in the direction of the
negative gradient of a cost function c. The SPC controller then
computes the value of c for each of these points and chooses
the one with minimal cost as the target location to be sent to
the PLLC. The PLLC makes a best effort to reach this location,
while in the next time-step, SPC provides an updated target.

SPC vs MPC. To solve the stated problem, one might
consider the PLLC as part of the plant and design a Model
Predictive Control (MPC) for the high-level control. Such an
approach is not applicable since neither a dynamic model of
the physical plant nor the internals of the PLLC are available.
Even if an approximate dynamic model could be obtained
using system identification techniques, and if the code for
the PLLC is available (e.g., for Crazyflies), MPC remains
a computationally expensive method [13]. This is especially
relevant for embedded processors with limited computing
capabilities. MPC needs to calculate the predicted behavior for
the plant model over a specified time horizon in order to search
for an optimal control input. In contrast, SPC does not require
a plant model and avoids extensive prediction calculations.

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 1221

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ics
 a

nd
 A

ut
om

at
io

n
(IC

RA
) |

 9
79

-8
-3

50
3-

23
65

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
OI

: 1
0.

11
09

/IC
RA

48
89

1.
20

23
.1

01
60

61
7

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on July 17,2023 at 01:00:07 UTC from IEEE Xplore. Restrictions apply.

SPC vs Planning. Given that (robotic) agents are equipped
with PLLCs, one might ask if a controller is actually needed,
or would a planning-based approach suffice. Based on the
initial positions of agents and obstacles, a plan of way-points
could be generated for the PLLC to follow. Since, however,
the environment is constantly changing due to the movement
of other agents (and possibly obstacles), such a plan would
become quickly outdated. This is exactly the type of problem we
address with SPC: in every time step, we use the observations
of the environment to calculate the next input to the PLLC; the
PLLC makes a best effort to reach this position. Hence, the key
difference between SPC and planning is the granularity of the
time horizon: planning uses long time horizons for calculating
trajectories, whereas in our approach, feedback from the plant in
every time step is used to recalculate the desired next position.

SPC vs PFC. Potential Field Controllers (PFCs) are well-
known controllers for mobile robots. Prior work [14], [15]
has considered their application to flocking. PFCs view the
cost function as defining a potential field, and thus, PFCs use
the gradient of the potential as the force (or acceleration) the
controller needs to apply. There are two issues with using PFCs
for our stated problem. First, when the environment has obsta-
cles and a large number of moving drones, the cost function
becomes time-varying and nonlinear (as in Figure 1), and local
gradients become misleading. Second, in our setting, we can not
set the acceleration directly because we only have access to the
PLLC. Nevertheless, we can adapt and use PFC in our setting,
but our experiments confirm that it performs poorly compared
to SPC, which evaluates the cost function at multiple candidate
future positions within the spatial look-ahead horizon to find
the best next position (in terms of cost-function minimization).

Application to Drone Flocking: After introducing SPC
as a general approach, we apply it to a distributed multi-agent
system with the goal of achieving flock formation, and
maintaining flock formation while moving to a specified target
location, avoiding obstacles in the process.

The local cost function c for this problem (see Section III-B)
depends only on the locations of the drones. As illustrated
for four drones in Figure 1, the negation of the gradient of
c (see Section III-C) suggests a direction of movement for
drone i. The SPC algorithm (see Section II) evaluates its local
cost function at multiple points in that direction. As the figure
illustrates, this enables the drone to see peaks and valleys in
the cost function that may lie ahead.
The main contributions of this paper are:

• We introduce the novel concept of Spatial Predictive
Control, a control methodology well suited for PLLCs.

• SPC is model-free. One only needs to be able to determine the
cost at different locations along the direction of the cost func-
tion’s gradient in order to apply it. Also, SPC does not need
to measure the velocity or acceleration of neighboring drones.

• We evaluate SPC using drone flocking in a drone simulation
environment.

• We further experimentally validate our approach by achieving
flocking with real drone hardware in the form of off-the-shelf
Crazyflie quadcopters in a number of different scenarios.

II. SPC FOR MULTI-AGENT SYSTEMS

We describe the distributed control problem addressed in
this paper and then present SPC for solving this problem.

A. Distributed Control for Distributed Cost Minimization in
the Presence of PLLCs

We consider a multi-agent system consisting of a set D of
agents. Every agent i 2 D has a state (xio, xih), where xio

is the observable part of its state and xih is the hidden part
of its state. Agent i has a control input ui and its dynamics
is assumed to be given by some unknown function f :

(
dxio(t)

dt
,
dxih(t)

dt
) = f(t, xio(t), xih(t), ui(t)) (1)

Agent i has access to the observable state of a subset Hi ✓ D
of agents. Hi will be referred to as the neighborhood of i.

The objective for the multi-agent system is given in terms
of a cost function c(xio, xHio) that maps the observable state
of agent i (xio) and of its neighbors (xHio) to a non-negative
real value. Here we use xHio as shorthand for (xjo)j2Hi .
Agent i’s goal is to minimize c(xio, xHio).

In our setting, we do not have ability to directly set ui.
Instead, we can only set a reference value x(r)

io
that is then

used by some black-box, low-level controller PLLC to
internally set the control input.

ui(t) = PLLC(t, xio(t), xih(t), x
(r)
io

) (2)

Both the dynamics of each agent (function f) and the
details of the PLLC (function PLLC) are unknown. The cost
function c is given. We want to find a procedure that allows
each agent to minimize its cost in the above setting.

B. Spatial Predictive Control (SPC)
Let rxioc(xio, xHio) denote the gradient of cost function c

with respect to xio. One way to minimize the cost c(xio, xHio)
would be to follow the negative of the gradient at every point.
However, if the cost function is nonlinear (e.g., has many
peaks), then gradients can be misleading. The key observation
underlying SPC is that each agent should look ahead in the
observable state space, in the direction of the negative gradient,
to determine the reference value for its observable state. An SPC
controller picks N equally-spaced points within a maximum
look-ahead distance ✏ ·N from the current observable state and
in the direction of the negative gradient, where ✏ and N are pa-
rameters of the controller. At any given state (xio(t), xHio(t)),
the set Qi containing these equally-spaced points is given by:

Qi =

⇢
xio(t)�n·✏· rxioc(xio(t), xHio(t))

krxioc(xio(t), xHio(t)k
| n=0 .. N

�

(3)
Here rxioc(xio(t), xHio(t)) denotes the evaluation of the
gradient of c at the point (xio(t), xHio(t)). Our spatial-
predictive controller selects the point in Qi with minimum
cost as the next target position x(r)

io
for agent i:

x(r)
io

= argmin
x̃io2Qi

(c(x̃io, xHio(t))) (4)

Note that the SPC controller recomputes the reference x(r)
io

at each time step. This is important because this computation of

1222

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on July 17,2023 at 01:00:07 UTC from IEEE Xplore. Restrictions apply.

a) b)

c) d)

Fig. 2: Directional movements (indicated by arrows) induced by cost-function
terms: a: Cohesion, b: separation, c: target seeking, and d: obstacle avoidance.

the reference does not take into account the motion of the neigh-
bors. However, SPC will respond to any change in neighbors’
observable states in its next computation of the reference.

III. APPLICATION TO MULTI-AGENT FLOCKING PROBLEM

This section starts with background on flocking, describes
how to use SPC for this application, and then presents metrics
to assess the quality of a flocking controller.

A. The Flocking Problem
A set of agents D is in a flock formation if the distance

between every pair of agents is “not too large and not too small.”
These requirements yield the first two terms of our cost function:
cohesion and separation. These two terms are sufficient to
cause the agents to form and maintain a flock formation.

In our model, drone i has access to positions of only a
subset Hi of drones, namely its local neighbors. Hence, we
define a local cost function, parameterized by i, which uses
only the positions of drones in {i} [Hi.

B. Cost Function
Consider a drone i, i in D. Let pj , when it appears in the

local cost function of drone i, denote the position of drone j
as known to drone i; this may differ from the actual position
due to sensing error. Let pHi denote the tuple of positions
of drones in Hi and let rd be the radius of each drone. We
define the cost function c(pi, pHi) as:

c(pi, pHi) =ccoh(pi, pHi) + csep(pi, pHi)+

ctar(pi, pHi) + cobs(pi) (5)

The value of the cohesion term increases as drones drift
apart, and the separation term increases as drones get closer
together. Each term has a weight, denoted by a subscripted !.
Cohesion term:

ccoh(pi, pHi) = !coh · 1

|Hi|
·
X

j2Hi

kpi � pjk2 (6)

Separation term:

csep(pi, pHi) = !sep ·
1

|Hi|
·
X

j2Hi

1

max(kpi � pjk � 2rd, 0̂)
2

(7)
The function max(., 0̂) ensures positive values when there is
sensor noise, but does not further influence the cost function;
0̂ denotes a very small positive value.

The mission-specific target seeking term sets a target
location, denoted by ptar, for the entire flock. The obstacle
avoidance term prevents the drones from colliding with
infinitely tall cylindrical objects. Let K denote the set of
obstacles. For k 2 K, let rk denote the radius of obstacle
k, and let pk denote its center on the xy-plane.
Target-seeking term:

ctar(pi, pHi) = !tar ·
����ptar �

pi +
P

j2Hi
pj

|Hi|+ 1

����
2

(8)

Obstacle-avoidance term:

cobs(pi) = !obs ·
1

|K| ·
X

k2K

1

max(kP(pi)� pkk�rk�rd, 0̂)
2

(9)
The function P(.) projects a vector to the xy-plane.

C. Gradient of the cost function
For SPC, the gradient of the cost function is required in

Eq. (3), and is given by (for readability, we elide function
arguments):

rpic = rpiccoh +rpicsep +rpictar +rpicobs (10)

Cohesion gradient:

rpiccoh = 2 · !coh ·

0

@pi �
1

|Hi|
·
X

j2Hi

pj

1

A (11)

Separation gradient:

rpicsep =
2 · !sep

|Hi|
·
X

j2Hi

pj � pi

(kpi�pjk�2rd)
3 ·kpi�pjk

(12)

Target-seeking gradient:

rpictar =
2 · !tar

|Hi|+ 1
·
✓
pi +

P
j2Hi

pj

|Hi|+ 1
� ptar

◆
(13)

Obstacle-avoidance gradient:

rpicobs =
2!obs

|K| ·
X

k2K

pk �P(pi)

(kP(pi)�pkk�rk�rd)
3 ·kP(pi)�pkk

(14)

D. Flock-Formation Quality metrics
Collision avoidance: To avoid collisions, the distance between
all pairs of drones must remain above a specified threshold
distthr . We define a metric for the minimum distance between
any pair of drones as follows:

distmin = min
i,j2D;i 6=j

kpi � pjk (15)

We set distthr = 2 · rd + rsafety , where rd is the radius of
the drone, and rsafety is a safety margin.
Compactness: Compactness of the flock is measured by the
maximum distance of any drone from the centroid of the
flock. It is defined as follows:

compmax = max
i2D

����

P
j2D

pj

|D| � pi

���� (16)

It is expected to stay below some threshold compthr;
otherwise, the drones are too far apart.

1223

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on July 17,2023 at 01:00:07 UTC from IEEE Xplore. Restrictions apply.

Obstacle clearance: Keeping a safe distance from obstacles
is required to avoid collisions. We therefore measure the
minimum distance from any drone to any obstacle:

clearobj = min
i2D;k2K

kP(pi)� pkk (17)

For safety, this should always be greater than some threshold
clearthr = rd + rk + rsafety .

IV. EXPERIMENTAL EVALUATION

We evaluated SPC on the drone flocking problem using
simulations and experiments with Crazyflie 2.1 drones.

A. Simulation Experiments
As a simulation framework, we use crazys [16], which is

based on the Gazebo [17] physics and visualization engine and
the Robotic Operating System (ROS) [18]. Our SPC algorithm
is implemented in C++ as a separate ROS node. It receives
position messages from neighboring drones, and control
messages, such as the target location or a stop command,
from the human operator. It outputs a set-point to the PLLC.
The SPC we implemented is fully distributed: there is no
central optimizer and no further information is exchanged
between ROS nodes. The SPC node calculates the gradient
according to Eqs. (11)-(14). The spatial look-ahead parameter
N is determined dynamically based on the distance to the
target location, where N⇤ 2 N+ is a system parameter:
N = dN⇤ ·max(1,min(1.5 · (kpi � ptark +0.5), 3))e (18)

This allows the drones to more quickly reach distant target
locations and reduces the controller’s computational cost (by
reducing |Qi|) once the flock reaches the target. Thereafter,
the set-point position x(r)

io
is determined by Eqs. (3)-(4).

Auxiliary functions, like hovering at the starting position,
are also implemented in this node. In the simulations, we
added Gaussian sensor noise, with � = 10cm, for drone
position measurements. Cost-function weights and controller
parameters (Table I) were determined empirically by analysis
of the controller behavior. Note that the maximum look-ahead
distance ✏ · N should not be too large, to avoid ”seeing

-1
-2
-3

2
1

y
1 2 3 4 5 6 7 8 9 10 11m

3m

x

10/4

2

3a)

-1
-2
-3

2
1

y
1 2 3 4 5 6 7 8 9 10 11m

3m

x

0/2 1

b)

-1
-2
-3

2
1

y
1 2 3 4 5 6 7 8 9 10 11m

3m

x

0/2 1

c)

-1
-2
-3

2
1

y
1 2 3 4 5 6 7 8 9 10 11m

3m

x

0/2 1

d)

Fig. 3: Experiments were performed using four different scenarios: a: without
obstacles, b: with one obstacle, c: with 2 obstacles, and d: with 13 obstacles
indicated in dark-blue. The direct path between the numbered target locations
ptar (red dots) is indicated with red arrows. (z-dimension is elided in these
plots, since it is constant for all target locations.)

a) b)

Fig. 4: Simulation experiments using simulation environment. Snapshot of
a: flock of 30 drones; and b: flock of 15 drones with 2 obstacles.

through” other drones or obstacles. On the other hand, a small
value for N reduces the granularity of the controller action
space, leading to a bang–bang controller if N = 1.

PLLC A PLLC B Hardware

Cost weights !coh 20m�1 20m�1 20m�1

!sep 12m�1 12m�1 12m�1

!tar 150m�1 150m�1 150m�1

!obs 18m�1 18m�1 35m�1

SPC parameters N⇤ 6 3 3
✏ 0.05m 0.05m 0.04m

PFC gain k 0.003m 0.0015m n.a.
Dimensions rd 0.07m 0.07m 0.07m

rk 0.25m 0.25m 0.25m
rsafety 0.06m 0.06m 0.06m

TABLE I: Parameters used in simulation experiments and hardware experiments.

To evaluate SPC and its implementation, we defined four
path-based scenarios (trajectories), as shown in Figure 3. The
end points on the path (shown in red) are provided in a timed
sequence as target location ptar. There are four scenarios:
without obstacles (Figure 3a), with 1 obstacle (Figure 3b), with
2 obstacles (Figure 3c), and with 13 obstacles (Figure 3d). Sim-
ulations were conducted with flocks of size |D|=4, 9, 15, and
30. Using radius rH = 0.9m, the neighborhood is defined by:

Hi = {j 2D\{i}^ kpi � pjk <rH} (19)
To check SPC’s robustness to different PLLCs, we experimented
with two PLLCs with different step responses. PLLC B reaches
its set-point for x- and y-dimensions in less than half the time of
PLLC A, while overshooting by about 50% more. The PLLCs
behave very similarly in the z-dimension. Figure 4 show snap-
shots of the simulations. A video is provided in the Supplemen-
tary Material and available at: https://youtu.be/iUkaYrnZz9k.

1) Results: The analysis of the quality metrics for collision
avoidance, compactness, and obstacle clearance show that our
SPC-based approach successfully maintains a stable flock. In
Figure 5, metrics are plotted over time for three representative
simulations. Data from the prefix of an execution, when
the drones move from random starting positions into flock
formation, are omitted when computing the metrics.

2) Computational complexity: The computation time of
Eq. (4) is O(|Q| · (|Hi|+ |K|)). |Hi| is bounded by |D| and
also depends on rH . Introducing a concept of neighborhood
for obstacles can reduce the computation time.

3) Comparison with PFC: To compare SPC with [14], [15],
we also experimented with a PFC controller based solely on
gradients. In this controller, the gradient vector rpic is used
to determine the next set-point x(r)

io
for the PLLC as follows:

x(r)
io

= pi � k ·rpic(pi) (20)

1224

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on July 17,2023 at 01:00:07 UTC from IEEE Xplore. Restrictions apply.

0

0.5

1

1.5

2

2.5

3m

0 10 20 30 40 50s Time

D
ist

an
ce

a)30 drones, no obstacles

0

0.5

1

1.5

2

2.5

3m

0 10 20 30 40s Time

D
ist

an
ce

b) 9 drones, 1 obstacle

0

0.5

1

1.5

2

2.5

3m

0 10 20 30 40s Time

D
ist

an
ce

c) 15 drones, 2 obstacles

distmin compmax clearobj distthr (20cm) clear (38cm)thr

Fig. 5: Quality metrics over time for SPC simulations using PLLC B for
exemplary scenarios of a: 30 drones with 0 obstacles, b: 9 drones with 1
obstacle, and c: 15 drones with 2 obstacles. Results for other simulation
experiments were very similar. While the flock is passing the obstacle(s)
the metrics temporarily degrade, however values distmin and clearobj stay
above the respective thresholds, meaning there are no collisions, throughout
the whole simulation. Analogously compmax stays below the threshold
(5m), indicating that a compact flock is continuously maintained.

co
lli

si
on

 a
vo

id
an

ce
ob

st
ac

le
 c

le
ar

an
ce

co
m

pa
ct

ne
ss

SPC PFC threshold value out of range

|D|
Scenario 0 obstacles 1 obstacle 2 obstacles 13 obstacles

4 9 15 30 4 9 15 30 4 9 15 30 4 9 15 30

 0
 0.2
 0.4
 0.6
 0.8

 1

di
st m

in
 [m

]

 0
 0.4
 0.8
 1.2

cle
ar

ob
j [

m
]

 0
 2
 4
 6
 8

 10
 12
 14

co
m

p m
ax

 [m
]

Simulations with PLLC A SPC PFC threshold value out of range

|D|
Scenario 0 obstacles 1 obstacle 2 obstacles 13 obstacles

4 9 15 30 4 9 15 30 4 9 15 30 4 9 15 30

 0
 0.2
 0.4
 0.6
 0.8

 1

di
st m

in
 [m

]

 0
 0.4
 0.8
 1.2

cle
ar

ob
j [

m
]

 0
 2
 4
 6
 8

 10
 12
 14

co
m

p m
ax

 [m
]

Simulations with PLLC B

dist thr clearthr comp thrvalue out of rangePFCSPC

Fig. 6: Performance comparison for SPC and PFC. Values are min (for
collision avoidance and obstacle clearance) or max (for compactness) over
the simulation duration. SPC satisfies distthr in nearly every scenario,
while PFC frequently violates it, especially in the presence of obstacles. SPC
maintains compthr in every scenario, while for PFC, compmax sometimes
gets very high, even out of range.

The control law stated in [14] provides an acceleration vector,
which we adapted in Eq. (20) to a positional variant as required
by the PLLC. We determined the gain k empirically such that
the target of the flock was reached within the same time as our
SPC implementation. The gain determines how aggressively
the controller moves the drone toward the target location. In
the experiments detailed below, the gain is constant, as in [14],
[15]. We also briefly experimented with dynamic gain, where
k is computed using a function similar to the one in Eq. (18).
This had relatively small effects. Compared to the results
with static gain reported below: collision avoidance improved
slightly for some scenarios; obstacle clearance improved for
some cases with PLLC A, while it worsened with PLLC B;
and compactness improved moderately.

Figure 6 shows performance metrics for simulations of SPC
and PFC controllers. While both perform reasonably well with-
out obstacles, SPC’s performance is superior in the presence of
obstacles. This validates our hypothesis that SPC is particularly
valuable when the cost function is more nonlinear (adding
obstacles has that effect). Whenever a drone enters or leaves
another drone’s neighborhood, the cost function instantaneously
changes its value; the gradient changes too. This causes the PFC
controller to fail: in these simulations, we observed oscillating

behavior and multiple collisions. SPC successfully deals with all
of these situations. In short, SPC is more robust to nonlinearities
in the cost function and differences in the behavior of the PLLC.

B. Hardware Experiments
We also experimented with real drones, specifically, Crazyflie

2.1-quadcopters [7]; see Figure 7a. For localization, we used the
Loco-Positioning system [19]. The drones seamlessly integrated
with the localization system, resulting in a (internal) PLLC that
enables a drone to hold its position at a given set-point. Stability,
however, depends on both the accuracy of the localization
system and on the mechanical limitations of the drone. When
hovering at a given set-point, we observed noise in the drone’s
position in the range of 15 cm. This was also noted in [20].

In the hardware implementation, we used ROS with the same
software node as in Section IV-A, with only minor parameter
modifications. This demonstrates the robustness of SPC with
respect to a potential sim-to-real transfer gap. Since Crazyflies
are incapable of running ROS on-board, we transmit the position
updates to a PC that runs the controller and transmits the
set-point position to the drone. Our experiments therefore also
show that SPC is resilient to the additional delay introduced by
radio transmission of position updates and set-point messages.
Our controller, however, could be ported to run directly on
ROS-capable drones, since we run it separately for each drone.

For the hardware experiments we used the same scenarios,
as in the simulation experiments (Figure 3), except with 13
obstacles. Flocks of size |D|=2, 4, 9, and 16 were used.

1) Results: Figures 7b and 7c show pictures of our
experiments in a lecture hall. A video is provided in the
Supplementary Materials. To show the drone movements for
one example experiment with 16 drones, the recorded traces of
the localization system are plotted in Figures 7d, 7e, and 7f.

Figure 8 presents performance metrics for our hardware
experiments. Data from the prefix of an experiment, when
the drones move from initial starting positions into flock
formation, are omitted when computing the metrics. Figure 8
shows that our SPC-based approach successfully maintains
a stable flock of Crazyflie drones by satisfying thresholds for
collision avoidance, compactness, and obstacle clearance in
nearly every scenario for the full duration of the experiment.

a) b) c)

-4

-2

0

2m

0 2 4 6 8 10 12m
y

x
d)

0

2

4

6m

0 2 4 6 8 10 12m
y

z
e)

0

2

4

6m

-4 -2 0 2 4m
x

z
f)

drone trace history direct path between target locations p tardrone position at time t

Fig. 7: Hardware experiments. a: Crazyflie 2.1 quadcopters were used.
b: A flock of 16 drones and c: 9 drones with 2 obstacles in our lecture hall
(a video is in the Supplementary Materials). d, e, f: Recorded traces show
the movements of the 16 drones for one exemplary experiment.

1225

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on July 17,2023 at 01:00:07 UTC from IEEE Xplore. Restrictions apply.

co
lli

si
on

 a
vo

id
an

ce
ob

st
ac

le
 c

le
ar

an
ce

co
m

pa
ct

ne
ss

for details see b)

for details see d)

(15)

SPC PFC threshold value out of range

|D|
Scenario 0 obstacles 1 obstacle 2 obstacles

2 4 9 16 2 4 9 2 4 9

 0
 0.2
 0.4
 0.6
 0.8

 1

di
st m

in
 [m

]

 0
 0.4
 0.8
 1.2

cle
ar

ob
j [

m
]

 0
 2
 4
 6
 8

 10
 12
 14

co
m

p m
ax

 [m
]

a) Hardware experiments

0
0.5

1
1.5

2
2.5
3m

0 5 10 15 20 25 30 35 40s Time

D
ist

an
ce

b) 16 drones, no obstacles

0
0.5

1
1.5

2
2.5
3m

0 5 10 15 20 25s Time

D
ist

an
ce

c) 9 drones, 1 obstacle

0
0.5

1
1.5

2
2.5
3m

0 5 10 15 20 25s Time

D
ist

an
ce

d) 9 drones, 2 obstacles

distmin compmaxclearobj

distthr (20cm) clea r (38cm)thrHardware experiments comp (5m)thr

Fig. 8: Performance metrics for hardware experiments. a: Values are min (for
collision avoidance and obstacle clearance) or max (for compactness) over the
experiment. Experiments show that the flock is properly maintained: distthr
is satisfied in every scenario but one (see transient violation at t = 15s in b).
Similarly for clearthr (see transient violation at t = 25s in d). b, c, d: Metrics
for the whole duration of the hardware experiment for selected scenarios.

-4

-2

0

2m

0 2 4 6 8 10 12m
y

x

tardirect path between target locations p

Simulation experiment: drone traces
Hardware experiment: drone traces

a)

0
0.2
0.4
0.6
0.8

1
1.2

1.4m

0 25% 50% 75% 100%

D
ist

an
ce

normalized time

d ist (Hardware exp.)min comp (Hardware exp.)max

distthr (20cm)

d ist (Simulation exp.)min comp (Simulation exp.)max

b)

Fig. 9: Comparison of simulation and hardware experiments for 9 drones
without obstacles. a: Recorded traces show the movements of the drones.
b: Metrics for the entire duration of the experiment. The hardware-experiment
metrics are a bit more noisy. This also explains why the hardware-experiments
metrics in Fig. 8 are slightly worse.

Detailed plots for some critical scenarios are shown in
Figure 8b, and Figure 8d. There are transient violations of the
metrics, which are likely caused by measurement issues in the
localization system; our controller, however, is able to promptly
re-establish proper operation. Figure 9 provides a comparison
of simulation and hardware experiments. It establishes that the
controller performance metrics are slightly worse and noisier.

V. RELATED WORK
SPC can be viewed as combining features of MPC and

PFC. MPC does a lookahead in time to decide the best control
action. It requires a model of the system to compute states at
future time points. Intuitively, MPC computes all the states that
can be reached in k time steps using different control inputs,
picks the best feasible trajectory, and returns the associated
control action. In contrast, SPC ignores the system model and
feasibility altogether and instead searches for good target states
by enumerating promising candidates. Both MPC and SPC
recompute their action in each time step using an optimization
procedure to handle noise and variability in environment. PFC
uses the gradient of the cost to pick the next action, just like
SPC, but PFC does not perform any optimization.

Reynolds [21] was the first to propose a flocking model,
using cohesion, separation, and velocity alignment force terms

to compute agent accelerations. Reynolds model was extensively
studied [22] and adapted for different application areas [23].
Alternative flocking models are considered in [24]–[28], and
[14]. Other formulations consider swarm control in the context
of formation rigidity [29]–[31]. In these approaches, flocks
are described using point models. This means that physical
properties of agents (e.g., drones) such as mass and inertia,
are not taken into account. In our work, we evaluate SPC on
a realistic physical drone model, as well as on real hardware.

In addition to these largely theoretical approaches,
in [32]–[34], flocking controllers are implemented and tested
on real hardware. However, the approach of [33], [34] involve
the use of model-predictive control, which is computationally
more expensive than SPC. In contrast to SPC, [32] requires
the velocity of neighboring drones. Gradient optimization for
robot control has been studied in [15]. In contrast, SPC uses
spatial look-ahead as opposed to pure gradient descent.

VI. CONCLUSIONS
We introduced the concept of Spatial Predictive Control

(SPC), and demonstrated its utility on the drone flocking
problem. SPC is fully distributed. It is based only on the
position of the individual drone itself, and on those of
neighboring drones. This information is used to compute the
gradient of the local cost function and to perform a spatial
prediction for the best next action.

We performed an extensive experimental evaluation of SPC
on the drone flocking problem. Our simulation experiments
used a physics engine with a detailed drone model. Our results
demonstrated SPC’s ability to form and maintain a flock, avoid
obstacles, and move the flock to multiple target locations.
They also highlighted SPC’s robustness to sensing noise and
PLLC variability, and its role in the controller hierarchy.

We also evaluated the same controller implementation on
a flock of Crazyflie 2.1 quadcopters in different scenarios,
thereby demonstrating the effectiveness of SPC in controlling
real hardware. Needing only a minor parameter adjustment,
and no modifications to the control algorithm, SPC proved to
be very robust in terms of a potential sim-to-real transfer gap.
The hardware experiments also highlighted SPC’s capability
to perform properly in the presence of significant sensor noise
introduced by the localization system and the extra latency in-
troduced by radio transmission of positional and control signals.

We also experimentally compared SPC with a related
PFC-based approach of [15]. We found that SPC exhibits
superior performance and stability, as its discrete search for
an optimal solution enables it to avoid oscillations. SPC is
a general technique for designing middle-level controllers
sandwiched between high-level planners and PLLCs that often
come integrated with the hardware.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable

comments. R.G. was partially supported by EU-H2020
Adaptness and AT-BMBWF DK-RES and CPS/IoT Ecosystem.
This work was supported in part by NSF grants CCF-1954837,
CCF-1918225, and CPS-1446832.

1226

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on July 17,2023 at 01:00:07 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[1] S.-J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, “A

survey on aerial swarm robotics,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 837–855, 2018. DOI: 10.1109/TRO.2018.
2857475.

[2] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and
transportation with aerial robots,” Autonomous Robots, vol. 30, no. 1,
pp. 73–86, 2011. DOI: 10.1007/s10514-010-9205-0.

[3] G. Loianno and V. Kumar, “Cooperative transportation using small
quadrotors using monocular vision and inertial sensing,” IEEE Robotics
and Automation Letters, vol. 3, no. 2, pp. 680–687, 2018. DOI:
10.1109/LRA.2017.2778018.

[4] D. Câmara, “Cavalry to the rescue: Drones fleet to help rescuers
operations over disasters scenarios,” in 2014 IEEE Conference on
Antenna Measurements Applications (CAMA), 2014, pp. 1–4. DOI:
10.1109/CAMA.2014.7003421.

[5] A. Boggio-Dandry and T. Soyata, “Perpetual flight for UAV drone
swarms using continuous energy replenishment,” in 2018 9th IEEE
Annual Ubiquitous Computing, Electronics Mobile Communication
Conference (UEMCON), 2018, pp. 478–484. DOI: 10 . 1109 /

UEMCON.2018.8796684.
[6] N. Michael, S. Shen, K. Mohta, et al., “Collaborative mapping of

an earthquake damaged building via ground and aerial robots,” in
Proceedings of 8th International Conference on Field and Service
Robotics (FSR ’12), Jul. 2012, pp. 33–47.

[7] W. Giernacki, M. Skwierczyński, W. Witwicki, P. Wroński, and
P. Kozierski, “Crazyflie 2.0 quadrotor as a platform for research
and education in robotics and control engineering,” in 2017 22nd
International Conference on Methods and Models in Automation and
Robotics (MMAR), 2017, pp. 37–42. DOI: 10.1109/MMAR.2017.
8046794.

[8] SZ DJI Technology Co., Ltd. “dji developer: Missions.” (2021), [On-
line]. Available: https://developer.dji.com/document/
aab56894-31c7-4f38-b12d-616d312965a6.

[9] Parrot. “Parrot for developers: Autonomous flight.” (2021), [Online].
Available: https : / / developer . parrot . com / docs /

airsdk/general/autonomous_flight.html.
[10] Black-i Robotics. “Landshark UGV.” (2021), [Online]. Available:

https://www.blackirobotics.com/landshark-ugv/.
[11] Taurob Technologies. “The Taurob Inspector.” (2021), [Online].

Available: https://taurob.com/wp-content/uploads/
2020/08/Technical-Product-Sheet.pdf.

[12] General Dynamics. “Bluefin(R)-12 with Integrated Survey Package.”
(2021), [Online]. Available: https://gdmissionsystems.
com/ - /media / General - Dynamics / Maritime - and -

Strategic-Systems/Bluefin/PDF/Bluefin-12-UUV-

Datasheet.ashx.
[13] R. Negenborn and J. Maestre, “Distributed model predictive control:

An overview and roadmap of future research opportunities,” IEEE
Control Systems Magazine, vol. 34, no. 4, pp. 87–97, 2014. DOI:
10.1109/MCS.2014.2320397.

[14] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Stability of flocking
motion,” University of Pennsylvania, Tech. Rep., 2003. [Online].
Available: https://www.georgejpappas.org/papers/
boids03.pdf.

[15] M. Schwager, “A gradient optimization approach to adaptive multi-
robot control,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, 2009. [Online]. Available: https://dspace.mit.edu/
handle/1721.1/55256.

[16] G. Silano, E. Aucone, and L. Iannelli, “CrazyS: A software-in-the-
loop platform for the Crazyflie 2.0 nano-quadcopter,” in 2018 26th
Mediterranean Conference on Control and Automation (MED), 2018,
pp. 1–6. DOI: 10.1109/MED.2018.8442759.

[17] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, 2004, 2149–2154 vol.3. DOI: 10.1109/
IROS.2004.1389727.

[18] Stanford Artificial Intelligence Laboratory et al., Robotic operating
system, version ROS Melodic Morenia, May 23, 2018. [Online].
Available: https://www.ros.org.

[19] Bitcraze, Loco positioning system, 2021. [Online]. Available: https:
/ / www . bitcraze . io / documentation / system /

positioning/loco-positioning-system/.
[20] J. P. Queralta, C. Martı́nez Almansa, F. Schiano, D. Floreano, and

T. Westerlund, “UWB-based system for UAV localization in GNSS-
denied environments: Characterization and dataset,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2020, pp. 4521–4528. DOI: 10 . 1109 / IROS45743 . 2020 .

9341042.
[21] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral

model,” in Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’87, New York,
NY, USA: Association for Computing Machinery, 1987, pp. 25–34,
ISBN: 0897912276. DOI: 10.1145/37401.37406.

[22] J. Eversham and V. F. Ruiz, “Parameter analysis of Reynolds flocking
model,” in 2010 IEEE 9th International Conference on Cyberntic
Intelligent Systems, 2010, pp. 1–7. DOI: 10.1109/UKRICIS.
2010.5898089.

[23] S.-J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, “A
survey on aerial swarm robotics,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 837–855, 2018. DOI: 10.1109/TRO.2018.
2857475.

[24] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algo-
rithms and theory,” IEEE Transactions on Automatic Control, vol. 51,
no. 3, pp. 401–420, 2006. DOI: 10.1109/TAC.2005.864190.

[25] U. Mehmood, N. Paoletti, D. Phan, et al., “Declarative vs rule-based
control for flocking dynamics,” in Proceedings of the 33rd Annual
ACM Symposium on Applied Computing, ser. SAC ’18, Pau, France:
Association for Computing Machinery, 2018, pp. 816–823, ISBN:
9781450351911. DOI: 10.1145/3167132.3167222.

[26] S. Martin, A. Girard, A. Fazeli, and A. Jadbabaie, “Multiagent flocking
under general communication rule,” IEEE Transactions on Control of
Network Systems, vol. 1, no. 2, pp. 155–166, 2014. DOI: 10.1109/
TCNS.2014.2316994.

[27] E. Soria, F. Schiano, and D. Floreano, “The influence of limited
visual sensing on the Reynolds flocking algorithm,” in 2019 Third
IEEE International Conference on Robotic Computing (IRC), 2019,
pp. 138–145. DOI: 10.1109/IRC.2019.00028.

[28] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obsta-
cles for real-time multi-agent navigation,” in 2008 IEEE International
Conference on Robotics and Automation, 2008, pp. 1928–1935. DOI:
10.1109/ROBOT.2008.4543489.

[29] F. Schiano and P. R. Giordano, “Bearing rigidity maintenance for
formations of quadrotor UAVs,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), 2017, pp. 1467–1474. DOI:
10.1109/ICRA.2017.7989175.

[30] B. Pozzan, G. Michieletto, A. Cenedese, and D. Zelazo, “Hetero-
geneous formation control: A bearing rigidity approach,” in 2021
60th IEEE Conference on Decision and Control (CDC), 2021,
pp. 6451–6456. DOI: 10.1109/CDC45484.2021.9683374.

[31] D. Zelazo, A. Franchi, H. H. Bülthoff, and P. R. Giordano, “Decentral-
ized rigidity maintenance control with range measurements for multi-
robot systems,” The International Journal of Robotics Research, vol. 34,
no. 1, pp. 105–128, 2015. DOI: 10.1177/0278364914546173.

[32] G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, and
T. Vicsek, “Optimized flocking of autonomous drones in confined
environments,” Science Robotics, vol. 3, no. 20, 2018. DOI: 10.
1126/scirobotics.aat3536.

[33] E. Soria, F. Schiano, and D. Floreano, “Predictive control of aerial
swarms in cluttered environments,” in Nature Machine Intelligence,
2021. DOI: 10.1038/s42256-021-00341-y.

[34] E. Soria, F. Schiano, and D. Floreano, “Distributed predictive drone
swarms in cluttered environments,” IEEE Robotics and Automation
Letters, vol. 7, no. 1, pp. 73–80, 2022. DOI: 10.1109/LRA.2021.
3118091.

1227

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on July 17,2023 at 01:00:07 UTC from IEEE Xplore. Restrictions apply.

