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Abstract. Resiliency is the ability to quickly recover from a violation
and avoid future violations for as long as possible. Such a property is of
fundamental importance for Cyber-Physical Systems (CPS), and yet, to
date, there is no widely agreed-upon formal treatment of CPS resiliency.
We present an STL-based framework for reasoning about resiliency in
CPS in which resiliency has a syntactic characterization in the form of
an STL-based Resiliency Specification (SRS). Given an arbitrary STL
formula ¢, time bounds « and 3, the SRS of ¢, Ra (), is the STL formula
—9Ujg,4)G[0,8) 9, specifying that recovery from a violation of ¢ occur within
time a (recoverability), and subsequently that ¢ be maintained for dura-
tion B (durability). These R-expressions, which are atoms in our SRS logic,
can be combined using STL operators, allowing one to express composite
resiliency specifications, e.g., multiple SRSs must hold simultaneously, or
the system must eventually be resilient. We define a quantitative semantics
for SRSs in the form of a Resilience Satisfaction Value (ReSV) function r
and prove its soundness and completeness w.r.t. STL’s Boolean semantics.
The r-value for Rq () atoms is a singleton set containing a pair quantify-
ing recoverability and durability. The r-value for a composite SRS formula
results in a set of non-dominated recoverability-durability pairs, given
that the ReSVs of subformulas might not be directly comparable (e.g., one
subformula has superior durability but worse recoverability than another).
To the best of our knowledge, this is the first multi-dimensional quanti-
tative semantics for an STL-based logic. Two case studies demonstrate the
practical utility of our approach.

1 Introduction

Resiliency (syn. resilience) is defined as the ability to recover from or adjust easily to
adversity or change [21]. Resiliency is of fundamental importance in Cyber-Physical
Systems (CPS), which are expected to exhibit safety- or mission-critical behav-
ior even in the presence of internal faults or external disturbances. Consider for
example the lane keeping problem for autonomous vehicles (AVs), which requires
a vehicle to stay within the marked boundaries of the lane it is driving in at all
times. The standard temporal-logic-based notion of safety is not ideally suited
for specifying the AV’s behavior when it comes to lane keeping. This is because

* This is the full version of the paper under the same title accepted to FORMATS 2022.
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AV technology is not perfect and driving conditions (e.g., being crowded by a
neighboring vehicle) and other external disturbances may require occasional or even
intermittent violations of lane keeping. Rather, the AV should behave resiliently in
the presence of a lane violation, recovering from the violation in a timely fashion,
and avoiding future lane departures for as long as possible. Unfortunately, there
is no widely agreed notion of resiliency within the CPS community, despite several
efforts to settle the issue (see Section 5).

Our Contributions. Inthis paper, we present an STL-based framework for reasoning
about resiliency in Cyber-Physical Systems. In our approach, resiliency has a syn-
tactic characterization in the form of an STL-based Resiliency Specification (SRS).
Given an arbitrary STL formula ¢, time bounds « and 3, the SRS of ¢, Rq g(¢), is
the STL formula ~pUjg 4] G0, )¢, which specifies that recovery from a violation of
@ occur within time «, and subsequently ¢ be maintained for duration g at least. The
SRS of ¢ captures the requirement that a system quickly recovers from a violation
of ¢ (recoverability) and then satisfy ¢ for an extended period of time (durability).
The R, 3(p) expressions, which are atoms in our SRS logic, can be inductively
combined using STL operators, allowing one to express composite resiliency speci-
fications; e.g., multiple SRSs must hold simultaneously (Rq, 5, (¢1) A Ras,8, (92)),
or that the system must eventually be resilient (F; R, g(¢)).

We define a quantitative semantics for SRSs in the form of a Resilience Satisfac-
tion Value (ReSV) function r. Our semantics for R, g(¢) atoms is a singleton set of
the form {(rec, dur)}, where rec quantifies how early before bound a recovery occurs,
and dur indicates for how long after bound g property ¢ is maintained. To the best
of our knowledge, this is the first multi-dimensional quantitative semantics for STL.

Our approach does not make any simplifying assumption as to which of the
two requirements (recoverability and durability) to prioritize or how to combine
the two values. This decision can lead to a semantic structure involving two or
more non-dominated (rec, dur) pairs. In such situations, we choose to retain all
non-dominated pairs so as to provide a comprehensive, assumption-free, character-
ization of CPS resiliency. Thus, our semantics is a set of non-dominated (rec, dur)
pairs, which is derived inductively from subformulas using Pareto optimization.

For example, consider the SRS 1 V 2, where the ReSV of 91 (over a given
signal at a particular time) is {(2,5)} and, similarly, the ReSV of ¢ is {(3,3)}.
The semantics of 91 V 15 should choose the dominant pair, but the two are non-
dominated: (3, 3) has better recoverability, while (2,5) has better durability. So
we include both. We prove that our semantics is sound and complete with respect
to the classic STL Boolean semantics by (essentially) showing that an SRS 1) has
at least one non-dominated pair with rec, dur > 0 iff ¥ is true.

We perform an extensive experimental evaluation of our framework centered
around two case studies: UAV package delivery and multi-agent flocking. In both
cases, we formulate mission requirements in STL, and evaluate their ReSV values
in the context of various SRS specifications. Our results clearly demonstrate the
expressive power of our framework.

2 Preliminaries

In this section, we introduce the syntax and semantics of Signal Temporal Logic
(STL) [13,18]. STL is a formal specification language for real-valued signals. We
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consider n-dimensional discrete-time signals £ : T — R" where T = Zx is the
(discrete) time domain.® T is the interval [0, |£|], where [£| > 0 is the length of
the signal. If |£] < oo, we call £ bounded. We use the words signal and trajectory
interchangeably. An STL atomic predicate p € AP is defined over signals and is
of the form p = p(&(t)) > ¢, t € T, c € R, and g : R™ — R. STL formulas ¢ are
defined recursively according to the following grammar [13]:

pu=p| @ |1 A2 | ©1Ures

where U is the until operator and I is an interval on T. Logical disjunction is
derived from A and — as usual, and operators eventually and always are derived
from U as usual: Frp = TUjp and Gro = =(Fr—¢). The satisfaction relation
(€,t) = ¢, indicating ¢ satisfies ¢ at time ¢, is defined as follows:*

&t Ep & p(E(t) = ¢

&t v & (&) Ee)

(E,t)):(PlAQDQ And (€7t) |: <p1/\(§,t)'2902

(f,t) ): ¢1U1¢2 & J t/ €t+1Is.t. (gat/) ‘: P2 A v t// € [tvtl)v (6) t”) |: ¥1

We call an STL formula ¢ bounded-time if all of its temporal operators are
bounded (i.e., their intervals have finite upper bounds) and |¢| is large enough
to determine satisfiability at time 0; i.e., || is greater than the maximum over
the sums of all the nested upper bounds on the temporal operators [29]. For
example, if ¢ is ©1Ujg 5G1,2102 A F0,10)G[1,6]2, then a trajectory with length
N > max(5+ 2,10 + 6) = 16 is sufficient to determine whether ¢ holds. In this
paper, we only consider bounded-time STL formulas as in its original definition [18].

STL admits a quantitative semantics given by a real-valued function p such that
p(p,&,t) > 0= (£,1) = ¢, and defined as follows [13]:

p(pu(&(t)) > ¢, & t) = u(€(t)) —c
p(=p, &, t) = —p(p,&,t)
P(Sé’l A (,027£ t) = Inll’l( (90175 t) (@27£7t))
)=

Plp1Urp2, & 1) = max, min(p(p2,&,t'), min  p(e1,&,t"))
t et t+t')

A p-value, called the robustness satisfaction value (RSV), can be interpreted
as the extent to which ¢ satisfies ¢ at time t. Its absolute value can be viewed as
the distance of £ from the set of trajectories satisfying or violating , with positive
values indicating satisfaction and negative values indicating violation.

3 Specifying Resilience in STL

In this section, we introduce our STL-based resiliency specification formalism and
its quantitative semantics in terms of non-dominated recoverability-durability pairs.

3 Discrete-time signals over an arbitrary time step can always be mapped to signals over
a unit time step.
* Given t € T and interval I on T, t + I is used to denote the set {t +#' | t' € I}.
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3.1 Resiliency Specification Language

We introduce an STL-based temporal logic to reason about resiliency of STL
formulas. Given an STL specification ¢, there are two properties that characterize
its resilience w.r.t. a signal £, namely, recoverability and durability: the ability to
(1) recover from a violation of ¢ within time «, and (2) subsequently maintain ¢
for at least time .

Ezample 1. Consider an STL specification ¢ = (2 < y < 4), where y is a signal. In
Figure 1(a), signals & and & violate ¢ at time ¢;. Given recovery deadline «, we
see that only &; satisfies recoverability of ¢ w.r.t. @ because ¢ becomes true before
t1 + «. In the case of &5, ¢ becomes true only after ¢; + «. In Figure 1(b), signals
&3 and &4 recover to satisfy ¢ at time to. Given durability bound 3, we observe
that only &3 is durable w.r.t. 5.

(a) Signal &; satisfies recoverability. (b) Signal &3 satisfies durability.
Fig. 1. Resilience w.r.t. an STL formula ¢ = (2 < y < 4)

Resilience of an STL formula ¢ relative to a signal should be determined by
the joint satisfaction of recoverability and durability of . We can formalize this
notion using the STL formula R, 5(0) = ~¢Ujg,4)Go,s)¢, which captures the
requirement that the system recovers from a violation of ¢ within bound « and
subsequently maintains ¢ for bound S. In what follows, we introduce SRS, an
STL-based resiliency specification language that allows one to combine multiple
R, 3(p) expressions using Boolean and temporal operators.

Definition 1 (STL-based Resiliency Specification). The STL-based re-
siliency specification (SRS) language is defined by the following grammar:

V= Rap(p) | 70| 1 Adhe | 91Ut
where ¢ is an STL formula, R 5(¢) = ¢Ujo,0)Go,8y9, @, B € T, B > 0.

We use a semi-closed interval in the G operator, reflecting our requirement
that ¢ stays true for a time interval of duration 3, and may be false at the end
of the interval. The piece-wise constant interpretation of discrete-time signals
implies that properties between two consecutive steps remain unchanged (see
Remark 5). SRS formulas are also restricted to bounded-time intervals as those in
STL formulas. Boolean satisfiability of an SRS formula 1) reduces to the satisfiability
of the corresponding STL formula obtained by replacing every atom R, g(¢) with
—oUjp,a]Go,5)¢- Note that satisfiability of an R, g(¢) atom involves satisfying
the recoverability and durability requirements for ¢ highlighted in Example 1.
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Remark 1 (Why a new logic? (1/2)). We note that SRS is equivalent to STL in
the sense that any STL formula ¢ is equivalent to the SRS atom Ry 1(y) and,
conversely, any SRS formula is an STL formula. Then why would we introduce a new
logic? The SRS logic is explicitly designed to express specifications that combine
resiliency requirements with Boolean and temporal operators. Most importantly,
as we will see, our semantics for SRS is defined inductively starting from R, g(¢)
atoms, and not from STL atomic predicates. The former are more expressive than
the latter (an STL atomic predicate can be expressed via an SRS atom, but not
vice versa).

Remark 2 (Resilience vs. safety, liveness, and stability). We stress that safety
properties Gy are not sufficient to capture resilience, as they do not allow for
occasional, short-lived violations. Among the liveness properties, reachability
properties Frp do not capture the requirement that we want to satisfy ¢ in
a durable manner. Similarly, progress properties, summarized by the template
G, (m¢ = Fr,p), do not require the signal to satisfy ¢ for extended time periods
(but they “infinitely” often lead to ¢).

Thus, one might be tempted to combine safety and liveness and express resilience
asaF[ o) Go,)¢, a template often called stability or stabilization [9]. There is a sub-
tle but important difference between stability and our definition =¢oUg o) Go,5)%
of resilience: there could be multiple recovery episodes occurring in a trajectory,
i.e., time steps where ¢ transitions from false to true. Stability is satisfied by any
recovery episode within time [0, ] provided that ¢ stays true for at least time 5. On
the contrary, resilience is satisfied by only the first recovery episode, provided that
 is not violated for longer than « and stays true for at least 3. This is an important
difference because our resiliency semantics is defined as a recoverability-durability
pair, roughly corresponding to the time it takes to recover from a violation of ¢ and
the time for which ¢ subsequently remains true (see Definition 4). Since the stability
pattern matches multiple recovery episodes, it is not clear which episode to use in
the computation of our resiliency semantics. Our definition solves this ambiguity by
considering the first episode. We remark that SRS allows us to express properties
like Gy Ry g() (or F1 Ry (), which can be understood as enforcing the resiliency
requirement R, g(p) for each (for some) recovery episode within I, and whose
semantics can be interpreted as the worst- (best-) case recovery episode within 1.

Remark 8 (Why a new logic? (2/2)). The reader might wonder why we would be
interested in using temporal operators to reason about a resiliency atom of the
form R, () as opposed to pushing these operators into R, g(¢). For example,
why would we consider (1) GrR, g(¢) instead of (2) R, g(Gry) for an STL
formula ¢? The two expressions are fundamentally different: (1) states that the
resiliency specification holds for all p-related recovery episodes occurring in interval
I; (2) states that the resiliency specification must hold in the first recovery episode
relative to Gy (i.e., the first time G switches from false to true). Arguably, (1) is
more useful than (2), even though both are reasonable SRS expressions (compound
and atomic, respectively).

3.2 Semantics of Resiliency Specifications

We provide a quantitative semantics for SRS specifications in the form of a re-
silience satisfaction value (ReSV). Intuitively, an ReSV value quantifies the extent
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to which recoverability and durability are satisfied. More precisely, it produces a
non-dominated set of pairs (z,,z4) € Z?, where (in the atomic case) x, quantifies
how early before bound « the system recovers, and x4 quantifies how long after
bound S the property is maintained. We further demonstrate the soundness of
the ReSV-based semantics w.r.t. the STL Boolean interpretation of resiliency
specifications. The first step is to establish when one recoverability-durability pair
is better than another.

A set S CR"™ of non-dominated tuples is one where no two tuples x and y can be
found in S such that x Pareto-dominates y, denoted by x > y. We have that > y
ifx; > y;, 1 <i<n,andx; > y; for at least one such ¢, under the usual ordering >.

We define a novel notion of “resilience dominance” captured by the relation .
in Z2. This is needed because using the standard Pareto-dominance relation >
(induced by the canonical > order) would result in an ordering of ReSV pairs that
is inconsistent with the Boolean satisfiability viewpoint. Consider the pairs (—2, 3)
and (1,1). By Pareto-dominance, (—2,3) and (1, 1) are mutually non-dominated,
but an ReSV of (-2, 3) indicates that the system doesn’t satisfy recoverability;
namely it recovers two time units too late. On the other hand, an ReSV of (1,1)
implies satisfaction of both recoverability and durability bounds, and thus should
be preferred to (—2, 3). We formalize this intuition next.

Definition 2 (Resiliency Binary Relations). We define binary relations >,
=re, and <ye inZ2. Let x,y € 72 withx = (x,24), y = (Yr,ya), and sign is the
signum function. We have that x >, y if either of the following conditions holds:

1. sign(z,) + sign(za) > sign(y,) + sign(ya)-
2. sign(z,) + sign(xq) = sign(y,) + sign(yq), and x = y.

We say that x and y are mutually non-dominated, denoted © =, y, if sign(z,) +
sign(zq) = sign(y,) + sign(yq) and neither © > y nor x < y. Under this ordering,
a non-dominated set S is such that x =,.. y for every choice of x,y € S. We denote
by <re the dual of ..

It is easy to see that ., <. and =,.. are mutually exclusive, and in particular,
they collectively form a partition of Z? x Z2. This tells us that for any =,y € Z2,
either © dominates y (i.e., & =, y), © is dominated by y (i.e., ¢ <,e y), or the two
are mutually non-dominated (i.e., z =, y).

Lemma 1. Relations >,. and <, are strict partial orders.
A proof can be found in Appendix C.

Definition 3 (Maximum and Minimum Resilience Sets). Given P C Z?,
with P # (), the maximum resilience set of P, denoted max,.(P), is the largest
subset S C P such thatVx € S,Vy € P, x >, y or * =, y. The minimum
resilience set of P, denoted min,..(P), is the largest subset S C P such thatVx € S,
Yy e P, x <pe Yy OTX =pe Y.

Corollary 1. Mazimum and minimum resilience sets are non-empty and non-
dominated sets.
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A proof can be found in Appendix A.

Ezample 2. Let P = {(—1,2),(1,-2),(2,—1)}. Then, we have max,.(P) =
{(-1,2),(2,—1)} because (—1,2) =, y for all y € P and (2,—1) =,. (1,-2),
(2,-1) = (1,—2),and (2, —1) =, (2, —1). In contrast, (1, —2) is not in max,..(P)
because (1, —2) <, (2, —1). Similarly, we have min,.(P) = {(—1,2), (1, —-2)}. We
also note that (as per Corollary 1) the elements of max,..(P) and min,. (P) are mutu-
ally non-dominated, i.e., (—1,2) =, (2,—1) and (—1,2) =, (1, —2), respectively.

Now we are ready to introduce the semantics for our SRS logic. Its definition
makes use of maximum and minimum resilience sets in the same way as the tra-
ditional STL robustness semantics (see Section 2) uses max and min operators in
compound formulas. Hence, by Corollary 1, our semantics produces non-dominated
sets, which implies that all pairs in such a set are equivalent from a Boolean satisfi-
ability standpoint. This is because x,, > 0 (x4 > 0) in Definition 2 implies Boolean
satisfaction of the recoverability (durability) portion of an R, g(¢) expression.
This property will be useful in Theorem 1, where we show that our semantics is
sound with respect to the Boolean semantics of STL.

Definition 4 (Resilience Satisfaction Value). Let ¢ be an SRS specification
and & : T — R™ a signal. We define r(1,&,t) C Z2, the resilience satisfaction value
(ReSV) of ¥ with respect to & at time t, as follows.

— For an SRS atom of the form Ry 5(¢), ¢ an STL formula,

T(w»fat) = {(_tTEC((P7§7t) + a7tdw”(907£7t) - 5)} (1)

where
trec(,&,t) =min({d € T| (¢t +d) = o} U{[¢] - t}) (2)
tdur(@v£7t) = min ({d eT | (gat/ + d) ’: _'90} U {‘£| - t/}) ’ (3)

=t +trec(w,&,1)
— The ReSV of a composite SRS formula is defined inductively as follows.
r(,£,8) = {(—2,—y) : (2,9) € 7(6,€,8)}
(1 A2, €, 1) = minge(r(¥1,€,t) U r(2,,1))
(1 Vaba, &, 1) = max,e(r(¥1,6,t) U r(¢h2,,1))
r(Grip, &, t) = minge (Uperyr (4, €,17))
r(Fry, &, t) = maxye (Uperpr (4, €,1))
(11U, &, 1) = max,e Up e minge(r(ie, €, ) U
minge Uprepe i) 7(%1, €, t"))

t
t

In the base case, t' = t+t,c.(p, &, t) is the first time ¢ becomes true starting from
and including ¢. If recovery does not occur along ¢ (and so the first set in Eq. (2)
is empty), then ¢’ = || (the length of the trajectory). Similarly, ¢’ + tgu (@, &, t)
is the first time ¢ is violated after ¢'. Thus tg..(p, &, t) quantifies the maximum
time duration ¢ remains true after recovery at time ¢'. If ¢ is true for the entire
duration of £, then t,..(v,&,t) = 0 and tg,,-(p,&,t) = €] — t. If  is false for the
duration of &, then t,..(p,&,t) = || — t; therefore t’ = |£| and tgur (¢, &, t) = 0.
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Therefore, the semantics for an SRS atom R, g(¢) is a singleton set {(z,, zq)},
where z,. quantifies how early before time bound « recovery occurs, and z4 indicates
for how long after time bound 3 the property is maintained. Thus, x, and z4 quan-
tifies the satisfaction extent (in time) of recoverability and durability, respectively.
An important property follows from this observation: similar to traditional STL
robustness, a positive (pair-wise) ReSV value indicates satisfaction of recoverability
or durability, a negative ReSV value indicates violation, and larger ReSV values
indicate better resiliency, i.e., shorter recovery times and longer durability.

The ReSV semantics for composite SRS formulas is derived by computing sets
of maximum /minimum recoverability-durability pairs in a similar fashion to STL
robustness: for the A and G operators, we consider the minimum set over the ReSV
pairs resulting from the semantics of the subformulas; for V and F, we consider
the maximum set. We remark that our semantics induces sets of pairs (rather
than unique values); our >,. and <. relations used to compute maximum and
minimum resilience sets are therefore partial in nature. This is to be expected
because any reasonable ordering on multi-dimensional data is partial by nature.
For example, given pairs (2,5) and (3, 3), there is no way to establish which pair
dominates the other: the two are indeed non-dominated and, in particular, the
first pair has better durability but worse recoverability than the second pair. In
such a situation, our semantics would retain both pairs.

Algorithm for computing the ReSV function r. The algorithm to compute r is
a faithful implementation of Definition 4. It takes an SRS formula v, signal &,
and time t, produces a syntax tree representing 1, and computes the r-values
of the subformulas of ¢ in a bottom-up fashion starting with the SRS atomic
R-expressions at the leaves. Each leaf-node computation amounts to evaluating
satisfaction of the corresponding STL formula. The complexity of this operation
is O(|¢|?), for a trajectory & and an STL formula with at most I nested until
operators [13,16]. Let m be the number of R-expressions in 1. Given that we
need to evaluate the R-expressions at each time point along £, the time needed to
compute the r-values of all SRS atoms in ¢ is O(m [£]?!*1).

Every node v of the tree has an associated result set P, of (rec, dur) pairs. When
v is an interior node of the tree, P, is determined, using Definition 4, by computing
the maximum or minimum resilience set of the result set(s) of v’s children. The
complexity for computing P, can thus be shown to be quadratic in the size of
its input. In particular, the size of the input at the root of i’s syntax tree is
bounded by O(|¢|*L), where L is the maximum number of nested until operators
in 9.5 Furthermore, the ReSV of the until operator can be computed in a manner
similar to how STL robustness is computed for the until operator. Therefore, the
complexity of computing the root node’s ReSV is O((|¢|?F)? + |€]2F). Consequently,
the total complexity of computing the ReSV of 1 is O(m [£[]2!F1 + |¢[*F).

Remark 4 (Bounded-time SRS formulas). We say that an SRS formula is bounded-
time if all of its temporal operators are bounded and the STL formulas serving
as SRS atoms are bounded-time. When a bounded signal £ is not long enough to

5 This is because the size of an interior node v’s input is bounded (in the case of the until
operator) by |€|? times the sum of the sizes of the result sets of v’s children. The size of
the root node’s input is thus O(|€|?*).
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evaluate a bounded-time formula, we extend it to the required length simply by
repeating its terminal value {(7'). For example, let ¢ = Gy 1) (2 <y < 4) and
consider &3 from Figure 1(b), where |{3]| = t2 + 8. We extend &3] to to + 8 + 10,
the required length to determine if (£3,¢ + 8) | ¢ (it does). Note that the signal
extension might result in an overestimate of recoverability or durability.

Remark 5 (Relation to time robustness). A notion of (right) time robustness of an
STL atomic proposition p on a trajectory £ at time ¢ is given by [13, 26]:

07 (p,&,t) = x(p, &, 1) -max{d > 0 s.t. V' € [t,t + d], x(p, &, ') = x(p,&, 1)}
where x(p,&,t) = +1if (£,t) & p, and —1 otherwise. Intuitively, |67 (p, &, t)]
measures how long after ¢ property p (or —p) remains satisfied. One might be
tempted to use 07 in our definition ¢,...(¢, &, t) by setting it to max{0, 07 (—p, &, )},
i.e., the maximum time duration for which ¢ is violated (or 0 if ¢ holds at ¢). This,
however, implies that ¢’ = ¢ + t,...(p, £, t) now represents the last time point for
which ¢ is false. In our definition, we want instead ' to be the first time point
© becomes true. This difference is important, especially for discrete-time signals
where the distance between two consecutive time points is non-negligible.

Moreover, time robustness may not quite handle some common corner cases.
Consider a proposition p, and two signals &; and & such that (§1,¢) = p and
(&1,t) = p, t' > t, and (&2,¢) & p and (&,t') &= p, ¢ > t. The two signals
have opposite behaviors in terms of satisfying p. In discrete-time settings (where a
discrete-time signal is interpreted in the continuous domain as a piece-wise constant
function), we have that & (&2) satisfies p (—p) throughout the interval [t,t+1) (i.e.,
for “almost” 1 time unit). However, time robustness cannot distinguish between
the two signals, namely, 07 (p, &1,t) = 0% (p, &, t) = 0. Thus, if we used 07 to
define ... it would be impossible to disambiguate between the first case (where no
violation occurs at t) and the second case (where a violation occurs at ¢ followed
by a recovery episode at the next step). Our definition of ¢,.. in Eq. (2) correctly
assign a value of 0 to & (p is already satisfied, no recovery at t) and a value of 1
to & (from ¢, it takes 1 time unit for p to become true).

Remark 6. We focus on discrete-times signals, thus a discrete-time SRS framework
and discrete-time ReSV semantics. However, we expect that our approach can
be extended to continuous time in a straightforward manner, because STL is
well-defined over continuous-time signals. We leave this extension for future work.

Ezample 3. In Figure 2, we consider a (one-dimensional) signal z (Figure 2(a) top)
and the proposition > 0 (whose Boolean satisfaction value w.r.t. z is plotted on
top of x). Consider the SRS formula ¥; = Gg 20/ Ra,s(z > 0) witha =1, 8 = 2.
Following Definition 4, the ReSV of 11 can be written as:
r(¥1,%,0) = min,e (Uyefo,20 7(Ra,p(z > 0),2,1"))

where 7(Rq g(z > 0),2,t') = {(—trec(x > 0,2,t') + o, tgur(z > 0,2,¢) — )}
Figure 2(a) bottom shows how the —t,... and the t4,, values evolve over time.
These values are also displayed in Figure 2(b) on a recoverability-durability plane,

to better identify the Pareto-optimal values that constitute the ReSV of ¢4, i.e.,
the elements of the minimum resilience set in the RHS of the above equation. This
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Fig. 2. (a) Signal z and its Boolean semantics w.r.t. z > 0 (top). Recoverability (red)
and durability (blue) values for x > 0 over signal = (bottom). Green bars indicate
x > 0. (b) Red dots represent the Pareto front for the recoverability-durability pairs of
R g(x > 0) over time interval [0, 20].

is equal to {(—1,2), (1, —1), (=2, 3)}, representing the recoverability and durability
values of  w.r.t. Ry g(z > 0) at times ¢’ = 0,5,13.

On the other hand, we obtain a different ReSV if we consider the SRS formula
VY2 = Ra p(Go20z > 0), where the G temporal operator is pushed inside the
resiliency atom. Since x never satisfies Gy 20jz > 0 (thus, it violates the property
at time 0 and never recovers), we have t,..(Gp 207 > 0,2,0) = |z| = 25 and
tdur(G[O,QO]x > 0, x, 0) = O7 resulting in 7“(’(?2) = {(—24, —2)}

Proposition 1. The ReSV r(v,&,t) of an SRS formula v w.r.t. a signal  at
time t is a non-dominated set.

A simple proof is given in Appendix B, showing that any ReSV is either a max-
imum or minimum resilience set and thus, a non-dominated set as per Corollary 1.
We are now ready to state the main theorem of our work, which establishes the
soundness and completeness of SRS logic; i.e., our semantics is consistent from a
Boolean satisfiability standpoint.

Theorem 1 (Soundness and Completeness of SRS Semantics). Let ¢ be a
signal and 1 an SRS specification. The following results at time t hold:

)3z er@,&t) st.x=. 0= ({,t) EY

2)3xer(,,t) st o <.0= (&t)

3) ) EY=Fzer(,&t)st.x = 00rz=.0

4) (&) E Y =Tz er@t) st.x <..0o0rx=.,.0

A proof is given in Appendix D. Since every ReSV r(¢, &, t) is a non-dominated
set, then 3 = € r(¢, &, t) s.t. =, 0 implies that z >,.. 0 holds for all z € (v, &, t)
(see the proof of Theorem 1 for further details).
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4 Case Study

In this section, we demonstrate the utility of our SRS logic and ReSV semantics
on two case studies. We use Breach [12] for formulating STL formulas and evalu-
ating their STL Boolean semantics. Experiments were performed on an Intel Core
i7-8750H CPU @ 2.20GHz with 16GB of RAM and Windows 10 operating system.
Our resiliency framework has been implemented in MATLAB; our implementation
along with our case studies can be found in a publicly-available library.%

4.1 UAYV Package Delivery

—— UAV Trajectory o
L Buildings x[m] o
C (t=60) -10|

A(t=0)]Y E (t=130)

5 °

5 60
x [m] tls]

(a) (b)
Fig. 3. (a) UAV trajectory and layout of buildings. (b) UAV coordinates and distance to
closest building.

Our first case study involves package delivery via an unmanned aerial vehicle
(UAV). We consider a quadrotor UAV model with a proportional-integral-deri-
vative (PID) controller [22] and use p = (z,y, z) to denote the UAV’s 3-D position
vector. The UAV is tasked with dropping off packages on the rooftops of two
adjacent buildings; a simulated trajectory of the UAV along with various points of
interest along the trajectory are given in Figure 3(a). As can be seen, the segment
of the trajectory from A to B is spiral-like/unstable, and can be attributed to
the disturbance caused by the load it is carrying (a disturbance that dissipates
once the UAV reaches the building’s rooftop). The coordinates of the UAV and its
distance to the closest building are plotted over time in Figure 3(b). The (discrete)
trajectory is 130 seconds long, i.e., T' = 130 secs, with a time-step of 1/20 secs. We
use the following STL formulas to specify the UAV’s mission.

Height regulation: the UAV should remain below H,,q, = 120 meters [1].

o1 = G, @, ¢ = (2 < Hpaz)
Package delivery: the UAV needs to hover at a delivery location for a specified
period of time (delivery locations are closed £2-balls with radius e = 1 centered
at C1, Cy). The locations are set to C; = (—10,0,30), Cy = (10, —5,20), and || - ||
denotes the £2-norm.

p2 =FpayGpoues, ¢r=(lp-Cill<e)
v3 =FpoeGoaes  es=(lp-Call<e)
5 See https://github.com /hongkaichensbu /resiliency-specs
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Collision avoidance: the UAV should maintain a minimum distance d,,;,, = 1.5 me-
ters to the closest building. It is violated repeatedly in the spiral ascent from A to B.

0a=Gpmey, ¢y =(d>dmin)

We compute the ReSV values of the above STL formulas when both ¢; and ¢
are used as SRS atoms. In particular, in Table 1, we consider expressions of the form
R, 3(pi), i.e., where the temporal operators appear inside the SRS atoms, while
in Table 2, nested ¢} expressions are replaced by R, g(¢}) expressions in ¢;, i.e.,
temporal operators appear outside the SRS atoms. Syntactically, this difference
is subtle, but as we show, it is of significant importance semantically. We assume
the UAV state is unchanged after the trajectory ends, when a longer trajectory
is needed to determine satisfiability (see Remark 4). We choose «, 8 = 4 for the
SRS atoms so that we can illustrate repeated property violation and recovery.

SRS formula r(¢i,&,0) Exec. time (sec)
1 = Raa(p1) {(4, 126)} 14.69
12 = Raa(p2) {(0.1, 45.5)} 12.74
13 = Ra.4(p3) {(-0.2, 65.05)} 12.53
Y4 = Raa(pa) {(-73.3,48.7)} 14.18

Table 1. SRS expressions of the form Rq, g(¢;) for UAV properties ¢;. All r-values are
computed using trajectory £ of Figure 3(a) at time 0.

SRS formula r(¢;,£,0) | Corresponding SRS atoms | Exec. time (sec)
Y1 = G, Ra,a(#1) {(4,-4)} r(Ra,a(¢1),€,130) 8.50
A / {(3957 _3'5)7 T(R474(30,2)7£742'85)7
Ve = FroanGuoaRaaled)| "4 5550, | r(Raaleh), €,42.95) 18.84
{(3.95,-1.35),]  r(Ra,4(¥5),&,61.5),
Y5 = Fio,65Gpo,3)Raa(s)| (4,-1.4), 7(Ra,4(¢5),€,61.6), 26.70
(-0.2, 3.05)} 7(Ra,a(3), €, 65)
A / {(_0257 58)7 T(R474(Qpil)7 57 84)7
V= GonRasled) | (40)) r(Raa(gh). €, 130) 599

Table 2. Nested ) expressions replaced by R, 5(;) expressions in UAV properties ;.

In Table 1, r(¢1,&,0) = {(4,126)} reflects the UAV’s resilience w.r.t. 1 (height
regulation) as it holds in [0,T7], thus reaching its maximum rec and dur. Entry
r(¢3,€,0) = {(—0.2,65.05) } considers the resilience of 3: it is false at time 0 but be-
comes true at time 4.2, making recovery 0.2 secs slower than o = 4; (3 then remains
true until time 73.25, resulting a durational period 65.05 secs longer than 5 = 4.

Table 2 includes an extra column (the third one) showing the SRS atoms cor-
responding to each (rec, dur) pair in the formula’s ReSV (second column). In the
first row, the ReSV of ¢} is r(¢1,&,0) = {(4,—4)}. Because of the outermost
Gio, 1) operator in 1}, (4, —4) represents the worst-case recovery episode (rel-
ative to the STL property ¢}) within the interval [0, T], meaning that (4, —4)
is dominated by every other (rec,dur) pair in [0,7]. The third column tells
us that such episode happens at time ¢ = 130. The (rec,dur) values in en-
try r(¢4,£,0) = {(3.95,—-1.35), (4, —1.4), (—0.2,3.05) } represent the best-case
episodes (due to the outermost F operator) within ¢ € [0,65] of the ReSV of
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Gio,31%4,4(13), which in turn, gives us the worst-case episodes (due to the inner
G operator) of the ReSV of Ry 4(¢%) within [¢,¢ + 3].

Even though there are some (relatively small) negative values in Table 2, overall,
the results of Table 2 are consistent with those of Table 1, thereby reflecting the
overall resiliency of the UAV package-delivery mission. Let us remark the difference
between the results of Table 1 and 2, i.e., between the ReSVs of 1; and v;. The
former are SRS atoms relative to a composite STL formula ¢;, and so their ReSVs
are singleton sets representing the first recovery episode of ;. The latter are
composite SRS formulas relative to an atomic STL formula ¢}. As such, their
ReSVs are obtained inductively following the structure of the SRS formulas and
thus, they may include multiple non-dominated pairs.

We observe that execution times are largely affected by the size of the intervals in
the temporal operators appearing in the SRS and STL formulas: computing ¥s and
b3 in Table 1 (¢4 and ¢4 in Table 2) is more efficient than computing ¢ and ¥4 (¢}
and 1} ), even though the former expressions involve nested temporal operators.
Indeed, the interval size directly affects both the number of subformula evaluations
and the size of the ReSV set. Moreover, our ReSV algorithm uses an implementation
of the always and eventually operators that makes them particularly efficient when
applied to (atomic) subformulas that exhibit few recovery episodes (e.g., see the
Gio,7) operator in ¢} in Table 2).

4.2 Multi-Agent Flocking

We consider the problem of multi-agent flock formation and maintenance in the
presence of external disturbances. We use the rule-based Reynolds flocking model
(see Appendix E) involving boids B = {1,...,n} in m-dimensional space. Boid #’s
position is z; € R™, x = [z1,...,2,] € R™" is a global configuration vector, and
€ =1[x(1),...,x(k)] € R™™F is a k-step trajectory.

We consider a 500-second simulation (trajectory) of a 30-boid flock with a
time-step of 0.1 sec in a 2-D plane; so, T' = 500 secs. We subject 20 of the boids to
an intermittent uniformly random displacement [15] from [0, M] x [0, 27], where
M = 20 meters and 27 are the maximum magnitude and direction of the displace-
ment, respectively. The subset of 20 boids is chosen uniformly at random during
the intervals [100, 150], [250, 300], and [400, 450] in seconds. The simulation starts
with the boids at random positions with random velocities, both sampled within
some bounded intervals.

The relevant STL specifications for the flocking mission are the following.

Flock formation: a cost function J(x) consisting of a cohesion and a separation
term determines Whether the boids form a flock [20]:

1
J&) = e ip =1 8] |B| Z o el e Y IERE
i€B jEBiI<j (3,5)=E(x) Y
where x;; = x; —xj,w = 1/100, and £(x) is the set of neighboring boid pairs within

an interaction radius r, = 25 meters: £(x) = {(i,j) € B? | ||zi;|| < re,i # j}-
J(x) <4, = 500, implies that flock formation has been obtained.

¢1 =G0 Floeo #1, 91 = (J(x) <9)
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Fig. 4. J(x) and |CC(x)| for 30 boids. Red portions of x-axes indicate intervals of random
displacement.
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Fig. 5. Flock simulation snapshots at times 0, 75, 300, and 350 (left to right).

SRS formula r(¢i,&,0) Exec. time (sec)
1 = Rso,30(p1) {(-239.4, 200.6) } 40.47
2 = R30,30(2) {(-239.3, 200.7) } 39.75

Table 3. SRS expressions of the form R, g(p;) for flocking properties ;. All r-values
are computed using trajectory & of Figure 4 at time 0.

Over the whole trajectory, the flock formation should always be obtained in a timely
fashion. This is to be expected in the present of recurrent disturbances to the flock.

Connected components: the number of connected components |C'C(x)| of the
proximity net G(x) = (B, £(x)) represents potential fragmentation of the flock .
Ideally, |CC(x)| should remain at 1 after flock formation.

w2 = Gios00) Floe0) 03,  wh = (|CC(x)| =1)

The functions J(x) and |CC(x)| are plotted in Figure 4. Figure 5 shows flock
formation at times 75 and 350 where (J(x), t) E ¢} and (|CC(x)|, t) E ¢b,
and times 0 and 300 where (J(x), t) & ¢} and (|CC(x)|, t) & ¢5. Similar to
Section 4.1, we consider two cases of SRS specifications. As in Section 4.1, we
compute the ReSV values of (1, 2 in Table 3 and Table 4. We select time bounds
that are consistent with the timescales of flock formation, i.e., a;, 5 = 30.

As shown in Table 3, r(19,&£,0) = {(—239.3,200.7) }, meaning that s is false
at time 0 but becomes true at time 269.3 (i.e., 239.3 seconds later than o = 30)
and remains true until the end of the trajectory (i.e., interval [269.3, T is 200.7
seconds longer than 8 = 30). In Table 4, r(¢5,£,0) = {(—42.7,17.2), (30, —30) };
i.e., the (rec, dur) pairs at times 130.2 and 500, representing the worst recovery
episodes in ¢ € [0, 7], which are also the best episodes in the interval [t,t + 60].
Overall, our results show the resilience of Reynolds flocking model to repeated
random disturbances.
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SRS formula r(1;,£,0) | Corresponding SRS atoms | Exec. time (sec)
{(-42.1,17.8),| r(Rs0,30(¢1),¢&,130.4),
Ui = Gosool(Foso) | (-19,13.4), | r(Rs0.30(1),€,280.4), 291.72
R30730(<p,1)) (-21.87 15.3)7 T(Rgoygo((pll)7§,402.9)7 ’
(30,-30)} 7(Rs0,30(¢1), €, 500)
wé = G[0,500](F[0’60] {(—42.7,17.2), T'(R30’3()(30l2)7 5, 130.2), 279.54
Rao,30(2))|  (30,-30)} 7(Rs0,30 (%), €, 500) '

Table 4. Nested ¢} expressions replaced by Rq,g(}) expressions in flocking properties ¢;.

5 Related Work

Resiliency has been studied in different system engineering contexts including
computer hardware [17], communication [28], distributed systems [23], cyber-
security [30], and model checking [27].

In the context of cyber-physical systems, the literature on resilience is diverse,
both in the approach taken and terminology used [2,6,19,31]. Among the logic-based
approaches, standard STL robustness provides a notion of the extent to which a sig-
nal can be perturbed in space before affecting property satisfaction, which is seen by
some authors as a form of resilience [19]. STL time robustness [13,26] is the equiva-
lent notion when perturbations in time (forward or backward) are considered. There
are similarities between (right) time robustness and our notion of recoverability, but
the two semantics are fundamentally different as our ReSVs include a second dimen-
sion, durability. See Remark 5 for more details on this comparison. Aksaray et al. [2]
propose a (time-) “shifting” version of STL and a resilient controller to maximize the
robustness value of the shifted formula as fast as possible. This approach, however,
only supports GF-formulas and does not provide a dedicated “shifting” semantics.

Control-theoretic characterizations of resiliency includes Bouvier et al. [6], which
defines a resilience measure (optimized by the controller) based on the additional
time it will take for a system to reach a target if under malfunctions. The control
framework of Zhu et al. [31] defines a resilient system as one that can restore its
state after extreme events caused by specific perturbation classes. In contrast, we
answer the question “What is resilience in CPS?” from a temporal-logic perspective.
Namely, we provide a syntax for CPS resilience using STL, and a corresponding
quantitative semantics. Using our framework in optimal control is not the focus
of the present work, but it is a natural continuation.

Another related line of work involves policy and parameter synthesis under
multi-objective temporal-logic specifications [4,7,8,14]. Even though we similarly
counsider multiple requirements (namely recoverability and durability), there is an
important difference: we use the satisfaction degrees of recoverability and durability
to define the semantics of an STL-based logic, with the semantics of composite
formulas derived via Pareto optimization. On the other hand, the above mentioned
related work adopt, for each requirement, the usual (Boolean, probabilistic, or
quantitative) semantics.

Finally, parametric STL [3,5] has, akin to our work, a set-based semantics. In
this case, the semantics is given by the set of parameter evaluations p for which the
resulting concrete formula (instantiated with p) is satisfied by the given signal. We
remark that, in our approach, the specification is fixed, non-parametric, and the
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set-based semantics arises from the fact that our recoverability-durability pairs
might not be directly comparable, i.e., mutually non-dominated.

6 Conclusion

In this paper, we presented a logic-based framework to reason about CPS resiliency.
We define resiliency of an STL formula ¢ as the ability of the system to recover from
violations of ¢ in a timely and durable manner. These requirements represent the
atoms of our formally defined SRS logic, which allows to combine such resiliency
statements using temporal and Boolean operators. We also introduced ReSV, the
first multi-dimensional semantics for an STL-based logic. Under this semantics,
an SRS formula is interpreted as a set of non-dominated (rec, dur) pairs, which
respectively quantify how quickly the underlying system recovers from a property
violation and for how long it satisfies the property thereafter. Importantly, we proved
that our ReSV semantics is sound and complete w.r.t. the Boolean semantics of STL.
We illustrated our new resiliency framework with two case studies: UAV package
delivery and flock formation. Collectively, our results demonstrate the expressive
power and flexibility of our framework in reasoning about resiliency in CPS.

In summary, the contribution of our work is not just establishing theoretical
foundations of CPS resiliency but also providing a method to equip temporal
logics with multi-dimensional semantics, an approach that in the future could be
extended to support arbitrary multi-requirement specifications beyond resiliency.
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A Proof of Corollaries

Corollary 1. Mazimum and minimum resilience sets are non-empty and non-
dominated sets.

Proof. Let S be the maximum resilience set of set P with P # ().
We prove that S is non-empty by induction.

1. Assume P is a singleton set. It is trivial that S is non-empty.

2. For P # (), let S # () be the maximum resilience set of P and r € Z2. Let S’
be the maximum resilience set of P U {r}. If r € P, it is trivial that S’ = S,
and hence S” # (. If r ¢ P, then:

— Ifexists s € Ss.t. s >y 7 Ors = 7,thenwehave s € S’ (given that S is the
maximum resilience set of P, then s >,.. p’ or s =, p’ forallp’ € PU{r}).

— Otherwise, we have s <., r for all s € S. In this case, for all p € P and
s € S, it holds that either (1) p <, s, which, by transitivity of <,.., implies
that p <. 7; 01 (2) p =pe 8, in which case p <, 7 0or p =4 7 (6., p ¥re 7):
indeed if p >, r held, then by transitivity of >,.., we would have p .. s,
which contradicts the assumption. In either case, r € S".

— Therefore, S’ is non-empty.

3. By induction, S is non-empty for any P # ().

We then prove that S is non-dominated. Let s1, 52 € S.

1. Because s; € S and s5 € S C P, we have 81 ¢ S O 81 = So. Similarly, we
have sg >, $1 Or S5 =, 1. Therefore, s1 =, s3.
2. By definition, S is a non-dominated set.

Minimum resilience sets can be proven to be non-empty and non-dominated sets
in a similar manner. a

B Proof of Propositions

Proposition 1. The ReSV r(v,£,t) of an SRS formula ¢ w.r.t. a signal £ at
time t is a non-dominated set.

Proof. We show that for any SRS v and signal &, r(¢, &, t) is either a maximum
or minimum resilience set of a non-empty set. By Corollary 1, this implies that
r(¢,&,t) is a non-empty and non-dominated set.

If ¢ is an SRS atom, then (¢, £, t) is a singleton set, and thus it is trivially both
the maximum and minimum resilience set of itself. When ) is of the form 1 A 1o,
1 V g, or Y1 U g, its semantics (¢, &, t) is defined as either a maximum or
minimum resilience set (see Definition 4). The only remaining case is ¢ = —);.
Let 2,y € Z? with = (2,,74),y = (yr,ya)- If 7(11, &, t) is a non-dominated set,
then (¢, €, t) = {(—xr, —x4) | * € r(¢1,&,t)} is a non-dominated set also. This
is because x =, y iff (—z,, —24) =re (—Yr, —yq) for any z, y. |
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C Proof of Lemmas

Lemma 1. Relations >, and <, are strict partial orders.

Proof. Let x,y, 2 € Z? be different with z = (2,,74), ¥y = (Yr,Ya), 2 = (2r, 24)-
We prove that >, has irreflexivity and transivity properties.
— Irreflexivity: we can see that « >, x never holds because sign(z,)+sign(zq) =
sign(z,) + sign(zq) but z does not Pareto-dominate itself.
— Transivity: Assume that « >=,. y and y >, 2. Using the transivity of Pareto-
dominance > [11], one of the two following statements is true:
o sign(z,) + sign(zq) > sign(z,) + sign(zq).
o sign(xz,) + sign(xzq) = sign(z,) + sign(zq) and x Pareto-dominates z.
Therefore z >, 2.
Irreflexivity and transitivity together imply asymmetry; so >, is a strict partial
order, and the dual of a strict partial order, <., is also a strict partial order [10]. O

D Proof of Theorems

Theorem 1 (Soundness and Completeness of SRS Semantics). Let £ be a
signal and 1 an SRS specification. The following results at time t hold:

)3z er@,&t) st.x = 0= ({,t) E0

2) 3z er(y,&t) st x <. 0= (,,t) E 0

3) ) EY=Fzer,&t)st.x = 00rz =40

4) (&) E Y =Tz er@t) st.x <..0o0rx=,,.0

Proof. We first establish the following results because they are used in the main
proof. Let z,y € Z? with = (2, 24), y = (Yr, Ya)-

i) @ >, 0isequivalent to x,,zq > 0 Az # 0.

il) @« =, 0isequivalent to x, x4 <0V z =0.

iii) Byi) andii), =, 0V z =, 0 is equivalent to z,, x4 > 0V z, x4 < 0.

iv) fz = 0Oand y = VY = , then y,,yq > 0 Ay # 0 holds, which,
by i), is equivalent to y >, O.

v) Ifz>..0Vax=.0andy =, x, then it holds that y,,ys > 0V y, yq <0,
which by iii), is equivalent to y >, 0V y =, 0.

vi) Ifx >,.. 0V 2 =, 0andy >, x, then it holds that y,.,yqa > 0V y,yq <
OV (y, =0Ayqg>0)V (y, >0Ayq=0) is true, thus y =, 0 or y =, 0.7

vii) Let ¢ be an STL formula with «,5 > 0; let ¢ = R, g(¢) be an SRS atom.
Since (&,t) = v is equivalent from a Boolean satisfaction standpoint to
—¢0F(0,0)G0,5)%, We can conclude that (&,t) = v holds iff 30 < #; < as.t.

Giii+6) 7P A Glige, t1e,+6) P 18 true.

Y

Given x =,. 0, the relation y >, = implies that 1) y-ys < 0 Ay > z holds (when
Zrxa < 0)or2) yr,ya > 0V (yr = 0Aya > 0) V (yr > 0Aya = 0) holds (when
Zr g < 0 or 2, xq = 0). The disjunction of 1) and 2) is equivalent to (yrys < 0 Ay >
)V (yr,ya > 0 Ay > 0), which implies y» yg <0V yr,ys > 0,16,y >re 0V y =y 0.
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viii) Assume Jz € r(¢,&,t) s.t. & >, 0. By Proposition 1, we have y =,.. x
holds for all y € r(1,&,t). Then we have y,.,yq > 0Ay # 0,i.e., y =, 0.
Similarly, we can prove that 3z € (¢, &, t) s.t. * =, 0 implies that z =, 0
holds for all © € (3, &, t).

We prove statements 1) and 3) of Theorem 1. Statements 2) and 4) can be proven
analogously. The proofs follow the inductive structure used in the definition of
ReSV. We first prove statement 1) of Theorem 1 as follows.

3zer@,&t)sta.0= (§t) =¢

— ¢ = R, g(p). By Definition 4, r(1,&,t) is a singleton set; z >,. 0 implies
Tr,xqg > 0 A2 # 0, which then implies z,,x4 > 0. By transitivity of im-
plication, we can equivalently prove that z,.,x4 > 0 implies (£,t) E .
By Eq. (1), z, > 0 implies 0 < trec(@,&,t) < a. Let t1 = trec(@, &, ).
By Eq. (2), we have that Gy ;44,)—¢ holds. By Eq. (1), 4 > 0 implies
taur(p, &, t +t1) > B, and thus, by Eq. (3), G4+, 14+,+5) ¢ holds. Therefore
Tr,xg > 0 implies 30 < #1 < a st G ppe) 7P A Gligey i4,48) P; DY TE-

sult vii), (&,t) = 4.

— 1 = —1. By Definition 4, (¢, £, t) = {(—x,, —24) : © € r(¢1,&,t)}. Thus, by
the implicant in i), we have that 3z € r(¢1, &, t) s.t. £ <, 0 holds. From the
induction hypothesis, we have (£,t) = —; thus (&, t) = .

- ¢ = ¢1 A 1/’2- By Definition 47 T‘(¢1 A ¢27 67 t) = minre(TWl, é.a t) U 7‘(1/’2, 67 t))
By Definition 3 and result iv), we have 2’ >, x or 2’ =, z, thus 2’ >,. 0
for all 2’ € r(¢1,&,t) Ur(s, &, t). From the induction hypothesis, we have
(&:1) ¢ and (€,1) | o3 thus (§,1) = 91 At

- w = 1/)1 va- By Definition 47 7’(¢1 V¢27 57 t) = maXre(T(¢17 57 t) U T(¢27 f? t))
By Definition 3, we have x € r(¢1,&,t) U r(v9,§,t); therefore x € r(¢1,§,t)
or z € 1(19,&,t). From the induction hypothesis, we have (£,t) | v or
(§7t) |: ¢2; thus (§,t) ): 1/11 \ 1/)2-

— ¢ = 1 Urths. By Definition 4, (1 Urtp2, §, 1) = max,.cUp ep yming.. (r(z, €, 1)
U minge Uprep, i) (%01, €,t")). By Definition 3 and result iv), we have that
Jty € t+Ist .z =, Oforallzy € r(yo, &, t1) U minge Uprep pyay) (101, €, t7).
From the induction hypothesis, we have (£,t1) | 9. Similarly, we have
Zg >re 0 for all zo € r(¢1,&,¢") and all ¢ € [t,t + ¢1). From the induction
hypothesis, V" € [t,t + t1) (§,t") |= 1. Together with (€,t1) | ¥2 we can
conclude that (£,t) = 11 Urt)s.

We then prove statement 3) of Theorem 1 as follows.
NEHEYy=Tzecr@,{t)st. x> 00rz =00

— ¢ = Rap(p). By result (vii), (§,t) = ¢ implies that 30 < t; < « s.t.
Gt t44) 70 A Gligty t44,+8) @ is true, which results in 2., 4 > 0 by Egs. (2)
and (3). This is equivalent to « >,. 0 (when at least one of ., 24 > 0 holds
strictly) or =, 0 (when z,, = x4 = 0).

8 Indeed, for y =, x to hold, we need sign(yaq) + sign(y.) = sign(zq) + sign(z,) > 1,
which can only happen if y,.,yq > 0 Ay # 0.
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— 1) = —p1. From the induction hypothesis, (£,t) = —); implies that 3z €
r(—1,&,t) s.t. & = 0 or & =, 0. Then, by Definition 4, we have that
Jz € r(yYr,&,t) s.t. x <pe Oor . =, O (Le., zp,2qg <OV zp g < 0 s true).
By Definition 4, (—x,., —z4) € r(1, £, t); thus (—x,, —x4) > 0 (when at least
one of z,, x4 < 0 holds strictly) or (—z,,—x4) =r 0 (when z, = 24 = 0 or
g < 0 s true).

— 1) = 11 A 2. This is equivalent to (§,t) = 1 A (€,t) = 12 holds. From
induction hypothesis, we have 3z1 € (11, ,t) s.t. 1 >, 0 or 21 =, 0; and
Jxg € r(1)e,&,t) s.t. 9 > 0 or 9 =, 0. By result viii), we have z >,. 0
or & =, 0 holds for all x € r(11,&,t) and « € r(1, &, t). By Definition 3, we
have >, 0 or =, 0 holds for all € min,.(r(¢1,§,t) Ur(vs,&,t)), ie.,
by Definition 4, for all x € r(, &, t).

— 1 = 1 V 1. By definition, (£,¢) = 11 V ¥ holds implies that (£,t) &
Y1V (§,t) E ¥9 holds. From induction hypothesis, we have 3x1 € r(¢1,&,t)
St. 21 >re 0 Or &1 =5 0; or Fx9 € 7(¢2,&,t) 8.t g e 0 Or 25 =, O.
Let w.l.o.g. the former holds; then we have 1 € r(11,&,t) Ur(,&,t). By
Definition 3, & >, x1 or & =, 1 for all x € max,.(r(¢1,&,t) Ur(we, &, t)).
By results v) and vi), © >,. 0 or & =,. 0. By Definition 4, r(¢),£,t) =
maxre(r(wlv ga t) U 7"(¢2, Ea t))

— 1 = 91U 1hy. By definition, (§,t) = 11 Urts holds implies that 3¢ € ¢ 4 I s.t.
(&, t) E v AV € [t, 1), (,t") = 91. From induction hypothesis, we have
Fag € r(the, &, 1) 8.t 29 e 001 T2 =1 0;and zqy € r(¢1,&,t") 8.t 21 =1e O
or x; =, 0 for allt” € [t,t'). By result (viii), we have that >, 0 or z =, 0
holds for all & € r(v2,&,t’) and for all © € r(y1,€,t"), for all t” € [¢t,t'). By
Definition 3, we evince that 3t' € t + I s.t. © >, 0 or z =, 0 holds for all
T € ming(r(Ye, &, t") Uming.. Uprer i) (Y1, &,t")). Note that the latter is a
subset of Uy esqr ming.(r(t2, &, 1) Uminge Uprer,i44) 7(¢01,€,1")), which im-
plies, together with Definition 3 and results v) and vi), that >, O or z =, 0
holds for all # € max,.Uye¢qrminge (r(¢2, §, ") Uming.Uprepp ¢4y 7 (101, €, 7)),
which is r(1, £, t) by Definition 4.

This completes the proof. a

E Reynolds flocking model

We use Reynolds rule-based model [24, 25] to describe the dynamics of flocking.
There are three steering behaviors used to determine how the agents, which are
called boids, maneuver based on the positions and velocities of their nearby flock-
mates. Separation causes a boid to move away from its nearby flockmates in
crowded situations. Cohesion drives a boid to move towards the average location
of its nearby flockmates. Alignment causes a boid to steer in the direction of the
average heading of its nearby flockmates.

Figure 6 illustrates these rules. We consider a set of boids B = {1,...,n} in
m-~dimensional space that move in discrete time as follows:

X(k‘ + 1) = X(kﬁ) + dt - ’Uz(k‘) + dz(k})
vi(k 4+ 1) = vi(k) +dt - a;(k)
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4 A |
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(a) Separation. (b) Cohesion. (c) Alignment.

Fig. 6. Reynolds model rules. Gray circles represent the interaction region of the green
boid.

where x(k) = [z1(k), ..., zn(k)] € R™™ is the configuration of all boids, v(k) =
[v1(k),...,vn(k)] € R™™ and a(k) = [a1(k),...,an(k)] € R™". Vectors z;(k),
vi(k), a;(k), d;(k) € R™ are the position, velocity, acceleration, and random
displacement of boid 7 at step k. Time interval dt is the duration of a time step.
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