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a b s t r a c t

Differential privacy is becoming one gold standard for protecting the privacy of publicly
shared data. It has been widely used in social science, data science, public health,
information technology, and the U.S. decennial census. Nevertheless, to guarantee
differential privacy, existing methods may unavoidably alter the conclusion of original
data analysis, as privatization often changes the sample distribution. This phenomenon
is known as the trade-off between privacy protection and statistical accuracy. In this
work, we mitigate this trade-off by developing a distribution-invariant privatization
(DIP) method to reconcile both high statistical accuracy and strict differential privacy.
As a result, any downstream statistical or machine learning task yields essentially the
same conclusion as if one used the original data. Numerically, under the same strictness
of privacy protection, DIP achieves superior statistical accuracy in in a wide range of
simulation studies and real-world benchmarks.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Data privacy has become increasingly important in many fields in the big data era (Kearns et al., 2016; Cohen and
Nissim, 2020), where a massive amount of sensitive information is digitally collected, stored, transferred, and analyzed.
To protect data privacy, differential privacy (Dwork, 2006a) has recently drawn great attention. It quantifies the notion
of privacy for downstream machine learning tasks (Jordan and Mitchell, 2015) and protects even the most extreme
observations. This quantification is useful for publicly released data such as census and survey data, and improves
transparency and accessibility in artificial intelligence (Haibe-Kains et al., 2020). It has been adopted in biomedical
research (Kaissis et al., 2020; Jobin et al., 2021; Hie et al., 2018; Han et al., 2020), epidemiology (Venkatramanan et al.,
2021), sociology (Santos-Lozada et al., 2020), and by many technology companies, such as Google (Erlingsson et al.,
2014), Apple (Apple Differential Privacy Team, 2017), Microsoft (Ding et al., 2017), LinkedIn Kenthapadi and Tran (2018),
Amazon (Day One Staff, 2018), and Facebook (Nayak, 2020). In 2020, differential privacy is, for the first time, used to
protect the confidentiality of individuals in the U.S. decennial census (United States Census Bureau, 2020).

Scientists have developed various differential private methods. These methods not only protect data privacy but also
promote data sharing. This allows privatized data from multiple entities to be integrated into a single model to strengthen
data analysis without leaking critical information (Vadhan, 2017). This aspect brings huge economic and societal benefits
in the big data era. However, one major issue is that data privatization may alter the analysis result of the original data,
and it is believed that there is a trade-off between statistical accuracy and differential privacy (Goroff, 2015; Santos-
Lozada et al., 2020; Gong and Meng, 2020; Bowen and Liu, 2020). In other words, one needs to sacrifice the accuracy of a
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ownstream analysis for privacy protection. On the contrary, we show that one can reconcile both accuracy and privacy,
which we achieve by preserving the original data’s distribution. We develop a distribution-invariant privatization method
(DIP) that achieves private data release. It transforms and perturbs the data and employs a suitable transformation to
recover the original distribution. As a result, DIP maintains statistical accuracy while being differentially private at any
desired level of protection.

There is a large body of literature on differential privacy. Two major directions emerge from computer science and
statistics. The first direction achieves privacy protection by either a privatization mechanism or a privatized sampling
method, including the Laplace mechanism (Dwork et al., 2006c; Dwork and Roth, 2014), the exponential mechanism (Mc-
Sherry and Talwar, 2007), the minimax optimal procedures (Duchi et al., 2018), among others. The second achieves
differential privacy via privatization for a category of models or algorithms, such as deep learning (Abadi et al., 2016),
boosting (Dwork et al., 2010), stochastic gradient descent (Agarwal et al., 2018), risk minimization (Chaudhuri et al.,
2011), random graphs (Karwa and Slavković, 2016), function estimation (Hall et al., 2013), parametric estimation (Avella-
Medina, 2021), regression diagnostics (Chen et al., 2016), and top-k selection (Durfee and Rogers, 2019). Moreover, a
general statistical framework for differential privacy is introduced (Wasserman and Zhou, 2010), and theoretical properties
of various privatization mechanisms are investigated (Kairouz et al., 2017; Vadhan, 2017). Other types of differential
privacy as well as the associated statistical properties are also discussed, including relaxed or approximate differential
privacy (Dwork et al., 2006b; Abadi et al., 2016; Agarwal et al., 2018; Cai et al., 2019), local differential privacy (Evfimievski
et al., 2003; Kasiviswanathan et al., 2011; Ding et al., 2017; Rohde and Steinberger, 2020), random differential privacy (Hall
et al., 2012), Renyi differential privacy (Mironov, 2017), and Gaussian differential privacy (Dong et al., 2019).

One main challenge is that existing privatization mechanisms protect data privacy at the expense of altering a sample’s
distribution. For example, count data may become negative values after adding a noise, and non-trivial or data-dependent
post-processing may be needed. As a result, analysis of such privatized data may conclude dramatically different from
the analysis of the original data. From a machine learning perspective, developing a distribution-invariant privatization
mechanism becomes crucial to maintain statistical accuracy.

This article proposes a DIP mechanism to address the above challenge for essentially all types of data, such as those
following continuous, discrete, mixed, categorical, empirical, or multivariate distributions. It satisfies differential privacy
while approximately preserving the original distribution when it is unknown through a reference distribution, for example,
the empirical distribution on a hold-out sample and exactly preserving the original distribution when it is known, c.f.,
Theorems 1 and 2. It is scalable to massive or high-dimensional data, c.f., Proposition 1. Consequently, any downstream
statistical analysis or machine learning tasks will lead to nearly the same conclusion as if the original data were used,
which is a unique aspect that existing methods do not share. It allows distributions with unbounded support, which would
be otherwise rather difficult if not impossible (Wasserman and Zhou, 2010). Moreover, DIP approximately maintains
statistical accuracy even with strict privacy protection in that it does not suffer from the trade-off between accuracy
and privacy strictness, as illustrated in our simulation studies in Section 2. These characteristics enable us to perform
data analysis without sacrificing statistical accuracy, as in regression, classification, graphical models, clustering, among
other statistical and machine learning tasks.

2. Results

2.1. Overview of the proposed method

This subsection presents the main ideas of the proposed DIP method. Differential privacy protects publicly shared
information about a dataset by describing its patterns while guarding against disclosing the data information. The reader
may consult Definition 1 for a rigorous mathematical definition. In what is to follow, we discuss the privatization of
univariate and multivariate samples separately.

DIP’s privatization process consists of three steps. First, DIP splits the original sample randomly into two independent
subsamples, hold-out and to-be-privatized samples, both are fixed after the split. Second, it estimates an unknown data
distribution by, say, the empirical distribution on the hold-out sample, which is referred to as a reference distribution.
Third, we privatize the to-be-privatized sample through data perturbation, which (i) satisfies the requirement of
differential privacy, and (ii) preserves the reference distribution approximating the original distribution. As a result, DIP is
differential private on the to-be-privatized sample while retaining the original distribution asymptotically, c.f., Theorem 2.

For univariate data, the privatization process of a to-be-privatized sample is described in Fig. 1 and Section 4. First, we
apply the probability-integral transformation to each data point or its smooth version to yield a uniform distribution.
Second, we add a random Laplace noise to perturb and mask the data, where the Laplace noise entails differential
privacy (Dwork, 2006a), as opposed to, say, the Gaussian noise. Third, we design a new function transforming the
obfuscated data to follow the reference distribution approximating the original data distribution.

For multivariate data, we privatize each variable sequentially, using the univariate method above. To preserve the
distribution, we propose to apply the probability chain rule (Schum, 2001), in place of privatizing each variable indepen-
dently. In other words, we privatize the first variable, and then the second variable using its conditional distribution given
the privatized value of the first variable, and so forth; c.f., Section 4.

Finally, we develop a fast and scalable algorithm, c.f., Algorithm 1 and Proposition 1 in Section 4, for practical use, and
prove that DIP preserves the data distribution approximately while being differentially private for essentially all types of
data, c.f., Theorem 2.
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Fig. 1. A flowchart visualizing the proposed DIP method. The left arrow: Data from an arbitrary distribution is transformed into a sample of the
uniform distribution via the probability integral transformation function F . The middle arrow: A noise following a centered Laplace distribution
is added to the transformed data to ensure differential privacy. The obfuscated data now follow a convoluted distribution, whose explicit form is
provided in Appendix S1.1. The right arrow: A carefully designed transformation function H is applied to the obfuscated data to obtain a privatized
sample, which follows the original distribution but does not necessarily contain the original data values. Non-private and private distributions are
filled in red and green, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

2.2. Simulation studies

This subsection performs simulations to investigate the operating characteristics of DIP and compare it with some top
competitors, including the Laplace randomized mechanism (LRM) (Dwork et al., 2006c), the minimax optimal procedure
mechanism (OPM) (Duchi et al., 2018), and the exponential mechanism (EXM) (McSherry and Talwar, 2007). For a fair
comparison, all competing methods, including DIP, use the same original dataset and the same privacy factor (defined in
Definition 1), while assuming the data distribution is unknown. Then the statistical accuracy of a downstream method
on privatized data is evaluated. It is worth mentioning that DIP requires sample-splitting, which is at a disadvantage for
downstream analysis due to the reduced size of the released sample. Despite the disadvantage, DIP achieves superior
statistical accuracy in two simulations and on three real-world benchmarks.

2.2.1. Network structure reconstruction
We first consider the private reconstruction of a network’s structure. We generate a random sample from a multivariate

normal distribution, in which its precision matrix, or the inverse of the covariance matrix, encodes an undirected graph
for the network. Then we estimate the precision matrix based on the privatized random sample.

We examine two types of graph networks, including the chain and exponential decay networks. For the chain network,
the precision matrix is a sparse tridiagonal matrix corresponding to the first-order autoregressive structure. For the
exponential decay network, elements of the precision matrix are exponentially decayed, and the network is not sparse.
We perform 1000 simulations in a high-dimensional setting where the sample size N = 200 is smaller than the number
of variables p = 250. The privacy factor is from 1 to 3. After privatization, we estimate the precision matrix via graphical
Lasso (Friedman et al., 2008). The estimated precision matrix is evaluated by the entropy loss (Lin and Perlman, 1985)
by comparing it with the true precision matrix. For DIP, we apply (2) with a random split of the original sample where a
ratio of 15%, 25%, 35% is used as the hold-out sample. For LRM and OPM, we follow Dwork et al. (2006c) and Duchi et al.
(2018) to privatize the entire sample.

As suggested by Table 1, DIP performs well. DIP is insensitive to the value of the privacy factor, which agrees with the
theoretical result in Theorem 2. Moreover, neither LRM nor OPM applies because of the requirement of bounded support,
as evident by an infinite value of the entropy loss caused by the estimate of the precision matrix being 0. In summary,
DIP’s distribution preservation property becomes more critical to explore multivariate structures, which explains sizeable
differences between DIP and its competitors (LRM and OPM) in simulations.

2.2.2. Linear regression
Consider a linear model in which the sample size is N = 200 or 2000 and the design matrix consists of 6 or 30

variables. The regression coefficient is set as a vector of 1’s. Each 1/3 of the design matrix’s columns follow independently
Normal(0, 102), Poisson(5), and Bernoulli(0.5), respectively. The privacy factor is 1, 2, 3, or 4. In this example, we estimate
the regression coefficient vector based on the privatized release data and measure the estimation accuracy by the
Euclidean distance between the estimated and true parameter vectors.

For DIP, we split the data into hold-out and to-be-privatized samples with a splitting ratio of 15%, 25%, and 35%. Then
we apply Algorithm 1 to privatize variables of the to-be-privatized sample in a random order to examine DIP’s invariant
property of the sequential order in Theorem 2. For LRM and OPM, we adopt the univariate case as in the graphical model
case. Note that LRM and OPM utilize the additional information — independence among columns of the design matrix,
whereas DIP does not. The simulation replicates 1000 times.

As indicated in Table 2, DIP yields the lowest estimation error across all situations with a substantial amount of
improvement over LRM and OPM, ranging from 559% to 1071503%, despite that DIP’s to-be-privatized sample size is
smaller than the size of the entire sample. Importantly, DIP mitigates the trade-off between differential privacy and
statistical accuracy, as an increased level of the privacy factor has little impact on the estimation accuracy. Meanwhile,
only a small difference is seen between DIP and the oracle non-private counterpart. This is a small price to be paid for
estimating an unknown distribution. The small standard error also suggests that the multivariate DIP is invariant against

the random order of variable privatization, which agrees with the invariant property for the sequential order in Theorem 2.
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Table 1
DIP is the only method that protects the structure of high-dimensional graphical networks. The
performance of DIP is measured by the entropy loss with its standard error in the parenthesis. Two
types of networks, chain and exponential decay, are evaluated, with a sample size N = 200 and the
number of variables p = 250. A ratio of 15%, 25%, and 35% of the original sample is used as the hold-out
sample to estimate the empirical distribution. The privacy factor ε (i.e., the budget of privacy) ranges
from 1 to 3. All of the state-of-the-art methods get infinite loss and their results are omitted.
Network Reconstruction ε

Setting Hold-out 1 2 3

Chain Net 15% 101.53 (2.82) 101.51 (2.83) 101.49 (2.82)
N = 200 25% 79.21 (2.21) 79.18 (2.19) 79.18 (2.19)
p = 250 35% 75.47 (1.75) 75.46 (1.74) 75.45 (1.73)

Exp Decay 15% 42.18 (1.10) 42.17 (1.10) 42.16 (1.09)
N = 200 25% 29.32 (1.25) 29.31 (1.25) 29.31 (1.25)
p = 250 35% 25.35 (1.41) 25.35 (1.43) 25.33 (1.43)

Table 2
DIP mitigates the trade-off between differential privacy and statistical accuracy. Private linear regression is conducted.
Averaged L2-distance (standard error) between true and estimated regression coefficients are measured across different
sample sizes and numbers of variables.
Linear Regression ε

Setting Method 1 2 3 4

N = 200 NP 0.31 (0.16) 0.31 (0.15) 0.31 (0.16) 0.31 (0.15)
p = 6 DIP (hold 15%) 2.19 (1.15) 2.16 (1.14) 2.14 (1.13) 2.14 (1.14)

DIP (hold 25%) 1.40 (0.77) 1.40 (0.75) 1.42 (0.79) 1.40 (0.76)
DIP (hold 35%) 1.13 (0.59) 1.13 (0.61) 1.11 (0.62) 1.12 (0.59)
LRM 62.80 (43.28) 33.53 (21.43) 24.53 (14.86) 21.44 (11.91)
OPM 757.16 (558.17) 378.68 (287.99) 241.05 (190.85) 184.72 (136.91)

N = 2000 NP 0.09 (0.04) 0.09 (0.04) 0.09 (0.04) 0.09 (0.04)
p = 6 DIP (hold 15%) 0.31 (0.15) 0.32 (0.15) 0.31 (0.15) 0.32 (0.15)

DIP (hold 25%) 0.24 (0.12) 0.24 (0.12) 0.24 (0.12) 0.24 (0.11)
DIP (hold 35%) 0.21 (0.10) 0.21 (0.10) 0.21 (0.10) 0.20 (0.10)
LRM 19.55 (13.66) 13.67 (7.94) 12.30 (6.00) 11.83 (4.91)
OPM 650.15 (489.16) 315.75 (240.77) 219.46 (167.75) 165.44 (125.28)

N = 200 NP 0.77 (0.30) 0.74 (0.30) 0.76 (0.32) 0.77 (0.33)
p = 30 DIP (hold 15%) 21.07 (10.64) 20.91 (10.68) 21.03 (10.84) 21.05 (10.94)

DIP (hold 25%) 9.16 (4.41) 9.17 (4.47) 9.28 (4.45) 9.21 (4.46)
DIP (hold 35%) 6.15 (2.84) 6.24 (2.95) 6.23 (2.95) 6.21 (3.00)
LRM 489.43 (370.81) 250.98 (182.24) 179.74 (117.89) 138.68 (90.79)
OPM 6044.5 (4611.4) 2951.1 (2277.7) 2021.9 (1492.6) 1542.4 (1118.0)

N = 2000 NP 0.21 (0.09) 0.21 (0.08) 0.21 (0.08) 0.21 (0.08)
p = 30 DIP (hold 15%) 1.39 (0.59) 1.39 (0.59) 1.40 (0.60) 1.39 (0.60)

DIP (hold 25%) 0.88 (0.38) 0.88 (0.39) 0.89 (0.38) 0.88 (0.39)
DIP (hold 35%) 0.73 (0.32) 0.71 (0.32) 0.72 (0.31) 0.72 (0.33)
LRM 209.25 (147.50) 116.93 (84.48) 86.97 (57.60) 74.07 (45.71)
OPM 7822.7 (6055.5) 4046.6 (3073.2) 2595.7 (1944.0) 2052.9 (1522.2)

DIP shows consistent and robust performance against the change of ε. NP represents the non-private benchmark.

.3. Real data analysis

Next, we analyze three sensitive benchmark datasets to understand the practical implications of distribution-invariant
rivatization.

.3.1. The University of California salary data
The first study concerns the University of California system salary data collected in 2010 (University of California,

014). The dataset contains annual salaries of 252,540 employees, including faculty, researchers, and staff. The average
alary of all employees is $39,531.49 with a standard deviation of $53,253.93. The data distribution is highly right-skewed,
ith the 90% quantile being $95,968.12 and the maximum exceeding two million dollars.
For this study, we estimate the differentially private mean salary. One important aspect is contrasting the privatized

ean with the original mean $39,531.49 to understand the impact of privatization on statistical accuracy of estimation.
he relative mean difference (i.e., the difference between the private mean and the original mean divided by the original
ean) is evaluated. Three privatization mechanisms are compared, including DIP, LRM, and OPM. For DIP, we apply
lgorithm 1. For LRM, random Laplace noise is added to the original data before calculating the private mean. For OPM, we
ollow the private mean estimation function described in Section 3.2.1 of Duchi et al. (2018) to optimize its performance.
The above process, including privatization, is repeated 1000 times.
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Table 3
DIP shows the best performance in mean estimation, logistic regression, and personalized recommenda-
tions across three benchmark datasets. Data description, including the sample size, data type, number
of variables, and the desired task, is provided on the top half of the table. The evaluation (with standard
errors) of DIP and the state-of-the-art privacy protection methods (LRM, OPM, and EXM), is provided on
the bottom half of the table. The evaluation metrics are the relative mean difference, the Kullback–Leibler
divergence, and the root mean square error on a random 25% test set for the UC salary data, the bank
marketing data, and the MovieLens data, respectively. For each dataset, the same privacy protection
strictness is imposed, and a smaller evaluation measure indicates a more accurate result.

Dataset

UC salary Bank marketing MovieLens

Size 252,540 30,488 25,000,095
Type Continuous Multivariate Discrete
Dimension 1 10 1
Task Mean Est. Logistic reg. Collaborative filtering

DIP 0.40 (0.31) 0.047 (0.003) 1.03 (4.96 × 10−4)
LRM 13.08 (9.95) 0.311 (0.004) 1.87 (1.03 × 10−3)
OPM 4.69 (3.44) Infinity 2.61 (8.23 × 10−4)
EXM N/A N/A 1.11 (5.52 × 10−4)

N/A means that a result is unavailable.

2.3.2. Portuguese bank marketing campaign data
The second study focuses on a set of marketing campaign data collected from a Portuguese retail bank from 2008

to 2013 (Moro et al., 2014). This campaign intended to sell long-term deposits to potential clients through phone
onversations. During a phone call, an agent collected a client’s sensitive personal information, including age, employment
tatus, marital status, education level, whether the client has any housing or personal loan, and if the client is in a default
tatus. In addition, the agent collected the client’s device type, past contact histories regarding this campaign, and if the
lient is interested in subscribing to a term deposit (yes/no). The dataset contains a total of 30,488 respondents whose
ata are complete.
Our goal is to conduct private logistic regression and examine the statistical accuracy change after privatization. For

IP, Algorithm 1 is applied. For LRM, Laplace noise is added to each variable independently. For OPM, we conduct private
ogistic regression following the private estimation of generalized linear models in Section 5.2.1 of Duchi et al. (2018).
he Kullback–Leibler divergence is measured to evaluate the discrepancy between the private and the original logistic
egression results. The privatization process repeats 1000 times.

.3.3. MovieLens data
The third study considers the privacy protection of movie ratings for a private recommender system. Many online

latforms disclose de-identified user data for research or commercial purposes. In many situations, however, simply
emoving user identities is not adequate. For example, as suggested in Narayanan and Shmatikov (2008), political
references and other sensitive information can still be uncovered based on de-identified movie ratings.
To overcome this difficulty, we consider the MovieLens 25M dataset, which is collected by GroupLens Research (Harper

nd Konstan, 2015) between 1995 and 2019. It contains 25,000,095 movie ratings, collected from 162,541 users over
9,047 movies. In other words, each user rated 154 out of the 59,047 movies on average, leaving their preference towards
he vast majority of movies unknown. Movie ratings are values in {0.5, 1, 1.5, . . . , 5}. A typical recommender system
ntends to predict a user’s rating on movies that they have not watched yet, and then recommends movies to each user
ased on high predicted ratings. The focus here is a prediction as opposed to inference in the previous two studies.
To investigate the effect of data privatization on the prediction accuracy, we randomly split the movie ratings into a

5% training set and a 25% test set, and privatize the training set. For DIP, we apply Algorithm 1. For LPM, Laplace noises
re added to the raw ratings, and the noised ratings are rounded to the nearest number in {0.5, 1, 1.5, . . . , 5}. For OPM,
e follow Section 4.2.3 of Duchi et al. (2018). For EXM, the sampling scheme described in Appendix S2 (in the subsection
bout the MovieLens data) is applied. Then we train a matrix factorization model (Funk, 2006) based on privatized ratings,
hich is a prototype collaborative filtering method for movie recommendation. The evaluation metric is the root mean
quare error on the non-private test set, which is averaged over 50 random partitions of training and test sets.

.3.4. Analysis results
In all three benchmark examples, the privacy factor is 1. For DIP, we hold out 25% of the sample for estimating the

nknown data distribution. As shown in Table 3, DIP delivers desirable statistical accuracy across the three different
tatistical and machine learning tasks, demonstrating the benefits of distribution-preservation.
For the mean salary estimation in the first example, the discrepancy between the original mean and the private mean

f DIP is minimal. Specifically, while holding the same level of strictness on privacy protection, DIP only entails an error
f about 0.4% of the original sample mean, and the error is 13.08% and 4.69% for LRM and OPM, respectively. And the
448
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mount of improvement of DIP over LRM and OPM is 3170.0% and 1072.5%. In other words, DIP achieves the highest
ccuracy while guaranteeing differential privacy.
For logistic regression in the second example, DIP entails a small error, suggesting that any conclusion based on DIP’s

rivate regression would remain nearly the same as the one based on the original data. In terms of statistical accuracy,
IP delivers a substantial improvement of 561.7% over LRM, whereas OPM fails to produce any meaningful results due to
n inaccurately estimated probability of 1 or 0 across all settings.
For personalized recommendations in the third example, DIP performs the best and yields a significant improvement

f 81.6%, 153.4%, and 7.8% over LRM, OPM, and EXM, respectively. This result implies that, while protecting data privacy,
reserving the original data distribution also ensures high prediction accuracy. Additional supporting numerical evidence
s given in Appendix S2.

. Discussion

Differential privacy has become a standard of data privacy protection, as a large amount of sensitive information
s collected and stored in a digital form. This paper proposes a novel privatization method, DIP, which preserves the
riginal data’s distribution while satisfying differential privacy. DIP mitigates the trade-off between data privacy and
tatistical accuracy. Consequently, any downstream privatized statistical analysis or machine learning task leads to the
ame conclusion as if the original data were used, which is a unique aspect that all existing mechanisms may not
njoy. Second, DIP is differentially private even if underlying data have unbounded support or unknown distributions.
ur extensive numerical studies demonstrate the utility of DIP against top competitors across many distinct application
cenarios. On the other hand, DIP requires a hold-out sample to estimate the data’s distribution. This may reduce the
eleased sample size due to sample splitting.

The proposed methodology also opens up several future fronts. One is the generalization to local differential privacy,
hich provides further privacy protection for data in a local device or server. Some discussions of DIP on local differential
rivacy are provided in Appendix S3. Another direction is the extension to independent but not identically distributed data,
n which DIP can still ensure differential privacy while preserving the distribution, but requires repeated measurements
or each individual. See Appendix S4 for more details.

. Methods

.1. Differential privacy

Differential privacy ensures that the substitution of any single observation in a dataset would have a small impact on
he publicly shared information, which can be measured by ε-differential privacy. Suppose Z is a random sample from a
umulative distribution function (cdf) F , and m is a privatization mechanism which privatizes Z into Z̃ for public release.
Let z and z′ be two adjacent realizations of Z, which differ in only one observation. Then ε-differential privacy requires
that the ratio of the probability of any privatized event given one sample to the probability of it given the other sample
is upper bounded by eε , that is:

Definition 1 (Dwork et al., 2006c; Dwork, 2006a). A privatization mechanism m(·) satisfies ε-differential privacy if

sup
z,z′

sup
B

P
(
m(Z) ∈ B|Z = z

)
P
(
m(Z) ∈ B|Z = z′

) ≤ eε,

where B is a measurable set and ε ≥ 0 is a privacy factor that is usually small. For convenience, the ratio is defined as 1
when the numerator and denominator are 0.

Definition 1 requires that the ratio of conditional probabilities of any privatized event (i.e., the set B) given two adjacent
data realizations is no greater than eε . Here ε is called a privacy factor, which characterizes the budget of privacy protection.
For example, a small value of ε renders a strict privacy protection policy.

4.2. Implications of differential privacy

Differential privacy protects against any data identification or revealing data values of the original sample, by
adversarial attack. However, the disclosure odds can increase as an adversarial attack repeats multiple times. Subsequently,
to understand the level of protection of differential privacy, as specified by the privacy factor ε in Definition 1, we
generalize Theorem 2.4 of Wasserman and Zhou (2010) to repeated adversarial attacks.

Consider that an adversary makes M queries to obtain M independent ε-differentially private samples, intending to
reveal the values of an original sample Z = (Z1, . . . , Zn). Lemma 1 details the level of protection by ε-differential privacy
against data identification.
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emma 1. Suppose Z̃(1), . . . , Z̃(M) are M independent yet ε-differentially private copies of Z. Then any hypothesis test to identify
the value of the i0th observation Zi0 , namely H0 : Zi0 = µ0 versus H1 : Zi0 = µ1, based on Z̃(1), . . . , Z̃(M) has statistical power
no greater than γ eMε with any µ1 ̸= µ0 and any i0 = 1, . . . , n, given a significance level γ > 0.

In particular, Lemma 1 states that it is impossible to reject a null hypothesis H0 that an observation equals a specific
alue µ0 in any sample because of a small power γ eMε for sufficiently small ε, especially so in a one-time data-release
cenario with M = 1. However, the information leak could occur when M increases, while holding ε fixed in that H0 is
ventually rejected as a result of increased power.
In summary, ε-differential privacy only protects against data identification when M is limited. An adversarial attack

ill eventually break the defense of ε-differential privacy as the number of attacks M increases. In practice, M needs to
e limited for ε-differential privacy depending on the privacy factor ε.
Next, we show, in Lemma 2, that any linear perturbation or transformation does not entail ε-differential privacy for

he original data with unbounded support. This means that we must seek nonlinear transformations beyond the linear
omain to protect data with unbounded support, which motivates the proposed method (1).

emma 2. For any multivariate random sample (Z1, . . . , Zn), any linear privatization mechanism m(·): m(Zi) = β0+β1Zi+ei;
= 1, . . . , n, is not ε-differentially private when Zi has unbounded support, where β0 and β1 (β1 ̸= 0) are any fixed coefficients,

and ei is any random noise vector.

4.3. Theoretical justification

This subsection discusses DIP in the context of a known data distribution for motivation, which paves up the way for
the theoretical justification of the distribution preservation property. Then, in a subsequent subsection, we further expand
the method to an unknown data distribution by estimating it based on a hold-out sample.

Univariate continuous distributions. Suppose (Z1, . . . , Zn) is a random sample of a given cumulative distribution function
F . We begin with our discussion with a known continuous F .

Our privatization proceeds by transforming each Zi through the following steps, as displayed in Fig. 1; i = 1, . . . , n.
First, we apply F to Zi to yield a uniformly distributed variable F (Zi). Second, we add an independent noise ei to perturb
F (Zi) for privacy protection, where ei is randomly sampled from a Laplace distribution Laplace(0, 1/ε). Here the scale
parameter ε ensures that our privatization satisfies ε-differential privacy. Finally, we apply a nonlinear transformation H
to produce a privatized sample that follows the original distribution F .

The specific form of H depends on the data type. For a univariate continuous sample, H consists of two parts. The
cumulative distribution function G is applied to F (Zi)+ ei to produce a uniform variable, where G’s explicit expression is
given in Appendix S1.1. Then, the inverse cumulative distribution function F−1 is applied to obtain the original distribution.
In summary, we generate a DIP’s privatized sample (Z̃1, . . . , Z̃n) via a formula:

Z̃i = H
(
F (Zi)+ ei

)
, H(·) = F−1

◦ G(·), (1)

where ◦ denotes function composition.
Univariate discrete distributions. For a discrete or mixed variable, that is, a variable with both continuous and discrete

components, (1) still applies if we replace F by a smoothed F , a process we call continualization, as illustrated in Fig. 2.
Specifically, we subtract a uniformly distributed random variable Ui from Zi, such that the distribution of the modified
Zi follows the smoothed F , followed by privatization in (1). Then, we apply a ceiling function such that the privatized
sample follows the original distribution F , c.f., the Appendices S1.3 and S1.4.

Multivariate distributions. Suppose (Z1, . . . , Zn) is a random sample of a multivariate distribution F , where Zi =

(Zi1, . . . , Zip) is a p-dimensional vector. We privatize Zi by applying (1), directly or after continualization, to each variable
sequentially via the probability chain rule. In particular, we privatize its first component Zi1 to yield its privatized value
Z̃i1. Then privatize Zi2 given Z̃i1 using the conditional cumulative distribution F (Zi2|Zi1) and the inverse function F−1(Zi2|Z̃i1)
to replace F and F−1 in (1), respectively, to yield Z̃i2, and so forth. This leads to our general formula for DIP:

Z̃i1 = m1(Zi1), Z̃il = ml(Zil|Z̃i1, . . . , Z̃i,l−1); l = 2, . . . , p, (2)

where ml denotes (1) for the lth variable, with F in (1) (and the corresponding F−1) replaced by the marginal distribution
of Zi1 for l = 1, and the conditional distribution of Zil given Z̃i1, . . . , Z̃i,l−1 for l = 2, . . . , p.

The properties for both univariate and multivariate privatizations are summarized in Theorem 1.

Theorem 1. DIP in (2) is ε-differentially private, and the privatized sample follows the original distribution F when F is known.

It is important to note that DIP in (1) and (2) differs substantially from a sampling method. A sampling method
generates synthetic data from F , which does not require raw data Z when F is known. On the other hand, DIP preserves
the data identifier i of Zi, i = 1, . . . , n. This property is useful for data integration or personalization. For example, when
collecting an additional column of data from the same individual i, for example, user i’s ratings on a new movie in the
context of Section 2.3.3, we may integrate them with Z̃ . In contrast, a sampling method does not retain any data identifier.
i
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Fig. 2. An example of the univariate continualization method in DIP. (a) A variable Z follows a Bernoulli distribution, which takes the value 1 with
robability P1 and the value 0 with probability 1−P1 . The two orange dots represent the two probability masses. (b) To continualize this distribution,
e introduce V = Z − U , with U being an independent random variable following a uniform distribution between 0 and 1. The two probability
asses 1− P1 and P1 are now evenly spread on intervals (−1, 0) and (0, 1) (in the orange shade), respectively. And the probability density function

of this new variable V is drawn in the blue lines. (c) The cumulative distribution function of Z has two jumps — one at 0, and the other at 1.
nd the heights of the jumps correspond to the probabilities of the two values. (d) After continualization, the cumulative distribution function of V
ecomes continuous, where the jumps are replaced by orange lines (i.e., linear interpolants).

.4. The proposed method

In practice, F is usually unknown and has to be replaced by an estimate F̂ , for example, the empirical cumulative
istribution function. However, F̂ needs to be independent of the privatized data to satisfy differential privacy. Towards
his end, we either (i) construct F̂ based on a random subsample of Z, called a hold-out sample. The hold-out sample is
either privatized nor released while the remaining sample is to-be-privatized, c.f., Appendix S1.2; or (ii) use a public
ataset that follows the same distribution F as the hold-out sample, while treating the entire Z as the to-be-privatized
ample. For example, the American Community Survey data are public and the U.S. census data are private, both coming
rom the same population. The former can serve as a hold-out sample for the latter. Here both the hold-out and the
o-be-privatized samples are fixed once assigned. We then apply (2) with F replaced by F̂ to the to-be-privatized sample,
hich asymptotically preserves the original distribution when F̂ is a consistent estimate of F , for example, the smoothed
mpirical cumulative distribution function, c.f., Theorem 2. See Appendices S1.5 and S1.6 for the complete technical details
f constructing the DIP mechanism for univariate and multivariate variables with F̂ , respectively.
Algorithm 1 summarizes the entire privatization process of DIP. Let N = n + m be the total sample size, where m is

he hold-out sample size. Proposition 1 concerns the computational efficiency and scalability of Algorithm 1.

Proposition 1. The computational complexity of Algorithm 1 is O(pN logN).

Theorem 2 establishes DIP’s ε-differential privacy and its asymptotic distribution preservation as the size of the
hold-out sample tends to infinity.

Theorem 2. DIP in Algorithm 1 is ε-differentially private, and the privatized sample follows the original distribution F
symptotically as m → ∞ when F is unknown.
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Algorithm 1 Distribution-invariant privatization

Input: A to-be-privatized sample (Z1, . . . , Zn), a hold-out sample, dimension p, the privacy factor ε.
for i = 1, . . . , n do
for l = 1, . . . , p do

Continualize Zil if it is not continuous.
Privatize Zil into Z̃il following (2) with a privacy factor ε/p and with F̂ estimated by the hold-out sample.

end for
for l = 1, . . . , p do
Apply a corresponding ceiling function to Z̃il if Zil is not continuous.

end for
end for
Output: A privatized sample (Z̃1, . . . , Z̃n).

To guarantee ε-differential privacy, we apply the sequential composition (Dwork et al., 2006c; Kairouz et al., 2017)
and require each ml in (2) to be ε/p-differentially private, which is enforced by sampling eil from a Laplace distribution
Laplace(0, p/ε). A small loss of statistical accuracy may incur, depending on the estimation precision of F̂ for F in a finite-
sample situation. While a large m provides a refined estimate of F , a large n renders a large to-be-privatized sample for
downstream statistical analysis. In general, one may choose a reasonable m to retain statistical accuracy. However, when
N = n+m is fixed, one needs to consider if the released sample size is adequate.

As a technical note, the DIP result continues to hold for any consistent estimator of F , which is useful when additional
information is available. For example, if Zi’s follow a normal distribution N(µ, 1) with an unknown mean value µ, then F̂
can be chosen as the continuous cdf of a normal distribution with an estimated mean µ̂ and variance 1.

It is worth noting that the privacy of raw data in the hold-out sample is also protected when a public dataset is
unavailable for estimating F . First, any transmission, alteration, querying, or release of any raw data in the hold-out
sample is not permissible. Second, only a continuous version of the estimated F is constructed, which guarantees that
F̂ does not contain any probability mass of the raw data. This is achieved through adding noise to the raw data in the
hold-out sample. See Appendices S1.5 and S1.6 for more details. Therefore, the privacy protection of a hold-out sample
remains a high standard.1 As shown in Lemma 3, the probability of identifying a continualized value of a hold-out sample
from the privatized data is zero. In other words, there is no privacy leakage of the hold-out sample.

Lemma 3. For any individual j in the hold-out sample, that is, j = n+ 1, . . . , n+m, let Vj be the continualized version of Zj.
Then P(Vj = v|Z̃1 = z̃1, . . . , Z̃n = z̃n) = 0 for any v, z̃1, . . . , z̃n ∈ Rp.

The notion of ‘‘hold-out’’ is an analogy to that of retaining sensitive data confidential, as required by the National
Institutes of Health (NIH) to perform medical research. In particular, NIH’s policy states that personally identifiable,
sensitive, and confidential information should ‘‘not be housed on portable electronic devices’’, and researchers should
‘‘limit access to personally identifiable information through proper access controls.’’2 Accordingly, the privacy of the
hold-out sample here is protected in the same fashion — ideally stored in a room without Internet and prevented from
unauthorized access, in addition to noise injection, continualization, and the requirement of not being transmitted, altered,
queried, or released.

Acknowledgments

The authors thank the editor and three reviewers for insightful comments and suggestions, which improve the article
significantly. This research is supported in part by NSF, USA grant DMS-1952539, and NIH, USA grants R01AG069895,
R01AG065636, 1R01GM126002, R01HL105397, R01AG074858, and U01AG073079.

Appendix A. Supplementary materials

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.05.004.
The Appendix contains the technical details of the proposed method, details about experimental setup and additional
numerical studies, the connection of the proposed method with local differential privacy, generalization of the proposed
method to independent but not identically distributed data, technical proofs, and additional figures and tables.

1 Differential privacy as in Definition 1 is not well defined on the hold-out sample due to no adjacent realizations being permissible.
2 The original policy is available at https://grants.nih.gov/grants/policy/nihgps/html5/section_2/2.3.12_protecting_sensitive_data_and_information_
sed_in_research.htm.
452

https://doi.org/10.1016/j.jeconom.2022.05.004
https://grants.nih.gov/grants/policy/nihgps/html5/section_2/2.3.12_protecting_sensitive_data_and_information_used_in_research.htm
https://grants.nih.gov/grants/policy/nihgps/html5/section_2/2.3.12_protecting_sensitive_data_and_information_used_in_research.htm


X. Bi and X. Shen Journal of Econometrics 235 (2023) 444–453

R

A

A

A
A
B
C

C
C

C
D

K
K

K

L
M

M
M
N

N

R
S

S
U

U
V
V

W

eferences

badi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L., 2016. Deep learning with differential privacy. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security. pp. 308–318.

garwal, N., Suresh, A.T., Yu, F.X., Kumar, S., McMahan, H.B., 2018. cpSGD: Communication-efficient and differentially-private distributed SGD. In:
Advances in Neural Information Processing Systems. pp. 7564–7575.

pple Differential Privacy Team, 2017. Learning with privacy at scale. Apple Mach. Learn. J. 1 (8).
vella-Medina, M., 2021. Privacy-preserving parametric inference: A case for robust statistics. J. Amer. Statist. Assoc. 116 (534), 969–983.
owen, C.M., Liu, F., 2020. Comparative study of differentially private data synthesis methods. Statist. Sci. 35 (2), 280–307.
ai, T.T., Wang, Y., Zhang, L., 2019. The cost of privacy: Optimal rates of convergence for parameter estimation with differential privacy. arXiv preprint

arXiv:1902.04495.
haudhuri, K., Monteleoni, C., Sarwate, A.D., 2011. Differentially private empirical risk minimization. J. Mach. Learn. Res. 12 (Mar), 1069–1109.
hen, Y., Machanavajjhala, A., Reiter, J.P., Barrientos, A.F., 2016. Differentially private regression diagnostics. In: IEEE 16th International Conference

on Data Mining. pp. 81–90.
ohen, A., Nissim, K., 2020. Towards formalizing the GDPR’s notion of singling out. Proc. Natl. Acad. Sci. 117 (15), 8344–8352.
ay One Staff, 2018. Protecting data privacy: How Amazon is advancing privacy-aware data processing. Available at https://blog.aboutamazon.com/

amazon-ai/protecting-data-privacy.
Ding, B., Kulkarni, J., Yekhanin, S., 2017. Collecting telemetry data privately. In: Advances in Neural Information Processing Systems. pp. 3571–3580.
Dong, J., Roth, A., Su, W.J., 2019. Gaussian differential privacy. arXiv preprint arXiv:1905.02383.
Duchi, J.C., Jordan, M.I., Wainwright, M.J., 2018. Minimax optimal procedures for locally private estimation. J. Amer. Statist. Assoc. 113 (521), 182–201.
Durfee, D., Rogers, R.M., 2019. Practical differentially private top-k selection with pay-what-you-get composition. In: Advances in Neural Information

Processing Systems. pp. 3527–3537.
Dwork, C., 2006a. Differential privacy. In: The 33rd International Colloquium on Automata, Languages and Programming. Springer, pp. 1–12.
Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M., 2006b. Our data, ourselves: Privacy via distributed noise generation. In: Annual

International Conference on the Theory and Applications of Cryptographic Techniques. pp. 486–503.
Dwork, C., McSherry, F., Nissim, K., Smith, A., 2006c. Calibrating noise to sensitivity in private data analysis. In: Proceedings of the 3rd Theory of

Cryptography Conference. pp. 265–284.
Dwork, C., Roth, A., 2014. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9 (3–4), 211–407.
Dwork, C., Rothblum, G.N., Vadhan, S., 2010. Boosting and differential privacy. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer

Science. pp. 51–60.
Erlingsson, U., Pihur, V., Korolova, A., 2014. RAPPOR: Randomized aggregatable privacy-preserving ordinal response. In: Proceedings of the ACM

SIGSAC Conference on Computer and Communications Security. ACM Press, http://dx.doi.org/10.1145/2660267.2660348.
Evfimievski, A., Gehrke, J., Srikant, R., 2003. Limiting privacy breaches in privacy preserving data mining. In: Proceedings of the 22nd ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. pp. 211–222.
Friedman, J., Hastie, T., Tibshirani, R., 2008. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9 (3), 432–441.
Funk, S., 2006. Netflix update: Try this at home. URL http://sifter.org/~simon/journal/20061211.html.
Gong, R., Meng, X.-L., 2020. Congenial differential privacy under mandated disclosure. In: Proceedings of the 2020 ACM-IMS on Foundations of Data

Science Conference. pp. 59–70.
Goroff, D.L., 2015. Balancing privacy versus accuracy in research protocols. Science 347 (6221), 479–480.
Haibe-Kains, B., Adam, G.A., Hosny, A., Khodakarami, F., Waldron, L., Wang, B., McIntosh, C., Goldenberg, A., Kundaje, A., Greene, C.S., et al., 2020.

Transparency and reproducibility in artificial intelligence. Nature 586 (7829), E14–E16.
Hall, R., Rinaldo, A., Wasserman, L., 2012. Random differential privacy. J. Priv. Confid. 4 (2), 43–59.
Hall, R., Rinaldo, A., Wasserman, L., 2013. Differential privacy for functions and functional data. J. Mach. Learn. Res. 14 (Feb), 703–727.
Han, T., Nebelung, S., Haarburger, C., Horst, N., Reinartz, S., Merhof, D., Kiessling, F., Schulz, V., Truhn, D., 2020. Breaking medical data sharing

boundaries by using synthesized radiographs. Sci. Adv. 6 (49), eabb7973.
Harper, F.M., Konstan, J.A., 2015. The MovieLens datasets: History and context. ACM Trans. Interact. Intell. Syst. 5 (4), 1–19.
Hie, B., Cho, H., Berger, B., 2018. Realizing private and practical pharmacological collaboration. Science 362 (6412), 347–350.
Jobin, A., Man, K., Damasio, A., Kaissis, G., Braren, R., Stoyanovich, J., Van Bavel, J.J., West, T.V., Mittelstadt, B., Eshraghian, J., et al., 2021. AI reflections

in 2020. Nat. Mach. Intell. 3 (1), 2–8.
Jordan, M.I., Mitchell, T.M., 2015. Machine learning: Trends, perspectives, and prospects. Science 349 (6245), 255–260.
Kairouz, P., Oh, S., Viswanath, P., 2017. The composition theorem for differential privacy. IEEE Trans. Inform. Theory 63 (6), 4037–4049.
Kaissis, G.A., Makowski, M.R., Rückert, D., Braren, R.F., 2020. Secure, privacy-preserving and federated machine learning in medical imaging. Nat.

Mach. Intell. 2 (6), 305–311.
Karwa, V., Slavković, A., 2016. Inference using noisy degrees: Differentially private β-model and synthetic graphs. Ann. Statist. 44 (1), 87–112.
asiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A., 2011. What can we learn privately? SIAM J. Comput. 40 (3), 793–826.
earns, M., Roth, A., Wu, Z.S., Yaroslavtsev, G., 2016. Private algorithms for the protected in social network search. Proc. Natl. Acad. Sci. 113 (4),

913–918.
enthapadi, K., Tran, T.T.L., 2018. Pripearl: A framework for privacy-preserving analytics and reporting at LinkedIn. In: Proceedings of the 27th ACM

International Conference on Information and Knowledge Management. pp. 2183–2191.
in, S.P., Perlman, M.D., 1985. A Monte Carlo comparison of four estimators of a covariance matrix. Multivariate Anal. 6, 411–429.
cSherry, F., Talwar, K., 2007. Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science. pp.
94–103.

ironov, I., 2017. Rényi differential privacy. In: 2017 IEEE 30th Computer Security Foundations Symposium. pp. 263–275.
oro, S., Cortez, P., Rita, P., 2014. A data-driven approach to predict the success of bank telemarketing. Decis. Support Syst. 62, 22–31.
arayanan, A., Shmatikov, V., 2008. Robust de-anonymization of large sparse datasets. In: 2008 IEEE Symposium on Security and Privacy, Sp 2008.

IEEE, pp. 111–125.
ayak, C., 2020. New privacy-protected Facebook data for independent research on social media’s impact on democracy. Available at https:

//research.fb.com/blog/2020/02/new-privacy-protected-facebook-data-for-independent-research-on-social-medias-impact-on-democracy.
ohde, A., Steinberger, L., 2020. Geometrizing rates of convergence under local differential privacy constraints. Ann. Statist. 48 (5), 2646–2670.
antos-Lozada, A.R., Howard, J.T., Verdery, A.M., 2020. How differential privacy will affect our understanding of health disparities in the United States.

Proc. Natl. Acad. Sci. 117 (24), 13405–13412.
chum, D.A., 2001. The Evidential Foundations of Probabilistic Reasoning. Northwestern University Press.
nited States Census Bureau, 2020. Disclosure avoidance and the 2020 census. Available at https://www.census.gov/about/policies/privacy/statistical_

safeguards/disclosure-avoidance-2020-census.html.
niversity of California, 2014. Annual report on employee compensation. Available at http://compensation.universityofcalifornia.edu/payroll2010.
adhan, S., 2017. The complexity of differential privacy. In: Tutorials on the Foundations of Cryptography. Springer, pp. 347–450.
enkatramanan, S., Sadilek, A., Fadikar, A., Barrett, C.L., Biggerstaff, M., Chen, J., Dotiwalla, X., Eastham, P., Gipson, B., Higdon, D., et al., 2021.

Forecasting influenza activity using machine-learned mobility map. Nature Commun. 12 (1), 1–12.
asserman, L., Zhou, S., 2010. A statistical framework for differential privacy. J. Amer. Statist. Assoc. 105 (489), 375–389.
453

http://refhub.elsevier.com/S0304-4076(22)00121-X/sb3
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb4
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb5
http://arxiv.org/abs/1902.04495
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb7
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb9
https://blog.aboutamazon.com/amazon-ai/protecting-data-privacy
https://blog.aboutamazon.com/amazon-ai/protecting-data-privacy
https://blog.aboutamazon.com/amazon-ai/protecting-data-privacy
http://arxiv.org/abs/1905.02383
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb13
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb15
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb18
http://dx.doi.org/10.1145/2660267.2660348
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb22
http://sifter.org/~simon/journal/20061211.html
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb25
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb26
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb26
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb26
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb27
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb28
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb29
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb29
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb29
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb30
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb31
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb32
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb32
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb32
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb33
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb34
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb35
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb35
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb35
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb36
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb37
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb38
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb38
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb38
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb40
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb43
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb44
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb44
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb44
https://research.fb.com/blog/2020/02/new-privacy-protected-facebook-data-for-independent-research-on-social-medias-impact-on-democracy
https://research.fb.com/blog/2020/02/new-privacy-protected-facebook-data-for-independent-research-on-social-medias-impact-on-democracy
https://research.fb.com/blog/2020/02/new-privacy-protected-facebook-data-for-independent-research-on-social-medias-impact-on-democracy
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb46
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb47
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb47
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb47
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb48
https://www.census.gov/about/policies/privacy/statistical_safeguards/disclosure-avoidance-2020-census.html
https://www.census.gov/about/policies/privacy/statistical_safeguards/disclosure-avoidance-2020-census.html
https://www.census.gov/about/policies/privacy/statistical_safeguards/disclosure-avoidance-2020-census.html
http://compensation.universityofcalifornia.edu/payroll2010
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb51
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb52
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb52
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb52
http://refhub.elsevier.com/S0304-4076(22)00121-X/sb53

	Distribution-invariant differential privacy
	INTRODUCTION
	RESULTS
	Overview of the Proposed Method
	Simulation Studies
	Network structure reconstruction
	Linear regression

	Real Data Analysis
	The University of California salary data
	Portuguese bank marketing campaign data
	MovieLens data
	Analysis results


	DISCUSSION
	METHODS
	Differential Privacy
	Implications of Differential Privacy
	Theoretical Justification
	The Proposed Method

	Acknowledgments
	Appendix A. Supplementary materials
	References


