


fixed) (Noyori et al., 2019; Arya et al., 2019).

Content in these discussions are often relevant

to generating the fix. For example, in Figure 1b,

the title suggests that the bug pertains to ªtrailing

newlines" and the last utterance of the discussion

recommends ªremoving the newlines." Addition-

ally, using modern techniques (Panthaplackel et al.,

2022) that summarize content relevant towards im-

plementing the solution in a bug report discussion,

we can also automatically obtain a natural language

description of the solution (ªremove trailing new-

lines..."). Note that these sequences provide insight

on the intent of the fix, much like the oracle commit

message, without requiring any additional input or

any context beyond what is naturally available.

In this work, we use bug report discussions to

facilitate automated bug fixing. While these dis-

cussions have been previously used to automate

tasks related to bug resolution, such as localizing

bugs (Koyuncu et al., 2019; Zhu et al., 2020) and as-

signing relevant developers (Xi et al., 2018; Baloch

et al., 2020), to our knowledge, they have never

been used to directly generate the bug-fixing code.

We propose various input context representa-

tions, encompassing different natural language

components that are tied to the discussions and

likely to capture their meaningful aspects. We

heuristically derive components from discussions,

including the discussion as a whole, the title, and

last utterance. We also derive components algo-

rithmically through model-generated solution de-

scriptions and the attended discussion utterances

during this generation. We incorporate these repre-

sentations into large sequence-to-sequence models

pretrained on large amounts of source code and

technical text (Ahmad et al., 2021) and then do

task-specific finetuning.

For training and evaluation, we mine bug report

discussions from GitHub Issues and map them to

subsets of Tufano et al. (2019)’s bug-fixing patches

datasets.1 Results show that when bug report dis-

cussions are available, they lead to significant im-

provements in fixing bugs, even outperforming us-

ing the oracle commit message.

2 Using Bug Report Discussions

Many bugs are reported with issue tracking sys-

tems, through which a user can open a bug report

and initiate a discussion with developers. The user

1Data is available at https://github.com/panthap2/

developer-discussions-for-bug-fixing.

first states the problem in the title and typically

elaborates in the first utterance. Developers then

join the discussion and engage in a dialogue with

the user as well as other developers.

These discussions isolate the problem, diagnose

the cause, and prescribe potential solutions (Arya

et al., 2019). Due to their technical nature, they

often span more than just natural language, includ-

ing system error messages and relevant code snip-

pets (Li et al., 2018). Furthermore, they are readily

available before bugs are fixed. So, we consider us-

ing these contextually rich discussions to guide the

task of bug fixing. We devise various strategies for

heuristically and algorithmically deriving context

from these discussions.

2.1 Heuristically Deriving Context

We consider using the whole discussion, including

the title and all utterances (occurring before the bug-

fixing code changes are implemented). However,

these discussions can be extremely long (Table 1),

making them difficult for neural models to reason

about and also extending beyond the input length

capacities of many models (e.g., 1,024 tokens) (Ah-

mad et al., 2021) in some cases. For this reason,

we look at more concise elements within the dis-

cussion which might convey its meaningful aspects.

First, we consider the title, as it is a brief summary

of the bug (Chen et al., 2020). Next, we consider

the last utterance before the bug-fixing commit,

since it captures the most recent information and

also roughly corresponds to the point at which a

developer acquired enough context about the fix to

implement it (Panthaplackel et al., 2022).

2.2 Algorithmically Deriving Context

To guide developers in absorbing information rele-

vant towards implementing the solution for a given

bug report, we recently proposed generating a brief

natural language description of the solution by syn-

thesizing relevant content from within the whole

bug report discussion (Panthaplackel et al., 2022).

To generate these solution descriptions, we fine-

tuned a large pretrained encoder-decoder model.

For training supervision of solution descriptions,

we used commit messages and pull request titles

corresponding to the commits and pull requests

linked to bug reports. To control for noise, we re-

lied on a filtered training set, consisting of fewer

generic and uninformative target descriptions as

well as discussions without sufficient context to

generate informative descriptions). We provide

2293



additional details of our approach for generating

solution descriptions in Appendix A.

While these solution descriptions are intended to

guide humans in manually fixing bugs, we evaluate

whether they can also guide models in automati-

cally performing the task. Furthermore, since the

title corresponding to the bug report discussion and

the solution description summarize different as-

pects of the discussion, we investigate the benefits

of combining the two (solution description + title).

Next, the segments (title or individual utterances)

from the discussion that contribute the most to-

wards generating a natural language description of

the solution are likely to also be useful towards

implementing that solution (i.e., generating the fix).

To approximate the most relevant discussion seg-

ments, we use attention. Namely, we examine the

last layer of Panthaplackel et al. (2022)’s decoder

to determine the most highly attended input token

at each decoding step and the segment (title or in-

dividual utterance) to which it belongs. From this,

we obtain the attended segments.

3 Data

Chakraborty and Ray (2021) relied on the com-

monly used bug-fixing patches (BFP) datasets (Tu-

fano et al., 2019). This entails BFPsmall, with

examples extracted from Java methods spanning

fewer than 50 tokens, and BFPmedium, with exam-

ples extracted from methods spanning 50-100 to-

kens. In this work, we also focus on these datasets,

particularly the preprocessed versions released by

Chakraborty and Ray (2021). However, since they

do not include the associated bug report discus-

sions, we enrich examples with this information.

3.1 Mining Bug Report Discussions

We mine issue reports from GitHub Issues, for the

58,597 projects that encompass examples in the

BFP datasets. We obtain 1,878,096 issue reports,

365,005 of which are linked to commits made be-

tween March 2011 and October 2017 (time frame

used for mining the BFP datasets). By match-

ing these commits to the bug-fixing commits from

which the BFP examples were drawn, we identify

the examples that correspond to bug reports. We

map 3,028 (of the 58,287) examples in BFPsmall

and 3,333 (of the 65,404) examples in BFPmedium

to bug report discussions, forming the discussion-

augmented bug-fixing patches (Disc-BFP) datasets:

Disc-BFPsmall and Disc-BFPmedium.

Disc-BFPsmall Disc-BFPmed

#Ex 3,028 3,333
#Discussions/Ex 1.3 1.3
#Utterance/Discussion 2.8 2.9
#Attn Segments/Ex 1.0 1.0

Buggy 22.1 42.4
Fixed 19.3 40.8
Method 32.2 74.2
Oracle Msg 19.7 19.6
Title 7.9 8.1
Utterance 127.6 136.4
Last Utterance 114.0 109.3
Soln Desc 8.5 8.5

Table 1: Disc-BFP dataset statistics. We report aver-

ages across all data splits. Average token lengths (split

by punctuation and spacing) are presented in the second

block. Note that we consider only utterances occurring

before the bug-fixing commit.

Note that Disc-BFP is comparatively smaller

than BFP. While constructing BFP, Tufano et al.

(2019) did not consider any mining criteria related

to bug reports, so it is not surprising that many of

their examples do not have bug report discussions.

Bugs can be identified through various develop-

ment activities like code review, testing, and bug re-

porting. In this work, we focus on the last scenario,

for which bug report discussions would naturally

be available.

3.2 Data Processing

Disc-BFPsmall consists of 2,445 training, 290 val-

idation, and 293 test examples. Disc-BFPmedium

consists of 2,660 training, 341 validation, and 332

test examples. In doing this, we maintain the origi-

nal data splits (e.g., Disc-BFPsmall’s training set is

strictly a subset of BFPsmall’s training set).

A bug report discussion is organized as a time-

line, and we consider only content that precedes the

bug-fixing commit on the timeline, corresponding

to the naturally-available context. Since a commit

can be linked to multiple issue reports, some exam-

ples have multiple bug report discussions. In these

cases, we order them so that discussions with the

most recent activity appear first and are less likely

to get truncated due to input length constraints (as

explained in the next paragraph). When leveraging

individual discussion components (e.g., title, gen-

erated solution description), we derive them from

each discussion separately and concatenate them

(separated with <s>). We process bug report bug

report discussions similar to Panthaplackel et al.

(2022), and we use the processed BFP code data

(buggy code and method) released by Chakraborty

and Ray (2021). We present dataset statistics in

Table 1.

2294



4 Models

Chakraborty and Ray (2021) achieved state-of-the-

art performance on the BFP datasets by finetuning

PLBART (Ahmad et al., 2021), a large sequence-to-

sequence model that was pretrained as a denoising

autoencoder (Lewis et al., 2020) on large amounts

of source code from GitHub and technical text from

StackOverflow. Similarly, we consider finetuning

PLBART to generate the fixed code given varying

input context representations.

4.1 Model Initialization

Since Chakraborty and Ray (2021) finetuned using

significantly more data (i.e., BFP training sets)2,

we initialize models using their checkpoints that

were finetuned with the buggy code snippet and

the full method context (emptyImplicitTable in

Figure 1a): buggy <s> method. This helps contex-

tualize the buggy code snippet and was shown to

improve performance.3

4.2 Our Models

After initializing, we further finetune on the Disc-

BFPsmall and Disc-BFPmedium training sets (sepa-

rately). All input context representations used for

this are formed by concatenating buggy <s> method

<s> with the various natural language sequences

tied to bug report discussions outlined in Section 2.

Sequences entailing multiple elements (e.g., utter-

ances in the whole discussion, titles from multiple

bug report discussions) are separated with <s>.

Though PLBART is capable of handling up to

1,024 tokens as input, Chakraborty and Ray (2021)

limit to 512 tokens. However, since the sequences

we consider can be particularly long after the Sen-

tencePiece tokenization (Kudo and Richardson,

2018) employed by PLBART, we choose to uti-

lize the full capacity during our finetuning. Note

that the input is truncated by removing from the

end if it exceeds the limit. We provide additional

details regarding model training in Appendix E.

4.3 Baselines

We consider models which use only buggy <s>

method (without natural language). As points of

reference, we also consider models that use the

oracle commit message rather than context from

2We considered directly finetuning PLBART on the smaller
Disc-BFP training sets, but this resulted in relatively low per-
formance, as shown in Appendix D.

3Note that the method also contains the buggy code snippet.
Though repetitive, this outperformed a unified format.

Finetune/Test Context Disc-BFPsmall Disc-BFPmed

Without NL∗ 33.8 27.1

Oracle Msg† 33.4 27.4

Whole Discussion 33.1 27.1

Title 35.5∗† 25.9

Last Utterance 35.2∗† 28.9∗†

Soln Desc 33.8 27.4

Soln Desc + Title 35.5∗† 25.6

Attended Seg 36.2∗† 28.0∗

Table 2: Results on the Disc-BFP test sets. Models

are initialized from the checkpoint originally finetuned

without the oracle commit message on the full BFP

training sets. We then finetune on the Disc-BFP training

sets with various input context representations and eval-

uate on the Disc-BFP test sets using the same represen-

tations. We indicate representations that statistically sig-

nificantly outperform baselines with superscripts identi-

fying the specific baseline that is surpassed.

bug report discussions: buggy <s> method <s> or-

acle commit message. To make a fair comparison

with our models, we initialize baselines using the

Chakraborty and Ray (2021) checkpoints (§4.1)

and further finetune on the Disc-BFP training sets,

using a context window of 1,024 tokens.

5 Results

Following Chakraborty and Ray (2021), we com-

pute how often (%) the generated output exactly

matches the target fixed code snippet. We per-

form statistical significance testing with bootstrap

tests (Berg-Kirkpatrick et al., 2012), using 10,000

samples (with sample size 5,000) and p < 0.05.

We provide sample output in Appendix B.

We present results in Table 2. We find that lever-

aging context from bug report discussions can lead

to significant improvements over baselines which

do not include natural language context, yielding

up to 2.4% improvement for Disc-BFPsmall and

1.8% for Disc-BFPmedium.

We also observe that using context derived from

bug report discussions leads to improved perfor-

mance (1.5-2.8%) over using the oracle commit

message during our finetuning with the Disc-BFP

training sets. However, when Chakraborty and Ray

(2021) originally considered using the oracle com-

mit message, they had finetuned with it as input

on significantly more data (i.e., the full BFP train-

ing sets). So, we further investigate by initializing

PLBART parameters from the Chakraborty and

Ray (2021) checkpoint which was finetuned using

the oracle commit message (buggy <s> method <s>

oracle commit message). Then, we perform finetun-

ing on the Disc-BFP training sets with the various

2295



Finetune/Test Ctxt Disc-BFPsmall Disc-BFPmed

Without NL§ 35.5 25.3

Oracle Msg¶ 36.2 25.9

Whole Discussion 34.1 25.6
Title 35.2 25.3
Last Utterance 36.2 25.6

Soln Desc 33.4 26.5§

Soln Desc + Title 39.2§¶ 26.2§

Attended Seg 36.9§ 24.1

Table 3: Additional results on the Disc-BFP test sets

where models are initialized from the checkpoint orig-

inally finetuned with the oracle commit message on

the full BFP training sets. We then finetune on the

Disc-BFP training sets with various input context repre-

sentations and evaluate on the Disc-BFP test sets using

the same representations. We indicate representations

that statistically significantly outperform baselines with

superscripts identifying the specific baseline that is sur-

passed.

input context representations we considered in Ta-

ble 2. We present results from these additional

experiments in Table 3. Note that for all represen-

tations other than ªoracle msg" the oracle commit

message is used only during training and not used

at test time, and so the results can extend to an

actual realistic use case.

Relative to the results presented in Table 2, for

Disc-BFPsmall, initializing from the checkpoint fine-

tuned with the oracle commit message tends to

yield improved performance across the different

input context representations, and with the solu-

tion description + title representation, we observe

a 3.0% improvement over using the oracle commit

message. For Disc-BFPmedium, the performance

tends to be lower, and the ªlast utterance" con-

text representation from Table 2 remains the best.

Therefore, we again find that using bug report dis-

cussions leads to improvements over baselines that

use the oracle commit message (during both fine-

tuning and test). This suggests that context derived

from bug report discussions, encompassing diverse

types of information, can offer richer context than

oracle commit messages for fixing bugs. This is

especially promising since these discussions are

often readily available in a real world setting.

Overall, the scores and magnitude of improve-

ment tend to be lower for Disc-BFPmedium. This is

likely due to the challenges of generating longer

sequences (Varis and Bojar, 2021) and the strin-

gent evaluation metric requiring exact match with

the reference. The best performance on the Disc-

BFPsmall test set comes from using solution descrip-

tion + title. For Disc-BFPmedium, it is with the last

utterance. Since both of these are derived from

the whole discussion, one may expect using the

whole discussion to yield similar or even improved

performance; however, this is not the case.

Including the whole discussion substantially

increases the input length, which models like

PLBART cannot easily handle. This can be par-

tially attributed to the practical challenge of fitting

the entire sequence in the model’s limited context

window, with 12.8-15.8% training examples get-

ting truncated. However, the bigger challenge is

drawing meaning from such large amounts of text.

We demonstrate the benefits of using more concise

sequences, through various natural language ele-

ments that are likely to capture critical aspects of

the whole discussion.

6 Conclusion

In this work, we investigated the utility of natural

language for automated bug fixing. Unlike prior

work, which leverages an unrealistic source of nat-

ural language for this purpose, through oracle com-

mit messages, we consider a naturally occurring

source that is often available: bug report discus-

sions. We explore various strategies for deriving

natural language context from these discussions,

using our newly compiled discussion-augmented,

bug-fixing patches datasets. We show that when

these discussions are available, they offer useful

context for bug fixing, even leading to improved

performance over using oracle commit messages.

Acknowledgements

We would like to thank Saikat Chakraborty for giv-

ing us access to checkpoints from Chakraborty and

Ray (2021). We would like to also thank anony-

mous reviewers for their detailed suggestions. This

work was supported by NSF grant IIS-2145479,

a Bloomberg Data Science Fellowship to the first

author, and a Google Faculty Research Award.

Limitations

We focus on popular bug-fixing datasets (Tufano

et al., 2019), which were originally constructed

with certain constraints, including the use of a sin-

gle programming language (Java) and methods of

limited lengths (<50 tokens, 50-100 tokens). Next,

examples in these datasets correspond to individual

methods, with some examples being drawn from

different methods of the same bug-fixing commit.

Therefore, while generating the correct fix for a

given example removes the presence of a bug in a

2296



particular method, it does not necessarily imply that

the underlying bug has been completely removed

from the software project entirely.

Furthermore, bug report discussions are not al-

ways available, and our work focuses on those in-

stances in which they are available. Because Tu-

fano et al. (2019) do not consider bug report discus-

sions in their work, they do not require examples to

have bug report discussions in their datasets. How-

ever, we do need examples to have these discus-

sions for our study. Because we are unable to map

many of their examples to bug report discussions,

we focus on smaller subsets of their datasets.

Ethics Statement

Automated bug fixing aims to streamline debug-

ging and bug resolution for developers. We en-

vision developers using the output generated by

our models as ªsuggested fixes" that they would

still need to inspect (and possibly revise) before

committing them to the code base. Without such

human intervention, erroneous output generated

by our models could leave bugs unfixed or even

introduce new bugs, posing a threat to the overall

reliability of the software.

Note that we mine publicly available bug report

discussions, in accordance with GitHub’s accept-

able use policy.

References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2655±2668.

Miltiadis Allamanis, Henry Jackson-Flux, and Marc
Brockschmidt. 2021. Self-supervised bug detection
and repair. Advances in Neural Information Process-
ing Systems, 34.

Deeksha Arya, Wenting Wang, Jin LC Guo, and Jinghui
Cheng. 2019. Analysis and detection of information
types of open source software issue discussions. In
International Conference on Software Engineering,
pages 454±464.

Muhammad Zubair Baloch, Shahid Hussain, Humaira
Afzal, Muhammad Rafiq Mufti, and Bashir Ahmad.
2020. Software developer recommendation in terms
of reducing bug tossing length. In International Con-
ference on Security, Privacy and Anonymity in Com-
putation, Communication and Storage, pages 396±
407.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.
2012. An empirical investigation of statistical signifi-
cance in NLP. In Conference on Empirical Methods
in Natural Language Processing, pages 995±1005.

Saikat Chakraborty and Baishakhi Ray. 2021. On multi-
modal learning of editing source code. In Interna-
tional Conference on Automated Software Engineer-
ing, pages 443±455.

Songqiang Chen, Xiaoyuan Xie, Bangguo Yin, Yuanxi-
ang Ji, Lin Chen, and Baowen Xu. 2020. Stay pro-
fessional and efficient: Automatically generate titles
for your bug reports. In International Conference on
Automated Software Engineering, pages 385±397.

Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-
Noël Pouchet, Denys Poshyvanyk, and Martin Mon-
perrus. 2019. SequenceR: Sequence-to-sequence
learning for end-to-end program repair. Transactions
on Software Engineering, 47(9):1943±1959.

Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dong-
sun Kim, Martin Monperrus, Jacques Klein, and Yves
Le Traon. 2019. iFixR: Bug report driven program
repair. In Joint Meeting on European Software Engi-
neering Conference and Symposium on the Founda-
tions of Software Engineering, pages 314±325.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pages
66±71.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Annual Meeting of the Association for
Computational Linguistics, pages 7871±7880.

Xiaochen Li, He Jiang, Dong Liu, Zhilei Ren, and Ge Li.
2018. Unsupervised deep bug report summarization.
In International Conference on Program Comprehen-
sion, pages 144±14411.

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang,
Yitong Li, Moshi Wei, and Lin Tan. 2020. CoCoNut:
combining context-aware neural translation models
using ensemble for program repair. In International
Symposium on Software Testing and Analysis, pages
101±114.

Ehsan Mashhadi and Hadi Hemmati. 2021. Applying
CodeBERT for automated program repair of java
simple bugs. In International Conference on Mining
Software Repositories, pages 505±509.

Yuki Noyori, Hironori Washizaki, Yoshiaki Fukazawa,
Keishi Ooshima, Hideyuki Kanuka, Shuhei Nojiri,
and Ryosuke Tsuchiya. 2019. What are good discus-
sions within bug report comments for shortening bug
fixing time? In International Conference on Software
Quality, Reliability and Security, pages 280±287.

2297



Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric,
and Ray Mooney. 2022. Learning to describe solu-
tions for bug reports based on developer discussions.
In Findings of the Association for Computational
Linguistics, pages 2935±2952.

Gema Rodríguez-Pérez, Gregorio Robles, Alexander
Serebrenik, Andy Zaidman, Daniel M Germán, and
Jesus M Gonzalez-Barahona. 2020. How bugs are
born: a model to identify how bugs are introduced in
software components. Empirical Software Engineer-
ing, 25(2):1294±1340.

Wei Tao, Yanlin Wang, Ensheng Shi, Lun Du, Shi
Han, Hongyu Zhang, Dongmei Zhang, and Wenqiang
Zhang. 2021. On the evaluation of commit message
generation models: An experimental study. In Inter-
national Conference on Software Maintenance and
Evolution, pages 126±136.

Michele Tufano, Cody Watson, Gabriele Bavota, Massi-
miliano Di Penta, Martin White, and Denys Poshy-
vanyk. 2019. An empirical study on learning bug-
fixing patches in the wild via neural machine trans-
lation. Transactions on Software Engineering and
Methodology, 28(4):1±29.

Dusan Varis and Ondřej Bojar. 2021. Sequence length
is a domain: Length-based overfitting in transformer
models. In Conference on Empirical Methods in
Natural Language Processing, pages 8246±8257.

Cathrin Weiss, Rahul Premraj, Thomas Zimmermann,
and Andreas Zeller. 2007. How long will it take to
fix this bug? In International Workshop on Mining
Software Repositories, pages 1±1.

Shengqu Xi, Yuan Yao, Xusheng Xiao, Feng Xu, and
Jian Lu. 2018. An effective approach for routing
the bug reports to the right fixers. In Asia-Pacific
Symposium on Internetware, pages 1±10.

Ziye Zhu, Yun Li, Hanghang Tong, and Yu Wang. 2020.
CooBa: Cross-project bug localization via adversar-
ial transfer learning. In International Joint Confer-
ence on Artificial Intelligence.

2298



A Generating Solution Descriptions

In Panthaplackel et al. (2022), we benchmarked var-

ious models, finding that the best solution descrip-

tions were generated by finetuning PLBART with

a filtered training set (consisting of fewer generic

and uninformative target descriptions as well as

discussions without sufficient context to generate

informative descriptions).

In this current work, we re-train the model af-

ter removing 7 examples in the training set that

have bug reports overlapping with the Disc-BFP

test sets. We run inference on all partitions of the

Disc-BFP datasets. For this, we first preprocess

the bug report discussions by subtokenizing them

(i.e., splitting by spaces, punctuation, camelCase,

and snake_case), similar to how we previously pre-

processed the training data in Panthaplackel et al.

(2022). Note that we do not subtokenize bug re-

port discussions when we directly feed them into

the models we presented in the main paper. Bug

report discussions often include source code, either

in-lined with natural language or as longer code

blocks, which are often delimited with markdown

tags. In Panthaplackel et al. (2022), we had retained

in-lined code but removed longer marked blocks of

code. While these longer code blocks may not be

as relevant to generating natural language descrip-

tions, we believe they could be useful in gathering

insight for generating the fixed code. Therefore, we

do not remove them from bug report discussions,

even when generating solution descriptions.

B Examples

For the Disc-BFPsmall test example in Figure 1, the

two models which leverage only buggy <s> method

during finetuning and test (Without NL in Table 2)

do not generate the correct output. Note that neither

of these models have access to any natural language

context. Two other models (which do use natural

language) also fail to generate the correct output,

corresponding to the whole discussion and solution

description representations (initialized using the

ªWithout NL" checkpoint). In all four of these error

cases, the model simply copies the buggy code

snippet. However, the other 12 models generate the

correct output for this particular example.

Some examples are difficult for models, even

with natural language context. We provide one

such example from the Disc-BFPmedium test set in

Figure 2. The fix requires reversing the order of

the method parameters, which is actually evident

from the bug report discussion, as well as the gen-

erated solution description. However, performing

this reversal involves more complex reasoning, and

so the majority of models are unable to generate

the correct output for this example. Nonetheless,

the model which leverages the last utterance (ini-

tialized using the ªWithout NL" checkpoint) does

manage to generate the correct output.

C Identifying Useful Discussion Segments

We acquire context from bug report discussions in

various ways, either heuristically (whole discus-

sion, title, last utterance) or algorithmically (at-

tended segments when generating solution descrip-

tions). (Note that we do not include solution de-

scriptions in these groups since they do not actually

appear within the bug report discussions.) As we

saw in Table 2, using the whole discussion may

not be beneficial, since models struggle to reason

about large amounts of text. We show that we are

able to achieve improved performance by selecting

more concise segments from within this discussion

(e.g., title, last utterance, attended segments) that

are likely to be relevant to fixing the bug.

However, we may not always being selecting

the most useful segment(s) yielding the best per-

formance. The most useful segments may vary by

example, and there could also be other utterances

(beyond the title, last utterance, and attended utter-

ances) that have relevant information.

Therefore, we also estimate the performance of

an ªoracleº upper-bound that employs the most use-

ful segment as the natural language context. For

this, we consider models finetuned with the various

segments from the discussion, including models

finetuned on the whole discussion. We run infer-

ence with these models, using buggy <s> method

<s> segment, for all segments, including the title

and each utterance in the discussion. So, if there are

N segments derived from the discussion (title and

N − 1 utterances before the bug-fixing commit),

we obtain N candidates for the fixed code.

For a given example, we compute best exact

match, or how often at least one of these candi-

dates matches the reference. We present results in

Table 4. We observe a 3.1±3.3% gap, relative to the

highest scores in Table 2, suggesting that there is

useful context in these discussions that is not being

exploited. We leave it to future work to learn mod-

els for extracting the most useful segments from

bug report discussions for fixing bugs.

2299





Inference Only Finetuned
Init Context Disc-BFPsmall Disc-BFPmed Disc-BFPsmall Disc-BFPmed

PLBART

Without NL - - 22.2 14.8
Oracle Msg - - 28.0 16.6
Whole Disc - - 25.3 16.0
Title - - 27.3 1.5
Last Utterance - - 23.2 19.0
Soln Desc - - 20.5 17.2
Soln Desc + Title - - 24.2 16.3
Attended Seg - - 18.1 1.8

Without NL (BFP)

Without NL 30.7 25.3 33.8 27.1
Oracle Msg 30.7 25.0 33.4 27.4
Whole Disc 21.5 19.0 33.1 27.1
Title 31.4 25.9 35.5 25.9
Last Utterance 29.0 23.2 35.2 28.9
Soln Desc 31.7 25.9 33.8 27.4
Soln Desc + Title 29.7 25.0 35.5 25.6
Attended Seg 23.5 20.8 36.2 28.0

With NL (BFP)

Without NL 31.1 22.3 35.5 25.3
Oracle Msg 31.1 24.4 36.2 25.9
Whole Disc 20.5 16.9 34.1 25.6
Title 28.7 22.3 35.2 25.3
Last Utterance 25.3 22.3 36.2 25.6
Soln Desc 29.4 24.1 33.4 26.5
Soln Desc + Title 28.3 22.6 39.2 26.2
Attended Seg 23.5 19.9 36.9 24.1

Table 5: We measure the effect of finetuning on the Disc-BFP training sets by comparing to a setting in which the

Chakraborty and Ray (2021) checkpoints are used directly for inference (without any finetuning). We also measure

the effect of initializing with checkpoints that have already been finetuned on task-specific data by comparing to

models directly initialized from PLBART and then finetuned on the Disc-BFP training sets.

Disc-BFPsmall Disc-BFPmed

Init Context Epoch Train Time Test Time Epoch Train Time Test Time

Without NL (BFP)

Without NL 2 0:15:44 0:01:06 3 0:34:43 0:01:59
Oracle Msg 14 0:31:11 0:00:34 4 0:28:21 0:01:13
Whole Disc 6 0:25:25 0:01:55 10 1:02:34 0:02:18
Title 6 0:18:54 0:01:31 13 1:05:32 0:01:02
Last Utterance 8 0:28:28 0:01:38 5 0:37:44 0:02:47
Soln Desc 4 0:17:48 0:01:11 3 0:26:54 0:01:50
Soln Desc + Title 10 0:28:18 0:01:16 9 0:51:09 0:02:27
Attended Seg 6 0:22:54 0:01:21 2 0:27:37 0:02:39

With NL (BFP)

Without NL 6 0:17:54 0:00:53 3 0:24:16 0:01:18
Oracle Msg 9 0:36:17 0:00:52 9 1:02:02 0:01:59
Whole Disc 6 0:25:55 0:00:53 5 0:42:01 0:02:19
Title 6 0:18:08 0:01:31 10 0:46:07 0:01:36
Last Utterance 4 0:19:51 0:01:54 2 0:24:24 0:02:09
Soln Desc 2 0:13:44 0:01:03 2 0:23:42 0:01:50
Soln Desc + Title 8 0:26:41 0:01:42 6 0:41:55 0:01:38
Attended Seg 10 0:35:53 0:01:43 5 0:41:44 0:02:28

Table 6: Reporting the training epoch from which we obtain the checkpoint used for evaluation, the total training

time (HH:MM:SS), and the total time needed to run inference (HH:MM:SS).

2301


