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Abstract

Automatically fixing software bugs is a chal-
lenging task. While recent work showed that
natural language context is useful in guid-
ing bug-fixing models, the approach required
prompting developers to provide this context,
which was simulated through commit messages
written after the bug-fixing code changes were
made. We instead propose using bug report
discussions, which are available before the task
is performed and are also naturally occurring,
avoiding the need for any additional informa-
tion from developers. For this, we augment
standard bug-fixing datasets with bug report dis-
cussions. Using these newly compiled datasets,
we demonstrate that various forms of natural
language context derived from such discussions
can aid bug-fixing, even leading to improved
performance over using commit messages cor-
responding to the oracle bug-fixing commits.

1 Introduction

Software defects, or bugs, arise for a number of
reasons, including missing or changing specifica-
tions, programming errors, poor documentation,
and overall complexity (Rodriguez-Pérez et al.,
2020). Due to the extensive developer time and
effort needed to fix bugs (Weiss et al., 2007), there
is growing interest in automated bug fixing (Tufano
et al., 2019; Chen et al., 2019; Lutellier et al., 2020;
Mashhadi and Hemmati, 2021; Allamanis et al.,
2021; Chakraborty and Ray, 2021).

Most of these approaches only consider the
buggy code snippet when generating the fix. How-
ever, with such limited context, this is extremely
challenging. For instance, in Figure 1a, generating
the fixed code requires removing .append(“\n”),
but this is not obvious from inspecting the buggy
code alone. To address this, Chakraborty and Ray
(2021) proposed prompting developers for a natu-
ral language description of intent (e.g., “Removed
trailing newlines...”) that can guide a model in
performing the task. As a proxy, in their study,

void emptyImplicitTable(String table, int line) {

sb.append ("Invalid table definition due to
empty implicit table name: ")
.append (table)

.append ("\n") ; Buggy

sb.append ("Invalid table definition due to
empty implicit table name: ")
.append (table) ; Fixed
}  Oracle Commit Message: Removed trailing newlines from error
messages. Fixes https://github.com/mwanji/toml4j/issues/18

(a) Buggy and fixed code snippets in emptyImplicitTable
method with commit message for the oracle bug-fixing commit
Title: Parsing exception messages contain trailing newlines

Utterance #1:

Some of the parsing exceptions thrown by toml4j contains trailing
newlines. This is somewhat unusual, and causes empty lines in log files
when the exception messages are logged...

Utterance #2:

The idea was to be able to display multiple error messages at once.
However, processing stops as soon as an error is encountered, so that's
not even possible. Removing the newlines shouldn't be a problem, then.

Solution Description: remove trailing newlines from toml4j log messages

(b) Bug report discussion and generated solution description

Figure 1: Bug-fixing patch from the toml4;j project, with
context from the corresponding bug report discussion.

they used the commit message corresponding to
the oracle commit which fixed the bug.

By showing that natural language can aid bug-
fixing, their study yields promising results. How-
ever, we raise two concerns with their approach.
First, prompting developers for additional informa-
tion can be burdensome for them, as it requires time
and manual effort. Second, and more importantly,
it is unrealistic to use the oracle commit message
as a proxy. Since it is written affer the bug is fixed
to document the code changes (Tao et al., 2021),
it does not accurately reflect information actually
available when the task needs to be performed.

In reality, there are more appropriate sources of
natural language to guide fixing bugs, which are
naturally occurring and available before the task is
to be performed. Namely, many bugs are first re-
ported through issue tracking systems (e.g., GitHub
Issues), where developers engage in a discussion
to collectively understand the problem, investigate
the cause, and formulate a solution (before they are
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fixed) (Noyori et al., 2019; Arya et al., 2019).

Content in these discussions are often relevant
to generating the fix. For example, in Figure 1b,
the title suggests that the bug pertains to “trailing
newlines" and the last utterance of the discussion
recommends “removing the newlines." Addition-
ally, using modern techniques (Panthaplackel et al.,
2022) that summarize content relevant towards im-
plementing the solution in a bug report discussion,
we can also automatically obtain a natural language
description of the solution (“remove trailing new-
lines..."). Note that these sequences provide insight
on the intent of the fix, much like the oracle commit
message, without requiring any additional input or
any context beyond what is naturally available.

In this work, we use bug report discussions to
facilitate automated bug fixing. While these dis-
cussions have been previously used to automate
tasks related to bug resolution, such as localizing
bugs (Koyuncu et al., 2019; Zhu et al., 2020) and as-
signing relevant developers (Xi et al., 2018; Baloch
et al., 2020), to our knowledge, they have never
been used to directly generate the bug-fixing code.

We propose various input context representa-
tions, encompassing different natural language
components that are tied to the discussions and
likely to capture their meaningful aspects. We
heuristically derive components from discussions,
including the discussion as a whole, the title, and
last utterance. We also derive components algo-
rithmically through model-generated solution de-
scriptions and the attended discussion utterances
during this generation. We incorporate these repre-
sentations into large sequence-to-sequence models
pretrained on large amounts of source code and
technical text (Ahmad et al., 2021) and then do
task-specific finetuning.

For training and evaluation, we mine bug report
discussions from GitHub Issues and map them to
subsets of Tufano et al. (2019)’s bug-fixing patches
datasets.! Results show that when bug report dis-
cussions are available, they lead to significant im-
provements in fixing bugs, even outperforming us-
ing the oracle commit message.

2 Using Bug Report Discussions

Many bugs are reported with issue tracking sys-
tems, through which a user can open a bug report
and initiate a discussion with developers. The user

"Data is available at https://github.com/panthap2/
developer-discussions-for-bug-fixing.

first states the problem in the title and typically
elaborates in the first utterance. Developers then
join the discussion and engage in a dialogue with
the user as well as other developers.

These discussions isolate the problem, diagnose
the cause, and prescribe potential solutions (Arya
et al., 2019). Due to their technical nature, they
often span more than just natural language, includ-
ing system error messages and relevant code snip-
pets (Li et al., 2018). Furthermore, they are readily
available before bugs are fixed. So, we consider us-
ing these contextually rich discussions to guide the
task of bug fixing. We devise various strategies for
heuristically and algorithmically deriving context
from these discussions.

2.1 Heuristically Deriving Context

We consider using the whole discussion, including
the title and all utterances (occurring before the bug-
fixing code changes are implemented). However,
these discussions can be extremely long (Table 1),
making them difficult for neural models to reason
about and also extending beyond the input length
capacities of many models (e.g., 1,024 tokens) (Ah-
mad et al., 2021) in some cases. For this reason,
we look at more concise elements within the dis-
cussion which might convey its meaningful aspects.
First, we consider the fitle, as it is a brief summary
of the bug (Chen et al., 2020). Next, we consider
the last utterance before the bug-fixing commit,
since it captures the most recent information and
also roughly corresponds to the point at which a
developer acquired enough context about the fix to
implement it (Panthaplackel et al., 2022).

2.2 Algorithmically Deriving Context

To guide developers in absorbing information rele-
vant towards implementing the solution for a given
bug report, we recently proposed generating a brief
natural language description of the solution by syn-
thesizing relevant content from within the whole
bug report discussion (Panthaplackel et al., 2022).

To generate these solution descriptions, we fine-
tuned a large pretrained encoder-decoder model.
For training supervision of solution descriptions,
we used commit messages and pull request titles
corresponding to the commits and pull requests
linked to bug reports. To control for noise, we re-
lied on a filtered training set, consisting of fewer
generic and uninformative target descriptions as
well as discussions without sufficient context to
generate informative descriptions). We provide
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additional details of our approach for generating
solution descriptions in Appendix A.

While these solution descriptions are intended to
guide humans in manually fixing bugs, we evaluate
whether they can also guide models in automati-
cally performing the task. Furthermore, since the
title corresponding to the bug report discussion and
the solution description summarize different as-
pects of the discussion, we investigate the benefits
of combining the two (solution description + title).

Next, the segments (title or individual utterances)
from the discussion that contribute the most to-
wards generating a natural language description of
the solution are likely to also be useful towards
implementing that solution (i.e., generating the fix).
To approximate the most relevant discussion seg-
ments, we use attention. Namely, we examine the
last layer of Panthaplackel et al. (2022)’s decoder
to determine the most highly attended input token
at each decoding step and the segment (title or in-
dividual utterance) to which it belongs. From this,
we obtain the attended segments.

3 Data

Chakraborty and Ray (2021) relied on the com-
monly used bug-fixing patches (BFP) datasets (Tu-
fano et al., 2019). This entails BFPg,,;, with
examples extracted from Java methods spanning
fewer than 50 tokens, and BFP,,eium, With exam-
ples extracted from methods spanning 50-100 to-
kens. In this work, we also focus on these datasets,
particularly the preprocessed versions released by
Chakraborty and Ray (2021). However, since they
do not include the associated bug report discus-
sions, we enrich examples with this information.

3.1 Mining Bug Report Discussions

We mine issue reports from GitHub Issues, for the
58,597 projects that encompass examples in the
BFP datasets. We obtain 1,878,096 issue reports,
365,005 of which are linked to commits made be-
tween March 2011 and October 2017 (time frame
used for mining the BFP datasets). By match-
ing these commits to the bug-fixing commits from
which the BFP examples were drawn, we identify
the examples that correspond to bug reports. We
map 3,028 (of the 58,287) examples in BFPgy,q;;
and 3,333 (of the 65,404) examples in BFP.qium
to bug report discussions, forming the discussion-
augmented bug-fixing patches (Disc-BFP) datasets:
Disc-BF Py, and Disc-BFP04ium.-

Disc-BFPgay Disc-BFPyeq

#Ex 3,028 3,333
#Discussions/Ex 1.3 1.3
#Utterance/Discussion 2.8 2.9
#Attn Segments/Ex 1.0 1.0
Buggy 22.1 42.4
Fixed 19.3 40.8
Method 322 74.2
Oracle Msg 19.7 19.6
Title 79 8.1
Utterance 127.6 136.4
Last Utterance 114.0 109.3
Soln Desc 8.5 8.5

Table 1: Disc-BFP dataset statistics. We report aver-
ages across all data splits. Average token lengths (split
by punctuation and spacing) are presented in the second
block. Note that we consider only utterances occurring
before the bug-fixing commit.

Note that Disc-BFP is comparatively smaller
than BFP. While constructing BFP, Tufano et al.
(2019) did not consider any mining criteria related
to bug reports, so it is not surprising that many of
their examples do not have bug report discussions.
Bugs can be identified through various develop-
ment activities like code review, testing, and bug re-
porting. In this work, we focus on the last scenario,
for which bug report discussions would naturally
be available.

3.2 Data Processing

Disc-BF Py, consists of 2,445 training, 290 val-
idation, and 293 test examples. Disc-BFP yedium
consists of 2,660 training, 341 validation, and 332
test examples. In doing this, we maintain the origi-
nal data splits (e.g., Disc-BFPgy,;’s training set is
strictly a subset of BFPy,,,,;’s training set).

A bug report discussion is organized as a time-
line, and we consider only content that precedes the
bug-fixing commit on the timeline, corresponding
to the naturally-available context. Since a commit
can be linked to multiple issue reports, some exam-
ples have multiple bug report discussions. In these
cases, we order them so that discussions with the
most recent activity appear first and are less likely
to get truncated due to input length constraints (as
explained in the next paragraph). When leveraging
individual discussion components (e.g., title, gen-
erated solution description), we derive them from
each discussion separately and concatenate them
(separated with <s>). We process bug report bug
report discussions similar to Panthaplackel et al.
(2022), and we use the processed BFP code data
(buggy code and method) released by Chakraborty
and Ray (2021). We present dataset statistics in
Table 1.
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4 Models

Chakraborty and Ray (2021) achieved state-of-the-
art performance on the BFP datasets by finetuning
PLBART (Ahmad et al., 2021), a large sequence-to-
sequence model that was pretrained as a denoising
autoencoder (Lewis et al., 2020) on large amounts
of source code from GitHub and technical text from
StackOverflow. Similarly, we consider finetuning
PLBART to generate the fixed code given varying
input context representations.

4.1 Model Initialization

Since Chakraborty and Ray (2021) finetuned using
significantly more data (i.e., BFP training sets)?,
we initialize models using their checkpoints that
were finetuned with the buggy code snippet and
the full method context (emptyImplicitTable in
Figure 1a): buggy <s> method. This helps contex-
tualize the buggy code snippet and was shown to
improve performance.’

4.2 Our Models

After initializing, we further finetune on the Disc-
BFPgq and Disc-BFP e 4y training sets (sepa-
rately). All input context representations used for
this are formed by concatenating buggy <s> method
<s> with the various natural language sequences
tied to bug report discussions outlined in Section 2.
Sequences entailing multiple elements (e.g., utter-
ances in the whole discussion, titles from multiple
bug report discussions) are separated with <s>.
Though PLBART is capable of handling up to
1,024 tokens as input, Chakraborty and Ray (2021)
limit to 512 tokens. However, since the sequences
we consider can be particularly long after the Sen-
tencePiece tokenization (Kudo and Richardson,
2018) employed by PLBART, we choose to uti-
lize the full capacity during our finetuning. Note
that the input is truncated by removing from the
end if it exceeds the limit. We provide additional
details regarding model training in Appendix E.

4.3 Baselines

We consider models which use only buggy <s>
method (without natural language). As points of
reference, we also consider models that use the
oracle commit message rather than context from

2We considered directly finetuning PLBART on the smaller
Disc-BFP training sets, but this resulted in relatively low per-
formance, as shown in Appendix D.

3Note that the method also contains the buggy code snippet.
Though repetitive, this outperformed a unified format.

Finetune/Test Context  Disc-BFPg,.y  Disc-BFP 04

Without NL* 338 27.1
Oracle Msg' 33.4 27.4
Whole Discussion 33.1 27.1
Title 35.5%" 25.9
Last Utterance 350+t 28.9*F
Soln Desc 33.8 27.4
Soln Desc + Title 35.5%" 25.6
Attended Seg 36.2*1 28.0"

Table 2: Results on the Disc-BFP test sets. Models
are initialized from the checkpoint originally finetuned
without the oracle commit message on the full BFP
training sets. We then finetune on the Disc-BFP training
sets with various input context representations and eval-
uate on the Disc-BFP test sets using the same represen-
tations. We indicate representations that statistically sig-
nificantly outperform baselines with superscripts identi-
fying the specific baseline that is surpassed.

bug report discussions: buggy <s> method <s> or-
acle commit message. To make a fair comparison
with our models, we initialize baselines using the
Chakraborty and Ray (2021) checkpoints (§4.1)
and further finetune on the Disc-BFP training sets,
using a context window of 1,024 tokens.

5 Results

Following Chakraborty and Ray (2021), we com-
pute how often (%) the generated output exactly
matches the target fixed code snippet. We per-
form statistical significance testing with bootstrap
tests (Berg-Kirkpatrick et al., 2012), using 10,000
samples (with sample size 5,000) and p < 0.05.
We provide sample output in Appendix B.

We present results in Table 2. We find that lever-
aging context from bug report discussions can lead
to significant improvements over baselines which
do not include natural language context, yielding
up to 2.4% improvement for Disc-BF Py, and
1.8% for Disc-BFP,,.0qium-

We also observe that using context derived from
bug report discussions leads to improved perfor-
mance (1.5-2.8%) over using the oracle commit
message during our finetuning with the Disc-BFP
training sets. However, when Chakraborty and Ray
(2021) originally considered using the oracle com-
mit message, they had finetuned with it as input
on significantly more data (i.e., the full BFP train-
ing sets). So, we further investigate by initializing
PLBART parameters from the Chakraborty and
Ray (2021) checkpoint which was finetuned using
the oracle commit message (buggy <s> method <s>
oracle commit message). Then, we perform finetun-
ing on the Disc-BFP training sets with the various
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Finetune/Test Ctxt  Disc-BFPgnay  Disc-BF Py

Without NL? 35.5 253
Oracle MsgT 36.2 25.9
Whole Discussion 34.1 25.6
Title 35.2 25.3
Last Utterance 36.2 25.6
Soln Desc 33.4 26.5%
Soln Desc + Title 39,289 26.28
Attended Seg 36.98 24.1

Table 3: Additional results on the Disc-BFP test sets
where models are initialized from the checkpoint orig-
inally finetuned with the oracle commit message on
the full BFP training sets. We then finetune on the
Disc-BFP training sets with various input context repre-
sentations and evaluate on the Disc-BFP test sets using
the same representations. We indicate representations
that statistically significantly outperform baselines with
superscripts identifying the specific baseline that is sur-
passed.

input context representations we considered in Ta-
ble 2. We present results from these additional
experiments in Table 3. Note that for all represen-
tations other than “oracle msg" the oracle commit
message is used only during training and not used
at test time, and so the results can extend to an
actual realistic use case.

Relative to the results presented in Table 2, for
Disc-BF P41, initializing from the checkpoint fine-
tuned with the oracle commit message tends to
yield improved performance across the different
input context representations, and with the solu-
tion description + title representation, we observe
a 3.0% improvement over using the oracle commit
message. For Disc-BFP,;cqium, the performance
tends to be lower, and the “last utterance" con-
text representation from Table 2 remains the best.
Therefore, we again find that using bug report dis-
cussions leads to improvements over baselines that
use the oracle commit message (during both fine-
tuning and test). This suggests that context derived
from bug report discussions, encompassing diverse
types of information, can offer richer context than
oracle commit messages for fixing bugs. This is
especially promising since these discussions are
often readily available in a real world setting.

Overall, the scores and magnitude of improve-
ment tend to be lower for Disc-BFP,;04ium- This is
likely due to the challenges of generating longer
sequences (Varis and Bojar, 2021) and the strin-
gent evaluation metric requiring exact match with
the reference. The best performance on the Disc-
BFPg,,; test set comes from using solution descrip-
tion + title. For Disc-BF P eqium, it is with the last
utterance. Since both of these are derived from

the whole discussion, one may expect using the
whole discussion to yield similar or even improved
performance; however, this is not the case.

Including the whole discussion substantially
increases the input length, which models like
PLBART cannot easily handle. This can be par-
tially attributed to the practical challenge of fitting
the entire sequence in the model’s limited context
window, with 12.8-15.8% training examples get-
ting truncated. However, the bigger challenge is
drawing meaning from such large amounts of text.
We demonstrate the benefits of using more concise
sequences, through various natural language ele-
ments that are likely to capture critical aspects of
the whole discussion.

6 Conclusion

In this work, we investigated the utility of natural
language for automated bug fixing. Unlike prior
work, which leverages an unrealistic source of nat-
ural language for this purpose, through oracle com-
mit messages, we consider a naturally occurring
source that is often available: bug report discus-
sions. We explore various strategies for deriving
natural language context from these discussions,
using our newly compiled discussion-augmented,
bug-fixing patches datasets. We show that when
these discussions are available, they offer useful
context for bug fixing, even leading to improved
performance over using oracle commit messages.

Acknowledgements

We would like to thank Saikat Chakraborty for giv-
ing us access to checkpoints from Chakraborty and
Ray (2021). We would like to also thank anony-
mous reviewers for their detailed suggestions. This
work was supported by NSF grant 11S-2145479,
a Bloomberg Data Science Fellowship to the first
author, and a Google Faculty Research Award.

Limitations

We focus on popular bug-fixing datasets (Tufano
et al., 2019), which were originally constructed
with certain constraints, including the use of a sin-
gle programming language (Java) and methods of
limited lengths (<50 tokens, 50-100 tokens). Next,
examples in these datasets correspond to individual
methods, with some examples being drawn from
different methods of the same bug-fixing commit.
Therefore, while generating the correct fix for a
given example removes the presence of a bug in a
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particular method, it does not necessarily imply that
the underlying bug has been completely removed
from the software project entirely.

Furthermore, bug report discussions are not al-
ways available, and our work focuses on those in-
stances in which they are available. Because Tu-
fano et al. (2019) do not consider bug report discus-
sions in their work, they do not require examples to
have bug report discussions in their datasets. How-
ever, we do need examples to have these discus-
sions for our study. Because we are unable to map
many of their examples to bug report discussions,
we focus on smaller subsets of their datasets.

Ethics Statement

Automated bug fixing aims to streamline debug-
ging and bug resolution for developers. We en-
vision developers using the output generated by
our models as “suggested fixes" that they would
still need to inspect (and possibly revise) before
committing them to the code base. Without such
human intervention, erroneous output generated
by our models could leave bugs unfixed or even
introduce new bugs, posing a threat to the overall
reliability of the software.

Note that we mine publicly available bug report
discussions, in accordance with GitHub’s accept-
able use policy.
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A Generating Solution Descriptions

In Panthaplackel et al. (2022), we benchmarked var-
ious models, finding that the best solution descrip-
tions were generated by finetuning PLBART with
a filtered training set (consisting of fewer generic
and uninformative target descriptions as well as
discussions without sufficient context to generate
informative descriptions).

In this current work, we re-train the model af-
ter removing 7 examples in the training set that
have bug reports overlapping with the Disc-BFP
test sets. We run inference on all partitions of the
Disc-BFP datasets. For this, we first preprocess
the bug report discussions by subtokenizing them
(i.e., splitting by spaces, punctuation, camelCase,
and snake_case), similar to how we previously pre-
processed the training data in Panthaplackel et al.
(2022). Note that we do not subtokenize bug re-
port discussions when we directly feed them into
the models we presented in the main paper. Bug
report discussions often include source code, either
in-lined with natural language or as longer code
blocks, which are often delimited with markdown
tags. In Panthaplackel et al. (2022), we had retained
in-lined code but removed longer marked blocks of
code. While these longer code blocks may not be
as relevant to generating natural language descrip-
tions, we believe they could be useful in gathering
insight for generating the fixed code. Therefore, we
do not remove them from bug report discussions,
even when generating solution descriptions.

B Examples

For the Disc-BF Py, test example in Figure 1, the
two models which leverage only buggy <s> method
during finetuning and test (Without NL in Table 2)
do not generate the correct output. Note that neither
of these models have access to any natural language
context. Two other models (which do use natural
language) also fail to generate the correct output,
corresponding to the whole discussion and solution
description representations (initialized using the
“Without NL" checkpoint). In all four of these error
cases, the model simply copies the buggy code
snippet. However, the other 12 models generate the
correct output for this particular example.

Some examples are difficult for models, even
with natural language context. We provide one
such example from the Disc-BFP yegium test set in
Figure 2. The fix requires reversing the order of
the method parameters, which is actually evident

from the bug report discussion, as well as the gen-
erated solution description. However, performing
this reversal involves more complex reasoning, and
so the majority of models are unable to generate
the correct output for this example. Nonetheless,
the model which leverages the last utterance (ini-
tialized using the “Without NL" checkpoint) does
manage to generate the correct output.

C Identifying Useful Discussion Segments

We acquire context from bug report discussions in
various ways, either heuristically (whole discus-
sion, title, last utterance) or algorithmically (at-
tended segments when generating solution descrip-
tions). (Note that we do not include solution de-
scriptions in these groups since they do not actually
appear within the bug report discussions.) As we
saw in Table 2, using the whole discussion may
not be beneficial, since models struggle to reason
about large amounts of text. We show that we are
able to achieve improved performance by selecting
more concise segments from within this discussion
(e.g., title, last utterance, attended segments) that
are likely to be relevant to fixing the bug.

However, we may not always being selecting
the most useful segment(s) yielding the best per-
formance. The most useful segments may vary by
example, and there could also be other utterances
(beyond the title, last utterance, and attended utter-
ances) that have relevant information.

Therefore, we also estimate the performance of
an “oracle” upper-bound that employs the most use-
ful segment as the natural language context. For
this, we consider models finetuned with the various
segments from the discussion, including models
finetuned on the whole discussion. We run infer-
ence with these models, using buggy <s> method
<s> segment, for all segments, including the title
and each utterance in the discussion. So, if there are
N segments derived from the discussion (title and
N — 1 utterances before the bug-fixing commit),
we obtain N candidates for the fixed code.

For a given example, we compute best exact
match, or how often at least one of these candi-
dates matches the reference. We present results in
Table 4. We observe a 3.1-3.3% gap, relative to the
highest scores in Table 2, suggesting that there is
useful context in these discussions that is not being
exploited. We leave it to future work to learn mod-
els for extracting the most useful segments from
bug report discussions for fixing bugs.

2299



- public void assertEquals (java.lang.Object actual, java.lang.Object expected)
+ public void assertEquals (java.lang.Object expected, java.lang.Object actual)

{

if ((expected == null) && (actual == null))
return;
if ((expected != null) && (expected.equals(actual)))

return;
fail (format (expected, actual));
}
Oracle Commit Message: Fixes issue #4.

Title: assertEquals parameters order

Utterance #1:

Maybe this is not an issue but a desired behaviour, however, it seems to me that the order of the
parameters in the assertEquals method is wrong: public void assertEquals(Object actual, Object expected)
Being a long time user of JUnit, | expected the "actual" parameter to be in the second position instead of

the first one.

Utterance #2:

The ordering was based on TestNG, which is what | typically use for unit testing, but since xUnit is more

common | don't mind reversing the order.

Solution Description: reversing the order of the assert equals parameters

Figure 2: Examples from the Disc-BFP .qum test set, with the corresponding bug report discussion (https:
//github.com/jhalterman/concurrentunit/issues/4) and generated solution description.

Init Finetune Context Disc-BFPg,.y  Disc-BFP,,eq
Whole Discussion 36.9 29.8
. Title 40.3 27.4
Without NL (BFP) Last Utterance 36.9 32.2
Attended Segments  37.2 31.3
Whole Discussion 39.6 29.2
. Title 38.2 26.8
With NL (BFP) Last Utterance 39.2 29.5
Attended Segments  42.3 27.1

Table 4: Evaluating exact match (%) if the best performing segment (title or any individual utterance) from the
whole discussion is used at test time (assuming that it’s known).

D Initializing Model Parameters

In Table 2, we present results from initializing
model parameters from two of the checkpoints re-
leased by Chakraborty and Ray (2021). One cor-
responds to finetuning PLBART without NL using
task-specific data from the larger BFP training sets.
The other one corresponds to finetuning PLBART
with NL (from oracle commit messages), also us-
ing task-specific data from the BFP training sets.
Since these checkpoints have already been fine-
tuned on bug-fixing data, it is reasonable to run
inference on them directly without further fine-
tuning on the Disc-BFP training sets. We show
these results in Table 5. We find the overall perfor-
mances to be lower, especially when testing with
input context representations that were not seen
during Chakraborty and Ray (2021)’s finetuning
(e.g., whole discussion).

We also tried initializing model parameters di-
rectly from PLBART and finetuning on the Disc-
BFP training sets. Table 5 shows that this works
poorly, likely because the Disc-BFP training sets
are smaller than the BFP training sets, with which
the Chakraborty and Ray (2021) checkpoints were

finetuned. Therefore, to reap the benefits of fine-
tuning on more data, we believe it is best to first
finetune on larger bug-fixing datasets (for which
bug report discussions do not need to be available).
Following that, another stage of finetuning should
be done using the smaller training set that includes
context from bug report discussions.

E Training Details

Our models are based on the architecture of
PLBART, which itself follows from the BART-base
model (Lewis et al., 2020). The encoder and de-
coder each have 6 layers, with hidden dimension
768 and 12 heads. There are approximately 140M
parameters. We use the same hyperparameters as
Chakraborty and Ray (2021). The batch size is 4,
with gradient accumulation over every 4 batches.
Early stopping is employed, with a patience of 5
epochs, based on validation performance. All mod-
els are trained for a single run. At test time, beam
search is used, with a beam size of 5. Models are
finetuned and tested using NVIDIA DGX GPUs
(32 GB). We report the number of epochs, training
time, and testing time for each of the models in
Table 6.
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Inference Only Finetuned

Init Context Disc-BFPg,a1  Disc-BFP .4 Disc-BFPg,a1  Disc-BFP,.q
Without NL - - 22.2 14.8
Oracle Msg - - 28.0 16.6
Whole Disc - - 25.3 16.0
Title - - 27.3 1.5
PLBART Last Utterance - - 23.2 19.0
Soln Desc - - 20.5 17.2
Soln Desc + Title - - 24.2 16.3
Attended Seg - - 18.1 1.8
Without NL 30.7 25.3 33.8 27.1
Oracle Msg 30.7 25.0 33.4 27.4
Whole Disc 21.5 19.0 33.1 27.1
. Title 31.4 259 35.5 25.9
Without NL (BFP) - ;¢ Utterance 29.0 232 3522 289
Soln Desc 31.7 25.9 33.8 27.4
Soln Desc + Title 29.7 25.0 35.5 25.6
Attended Seg 23.5 20.8 36.2 28.0
Without NL 31.1 22.3 355 25.3
Oracle Msg 31.1 24.4 36.2 25.9
‘Whole Disc 20.5 16.9 34.1 25.6
. Title 28.7 22.3 35.2 253
WIith NL (BFP) [ { Utterance 253 223 362 25.6
Soln Desc 29.4 24.1 33.4 26.5
Soln Desc + Title 28.3 22.6 39.2 26.2
Attended Seg 23.5 19.9 36.9 24.1

Table 5: We measure the effect of finetuning on the Disc-BFP training sets by comparing to a setting in which the
Chakraborty and Ray (2021) checkpoints are used directly for inference (without any finetuning). We also measure
the effect of initializing with checkpoints that have already been finetuned on task-specific data by comparing to
models directly initialized from PLBART and then finetuned on the Disc-BFP training sets.

Disc-BFPgan Disc-BFP,..a
Init Context Epoch Train Time Test Time Epoch Train Time Test Time
Without NL 2 0:15:44 0:01:06 3 0:34:43 0:01:59
Oracle Msg 14 0:31:11 0:00:34 4 0:28:21 0:01:13
Whole Disc 6 0:25:25 0:01:55 10 1:02:34 0:02:18
. Title 6 0:18:54 0:01:31 13 1:05:32 0:01:02
Without NL (BFP) 1, { Utterance 8 0:2828  0:01:38 5 0:37:44  0:02:47
Soln Desc 4 0:17:48 0:01:11 3 0:26:54 0:01:50
Soln Desc + Title 10 0:28:18 0:01:16 9 0:51:09 0:02:27
Attended Seg 6 0:22:54 0:01:21 2 0:27:37 0:02:39
Without NL 6 0:17:54 0:00:53 3 0:24:16 0:01:18
Oracle Msg 9 0:36:17 0:00:52 9 1:02:02 0:01:59
Whole Disc 6 0:25:55 0:00:53 5 0:42:01 0:02:19
. Title 6 0:18:08 0:01:31 10 0:46:07 0:01:36
WIth NL (BFP) [ { Utterance 4 0:19:51 0:01:54 2 02424 0:02:09
Soln Desc 2 0:13:44 0:01:03 2 0:23:42 0:01:50
Soln Desc + Title 8 0:26:41 0:01:42 6 0:41:55 0:01:38
Attended Seg 10 0:35:53 0:01:43 5 0:41:44 0:02:28

Table 6: Reporting the training epoch from which we obtain the checkpoint used for evaluation, the total training
time (HH:MM:SS), and the total time needed to run inference (HH:MM:SS).
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