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ABSTRACT   

Despite recent advances in deep learning, object detection and tracking still require considerable manual and 

computational effort. First, we need to collect and create a database of hundreds or thousands of images of the target 

objects. Next we must annotate or curate the images to indicate the presence and position of the target objects within those 

images. Finally, we must train a CNN (convolution neural network) model to detect and locate the target objects in new 

images. This training is usually computationally intensive, consists of thousands of epochs, and can take tens of hours for 

each target object. Even after the model training in completed, there is still a chance of failure if the real-time tracking and 

object detection phases lack sufficient accuracy, precision, and/or speed for many important applications. Here we present 
a system and approach which  minimizes the computational expense of the various steps in the training and real-time 

tracking process outlined above of for applications in the development of mixed-reality science laboratory experiences by 

using non-intrusive object-encoding 2D QR codes that are mounted directly onto the surfaces of the lab tools to be tracked.  

This system can start detecting and tracking it immediately and eliminates the laborious process of acquiring and annotating 

a new training dataset for every new lab tool to be tracked.  
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1. INTRODUCTION  

The current methods of object tracking require computationally intensive training on GPUs and huge datasets, including 
hundreds or even thousands of annotated images. We have created a system that can reduce or in some cases, eliminate 

these steps and make object tracking quicker and less expensive. This system can detect and track objects by only using 

QR codes. To achieve this, we first trained YOLOv4 to detect QR codes. For detection of new objects, we do not need to 

train the model again; all we have to do is generate a QR code that encodes the object’s information (ie. its identity, height, 

and width) and mount this QR code on the a surface of the object. The system will then start detecting and tracking the 

object in real-time. The target application of this project is a virtual laboratory that requires detection and tracking of 

laboratory tools in real time. The biggest challenge for creating such a virtual environment is to be able to continuously 

add new tools. The traditional way to accomplish this would be to train deep learning models for each and every tool, 

which is very expensive and time-consuming. The greatest advantage of this project is that it circumvents the need to  train 

deep learning models. Instead, we can train a model just once to detect and estimate the position of the  QR codes, and 

then add any new tools into then system by printing out a calibrated QR code and attaching it to the object. This saves 

human and computational resources and provides an economical way to scale the number of optically-tracked lab tools for 

virtual/mixed reality science lab applications.  

2. RELATED WORK 

Numerous studies have employed QR codes that are detected and localized using deep learning models under natural 

settings. This project presents a prototype that demonstrates simplified object detection using a deep learning model which 

minimizes the resource intensive steps of data set preparation and training. 
 
A recent evaluation of deep learning techniques for QR code detection [6] assessed the fidelity of object detection in the 

context of  different deep learning model configurations; the authors proposed various modifications of the basic 



 

 
 

 

architecture  to take advantage of object subpart annotation. These modifications were implemented in the best scoring 

model and compared with a traditional technique. which demonstrated substantial improvements in object detection 

fidelity. In Recognition of Perspective Distorted QR Codes with a Partially Damaged Finder Pattern in Real Scene Images 

[1], the authors created a simple sequential algorithm that can localize a QR code image. It first implements image 

binarization, then localizes the QR code by utilizing a characteristic finder pattern located in the three corners of the target 
QR code. Finally, it identifies and evaluates perspective disorders. Their algorithm was able to recognize damaged finder 

patterns, is efficient, and works well for low-resolution images and camera systems. In Fast QR Code Detection in 

Arbitrarily Acquired Images[2], a 2-step process was employed to detect QR codes in arbitrary images. They use the Viola-

Jones rapid object detection framework to focus the object detection algorithm on promising regions of the image. This 

study carried out extensive optimization of the parameters of the framework in order to improve finder pattern detection. 

In the second step, the algorithm uses the results of the first step to decide if the detected finder patterns belong to a 

particular QR code. 

3. DESIGN AND IMPLEMENTATION 

 
In the present work, we trained the YOLOv4 object detection model to detect QR codes. We used YOLOv4 because it 

outperformed other 2-stage CNN models such as Faster R-CNN in terms of accuracy and precision. YOLOv4 has also 

outperformed other 1-stage or one-shot object detection algorithms. To analyze this, we trained YOLOv4 using a publicly 

available dataset. This training used the transfer learning technique where we trained our model over existing weights 

resulting from previous training of YOLO on MS COCO dataset. The results were compared with the publicly available 

dataset in terms of mean average precision. Our analysis shows that YOLOv4 is approximately 30% better than MobileNet, 

40% better than VGG16 and RestNet50. The results clearly show that YOLOv4 outperforms other single-shot object 

detectors like MobileNet, VG16 and ResNet50. For this reason, we chose YOLOv4 for our project.  

 

After enabling QR code detection, we created algorithms that detect a QR code and decode it using PyzBar; we have also 

optimized this decoding process to increase throughput in terms of frames per second. The outputs from inference and 

decoding are processed using our custom algorithms to scale detections of a QR code to track a completely new associated 
object in real time. This includes optimized decoding, coordinate sorting, calibrated scaling, and continuation of detections 

using the region of interest. 

3.1 Design Flow Phases 

The first phase was to detect a QR code using YOLOv4[15] and then decode the QR code. When we used open-source 

decoders for the whole task, the decoding throughput in terms of frames per second was slower. To avoid performance 

degradation, we trained YOLOv4 model for QR codes. To increase accuracy, we used a publicly available dataset [6] and 

trained our model on top of weights from our previous training. Once YOLOv4 was trained, we used it for detecting QR 

codes. We fed the output of detections to the open-source PyzBar[3] QR code decoder. This improved the frames per 

second rate of QR decoding as the decoder did not have to process the entire image.    

 

The next phase was to extrapolate this decoded information to start tracking a completely new object. To make this 

possible, the information required about the object was its name and its size (width and height), some objects can have 

multiple faces and each face can have a different height or width. One way to do this was to just encode the object’s name 

in the QR code and rest of the information could be included in the source code. This method would have worked but 
scaling this project to add new objects would have been difficult. The source code had to be understood by the user and 

changed for every new object. To overcome this difficulty, we encoded the name of the object, object’s width and height 

with respect to QR code’s width and height. The height and width will be used for scaling the coordinates of QR code to 

include the object. Now, to track a new object using our model, one must calibrate its QR code and paste it on the object. 

After detecting and decoding the QR code, the output includes object’s name, height and width scaling multipliers and the 

QR code’s coordinates. The problem we faced was that the coordinates were not in any ordered form. They are jumbled 

up and it is difficult to figure out which vertex is which. To figure out the correct coordinates we came up with an algorithm 

that will sort them based on the x-coordinate values. We came up with a concept that the coordinate with maximum x- 

value and coordinate with minimum x-value will be the vertices of the diagonal of a polygon and the bounding box should 

not include this diagonal. 

 



 

 
 

 

The next phase was to scale out the sorted coordinates to track an object. One way to do this is to simply multiply all x-

coordinates with width scale factor and y-coordinates with height scale factor. However, when we did this, the scaled 

bounding box was not around the object. Instead, it appeared somewhere else in the image. To solve this problem, we 

wrote another algorithm that calculates the center of the QR code and uses it to scale back the coordinates in the right place 

in an image.  
 

Another challenge we faced was decoding the QR codes in real-life scenarios. Detecting a QR code is easier than decoding 

it. A lot of factors can hinder the performance of a decoder, for example, camera quality, lighting, speed of movement, etc.  

Initially, we implemented the system using four QR codes pasted on an object, and our algorithm required all four of them 

to be decoded at the same time to detect and track that object in real-time. The algorithm worked perfectly well in ideal 

conditions. However, when the tool was moved around, almost always, at least one QR code out of the four was not 

decoded. This caused the object tracking to fail. Also, having to calibrate four different QR codes for a single face of an 

object would have been a nightmare.  

 

To overcome this problem, we changed and optimized our algorithms to use only one QR code instead of four. To 

overcome the problem of failed decodes, our algorithm uses the concept of the region of interest. It means that we assume 

the object will be in our region of interest for almost a second, and we keep tracking it in the same area. To make this 
possible we save the area inside a bounding box and call it the region of interest which is overwritten after every successful 

decode. When the system is able to detect the QR code but is not able to decode it, we use the last saved region of interest 

and continue tracking the object. This has greatly improved our tracking and is especially effective in real time scenarios. 

Fig 1 shows the overall working of our system.  

 
 

Fig 1: Overall system setup and working 

3.2 Dataset 

To train this model, we required annotated set of images of QR codes that can be fed into the model to train it to detect QR 

codes. The easiest way would have been to generate hundreds of QR codes using a simple python script. However, we 

needed images of QR codes in different settings, images of distorted QR codes, and images with multiple QR codes. This 

means we needed a diversified dataset to make detections robust for real-time and real-world settings. To accomplish this, 

we used a publicly available dataset [6] along with our own custom dataset. [6] contains around 760 annotated images. 

However, the images are annotated for both QR codes and FIP patterns. Our use case only required QR codes and not 

FIPs. Also, these annotations were not in the YOLO format of text files. They are available in a different format with xmax, 
ymax xmin, and ymin coordinate values of the position of an object in the image, Fig 2. These annotations are stored in *.csv 

files. To be able to use this dataset, we converted the annotation files in a format accepted by YOLO. We converted the 

coordinate values available into (x-center, y-center), which are the coordinates of the center of the object and the object’s 

height and width. Then we normalized these values. Normalization means that x-coordinate and width is divided by the 

width of the entire image and the height and y-coordinate is divided by the height of the entire image. This is repeated for 

every QR code in every image. All these values are saved in a text file, and one text file is saved for every image.  

However, images in this dataset [6] are not as diversified for our use case. There are only a few images with multiple QR 

codes and a few images containing distorted or bent QR codes. To enrich the overall data, we also created our own custom 



 

 
 

 

dataset. We created our custom dataset to initially train our model and then used the publicly available dataset to further 

train the model on previous training weights. For comparison, we also trained our model only using [6].  

Our custom dataset includes approximately 500 annotated images of QR codes from various angles and in various 

environments. We have annotated these images with labelImg which saves the x and y coordinates of the center, height, 

and width of the object in the image, all in a text file in a normalized form. This has been explained above.  
The process of acquiring and preparing our custom dataset is described as follows: The data has been collected from google 

images using the chrome extension called Image downloader by Pact Interactive. It is an interactive tool that comes with 

a size funnel which is particularly useful for filtering images of compatible sizes.  

 
Darknet can process either .jpg or .jpeg image formats. Downloaded images are of different formats like .png,. jffif, etc. 

To convert the images in .jpg format, we used a python script. Once all the images have been converted to .jpg format, we 

can now label them by using labelImg [4]. It is an open-source tool written in python and uses QT for its UI. The data set 
has been split in 80-20 ratio where 80% of the data is set aside for training and 20% for validation. 

3.3 Training 

We used transfer learning for training YOLOv4. It means that we reused the pretrained YOLOv4 on MS COCO dataset. 
YOLOv4 is configured to detect 80 different classes of objects. However, for our use case, we need to train it on only 1 

class i.e., QR codes. For this reason, we reduced the number of filters in convolutional layers to reduce the complexity and 

number of parameters for our training. The formula to calculate the number of filters in accordance with the classes of 

objects is mentioned below [16][17]. This approach reduces the resources and amount of labeled data required to train a 

new model. We did not have to start training from scratch, which would have increased the consumption of valuable GPU 

resources.  

3.4 Terminology 

1. xmax, ymax xmin, and ymin: Coordinates show the min and max values on x-axis and y-axis, respectively, in Fig 2. 

2. Region of interest: When a QR code is successfully decoded and a bounding box is scaled and drawn around the 

corresponding object, its coordinates are saved, and the area between them is called the region of interest. It is 

saved after every successful decoding but used only if decoding fails but detections are successful. 

 

3. Center of QR code: This is an approximate value of the center of a QR code. The center’s coordinates are 

calculated as: 

Xcenter= 
𝑥𝑥1+𝑥𝑥2+𝑥𝑥3+𝑥𝑥44  ,Ycenter = 

𝑦𝑦1+𝑦𝑦2+𝑦𝑦3+𝑦𝑦44  

 

 
Fig 2: Xmax (greatest value of x-coordinate out of 4 coordinates of the QR code), Ymax (greatest value of y-

coordinate out of 4 coordinates of the QR code) Xmin (minimum value of x-coordinate, and Ymin (minimum 

value of y-coordinate out of 4 coordinates of the QR code).  



 

 
 

 

3.5. Implementation 
This system draws bounding boxes around the detected object and tracks it while it is in motion. The bounding box also 

tilts when the object is tilted. 

1. Generate a QR code and encode the following information: 

a. What is the object? Example beaker, pipette, etc. 

b. Scale factor for: 

i. Width of the object: Ratio of the width of the object: width of the QR code  

X-axis Scale factor = 
𝑤𝑤0𝑤𝑤𝑄𝑄 

ii. Height of the object. Ratio of the height of the object: height of the QR code 

Y-axis scale factor =  
𝐻𝐻0𝐻𝐻𝑄𝑄 

2. Detection: After inference, the QR code is detected, and its (X-center and Y-center coordinates, height, and width 

are returned. 

3. Decoding:  

a. The detected part of the image is sent to the PyzBar for decoding. After decoding, it returns the encoded 

information along with four coordinates of the QR code. 

b. We did not send the entire image to PyzBar to reduce decoding time which optimizes the performance 

in real-time. 

c. PyzBar returns the decoded information mentioned in step 1 of this algorithm. It also returns the four 

coordinates of the QR code’s vertex. 

d. However, these coordinates are not in reference to the whole image, only in reference to the QR code’s 

image that was sent to PyzBar. 

e. To rectify this problem, we have subtracted the original xmin and ymin from x and y part of all four 

coordinates, as shown in Fig 3. 

f. Also, the system creates a log file for detection and decoding with timestamps. 

 
Fig 3: Two sets of coordinates, one after inference and one after decoding. 

 

 

 



 

 
 

 

4. Sort coordinates: 

a. The next step is to determine how to draw lines correctly between the four given coordinates. We need 

to make sure not to draw lines along the diagonals. This can only be done by understanding which 

coordinates are which.  

b. To achieve this, we have sorted all four coordinates based on their x coordinate’s value in ascending 

order.  

c. We now have sorted coordinates of the 4 vertices of the QR code as shown in Fig 4. 

V0 < V1 < V2 < V3  

5. Draw bounding box around QR code: 

a. The idea is that coordinates with xmax and xmin will never be joined with a line, and similarly, ymax and 

ymin will never be joined as these coordinates will always be the diagonals of the bounding box.  

b. Lines are drawn according to the sorted list of the coordinates. Lines are drawn between (V0, V1), (V0, 

V2), (V2, V3) and (V3, V1). Fig 4 illustrates how to draw a bounding box.  

c. Also in Fig 3, yellow bounding box around QR code is a real-time example. 

d. Fig 5 clearly shows how bounding boxes of this algorithm show the tilted object whereas Yolov4’s box 

does not; it is always a perfectly straight square or rectangle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: sorted vertex positions and illustration of which Coordinates should be joined by lines to create a 

bounding box. Yellow line shows that we shouldn’t join V0 and V3 or V1 and V2 

 

6. Scaling: 

a. So far, we have achieved to draw a correct bounding box around the QR code. However, our final goal 

is to do this for the entire object. This bounding box is drawn around the QR code pasted on the object 

but not the object itself. 

b. Therefore, the next step is to scale these coordinates to correctly position the object. To scale this 

bounding box, we first calculate the distance between 

 

diff_x = (Xcenter* X-axis Scale factor) – Xcenter 

diff_y = (Ycenter* Y-axis Scale factor) – Ycenter 

 

These two values will be used to get the scaled box in a position that is in alignment with the QRcode’s 

center.  

 



 

 
 

 

c. For each vertex: 

i. Multiply X coordinate with X-axis Scale factor and subtract the diff_x 

scaled_x-coordinate= (x-coordinate * X-axis scale factor) - diff_x 

ii. Multiply Y coordinate with Y-axis Scale factor and subtract the diff_y 

scaled_x-coordinate= (x-coordinate * X-axis scale factor) - diff_y 

d. We have the scaled coordinates and can draw a line between them as described in step 5 and Fig 5. 

 

7. Decoding Problem: 

a. Steps 3 to 6 will work perfectly well as long as the QR code is decoded in every frame. However, 

successfully decoding a QR code depends on a lot of factors like correct camera focus, distance from the 

camera, amount of light in the room, reflecting lights, etc. In real-time and real-life scenarios, it is 

impossible to decode in every frame and could lead to miss detection of the object.  

b. To solve this problem, we have used the concept of the region of interest. After every successful 

decoding, the region of interest is updated with the area between the bounding boxes. As soon as there 

is a detection but no decoding, the region of interest from the previous frame is used to approximate the 

position of the object, and there is no break in object tracking.  

c. However, this is done for a maximum of 1 second because after a certain time, the object may change 

its position and the previously stored region of interest becomes obsolete. 

 

 
Fig 5: Different bounding boxes 

4. RESULTS ANALYSIS 

4.1. Model Evaluation  

4.1.1. Performance Evaluation of YOLOv4 and other SSD algorithms 
To compare and evaluate the performance of YOLOv4 with other SSD algorithms, we trained our model using the [6] 

dataset. The dataset [6] is divided into 80% training data, 10%testing data, and 10% validation data. We preserved this 

division and trained YOLOv4 using the exact same division of their dataset. Following this, we compared the results 

presented in paper [6] with the same dataset. Fig 6 represents these results. YOLOv4 has performed approximately 30% 

better than MobileNet, and 40% better than VGG16 and RestNet50.  

 

Object Detection models mAP@50% threshold 

YOLOv4  94.17% 

MobileNet 72.7% 

VGG16 67.70% 

RestNet50 67.1% 



 

 
 

 

Fig 6: Comparing the performance of different 1-stage algorithms trained on [6] dataset. Results show that YOLOv4 has 

the highest performance 

 

4.1.2 Evaluation of QR decoding performance in terms of frames per second  

We compare some existing decoders in Fig 7, available in the open-source community, with our proposed algorithm that 

includes inference of QR code, decoding of QR codes, processes the decoded information to detect and track an entirely 

different object, and also takes care of missed decoding by using object’s region of interest, all in real-time. 

At the time of recording, these are the numbers recorded and are shown in the following images. All measurements for 

comparison are performed on Tesla T4 GPU. 

 
Fig 7:Peformance Comparison (Frame Per Second) 

 
Our algorithm uses PyzBar for decoding but with optimizations. It first performs inference and then sends only that part 

of the image to the decoder, whereas PyzBar decodes the entire image, which makes it 17% slower. 

In conclusion, this is not a direct comparison as our algorithm requires much more computation because of all the 

additional features mentioned above, and yet it is 30% faster than CV2 open-source decoder[5] and 17% faster than the 

off-the-shelf PyzBar decoder[2]. 

**Note: All the inference and experiments were performed on Google Colab, which is a Jupyter notebook service hosted 

by Google. The camera used was connected to our local system, the images were sent over the network to Colab where 

all computations were carried out, then the results were sent back over the network. This caused latency, and the 

processing was reduced to an average of 2 FPS. However, we calculated the frames per second being processed on Tesla 
T4 GPU provided by Colab, in short, we removed network latency in our calculations of the performance of our system, 

CV decoder, and off-the-shelf PyzBar. 

 
4.2. Dataset Evaluation: YOLO training results on different datasets 

 
Following are the three types of datasets that we used for training the YOLO model: 

1. Custom dataset: We first trained YOLOv4 with the custom dataset that we created, as presented in Fig 6. 

2. Publicly available dataset[6]: We also trained our YOLOv4 model on this dataset, and the results are shown in 

Fig 8. 

3. Enhanced dataset (Custom Dataset + Publicly available dataset): To increase the overall precision of our 

model first trained YOLO with our custom dataset and used those weights to further train it with the publicly 

available dataset as shown in Fig 8. 
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Metrics Our custom dataset [6] dataset Enhanced Dataset 

mAP @50% threshold  91.47% 94.17% 93.82% 

Average IOU 74.9% 81.38% 77.45% 

Fig 8: Metrics after training YOLOv4 with different datasets 

 
4.3. Lab tools detection and tracking results 

 
The implemented method was tested with multiple lab tools for an educational science lab, and the results in Fig 9 and 

Fig 10 show that the lab tool is detected correctly and the QR markers are tracked accurately as shown by tilting a beaker 

in Fig 10. We have also tested the model with multiple lab tools in various conditions, including lab tools being side by 
side, being in the same scene with distance, as well as overlapping bounding boxes where the lab tools are still detected 

and tracked accurately. 

 

 
Fig 9: Detection from our custom model. Top left value represents the frames being processed per second. 

 

 

 
Fig 10: Tilted beaker being detected 

 

 



 

 
 

 

 
Fig 11: Multiple lab tools detected side by side. 

 

 

 
Fig 12: Multiple Lab tools detected with distance between them. 

 

 

 
Fig 13: Multiple tools being detected with one in the background and overlapping bounding boxes. 

 

 



 

 
 

 

5. CONCLUSION 

This project demonstrates a unique way to detect and track objects in real time without having to go through the process 

of creating datasets and training models to do so. This is made possible by encoding a QR code with calibrated information 

about the object it is supposed to detect and track. Our algorithm decodes the QR code, extracts its coordinates, and then 

extrapolates all the available data to create a bounding box around the object for tracking. We have also implemented a 

method where in the case of failed decoding, the system can still approximate the position of the object by referring to its 

previously saved region of interest. We have also demonstrated how an object’s titled orientation can be captured by a 

bounding box which is an improvement to the existing outputs of YOLOv4; Fig 3 demonstrates this feature. This means 

that whenever we have to detect and track a new object, all we have to do is generate a calibrated QR code and paste it on 

that object. Our algorithm will start tracking it in real time.  
 

YOLO4 model has performed approximately 30% better than MobileNet, 40% better than VGG16 and RestNet50 when 

compared using the same publicly available dataset[6]. The throughput of our project in terms of frames per second is 34 

fps which is 31% faster than Open CV decoder and 17% faster than PyzBar. When comparing datasets, our custom dataset 

yielded a 91.7% mAP on YOLOv4, dataset [6] yielded 94%, and first training the model on our custom dataset and using 

those weights to further train that model with the other dataset yielded 93.8% mAP. We have improved decoding 

performance by extracting QR code from the entire image and sending only a fraction of the whole image containing the 

QR code to PyzBar decoder. This technique has helped us improve the overall performance of our system.   
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