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Abstract

While existing work on studying bias in NLP
focues on negative or pejorative language use,
Govindarajan et al. (2023) offer a revised fram-
ing of bias in terms of intergroup social context,
and its effects on language behavior. In this pa-
per, we investigate if two pragmatic features
(specificity and affect) systematically vary in
different intergroup contexts — thus connect-
ing this new framing of bias to language out-
put. Preliminary analysis finds modest correla-
tions between specificity and affect of tweets
with supervised intergroup relationship (IGR)
labels. Counterfactual probing further reveals
that while neural models finetuned for predict-
ing IGR reliably use affect in classification, the
model’s usage of specificity is inconclusive.

1 Introduction

Most work on bias in NLP only considers nega-
tive or pejorative language use (Kaneko and Bolle-
gala, 2019; Sheng et al., 2019; Webson et al., 2020;
Pryzant et al., 2020; Sheng et al., 2020). While
recent work has delved into implicit bias (Rashkin
et al., 2015; Sap et al., 2017, 2020), they are still
limited as they rely on identifying specific demo-
graphic dimensions or an individual’s intent. Cru-
cially, language production is still taken to be ‘un-
biased’ by default. Research in social psychology
suggests a different framing of bias that encom-
passes all language use — we can analyze bias as
changes in (language) behavior reflecting shifting
social dynamics (Van Dijk, 2009). Under this view,
all the language we produce is biased, with the
nature of the bias determined by the social rela-
tionships between the speaker and target. Inspired
by this idea, Govindarajan et al. (2023) proposed
a new framing of bias by modeling intergroup re-
lationships (IGR, in-group and out-group) in in-
terpersonal English language tweets, potentially
capturing more subtle forms of bias. This framing
raises a question: which linguistic features vary
systematically in different intergroup contexts?

The Linguistic Intergroup Bias (LIB; Maass
et al., 1989; Maass, 1999) hypothesis offers some
clues towards linguistic features that change with
shifting intergroup contexts. LIB speculates that
socially desirable in-group behaviors and socially
undesirable out-group behaviors are encoded at a
higher level of abstraction. The theory however
relies on a restricted definition of abstractness that
relies solely on predicates, and an ad-hoc analysis
of ‘social desirability’ that doesn’t permit large-
scale analysis. We can do better by using two well-
defined pragmatic features: specificity (Li, 2017) is
a pragmatic feature of text that measures the level
of detail (similar to abstract—concrete axis), while
affect is a feature that measures the attitude of a
speaker towards their target (Sheng et al., 2019) in
an utterance (analogous to social desirability).

Specificity and affect are analogous to the LIB
axes of language variation that are easy to anno-
tate and compute. Furthermore, specificity is a
more general property than abstractness in the LIB
— specificity is a property of the whole sentence
rather than just the predicate. Thus, our study fo-
cuses on intergroup bias more generally, rather
than the narrow parameterization of the LIB. Simi-
lar to the LIB, our formulation of intergroup bias
predicts that positive affect in-group utterances and
negative affect out-group utterances are encoded
with lower specificity (i.e. more generally). Ta-
bles 1 and 2 compare the predicted language varia-
tion between the LIB and our formulation.

In this work, we perform the first large-scale
study of linguistic differences in intergroup bias by
analyzing its nature in the corpus of English tweets
from Govindarajan et al. (2023), which makes use
of naturally occurring labels for in-group vs. out-
group. This distinguishes us from existing work
in LIB which mostly relies on artificial responses
from participants in studies, rather than natural
language use in the wild. To bolster our probing in-
vestigation, we also explore it causally: exploiting
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In-group  Out-group

socially desirable abstract concrete

socially undesirable  concrete  abstract

Table 1: Predicted language variation in the LIB.

the quantitative nature of our formulation to study
if a neural model finetuned for IGR prediction uses
pragmatic features such as specificity and affect in
its decision-making process through counterfactual
probing techniques (Ravfogel et al., 2021).

To summarize our findings, we find a modest
positive correlation between affect and IGR
in our data, with a positive causation effect as
well — making a tweet’s affect more positive
makes it more likely to be in-group regardless of
its specificity. We find no correlation between
specificity and IGR in our data. Surprisingly,
we discover a causal effect of low specificity on
IGR prediction that is uniform across affect, but
none for high specificity. We hypothesize that this
could be because of damage to the underlying
language model, but we leave further investigation
to future work. We release our code and data at
github.com/venkatasg/intergroup-probing.

2 Background

Intergroup bias The Linguistic Intergroup Bias
(LIB) theory (Maass et al., 1989; Maass, 1999)
tries to explain how stereotypes are transmitted
and persist in communication by hypothesizing
that socially desirable in-group behaviors and so-
cially undesirable out-group behaviors are encoded
at a higher level of abstraction . The LIB has
been reproduced in various psychological exper-
iments and analyses (Anolli et al., 2006; Gorham,
2006); it has also been used as an indicator for a
speaker’s prejudicial attitudes (Hippel et al., 1997),
and racism (Schnake and Ruscher, 1998).

Table 1 describes the LIB asymmetry and the
parameters used. As stated earlier, the LIB relies
on ad-hoc and hand-coded concepts such as ‘social
desirability’ and abstractness of predicates (Semin
and Fiedler, 1988) . Our proposed experiments
generalize beyond the LIB by utilizing parameters
that are easily computable, and are a function of
the whole utterance. We also build upon the dataset
and work in Govindarajan et al. (2023), which is
the first large-scale analysis of intergroup bias on
naturally occurring speech.

In-group Out-group

positive affect  low specificity  high specificity

negative affect  high specificity  low specificity

Table 2: Predicted language variation in our more gen-
eral formulation, using specificity and affect

Specificity Specificity is a pragmatic concept of
text that measures the level of detail and involve-
ment of concepts, objects and events. Louis and
Nenkova (2011) introduced the first dataset and
model for sentence specificity prediction, and in
later work Li (2017) illustrated the role of speci-
ficity in discourse coherence. Furthermore, Gao
et al. (2019) expanded the scope of specificity anal-
ysis from the news domain to social media.

Affect There is a wealth of work studying emo-
tions and sentiment in social media text (Moham-
mad, 2012; Wang et al., 2012; Mohammad and Kir-
itchenko, 2015; Abdul-Mageed and Ungar, 2017;
Desai et al., 2020; Demszky et al., 2020). Govin-
darajan et al. (2023) introduced the first dataset
annotated for interpersonal emotion (defined as
only emotions expressed towards or in connection
with a target), using the Plutchik wheel (Plutchik,
1980, 2001) as a framework. While fine-grained,
this approach isn’t amenable to the experimenta-
tion we propose easily. Inspired by the concept of
regard by a speaker towards a demographic in an
utterance (Sheng et al., 2019), we introduce anno-
tations for a coarse-grained feature we term affect
that estimates how a speaker feels towards the tar-
get they mentioned in an interpersonal utterance.

Table 2 describes the intergroup language varia-
tion as hypothesized in our experimentation, using
specificity and affect. Analogous to LIB, our hy-
pothesis is that positive affect utterances directed at
in-group individuals, and negative affect utterances
directed at out-group individuals are encoded with
lower specificity.

AlterRep AlterRep (Ravfogel et al., 2021) is a
probing technique that tests if a neural network uses
a property, rather than just testing if the model’s
learned representations correlate with the prop-
erty. The method uses Iterative Nullspace Projec-
tion (INLP; Ravfogel et al., 2020) to iteratively
train a linear classifier on the model’s internal rep-
resentations to pick out a particular feature, using
the parameters learned by the classifier to intervene
on the embedding and alter it in a systematic way.
The AlterRep method based on INLP has been used
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Figure 1: Flowchart describing the specificity

to probe for syntactic phenomena such as subject-
verb number agreement (Ravfogel et al., 2021). To
our knowledge, ours is the first work probing if a
model learns and uses higher-level pragmatic fea-
tures like affect and specificity using AlterRep.

3 Data & Experiments

3.1 Data & Annotations

We use the same dataset of tweets from Govindara-
jan et al. (2023), which consists of tweets by mem-
bers of US Congress that @-mention other mem-
bers in the same tweet, with ‘found-supervision’ for
the IGR labels of every tweet. A tweet is in-group
if it is targeted at another member of the same party
as the writer of the tweet, else it is out-group.

Affect We build upon the dataset’s fine-grained
annotations for interpersonal emotion by adding
annotations for affect. We presented annotators on
Mechanical Turk with tweets from our dataset with
the target mention masked (with the placeholder
Doe, to minimize potential biases of the annotator),
and asked the following questions:
a. How does the writer feel in general about
Doe? warmly, coldly, neutral, mixed
b. How does the writer feel in general about
Doe’s actions/behavior? approval, disap-
proval, neutral, mixed
Annotators are given the option to select one of
the 4 options listed above for each question. For
each tweet, we collect annotations from 3 annota-
tors, obtaining an aggregate label for each ques-
tion by majority vote. We report an inter-annotator

intervention experiment and expected results.

agreement score (Fleiss’s kappa; Fleiss, 1971) of
0.53 for the first question, and 0.56 for the second.

We derive a binary affect label (1) from our
annotations using a simple rule: If the writer of
a tweet is deemed to either feel warmly towards
the target, or if they approve of the target’s actions,
the affect is set to be positive; else it is set to be
negative. An analysis of our collected annotations
on the data shows that there is a small positive
(Pearson’s) correlation (r=0.2, p < 0.001) between
binary affect and IGR.

Specificity Specificity of the tweets in the dataset
are calculated using the specificity prediction tool
from Gao et al. (2019). Their specificity predic-
tor is trained on tweets, and uses surface lexical
features, as well as syntactic, semantic and distri-
butional features to calculate a specificity score
between 1 and 5. We note that on our dataset, there
was no correlation between specificity and IGR
(r=—0.07, p < 0.001), unlike affect. On further
inspection of our dataset, we find that tweets with
very high/low specificity scores (gathered by ex-
cluding specificity scores between 3 and 4, similar
to excluding the middle in Gelman and Park, 2009)
have a small but statistically significant negative
correlation with IGR labels (r=—0.13, p < 0.001).

3.2 Interventions

Model We use BERTweet (Nguyen et al., 2020),
a language model pre-trained on 850M English
tweets, the same model used in Govindarajan et al.
(2023). All intervention experiments are carried
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out with the best performing finetuned version of
this model — where the model is finetuned on the
task of predicting IGR labels. The input to the
model is only the tweet with no other context, and
the target masked with a placeholder QUSER.

We use the model’s representations from layer
11 for the INLP procedure since it shows the most
reliable effects. INLP (Ravfogel et al., 2020) works
by learning a series of linear classifiers on the rep-
resentations from an encoder. In each iteration, the
embeddings are projected onto the intersection of
nullspaces of the classifiers learned so far, meaning
the information used by the existing classifiers is re-
moved from the model. Every subsequent classifier
we learn removes more information of the property
of interest from the model’s representations. We
find that higher layers offer a good balance between
feature extractability and language model stability
(see Appendix D) for our features.

After training INLP, AlterRep uses the classi-
fier’s decision space to project model embeddings
into a null component that contains no informa-
tion from the feature of interest, and an orthogonal
component, that contains all the information from
the feature of interest. These two components thus
enable us to perform the counterfactual interven-
tion — pushing model embeddings towards having
more, or less, of a particular property. When Al-
terRep uses INLP classifiers with more iterations,
the strength of the intervention is greater. Figure 1
offers an illustration of our intervention experiment
on specificity, and the expected results.

Affect Using the binary affect labels we derived
from annotations that we described in § 3.1, we
perform interventions to test if the model uses af-
fect causally in its decision. We sample 3 tokens at
random from each sentence in the training and val-
idation split of our dataset, train an iterative linear
classifier on the model’s representations of these
tokens using INLP (against the affect label of the
tweet), and use the decision boundary learned by
the classifier to intervene by pushing model rep-
resentations to have more positive affect or have
more negative affect. We set the hyperparameter o
in AlterRep to 4.

Specificity The INLP classifier for specificity is
learned using the same procedure as for affect. We
train the classifier on only the tweets with high and
low specificity scores in our dataset (scores below
3 and above 4; scores taken from the specificity

prediction tool in Gao et al. (2019)), excluding the
middle to ensure effective learning of the decision
boundary (Gelman and Park, 2009). Thus, we are
effectively pushing the model representations to
have high or low specificity. For both affect and
specificity, once the INLP classifier is learned, we
perform the intervention on a random subset of
30% of the tokens of a tweet (to control for tweet
length). We also report the results of random inter-
ventions as a control, where random interventions
are generated by sampling from a standard gaus-
sian instead of using the decision matrix generated
by INLP.

Hypotheses We report the percentage of tweets
in the test split of our dataset that are predicted to
be in-group by our classifier model with increasing
strength of the intervention (number of INLP iter-
ations, 0 being pre-intervention). Thus, we have
the following hypotheses on the effects of our in-
tervention on the data based on our intergroup bias
framework described in Table 2:

1. Interventions towards positive affect should
induce the model to predict low specificity
tweets to be in-group and high specificity
tweets to be out-group, while interventions to-
wards negative affect should affect the model
conversely.

2. Interventions towards higher specificity
should induce the model to predict positive
affect tweets as out-group and negative af-
fect tweets as in-group, while interventions
towards lower specificity should affect the
model conversely.

4 Results & Analysis

The results for the interventions on affect are pre-
sented in Figure 2, while those for specificity are
presented in Figure 3. Overall, we observe that in
both cases, interventions had the same effect on
tweets that were annotated with positive affect as
they did on tweets with negative affect (and sim-
ilarly for tweets with high and low specificity) —
so we only show the percentage of all tweets in the
test split classified as in-group.

Affect As Figure 2 shows, pushing model rep-
resentations towards having more positive affect
causes almost all tweets in the test split of our data
to be classified as in-group after 32 iterations of
INLP. The randomness after 40 iterations of INLP
could be attributed to the underlying RoOBERTa
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Figure 2: % of test set classified as in-group plotted
against number of INLP interventions for affect.

language model being destroyed, as the LM Top-
100 accuracy plot in Appendix D shows. Pushing
the model’s representations towards negative affect
shows the inverse effect as expected, although the
nature of the drop appears different. We hypothe-
size that this is because most of the tweets in our
dataset (75.2%) have positive affect. An interven-
tion pushing the representations towards negative
affect would be slower and require stronger inter-
vention forces, which is borne out in Figure 2.

Specificity Figure 3 shows that pushing model
representations towards being more specific has
no effect on model behavior and is indistinguish-
able from the control; but pushing towards lower
specificity has a noticeable effect — interventions
after 48 iterations of iNLP lead to all the data being
predicted as in-group. Our hypothesis states that
general language is more likely in positive affect
in-group contexts; however we find no difference
in the model’s behavior on positive versus negative
affect tweets as reported earlier.

Overall our findings indicate that while the
model does use affect towards making its decision
on the interpersonal group relationship prediction
task (albeit uniformly across specificity), it doesn’t
use specificity as we had predicted. The discrep-
ancy between high and low specificity interventions
could be because the average specificity of tweets
in our training data is 3.49 (¢ = 0.54) — meaning
that interventions towards lower specificity act in
opposition to most of our data in representation
space. But these results requires further investiga-
tion to understand them better.

Qualitative error analysis Digging into the re-
sults further, we wanted to investigate if the inter-
ventions function the way we wanted them to. We
analyzed the tokens that the model predicts before
and after intervention for example (1). Firstly, fine-
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INLP iterations
Figure 3: % of test set classified as in-group plotted

against number of INLP interventions for specificity.

tuning the model for IGR prediction leads to degra-
dation in LM abilities — a vanilla model predicts
birthday, anniversary for the masked token in (1),
but the finetuned model predicts nonsensical tokens
like sworn, opport__ even before any interventions.
Pushing towards negative affect causes it to pre-
dict tokens with negative connotations (killing, ass,
opposition), but degrades the underlying LM even
further. The specificity interventions are especially
hard to interpret due to the semantically and syntac-
tically implausible tokens being selected (opport__,
mug__, ask__)

(D Happy <mask> @USER! I got you a new
bill: #II0A

While some of the interventions push the model’s
predictions to be in the general lexical space de-
sired (which probably explain the affect interven-
tion results), the lack of contextual fit due to LM
degradation may explain the inconclusive results,
and lack of interaction between affect and speci-
ficity.

5 Conclusion

Studying bias in language use through an interper-
sonal lens opens up new questions, such as which
linguistic features vary systematically in chang-
ing interpersonal contexts. We perform a correla-
tional and causal analysis of two pragmatic features,
specificity and affect, on a dataset of interpersonal
tweets in English, to establish how they influence
intergroup relationship prediction. We find modest
correlations between our features and IGR labels,
while counterfactual probing reveals mixed results.
Affect influences IGR prediction causally but with-
out interacting with specificity, while specificity
only influences IGR prediction in one direction.

12857



Limitations

Future work must look into the generalizability of
the results presented here in other domains of lan-
guage use, and other languages. While we present
the utterances as constituting natural speech by one
speaker (the congressperson who sent the tweet), it
is likely most congresspeople employ social media
teams that help in crafting the language of some of
their tweets. However, we believe for the sake of
interpersonal group membership, the relationship
between the speaker(or speakers) and their target(s)
would not be affected.

Techniques like INLP extract information that is
linearly extractable. While we’ve shown that it is
possible to extract and manipulate language infor-
mation using such simple linear techniques, more
complex methods like those proposed by Ravfo-
gel et al. (2022) might be able to manipulate more
non-linearly encoded properties.

The AlterRep procedure, as can be seen in our
results and in Ravfogel et al. (2021), is sensitive
to parameters like o and the number of INLP iter-
ations. Picking these parameters is tricky and we
have done it in a manner that preserves information
in the language model. It is possible that a differ-
ent set of settings not explored here could lead to
different results.

Ethics Statement

For the corpus of tweets on which we performed
annotations, we downloaded the tweets using the
official Twitter APIL. In accordance with the Twitter
Terms of Service, we release tweet IDs and user-
names, but not the tweet text itself. Our dataset was
built through crowdsourced annotations on Ama-
zon Mechanical Turk. To ensure annotators were
paid a fair wage of at least $10 an hour, we paid
annotators $0.50 per HIT. Each HIT involved an-
notating 3 tweets, which we estimate to take on
average 3 minutes to complete.
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Appendix
A Implementation

We use bertweet-base models from VinAI's Hug-
gingface models repository, and the transformers
package for all of our probing experiments (Wolf
et al., 2020). Language ID classifiers were trained
using LinearSVC classifier from sklearn. For
training these classifiers, equal number of tokens
from both labels were sampled. We used a batch
size of 32, and a maximum sequence length of

128 when performing the intervention experiments.

The interpersonal group relationship prediction

model was reproduced from Govindarajan et al.

(2023) using the same experimental settings and
hyperparameters for the probing experiments.
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Figure 4: LM Accuracy on train plus validation split for
different interventions

B Data & Annotation

To obtain reliable annotations, we prequalify an-
notators using a qualifying task. Annotators were
recruited on Mechanical Turk using a qualifying
task where they were asked to annotate 6 tweets
using the schema detailed in§ 3.1. We restricted
the qualification task to annotators living in the
USA who had attempted at least 500 HITS and
had a HIT approval rate > 98%. After manual in-
spection, 6 anonymous annotators were qualified
for bulk annotation. Each tweet was annotated by
three different annotators. To ensure annotators
were paid a fair wage of at least 10$ an hour, we
paid annotators $0.50 per HIT. Each HIT involved
annotating 3 tweets, which we estimate to take
on average 3 minutes to complete. In total, 3,033
tweets between 2010 and 2021 were annotated with
perceived affect.

C Dataset Statistics

We present preliminary statistics for the annota-
tions on the dataset of tweets in Table 3.

D LM Accuracy over INLP iterations

AlterRep directly alters the LM’s representations,
which inevitably harms the model’s internal struc-
ture. Figure 4 shows the LM’s top-100 accuracy at
predicting randomly masked tokens on our dataset,
proving that the interventions are meaningful while
still maintaining the LM’s integrity.
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