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Manufacturing-Cost-Driven
Topology Optimization of Welded
Frame Structures
This work presents a method for the topology optimization of welded frame structures to
minimize the manufacturing cost. The structures considered here consist of assemblies of
geometric primitives such as bars and plates that are common in welded frame construction.
A geometry projection technique is used to map the primitives onto a continuous density
field that is subsequently used to interpolate material properties. As in density-based topol-
ogy optimization techniques, the ensuing ersatz material is used to perform the structural
analysis on a fixed mesh, thereby circumventing the need for re-meshing upon design
changes. The distinct advantage of the representation by geometric primitives is the ease
of computation of the manufacturing cost in terms of the design parameters, while the geom-
etry projection facilitates the analysis within a continuous design region. The proposed
method is demonstrated via the manufacturing-cost-minimization subject to a displacement
constraint of 2D bar, 3D bar, and plate structures. [DOI: 10.1115/1.4062394]
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1 Introduction
Manufacturing cost is seldom considered in the topology optimi-

zation of structures, which is often based solely on structural criteria
and weight. Consequently, the optimal design may exhibit superior
mechanical performance but be costly to manufacture. While the
amount of material in a structure may contribute significantly to
its cost, there are also other costs associated with the fabrication
process. In the case of the welded frames considered in this work,
the manufacturing cost is also influenced by the cost of cutting,
welding, and painting frame members.
The main obstacle to incorporating manufacturing cost in topol-

ogy optimization lies in the difficulty to express it in terms of the
design parameters. Conventional density-based and level-set topol-
ogy optimization techniques employ a field representation of the
structure, which endows the optimizer with substantial design
freedom but makes it difficult to compute manufacturing cost.
Ground structure methods have been used to minimize the man-

ufacturing cost of truss structures [1]. In these methods, which use
1D-elements to represent the structure and for analysis, it is easy to
compute costs associated with, for example, the length of the truss
elements and the number of struts. However, other cost compo-
nents, such as the cost of welding, cannot be readily computed
because they require a calculation of the welding length, which is
difficult to compute from the 1D-representation. Moreover, the
structure must be a topological subset of the initial design (the
ground structure), thus ground structure methods cannot model
arbitrary topologies. Also, a ground structure approach does not
accommodate primitives like plates.

Some density-based topology optimization techniques for con-
tinua consider the manufacturing cost of additively manufactured
single components [2–5] or assemblies of 2-dimensional stamped
and spot-welded components [6,7]. For these manufacturing pro-
cesses, it is possible to express the manufacturing cost in terms of
quantities that can be computed from the field representation,
such as surface area, bounding box, and the volume of the
support material. Some topology optimization techniques (e.g.,
Ref. [8]) design multi-component structures in which the boundar-
ies among components in the optimal design are intended to be
joined via continuous welds. However, in these techniques, there
is no computation of the weld length between components and no
consideration for the welding cost.
It should be noted that some methods have incorporated various

mechanisms to limit the number of structural members or holes in
the optimization, which is an indirect way of controlling manufac-
turing cost. These works include the ground structure approach of
Ref. [9] and the moving morphable components method of
Ref. [10], which impose a constraint on the maximum number of
members in the structure; and the work of Ref. [11], where a
limit is imposed on the maximum number of holes in density-based
topology optimization.
In this paper, we propose a method for the topology optimization

of welded frame structures with regard to manufacturing cost. The
frame is modeled as the union of bar primitives or plate primitives.
The analysis is performed on a fixed finite element mesh as in
density-based methods. To employ the primitive-based representa-
tion of the frame while performing the analysis on a fixed mesh, we
employ the geometry projection (GP) method [12], whereby the
geometric parameters of the primitives are smoothly mapped onto
a density field that is subsequently used to interpolate material prop-
erties, just as in density-based methods. The GP mapping is differ-
entiable, hence we can use efficient gradient-based methods for the
optimization.
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The proposed approach has several advantages. Each term of the
manufacturing-cost function can be computed directly in terms of
the geometric parameters of the primitives, the projected density
field, or both. For example, the geometry representation allows us
to determine the weld location among components and approximate
the weld length. Re-meshing is circumvented as in conventional
topology optimization techniques. Compared to ground structure
methods that use 1D-elements for the analysis, the bars need not
be connected during the optimization and the optimal design is
not a subset of the ground structure, leading to increased design
freedom and thus efficient structures that can be generated with
only a few bars (the trade-off, however, is that the analysis in the
GP method discretizes a continuum with 2D- and 3D-elements
and thus is more computationally expensive). Moreover, the GP
method captures intersections between 3D-primitives in a way
that is not possible using 1D-elements. For instance, in methods
that use truss elements to model cylindrical bars, two elements
that come very close to each other may not intersect even if the cor-
responding cylindrical bars in 3D do intersect because of their
dimensions. Finally, although stress constraints are out of the
scope of the current work, we note that the continuum 2D- and
3D-representation of the structure can capture stress concentrations
arising from the intersection of primitives, which cannot be cap-
tured by 1D-elements.
The remainder of the paper is organized as follows: in Sec. 2, we

briefly introduce the GP method. Section 3 formulates the
manufacturing-cost function based on the GP method for both bar
and plate primitives. The optimization problem is stated in Sec. 4.
A brief description of design sensitivities is given in Sec. 5. In
Sec. 6, we demonstrate the proposed method in the design of 2D
and 3D cantilever beams with bar primitives and of a Messer-
schmitt–Bölkow–Blohm (MBB) beam in 3D with plate primitives.
Finally, we draw conclusions in Sec. 7.

2 Geometry Projection
The proposed technique employs the GP method to map the geo-

metric primitives that make up the structure onto a fixed finite
element mesh for analysis, thus avoiding re-meshing upon design
changes [12,13]. The GP method consists of a differentiable map
between the high-level parameters that describe the geometric prim-
itives and a density field defined over the design region, which is
subsequently discretized via a finite element mesh for analysis.
The differentiability of the map ensures that efficient gradient-based
techniques can be used for the optimization.
In this work, the projected density at point x corresponding to

component c is computed as

ρc(x; R) : = H̃
ϕc(x, zc)

R

( )
(1)

where

H̃(x) : =

1 if x ≥ 1
(x + 1)3(3x2 − 9x + 8)

16
if |x| < 1

0 otherwise





(2)

is aC2 regularizedHeaviside function,ϕc(x, zc) is the signed distance
from x to the boundary of c, zc is the vector of design parameters
defining component c, and R is the radius of the transition region
of the Heaviside. In all the examples shown in Sec. 6, R is equal to
the diagonal of the element, i.e., twice the size of the radius of the
ball that circumscribes the element. We note that, as demonstrated
inRefs. [12,13],Rmust be strictly smaller than the radius of the prim-
itive to ensure well-defined sensitivities. Correspondingly, the
element size must be at most half of the primitive radius.
The formulation of the signed distance ϕc depends on the specific

representation of the geometric components. For the frame struc-
tures considered in this paper, we consider bar and plate primitives

represented by offset solids. In the case of bars, the solid corre-
sponds to all points within a distance rc of a line segment (the
bar’s medial axis), and the corresponding vector of design parame-
ters is zc= {x1c, x2c, rc, αc}, where x1c and x2c denote the endpoints
of the medial axis and αc is a membership variable that will be intro-
duced later in this section. In the case of plates, we use quaternions
to represent the plate orientation to avoid issues like gimbal lock
and 2π-periodicity that arise when using Euler angles [14]. The
vector of quaternion components describing the orientation in
space of the plate is denoted as qc = {qcr , qcx , qcy , qcz}. The rotation
matrix of plate c is given as

Rc = ec1 ec2 ec3
[ ]

ec1 =
1 − 2q2cy − 2q2cz
2qcxqcy − 2qcr qcz
2qcxqcz + 2qcr qcy









ec2 =
2qcxqcy + 2qcr qcz
1 − 2q2cx − 2q2cz
2qcyqcz − 2qcr qcx









ec3 =
2qcxqcz − 2qcr qcy
2qcyqcz + 2qcr qcx
1 − 2q2cx − 2q2cy









(3)

where ec1 , ec2 , ec3 are the basis vectors of plate c in the local coor-
dinate system. Therefore, the vector of design parameters of the
plate primitive is zc = {x0c , lc1 , lc2 , qc, rc, αc}, where x

0
c is the loca-

tion of the center of plate, lc1 and lc2 are the dimensions of the rect-
angular medial surface, and rc is the semi-thickness of the plate. The
design parameters are illustrated in Fig. 1.
The convenience of offset solids is that the signed distance from

any point x to the boundary of the primitive can be simply com-
puted as ϕc(x)= rc− dc(x), where dc(x) is the distance from x to

Fig. 1 Geometric primitives used in this work with their respec-
tive geometric parameters: 2D bars (top), 3D bars (middle), and
3D plates (bottom). Dashed line in bars corresponds to the
medial axis; rectangle in plates corresponds to medial surface.

081702-2 / Vol. 145, AUGUST 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/doi/10.1115/1.4062394/7014084/m
d_145_8_081702.pdf by Technical U

niversity of D
enm

ark, Julian N
orato on 23 M

ay 2023



the medial axis/surface. Moreover, dc can be computed in
closed form as a function of zc. For details on the computation of
the signed distance for offset bar and plate primitives and the corre-
sponding design sensitivities, the reader is referred to Refs. [14–16].
It should be noted, however, that the geometry projection is not
limited to offset solids and can be used with any geometric repre-
sentation, provided a signed distance to the boundary of the primi-
tive can be computed.
In addition to the geometric parameters that determine the dimen-

sions, position, and orientation of the component, we also ascribe a
continuous membership variable αc to each primitive. When αc= 1,
it signifies the component is part of the design, and an interior point
of the component will have the elastic properties of the material that
the component is made of. Conversely, when αc= 0, the component
is removed from the structure, and the elastic properties at an inte-
rior point of the component will not be influenced by the compo-
nent, regardless of the component’s dimensions. This membership
variable enables the optimizer to remove geometric components
by penalization. The penalized density ρ̂c(zc, x) that incorporates
with the membership variable αc is given by

ρ̂c(zc, x) : = μ(αcρc(zc, x)) (4)

where μ is a penalization function that renders intermediate values
of αc structurally inefficient. This penalization ensures that the
optimal design has bars with 0/1 membership variables and is essen-
tially the same penalization used by density-based topology
optimization technique. For instance, it may correspond to the
power law of the solid isotropic material with penalization inter-
polation scheme (cf. Ref. [17]) given by μ(x)= xP, with P≥ 3.
We combine multiple primitives via their Boolean union. Since

the projected and penalized densities are ultimately implicit repre-
sentations of the primitives, the Boolean union corresponds to
their maximum (cf. Ref. [18]). The maximum function, however,
is not differentiable, which precludes the use of efficient gradient-
based optimizers. To circumvent this, we use a softmax differenti-
able approximation in which the interpolated material properties are
given by [16]

C(x) = Cvoid + ρ̃(Z, x)(Csolid − Cvoid) (5)

where

ρ̃(Z, x)) : =
∑Nc

c=1

wc(ρ̂(Z, x))ρ̂c(Z, x) (6)

is a combined density that corresponds to the Boolean union of all
components, and the weights wc are given by

wc(ρ̂(Z, x)): = softargmax
c

(ρ̂(Z, x); p)

=
epρ̂c(zc,x)

∑Nc
j=1 e

pρ̂j(zj ,x)

(7)

In these expressions, Csolid denotes the elasticity tensor of solid
material that each component is made of, ρ̂ is the vector of penalized
densities for all the components, and Cvoid is the elasticity tensor of
a relatively weak material to prevent an ill-posed analysis. Nc is the
number of components. Z = {z1, . . . , zNc} denotes the vector of
design parameters for all components. As the parameter p→∞,
the weights wc in the softargmax function approach a one-hot
vector, i.e., wc→ 1 for the component with the largest penalized
density and wc→ 0 for all other components. In the finite element
analysis, we assume for simplicity an element-uniform combined
density ρ̃e, which is computed at the element centroid; consequently
the ersatz elasticity tensor of (5) is also element-uniform.
While the softmax material interpolation of (5) admits a different

elasticity tensor for each component, which accommodates multi-
material structures and anisotropic materials (cf. Ref. [16]), in this
work we consider that all components are made of a single material
with elasticity tensor Csolid.

3 Manufacturing-Cost Function
We formulate the manufacturing-cost function based on the fab-

rication cost presented in Ref. [19]. The manufacturing-cost func-
tion consists of two parts: material cost Cm and fabrication cost
Cf. We take four stages of fabrication into consideration, namely
preparation, cutting, welding, and painting. The relative weights
of the terms making up this function correspond to monetary cost
per unit (e.g., length, area) for each stage. Different supply chains
would have different values of these weights and therefore may
lead to different designs. The manufacturing cost of the structure
is defined as

M(Z) : = Cm(Z) + Cf (Z)

= Cm(Z) +
∑

i

Ci(Z)
(8)

where Ci, i∈ {1, 2, 3, 4}, is the cost for each manufacturing stage.
It is important to note that M is an estimate, since an accurate
assessment of the manufacturing cost of a structure can only be
made once a detailed design of the structure and detailed knowl-
edge of the cost structure for the material and the manufacturing
process are available. Therefore, it is essential to emphasize that
the place of the proposed technique in the structure’s design work-
flow is in the conceptual design stage, and that its aim is to
produce designs with significantly improved manufacturing cost
as compared to that of an optimal structure driven purely by
mechanical criteria.
In order to tie the manufacturing cost to the geometric description

of the primitives, each of the terms in (8) must be expressed as a
function of the geometric parameters of the components. The
remainder of this section details these terms. Some of them are com-
puted directly in terms of the geometric parameters, while other
terms are more easily computed in terms of the projected densities.
In this sense, the manufacturing-cost function introduced here takes
advantage of the dual representation (geometric parameters/densi-
ties). It is worth noting that even for terms that are computed in
terms of projected densities, their calculation is possible because
there is a projected density field ρc associated with each component
c and ρc serves as a (fuzzy) point classification (i.e., an inside/
outside test), which makes it possible to compute, for example,
the weld length of Sec. 3.4.

3.1 Material Cost. The material cost Cm is simply computed
as the weight of the material cost wm times the mass of the whole
structure ϱV:

Cm = wmϱV(Z) (9)

where wm depends on the type of the material and the detailed
supply chain, ϱ is the material density (which, in this work, we
assume to be 1.0 for all the examples), and V is the volume of the
structure. V can be computed as the sum of the volumes of all the
elements in the mesh:

V : =
∑Ne

e=1

ρeve (10)

where Ne is the number of elements in the mesh, ve is the volume of
a single element e, and ρe is the projected density of element e.

3.2 Preparation Cost. Before components are fully welded,
they usually need to be prepared, assembled, and pre-positioned
by tack welding. The cost of preparation stage mainly depends on
the number of the components and the weight of each component.
According to Ref. [19], the cost for preparation, assembly, and
tacking is defined as

C1 : = w1(κϱV)1/2 (11)
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where w1 is the corresponding weight of C1 and κ is the number of
existing components in the structure. In the GP method, κ can be
expressed as the sum of the membership variable αc of all the com-
ponents:

κ : =
∑Nc

c=1

αc (12)

It should be noted that κ≤Nc. While Nc corresponds to all the
components available to design the structure, κ represents the com-
ponents actually used for the design.

3.3 Cutting Cost. Cutting and edge grinding can be made with
different technologies, such as flame cutting, plasma cutting, and
laser cutting. The corresponding cost C2 is simply proportional to
the cutting area of the component:

C2 : = w2Acut (13)

where the weight w2 of the cutting cost depends on the detailed
manufacturing condition, and Acut is the total cross-sectional area
to be cut for all the components. By using the GP method, the
area of cutting for different components is computed as

Acut =
αc(2rctc) for 2D bar primitives
αc(πr2c ) for 3D bar primitives
αc(2rc(lc1 + lc2)) for 3D plate primitives




 (14)

where tc is the out-of-plane thickness of bar c. These expressions
assume each bar component only needs to be cut at one end,
while plate components are cut at all edges. The presence of the
membership variable αc in (14) ensures no cutting area is computed
for components that have been removed from the design. Also, we
note that this is an estimation, as an accurate calculation of cutting
cost requires a detailed design.

3.4 Welding Cost. The cost of welding C3 incorporates not
only the welding process itself but also all the additional fabrication
steps associated with welding. These additional steps include
changing the electrode, deslagging, and chipping. C3 depends on
the welding length lw of the whole structure:

C3 : = w3lw (15)

where the weight w3 of the welding cost depends on, e.g., the tech-
nology of welding. The length of welding can be computed as
follows: the norm of the gradient of the projected density
‖∇ρc(x)‖ is nonzero for a point x on the boundary of the component
and zero elsewhere. For two components i and j, the quantity

lij(x) =
∇ρi(x)

∥∥ ∥∥ρ j(x) in 2D

∇ρi(x)
∥∥ ∥∥ ∇ρ j(x)

∥∥ ∥∥ in 3D

{

(16)

is 1 if x belongs to the weld between the two components and 0 oth-
erwise. The total weld length is subsequently given by

lw : =
∫

Ω

∑Nc

i=1

∑Nc

j>i
αiαjlij dΩ (17)

where Ω denotes the design region. The condition j> i for the
innermost sum of (17) ensures that the intersection between two
components is counted only once, and it also prevents the situation
in which i= j, for which

2
Ωlii would render the perimeter in 2D

and the surface area in 3D for component i. One could alterna-
tively use the condition j< i to achieve the same purpose. Since
we assume uniform projected densities and gradients within each
element, the integral in (17) is computed as a sum over the ele-
ments (with the integrand multiplied by the element volume).
Figure 2 shows an example of bar intersections plotting the inte-
grand of (16).

We note that from (1) and using the chain rule, we have that

∇ρc =
1
R
H̃

′
(ϕc/R)∇ϕc

where H̃
′
denotes the first derivative of H̃. Since the distance func-

tion satisfies the eikonal equation ‖∇ϕc‖ = 1, the norm of the gra-
dient of the projected density for component c can simply be
computed as

‖∇ρc‖ =
1
R
H̃

′
(ϕc/R) (18)

which can be readily obtained from (2).
Note that even though the weld length is computed in terms of the

projected densities and not directly in terms of the geometric param-
eters of the components, this calculation is only possible because we
have distinct structural members and can compute ‖ρc‖ and αc for
each component.

3.5 Painting Cost. The fourth term of the fabrication cost in
(8) includes the cost of painting and surface preparation. The
surface preparation includes cleaning (e.g., sand-spray), grinding,
and application of a top coat. This cost of paintingC4 is proportional
to the surface area of the whole structure

C4 : = w4As (19)

with the proportionality constant weight w4. For frames made of 2D
bars, the surface area is computed as

As =
∑Nc

c=1

αc (2πrc + 2lc)tc + 2(πrc2 + 2rclc)
( )

(20)

For structures consisting of 3D bars, the surface area is given by

As =
∑Nc

c=1

αc(2πrclc + 4πrc2) (21)

and for plates it is given by

As =
∑Nc

c=1

αc 4πr2c + 2πrc(lc1 + lc2) + 2lc1lc2
( )

(22)

4 Optimization Problem
We consider minimization of the manufacturing cost subject to a

constraint that the displacement at a point p does not exceed a spec-
ified value:

min
Z

M(Z) (23)

Fig. 2 Plot of the quantity lij for j> i in (16) indicating the portion
of the intersection between primitives counted towards the weld
length lw: 2D bars (left), 3D bars (middle), and 3D plates (right).
The weld regions shown at the intersections between primitives
correspond to an iso-surface with lij≥0.01.
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Subject to: g(up(Z)) ≤ 0 (24)

K(Z)u(Z) = f (25)
zi ≤ zi ≤ zi, i = 1, . . . , NdNc (26)

The constraint of (25) represents the discretized finite element equa-
tions for the linear elasticity problem, with K, u, and f the global
stiffness matrix, displacement vector, and force vector, respectively.
We assume that the applied force is design-independent.
In the displacement constraint of (24), up= (uTCu)1/2 is the mag-

nitude of the displacement at a specified point p, with C a square
matrix such that Cii= 1 for the degrees-of-freedom i corresponding
to point p, and Cij= 0 for every other component. For all the exam-
ples, the function g provides scaling to aid convergence. Since the
displacement magnitude can attain extremely large values for dis-
connected design during the optimization, the following log-scale
version of the constraint ensures that values in consecutive itera-
tions do not change drastically:

g(up) : =
1

log 2
log

up + !u
2!u

(27)

where !u is the maximum allowable displacement at p. For a
positive displacement in double precision, we can assume that
up ∈ [0, 1016]. Therefore, when up= 0, g(up)=−1; when up = !u,
g(up)= 0; when up= 1016, g(up) ≈ (53.15 − 1.443 log 2!u). Thus,
the displacement at a point constraint is bounded as
g ∈ [−1, (53.15 − 1.443 log 2!u)], which is in the range of values
recommended for the method of moving asymptotes (MMA). For
the same reason, we linearly scale down the value of the manufac-
turing cost by 100 times. For all the examples in this paper, p is the
point at which the load is located.
We impose lower and upper bounds, zi, zi, on the individual

design variables zi in (26), with Nd the number of design variables
per component (six for 2D bars, eight for 3D bars, and 11 for 3D
plates). The endpoints xic of the medial axes of bars and the
center points x0c of plates are bound to lie inside the design
region. The membership variables are bound as αc∈ [0, 1], and
the quaternion components as qci∈ [−1, 1]. The dimensions of
the components are given different bounds for the examples in
Sec. 6. As in prior implementations of the GP method (cf.
Ref. [12]), all design variables are scaled as

ẑi : =
zi − zi
zi − zi

∈ [0, 1] (28)

and a move limit m is imposed at each iteration I on the scaled var-
iables to improve convergence:

max (0, zI−1i − m) ≤ zIi ≤ min (1, zI−1i + m) (29)

5 Sensitivity Analysis
To employ efficient gradient-based optimizers, we compute

design sensitivities of the manufacturing-cost function and the dis-
placement constraint. For a given function J(z) : = J̃(ρ̃(z), z), its
sensitivities with respect to a design variable zi are computed as

∂J
∂zi

=
∑Ne

e=1

∂J̃
∂ρ̃e

∂ρ̃e
∂zi

+
∂J̃
∂zi

(30)

where ρ̃e is the combined density for element e. For functions that
depend on the solution u to the equilibrium equation of (25), ∂J̃/∂ρ̃e
is computed using adjoint differentiation and is similar to the sensi-
tivity computed in density-based topology optimization. For func-
tions that do not depend on the analysis, ∂J̃/∂ρ̃e and/or ∂J̃/∂zi
can be computed directly, as is the case for all the terms of the
manufacturing-cost function. The term ∂ρ̃e/∂zi is obtained from
the geometry projection; its derivation is here omitted for brevity,
and the reader is referred to Refs. [14–16] for details. However, it
is worth noting that the sensitivity of the norm of the projected

density gradient is computed from (18) as

∂‖∇ρc‖
∂zi

=
1
R2 H̃

′′
(ϕc/R)

∂ϕc

∂zi
(31)

where H̃
′′
denotes the second derivative of H̃ which is readily

obtained from (2). The term ∂ϕc/∂zi can be found in the aforemen-
tioned references. The derivatives of all the terms in the
manufacturing-cost function can be obtained from their respective
expressions.

6 Numerical Examples
In this section, we present three examples to demonstrate the pro-

posed method. The computer implementation of the method is done
in MATLAB. The finite element analysis is performed using a regular
mesh of bilinear quadrilateral elements. The linear system of equa-
tions arising from the finite element discretization is solved using
the conjugate gradient method with a multigrid preconditioner. A
modulus of Emin= 10−6 is used for the weak material with elasticity
tensor Cvoid of (5). The solid material in all examples (i.e., Csolid in
(5)) has a Young’s modulus of 1 and a Poisson’s ratio of 0.3
Each design update in the optimization is obtained as follows. An

arbitrary initial design composed of a finite number of primitives is
specified. For this initial design or any given design Z, we compute
the projected densities of (1) for each component at the centroid of
each element in the mesh. The combined density of (6) and the
ersatz elasticity tensor of (5) are subsequently computed for each
element. This is followed by the usual finite element assembly

Fig. 3 2D cantilever beam example. Top: initial design, loading
and boundary conditions. Bottom: weld locations shown.

Fig. 4 Minimum-compliance (reference) design for the 2D canti-
lever beam example. Top: bars in optimal design. Bottom: weld
locations shown.

Fig. 5 Minimal-manufacturing-cost (baseline) design for the 2D
cantilever beam problem. Top: bars in optimal design. Bottom:
weld locations shown.
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and solution, where each element stiffness matrix is computed using
the corresponding ersatz material. The solution of the finite element
analysis is used to compute the relevant objective and constraint
functions in the optimization. Where applicable (e.g., when a dis-
placement constraint is imposed), adjoint analysis is also performed
to compute design sensitivities. The objective and constraints,
together with their sensitivities, are passed to a gradient-based opti-
mization algorithm, which produces a new design. The foregoing
process is repeated until a stopping criterion is satisfied. For simpli-
city, we stop the optimization when a maximum number of itera-
tions has been completed. The optimization problem is solved
using MMA with the default parameters suggested in Ref. [20].
To demonstrate the effectiveness of the proposed approach, the

examples considered in this work compare the manufacturing-cost-
minimization problem of (23) to a compliance-minimization
problem subject to a volume constraint. The latter problem can be
stated as

min
Z

C(Z) : = u(Z)T f

Subject to: v(Z) ≤ !v
K(Z)u(Z) = f
zi ≤ zi ≤ zi, i = 1, . . . , NdNc

(32)

where C is the compliance of the structure, v is the volume fraction,
and !v is the maximum allowable volume fraction.

6.1 Two-Dimensional Cantilever Beam With Bar
Primitives. In this first example, we design a cantilever beam
with 2D bar primitives. The initial design, loading and boundary
conditions are depicted in the top portion of Fig. 3. The dimensions
of the design region are 60 × 10. The mesh size is 360× 60. The left-
hand edge of the design domain is fixed, and the load F= 0.1 is
applied at the middle point of the right-hand edge. The initial
design consists of 42 bars with radius and membership variables
of 0.5. The bottom portion of Fig. 3 shows the weld locations
(i.e., the integrand of αiαjlij in (17)) in the initial design. We
bound the radius of each bar to [0.25, 2], and prescribe out-of-plane
thickness of the 2D bar as tc= 1. The move limit is m= 0.025.
To obtain the maximum allowable displacement !u for the displa-

cement constraint in the manufacturing-cost-minimization problem
of (23), we first perform the compliance minimization problem of
(32) with a maximum material volume fraction !v = 0.3. The final
design and its weld locations are shown in Fig. 4. We deem this
design as a reference for comparison, and we choose the point
where the load is applied as point p for the displacement constraint
in the manufacturing-cost-minimization problems. Therefore, we
subsequently assign !u = uref , where uref denotes the displacement
at point p in the reference minimum-compliance design.
In practice, the weights for the terms in the manufacturing-cost

function of (8) depend on many factors, including the size of the
structure, the fabrication capabilities of the manufacturer, and the

Table 1 Comparison between the reference, baseline, and weighted designs for the 2D cantilever problem

Design M Cm C1 C2 C3 C4 C g κ Acut lw As

Reference 468.73 239.99 3.74 9.51 189.72 25.76 17.02 170.21 31.23 27.65 885.30 2476.97
Baseline 278.28 253.71 3.00 6.88 5.63 9.04 17.10 171.06 18.96 20.00 26.29 869.73
wm = 5w0

m 289.09 255.31 3.16 7.07 13.06 10.46 17.10 171.00 20.98 20.56 60.98 1006.42
w1 = 5w0

1 282.96 253.46 3.28 6.73 9.56 9.91 17.10 171.04 22.66 19.58 44.63 953.62
w2 = 5w0

2 274.30 249.46 3.00 6.02 6.72 9.07 17.10 171.01 19.35 17.51 31.39 873.06
w3 = 5w0

3 303.57 275.77 3.07 8.17 6.68 9.86 17.10 171.04 18.27 23.75 31.21 948.19
w4 = 5w0

4 304.29 276.39 3.50 9.10 6.19 9.10 17.10 171.00 23.64 26.46 28.91 875.29

Note: The weights for the manufacturing-cost function in the baseline design are denoted by w0
i .

Fig. 6 Radar plot of the modified manufacturing-cost-minimization results for the 2D cantilever beam problem, showing
optimal designs (top) and the corresponding weld locations (bottom)
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number of structures to be fabricated. It also depends on the type of
structure; for instance, the cutting and preparation for a tubular
frame for a racing car, which requires careful coping of the tubes,
may be more expensive than the welding; on the other hand, the
opposite is generally the case for a truss made of structural profiles
joined to plate gussets. Here, we assign weights that are realistic for
the manufacture of a steel frame truss whose dimensions are in
inches. We assign wm= 1.3333 $/in3, w1= 0.05 $/in3/2, w2=
0.344 $/in2, w3= 0.2143 $/in, and w4= 0.0104 $/in2. These values
are estimated based on some typical costs for preparation, cutting,
welding, and painting in the United States. The manufacturing
cost is minimized with these weights, and the resulting optimized
design is shown in Fig. 5. We refer to this design as the baseline
design.
The cost corresponding to each term in the manufacturing-cost

function and other relevant measures for the reference and baseline
designs are listed in Table 1. The comparison between the reference
(minimum-compliance) and baseline (minimum-manufacturing-
cost) designs clearly demonstrates that the manufacturing-cost
function can effectively reduce every cost term compared to the ref-
erence design. The manufacturing cost of the baseline design is
approximately 59% of that of the reference design, with a similar
compliance C. We also observe that the manufacturing-cost-driven
design employs significantly fewer bars (as indicated by κ in
Table 1) and it substantially reduces the welding length lw and
surface area As compared to the reference design.
We also note that there are co-linear bars in the optimal design

of Fig. 5 that could be converted into a single bar (as long as they
have the same radius), which would remove the weld between
them and consequently decrease the welding cost. This could
be achieved by a heuristic strategy that detects this situation
and replaces the two bars with a single one, such as the one pre-
sented in Ref. [10]. However, generalizing this strategy to other
geometric primitives, such as the plates shown in Sec. 6.3, is

not straightforward. Therefore, this possibility is deferred to
future work.
An interesting and important aspect of considering manufactur-

ing cost as an optimization function is that we expect different
supply chains (i.e., different values of the weights for the cost
terms) to render different designs. In other words, the optimal
design is a function of the supply chain. To demonstrate this, we
repeat the manufacturing-cost-minimization with different weights
for the terms of the cost function. For each optimization run, we
assign the weight for one term to be five times the corresponding
weight for the baseline design, keeping all other weights the

Fig. 8 Rear view showing the loading and boundary conditions
for 3D cantilever beam example. Only the half that is modeled is
shown. The two square regions of size 2×2 indicate domains on
which zero-displacement boundary conditions in all directions
are imposed. A symmetry boundary condition is imposed on
the x–y plane.

Fig. 7 Initial design for the 3D cantilever beam example consist-
ing of 43 bars. The design is reflected to show the entire beam.
Top: bars. Middle: iso-surface of combined density. Bottom:
weld locations shown.

Fig. 9 Minimum-compliance (reference) design for the 3D canti-
lever beam example. The design is reflected to show entire beam.
Top: bars. Middle: iso-surface of combined density. Bottom:
weld locations shown.
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same. The resulting designs are shown in the radar plot of Fig. 6 and
the values of each cost terms and other measures are listed in
Table 1.
It is worth noting that all these designs exhibit the same structural

performance, as the displacement constraint g is active in all these

results. As expected, assigning different weights to the individual
terms of the manufacturing-cost function renders different
designs. Although the results corresponding to the increased
weights for individual terms tend to render a lower value of the cor-
responding term, this is not necessarily the case because the entire

Table 2 Comparison between the minimum-compliance and minimum-manufacturing-cost designs for the 3D cantilever beam
example with 3D bar primitives

Design M Cm C1 C2 C3 C4 C g κ Acut lw As

Min C 1214.19 600.61 6.28 22.83 550.99 33.46 8.43 85.08 35.11 66.38 2571.12 3217.61
Min M 766.18 656.74 5.85 21.21 64.52 17.83 8.42 84.99 27.84 61.67 301.11 1715.17

Fig. 10 Minimum-manufacturing-cost design for the 3D cantilever beam example. The design is
reflected to show the entire beam. Top: bars. Middle: iso-surface of combined density. Bottom:
weld locations shown.
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manufacturing-cost function is minimized. In other words, if we
view the manufacturing-cost-minimization problem as a multi-
objective optimization, whereby each term of M is an objective,
then we expect that each of the optimal designs with these modified
weights corresponds to a non-dominated design in the Pareto front.
It should also be mentioned that the values of these weights

cannot be arbitrary. If the weight for a particular term is too large,
then the optimization can render designs that are poor in terms of
their structural performance.

6.2 Three-Dimensional Cantilever Beam With Bar
Primitives. The second example is the design of a 3D cantilever
beam with bar primitives. The initial design, depicted in Fig. 7, con-
sists of 43 bars with a unit radius and membership variable of 0.5.
The loading and boundary conditions are depicted in Fig. 8. To
reduce the analysis time, we exploit the problem’s symmetry with
respect to the x–y plane and model only half of the domain. We
note, however, that it is possible that an asymmetric design that is
better than the design obtained with symmetry boundary conditions
may be attained, as has been shown for frame structures in Refs.
[21,22] and as is discussed in Ref. [23] for feature-mapping
methods. The dimensions of the design domain are 60× 10× 5
and the mesh size is 180× 30× 15 elements. A load F= 0.1 is
applied at the point (60, 0, 0). We bound the radius of each bar to
[0.5, 1]. The move limit for this example is m= 0.05.
Similar to the previous example, we minimize the compliance

subject to a maximum material volume fraction constraint limit of
!v = 0.15. As before, we use the displacement at the point of appli-
cation of the load for this minimum-compliance design to define the
maximum allowable displacement !u for the displacement constraint
of the manufacturing-cost-minimization problem. The final design

and its corresponding welding locations are shown in Fig. 9. The
values of different terms for the optimal design are listed in Table 2.
We perform the manufacturing-cost-minimization, using the

same weights as the previous example. The final design is shown
in Fig. 10. The cost corresponding to each term in the manufactur-
ing cost and other relevant measures for the reference design and
the minimum-manufacturing-cost design are listed in Table 2.

Fig. 12 Rear view showing the loading and boundary conditions
for the 3D MBB beam example with plate primitives. Only the
quarter region that is modeled in the analysis is shown. Symme-
try boundary conditions are imposed on the x–y plane and y–z
plane.

Fig. 11 Objective function (scaled) and constraint value histo-
ries for 3D cantilever beam example

Fig. 13 Initial design of the 3D MBB beam example with 18 plate
primitives (shown here reflected twice)

Fig. 14 Minimum-compliance (reference) design for the 3DMBB
beam example with plates. The design is reflected twice to show
the entire beam. Top: plates. Middle: iso-surface of combined
density. Bottom: weld locations shown.

Fig. 15 Minimum-manufacturing-cost design for the 3D MBB
beam example with plates. The design is reflected twice to
show the entire beam. Top: plates. Middle: iso-surface of com-
bined density. Bottom: weld locations shown.
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The history of the manufacturing-cost objective and displacement
constraint for this problem are shown in Fig. 11.
As shown in Table 2, the material cost is slightly increased in the

minimum-manufacturing-cost design, but the fabrications costs are
drastically decreased. Also, the number of existing components κ
decreases from 35 to 27. For this example, the cost of welding dom-
inates the optimization. As can be observed in Fig. 9, there is sub-
stantial overlap between bars in the minimum-compliance design,
leading to a large weld length. In contrast, the weld length of the
minimum-manufacturing-cost design of Fig. 10 is substantially
shorter. The history plots of Fig. 11 show that the optimization
exhibits good convergence towards the optimum. This example
demonstrates that the proposed methodology can be readily
applied to 3D bar structures.

6.3 Three-Dimensional Messerschmitt–Bölkow–Blohm
Beam With Plate Primitives. Our last example corresponds to
an MBB beam design with the loading and supports depicted in
Fig. 12. This example demonstrates the proposed method that can
be readily applied with plate geometric primitives—something
that cannot be easily done with ground structure approaches.
Similar to the 3D cantilever beam example, we take advantage of
symmetry and only model a quarter of the design region, with
dimensions 60× 10× 5. The mesh size is 180× 30× 15 elements.
The corners of the design domain are fixed only in the y-direction.
The load of magnitude F= 0.1 is applied at the top center point
along the negative z-direction. The initial design, consisting of 18
plates of dimension 5× 5 with a fixed (non-designable) semi-
thickness rc= 1.2R= 0.6928, is depicted in Fig. 13. The member-
ship variable of all plates in the initial design is 0.5. The lengths
of the plates are bounded to [0, 20]. The move limit for this
example is m= 0.05. It is worth noting that a large plate semi-
thickness rc may cause the optimizer to render designs in which
plates collapse into bars (i.e., one of the dimensions of the rectangu-
lar medial surface approaches zero), as this minimizes the surface
area of the structure.
As before, we first solve the reference minimum-compliance

problem and set the corresponding displacement of the point
where the load located as the displacement constraint limit for the
minimum-manufacturing-cost problem. The weight of material
cost for plate primitives is set to wm = 1.45 $/in3 based on a
typical unit price of plate stock material in United States. The
minimum-compliance and minimum-manufacturing-cost designs
are shown in Figs. 14 and 15, and the corresponding cost of each
term in M and other relevant measures are listed in Table 3.
As we can see from Table 3, the manufacturing cost of the

minimum-manufacturing-cost design is only 63.54% of the cost
of the reference design. The cost of cutting dominates the manufac-
turing cost of structure constructed with plates. From Fig. 15, we
observe that the optimal design looks like a boxed beam, which
helps reduce the cutting cost by reducing the perimeter of the plates.
To visualize designs with their welding locations for the two 3D

problems, we employ the visualization software PARAVIEW [24,25].
The structure in the figures corresponds to a combined density
value above 0.4, and the welding locations correspond to a value
of αiαjlij above 0.05.

7 Conclusions
This work introduced a geometry projection technique for the

topology optimization of welded frame structures made of bar or

plate components with regard to manufacturing cost. The examples
demonstrate the effectiveness of the proposed method for 2D and
3D problems. In particular, the manufacturing-cost-driven designs
attain a manufacturing cost that is significantly lower than that of
the minimum-compliance designs.
It is important to recall that the manufacturing-cost function

employed in this work is a rough estimate to be used in the
concept design stage, as an accurate estimation of cost requires a
significant amount of additional information that is only available
when a detailed design of the structure is available. Nevertheless,
the proposed method is useful in rendering designs that are more
manufacturing-cost effective and is a tool to incorporate
manufacturing-cost considerations early in the design. In particular,
this technique makes it possible to explore different topologies that
may be better for different manufacturing supply chains with differ-
ent cost structures, i.e., for which different components of the man-
ufacturing cost have different costs.
The dual representation of high-level geometric parameters and

projected densities for each primitive makes it possible to express
the components of the manufacturing-cost function in terms of
design variables, something which is not possible with density-
based and level-set representations of the entire structure. The
geometry projection method, in which each individual primitive is
first mapped onto its own density field and all component densities
are subsequently combined for the material interpolation, makes it
possible to capture, for instance, the welding length between com-
ponents. Moreover, the geometry projection enables the analysis
with a fixed grid throughout the optimization, and the components
need not be connected in a predefined ground structure. Since the
geometry projection is differentiable, it is possible to use efficient
gradient-based methods to perform the optimization.
We note that, as in any gradient-based technique, the proposed

method will in general converge to a local minimum. While we
did not observe poor local minima in our experiments, it is possible
that they may occur, particularly since the design representation is
more compact, as demonstrated in Ref. [23]. Finally, we note that
stress constraints and other structural criteria are important in the
design of frame structures and are deferred to future work.
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