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Abstract
This paper introduces a novel method for stress-constrained topology optimization in which the stress constraint is a differ-
entiable approximation of the maximum element stress violation in the structure. The element stress violation is given by a 
differentiable rectifier function. A key feature of the proposed method is its ability to render designs that satisfy the stress limit 
without renormalization of the constraint, as in some existing aggregation approaches. Numerical experiments demonstrate 
that the proposed technique exhibits better convergence and is less sensitive to the aggregation parameter than aggregation 
methods that employ renormalization. The effectiveness of the proposed method is demonstrated by several examples.

Keywords Stress constraints · Aggregation functions · Constraint scaling

1 Introduction

The incorporation of stress constraints in topology optimiza-
tion is of paramount importance, since multiple structural 
design criteria driven by material failure are formulated in 
terms of stress. This importance is reflected in the volume of 
publications on this topic, which, at the time of writing this 
manuscript, is in the thousands. The design problem typi-
cally consists of minimizing the structural weight subject to 

a constraint that the stress anywhere in the structure does not 
exceed a specified value. One of the challenges presented by 
this problem is the local nature of stress and thus of the con-
straint. If the stress limit must be satisfied at, for example, 
every element centroid, then there are as many constraints as 
elements in the finite element mesh. The ensuing large num-
ber of constraints necessitates an equally large number of 
adjoint analyses to compute design sensitivities (cf. Duysinx 
and Bendsøe 1998), which makes the computational cost for 
practical problems prohibitive.

As detailed in the recent comparative study by da Silva 
et al. (2021), there are two strategies to address this chal-
lenge. The first approach is to recast the local constraints as 
a single constraint that the maximum stress in the structure 
does not exceed the prescribed limit (or that the maximum 
element stress violation does not exceed zero). Techniques 
in this category are often called aggregation approaches [for 
example, Kennedy and Hicken (2015)]. Since the maximum 
function is not differentiable, smooth approximations are 
employed (Yang and Chen 1996; Duysinx and Sigmund 
1998) so that efficient gradient-based methods can be used 
for the optimization. These approximations include, for 
example, the P-norm, P-mean, and the Kreisselmeier–Stein-
hauser (KS) function (cf. Verbart et al. 2017).

The second strategy consists of adding the constraints 
to the objective function, either as an exterior penalty (e.g., 
Amstutz and Novotny 2010; De Troya and Tortorelli 2018) 
or through an augmented Lagrangian (AL) approach (cf. 
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Pereira et al. 2004; Senhora et al. 2020; Giraldo-Londoño 
et al. 2021). The constraints are multiplied by a parameter 
(a penalty or Lagrange multiplier estimate) and the optimi-
zation is solved as a sequence of problems with increasing 
values of the parameter. Although these approaches do not 
use approximations of the maximum, they share the common 
characteristic that adding all the local constraints as terms 
to the objective function requires only one adjoint analysis 
per load case to compute design sensitivities. Herein, we 
collectively refer to these techniques as penalty methods.

A particular challenge of aggregation methods is that the 
approximations of the maximum stress may significantly 
overshoot or undershoot the true maximum. Consequently, 
the optimization renders a design that is conservative or 
unsafe, respectively. Increasing the parameter of the approxi-
mation will increase the accuracy, as these approximations 
tend to the true maximum in the limit when the parameter 
tends to infinity. However, this also causes the constraint to 
be more nonlinear, which consequently hinders the optimi-
zation. This happens because in this case approximations 
of the constraint are reasonably accurate only within a very 
small neighborhood of the current design. In practice, this 
means the optimizer may take poor steps, leading to a large 
number of iterations to converge or causing the iterative 
process to altogether diverge. A solution to this problem 
was introduced by Le et al. (2010), whereby the limit of the 
constraint is adaptively rescaled throughout the optimiza-
tion based on the values of the true and approximate maxi-
mum stresses of the current design. The idea is to increase, 
decrease, or leave unchanged the constraint limit if the true 
maximum stress is below, exceeds, or equals the desired 
stress limit, respectively. We interchangeably refer to this 
heuristic technique as adaptive constraint scaling (ACS) or 
renormalization. This method is highly effective in tightly 
satisfying the specified stress limit.

Penalty approaches do not require renormalization to 
satisfy the stress limit and they are backed by proofs that 
they converge to a local minimum of the original optimiza-
tion problem. Moreover, the local constraints added to the 
objective function need not be differentiable everywhere; 
for instance, the penalty term for each local constraint may 
correspond to the true maximum between zero and the ele-
ment violation. They require, however, a strategy to initial-
ize and update the penalty parameters. The performance of 
these methods can be highly sensitive to this initialization 
and updating strategy, with poor choices of the penalty 
parameters potentially leading to negligible or no improve-
ment in early iterations or to divergence from a good initial 
design (Birgin et al. 2005; Curtis et al. 2016), particularly 
for the exterior penalty methods. Methods that use the AL 
approach have nevertheless reported a robust behavior with a 
problem-independent parameter updating strategy (Senhora 
et al. 2020). Another consideration in penalty approaches is 

the incorporation of multiple constraints in the augmented 
Lagrangian, in which different parameters may have to be 
chosen for different constraints, see the discussion in Russ 
and Waisman (2021).

An additional challenge of the aggregation approaches is 
that the value of the parameter for the approximated maxi-
mum function needed to produce good results can be highly 
mesh dependent, as noted in Zhou and Sigmund (2017). Fur-
thermore, the convergence behavior when using renormali-
zation can be quite noisy, and the optimization can render 
suboptimal designs.

In this work, we present a method to incorporate stress 
criteria in the topology optimization in which the local stress 
constraints are cast into a single, separate constraint as in 
aggregation methods, but without constraint renormaliza-
tion. The stress constraint in the proposed method consists 
of a differentiable approximation of the maximum element-
stress violation; in turn, the local constraint is given by a 
differentiable rectifier function, i.e., the maximum between 
zero and the element-stress violation (scaled by the stress 
limit). We use the term rectifier following the terminology 
for this type of function used in the field of artificial neu-
ral networks. Since a key goal of our method is to circum-
vent the need for renormalization in aggregation methods, 
particular emphasis is given to comparing the proposed 
approach with an aggregation method that uses renormali-
zation, namely the technique of Le et al. (2010).

We note that other works have used rectifier functions 
in stress-constrained topology optimization. For example, 
the penalty approaches of Amstutz and Novotny (2010) and 
De Troya and Tortorelli (2018) use a smooth approximation 
of the ramp function based on the P-norm. The aggregation 
approach of Wang and Qian (2018) uses a smooth Heaviside 
approximation based on the arctan function and employs 
renormalization. The technique of Zhang et al. (2020) uses 
an exponential smooth hinge function as rectifier, and the 
aggregate stress constraint requires that the average recti-
fier does not exceed a small value; this method does not use 
renormalization, and the authors report that the stress limit 
is not tightly satisfied. The approach that is perhaps closest 
in spirit to the one proposed in this work is in fact one of the 
earliest works in stress-constrained topology optimization, 
namely the method of Duysinx and Sigmund (1998). In that 
work, a P-norm of a rectifier function is used as the stress 
constraint; the rectifier is the (true) maximum between zero 
and a function that is based on the element stress constraint 
violation, but that also incorporates additional terms to 
address the singular optimum problem (see Sect. 2.1) based 
on !-relaxation. This approach predates renormalization 
techniques and, as reported by the authors, does not render 
a tight stress limit satisfaction.

The rest of the paper is structured as follows. Section 2 
details the formulation of the proposed method maximum 
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rectifier function (MRF) method; it also recasts the ACS 
approach using a consistent notation that allows for a 
sensitivity analysis formulation that accommodates both 
approaches. Numerical examples in 2D and 3D to compare 
the two approaches are subsequently presented in Sect. 3, 
and we draw conclusions of this work in Sect. 4.

2  Formulation

This section details the formulation of the proposed stress-
constrained topology optimization. We start by defining the 
element relaxed von Mises stress, which is the local quan-
tity we constrain in the optimization. Next, we define the 
rectifier function that smoothly approximates the constraint 
violation at each element. We then define the aggregation 
function that captures the maximum constraint violation in 
the structure. Finally, we state the optimization problem with 
the proposed constraint.

2.1  Relaxed stress

As in all density-based methods, we consider element uni-
form pseudo-densities !e as the design variables in the opti-
mization. A linear filter of these variables is employed to 
enforce a minimum length scale and to render mesh-inde-
pendent solutions. The vector of element filtered densities 
is given by

with r the filter radius, ne the number of elements, and ! 
the vector of design variables. !i denotes the centroid of 
element i. Matrix ! is computed once at the beginning of 
the optimization. We note this corresponds to the consist-
ent filtering approach (Bruns and Tortorelli 2001; Bourdin 
2001), in which design variables are filtered and consistent 
sensitivities are subsequently computed.

Using the filtered density, an ersatz material is defined for 
element e with constitutive elasticity tensor

where ℂ0 is the elasticity tensor of the solid material, p is 
a penalization power, and 0 < !min ≪ 1 is a small bound to 
prevent an ill-posed analysis. This form of material interpo-
lation corresponds to the modified solid isotropic material 

(1)

!̄ ∶= !!

Hij ∶=
we
i
"i∑ne

i=1
we
i
"i

we
i
∶= max

(
0, 1 −

‖"e − "i‖
r

)
,

(2)ℂe ∶= "̂eℂ0

(3)"̂e("̄e;p) ∶=
(
"min + (1 − "min)"̄

p
e

)
,

interpolation (SIMP) scheme (Bendsøe and Sigmund 1999; 
Sigmund 2007), while the standard SIMP interpolation cor-
responds to !min = 0 . The modified SIMP scheme has the 
advantage that the minimum material stiffness is independ-
ent of p, and, crucially, it allows for the element densities !e 
to be zero, which is advantageous for the stress-constrained 
problem, as discussed later in this section.

Without loss of generality, and as is common in stress-
constrained topology optimization, we consider the stress 
at the element centroid !e . The finite element (FE) analysis 
of the structure is carried out using the interpolated prop-
erties of (2) for each element, and the corresponding FE 
stress (in vector Voigt notation) is computed as

where !e is the matrix corresponding to the symmetric gra-
dient of the shape functions evaluated at !e, and !e is the 
element vector of nodal displacements.

The stress invariant we choose to constrain is the von 
Mises stress. The FE von Mises stress is given by

where ! is the 3(n − 1) × 3(n − 1) matrix with components

for problems in ℝn and n ∈ {2, 3} . From (2), (3) and (5), it 
follows that

The reader is referred to “Appendix” for a discussion on 
robustly calculating !ve in the computer implementation.

As per the discussion in Le et al. (2010), we cannot use 
the FE stress of (5) in the constraint as the optimizer will 
render the trivial solution !e = 0∀e . To see why this occurs, 
consider a homogeneous design for which !e = !∗ . Cor-
respondingly, "̄e = "∗ and "̂e = "min + (1 − "min)"

∗p =∶ "̂∗
e
 

from (1) and (3), respectively, and the element elasticity 
tensor from (2) is ℂe = "̂∗

e
ℂ0 . Consequently, the linear-

ity of the analysis dictates that !e = (1∕"̂∗
e
)!eS , where !eS 

denotes the displacement that would be obtained if the 
entire structure were fully solid. From (8) and (9), we then 

(4)!e = ℂe!e"e,

(5)!ve =
√

!T
e
!!e,

(6)Vij =

⎧
⎪
⎪
⎨
⎪
⎪⎩

1 if i = j and i, j ≤ n

− 1

2
if i ≠ j and i, j ≤ n

3 if i = j and i, j > n

0 otherwise,

(7)!ve = #̂ese

(8)se ∶=
√

!T
e0
!!e0

(9)!e0
∶= ℂ0!e"e.
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have se = (1∕"̂∗
e
)seS , where seS is the von Mises stress cor-

responding to the fully-solid structure. Substituting in (7), 
we find that !ve = seS , that is, the finite element stress for a 
homogeneous design is independent of the value of !∗ and 
therefore removing material will not affect the stress. If seS 
does not exceed the specified stress limit for any element, 
the trivial design is therefore the optimal minimum-mass 
design.

The quantity se in (8) cannot be used as an element con-
straint either. Due to static indeterminacy, reducing !e—
which will make the element material more compliant by 
(2)—may decrease the amount of load going through the 
element, thus decreasing the strain !e"e in (9) and conse-
quently se . However, unless the element is in pure rigid-
body motion, its strain will in general be non-zero even if 
!e = 0 (for which "̂e = "min ). If se exceeds the specified stress 
limit for some intermediate value of !e , the optimizer will be 
unable to further decrease !e , which has the effect of mak-
ing it difficult to remove gray regions from the design. More 
importantly, a better design may be obtained altogether by 
removing the element from the analysis, in which case there 
simply is no constraint associated with that element.

The foregoing phenomenon is the so-called singular 
optimum problem (Kirsch 1990; Cheng and Jiang 1992; 
Rozvany and Birker 1994), in which the global optimum 
lies in a degenerate (lower dimensional) region of the design 
space that cannot be reached by gradient-based optimiz-
ers. This region corresponds to one or more of the design 
variables being zero and their corresponding element con-
straints removed. The two primary strategies to circumvent 
this issue are the !-relaxation technique (Cheng and Guo 
1997; Rozvany and Sobieszczanski-Sobieski 1992; Duysinx 
and Bendsøe 1998; Duysinx and Sigmund 1998) and the qp 
approach of Bruggi (2008) [also used in Le et al. (2010)]. 
Herein we employ the latter and define a relaxed stress

where q is a relaxation power that must satisfy 0 < p − q < 1 . 
Using the relaxed stress of (10) instead of the FE stress of (4) 
to define the stress constraint has the effect of opening up the 
degenerate regions in the design space so that they can be 
reached by the optimizer. Alternatively, (10) can be seen as 
a penalization where intermediate densities render a lower 
strength-to-volume ratio than fully-solid material and lead 
to an infeasible design. A consequence of this stress relaxa-
tion is that when "̄e = 0 , the corresponding element stress 
constraint is effectively removed from the optimization.

Following the same argument as before, for a homo-
geneous design with !e = !∗ , the relaxed stress of (10) is 
"̃ve = (#∗

e
)p−q−1seS . Since p − q − 1 < 0 and seS are bounded 

(10)"̃ve ∶= #̃ese

(11)"̃e ∶= "̄ p−q
e

,

in the FE analysis, as !∗ → 0 from above, the resulting stress 
in the entire structure tends to infinity and therefore the triv-
ial design becomes highly infeasible and is thus precluded. 
This does not occur for 0/1 designs in which the solid por-
tion (i.e., elements with "̄e ≈ 1 ) connects the loads to the 
supports, as the load will be almost entirely taken by the 
solid regions so that void regions will have se ≈ 0 and con-
sequently may have a feasible relaxed stress.

A subtle but important point must be made about the defi-
nition of (11). As per the previous discussion, a requirement 
of the relaxation is that lim"̄e→0,se→0 $̃ve = 0 . Therefore, we 
cannot use "̃e = "̂e("̄e;p)∕"̄

q
e  , because "̂e is bounded below 

by !min , hence the limit would be infinity. An alternative 
definition is "̃e = "̂e("̄e;p)∕"̂e("̄e;q) , for which "̃e = 1 when 
"̄e = "min and thus lim"̄e→0 $̃ve = se , which leads again to 
the singular optima phenomenon previously discussed. The 
expression of (11), on the other hand, tends exactly to zero 
in the limit, and this is the advantage of using the modified 
SIMP interpolation. The combined use of (2) for the mate-
rial interpolation and (11) for the stress relaxation has been 
employed by other works [for example, by Oest and Lund 
(2017) and Zhang et al. (2019) for fatigue-constrained topol-
ogy optimization].

2.2  Local stress constraint

In the proposed approach, the local constraint is a rectifier 
of the element stress constraint violation. Multiple loading 
cases can be applied to the structure, each with a possibly 
different stress limit. The element stress constraint for load-
ing case k is given by

where "̃vek and !∗
k
 are the relaxed element von Mises stress 

and stress limit for loading case k, respectively. The maxi-
mum function is not differentiable, and since we wish to 
employ efficient gradient-based techniques for the optimiza-
tion, we replace the rectifier with a differentiable approxima-
tion. Here, we employ the softplus function given by

where c = max(x, 0) is used to prevent numerical over-
flow and ! is a parameter with lim!→∞ x+(x) = max(0, x) . 
It should be noted that the softplus function is the Kreis-
selmeier–Steinhauser approximation (Kreisselmeier and 
Steinhauser 1980) applied to the maximum between zero 
and x.

As shown in Fig. 1 (solid line), the softplus function 
attains a small but positive value at x = 0 . Therefore, 
using (13) to replace the rectifier in (12) will indicate the 

(12)h("̃vek) ∶= max

(
0,

"̃vek

"∗
k

− 1

)
≤ 0,

(13)x+(x;!) ∶= c +
1

!
log

(
e!(x−c) + e−!c

)
,
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constraint is violated for stress values close to the limit 
but nevertheless feasible, and the optimization will conse-
quently render a conservative design. To alleviate this, we 
shift the function to the right. Since the softplus function 
is never exactly zero, we cannot attain a shifted function x̂+ 
such that x̂+(x = 0) = 0 . Instead, we require x̂+(x = 0) = " , 
with ! a small, specified parameter. The corresponding 
shifted softplus function is given by

with xs the horizontal shift. The corresponding function is 
shown with a dashed line in Fig. 1.

With the shifted softplus function, we replace the ele-
ment constraint of (12) with

2.3  Aggregated constraint

As in all aggregation methods, we define a single con-
straint in the optimization problem corresponding to the 
maximum element stress violation. The optimization prob-
lem reads

(14)
x̂+(x;", #) ∶= c +

1

"
log

(
e"(x+xs−c) + e−"c

)

xs =
1

"
log(e"# − 1),

(15)h("̃vek) ∶= x̂+
( "̃vek

"∗
k

− 1;$, %

)
≤ 0.

In the expressions above, ve denotes the element volume and 
(18) corresponds to the systems of linear equations arising 
from the finite element discretization of the elasticity bound-
ary value problems for nk loading cases, with ! the global 
stiffness matrix and !k the global force vector for loading 
case k. We assume !k to be design independent and the dis-
placement boundary conditions to be the same for all loading 
cases. In (17), m̃ax is a differentiable approximation of the 
maximum function, which in this work we take to be the 
lower-bound Kreisselmeier–Steinhauser function

where C = maxi xi is used to prevent numerical overflow, n 
is the number of components of ! , and ! is a parameter with 
lim!→∞ LKS(!;!) = maxi xi . Note that the maximum in (17) 
is computed over all elements and all loading cases, hence 
the vector passed to (20), which following (15) we hence-
forth denote as ! has nenk components. The rationale for the 
lower bound on !e in (19) is explained in Sect. 2.5.

One challenge in using the LKS function of (20) to com-
pute the maximum stress violation is that this function (as is 
the case with other aggregation functions) performs poorly 
when the maximum is close to zero. For this reason, it is 
undesirable to use a value of ! in (14) that is too close to 
zero. We employ two strategies to circumvent this difficulty. 
First, we replace h("̃vek) with

which for a design with no element stress constraint viola-
tions renders a maximum of e! ≈ 1 . Correspondingly, we 
replace the constraint (17) with

where ! is the vector of exponentially scaled element stress 
constraint violations.

The second strategy to address the challenge of approxi-
mating the maximum of small numbers is of course to 
increase the parameter ! . However, as noted before, using 

(16)min
!

vf ∶=

∑ne
e
"̄eve∑ne

e
ve

(17)
subject to

g ∶= m̃axe,k(h(#̃vek))) ≤ 0

(18)!"k = #k, k = 1,… , nk

(19)!2
min

≤ !e ≤ 1, i = 1,… , ne.

(20)LKS(!;!) ∶= C +
1

!
log

(
1

n

∑
i

e!(xi−C)

)
,

(21)!(#̃vek) ∶= eh(#̃vek),

(22)g ∶= LKS(!;!) − 1 ≤ 0,

Fig. 1  Softplus smooth rectifier without (solid line) and with (dashed 
line) shifting. ! = 24 and ! = 0.01
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too high a value of ! increases the nonlinearity of the con-
straint and the optimization may converge to a poor local 
minimum or diverge. To be able to attain a high value of 
! , we employ a continuation strategy. The optimization 
starts with a relatively low aggregation parameter !min until 
maxe,k "̃vek < 2"∗

k
 for every loading case k. Thereafter, ! is 

increased at each optimization iteration by an amount Δ! 
until it reaches a specified value !max.

The parameter ! in the rectifier function of (15) should 
also be sufficiently high to accurately approximate the stress 
constraint violation, and it also increases the nonlinearity of 
the constraint. Our numerical experiments show that a ratio 
of !∕" = 2 produces good results. Therefore, we also per-
form continuation on the rectifier parameter ! while main-
taining this ratio.

We note that we performed numerical experiments with 
different combinations of candidate functions for the recti-
fier of (12) and the aggregation of (17). For instance, we 
considered the swish function (which is the softmax function 
applied to the maximum of a number and zero), a smooth 
Heaviside function, and the (non-differentiable) exponen-
tial linear unit (ELU) function for the rectifier approxima-
tion. For the aggregate function, we experimented with the 
P-norm, P-mean, upper-bound KS, softmax, and average 
functions. Although there may certainly be combinations 
of different forms for these functions that work as well or 
better than the ones presented in this work, we obtained the 
best results (i.e., faster convergence and robustness) with the 
presented choices, namely the shifted softplus function for 
the rectifier and the LKS function for the aggregation. The 
KS function works well for smaller mesh sizes, but the LKS 
function performs better over the range of mesh sizes pre-
sented in the examples. For combinations of the aggregation 
and rectifier functions that were not effective, the optimiza-
tion tends to converge to suboptimal designs or get stuck in 
designs with large gray regions. It is unclear to the authors 
why this is the case, and an investigation into this aspect 
is deferred to future work. It is worth noting that different 
aggregation functions exhibit different asymptotic behaviors; 
the reader is referred to Verbart (2015) and Kennedy and 
Hicken (2015) for more details.

2.4  Adaptive constraint scaling

As noted in Sect. 1, we compare the proposed MRF method 
to the ACS approach of Le et al. (2010). We do not use the 
regional stress constraints introduced in that work and thus 
consider a single aggregate-stress constraint. In the follow-
ing, we briefly describe the ACS method for completeness. 
For convenience in the derivation and computer implemen-
tation, we employ the same notation used to describe our 
method, which allows us to have a unified sensitivity analy-
sis for both techniques.

In the ACS approach, the element-level criterion of (15) 
becomes

and the aggregate function of (17) becomes

A P-norm is used for the differentiable approximation m̃ax , 
given by

As in our method, the maximum is taken over all elements 
and all loading cases. The renormalization takes place 
through the factor ! in (24), which is updated at each itera-
tion I as

where the parameter

is used to control fast oscillations of the renormalization. 
The parameter ! is ignored in the sensitivity analysis (i.e., 
the sensitivities of g are computed with ! = 1).

Although the work of Le et al. (2010) uses standard SIMP 
for material interpolation, here we employ the modified SIMP 
model of (3) for consistency, as there is no appreciable differ-
ence when using either scheme with ACS. The definition of 
the relaxed stress of (10) is the same.

2.5  Sensitivity analysis

Design sensitivities of the aggregate functions of (17) and (24) 
can be readily obtained using adjoint differentiation. A detailed 
derivation is not presented here for brevity, and we only pro-
vide the resulting expressions. The sensitivity of g with respect 
to the filtered density "̄i is given by

where !k are the solutions to the nk adjoint problems

(23)h("̃vek) ∶=
"̃vek

"∗
k

,

(24)g ∶= !m̃axe,k(!) − 1 ≤ 0.

(25)‖!‖P ∶=

[∑
i

xP
i

] 1

P

.

(26)! (I) = "(I)
maxe,k

(
$̃(I)
vek
∕$∗

k

)

‖!(I)‖P
+
(
1 − "(I)

)
! (I−1),

(27)!(I) =

⎧
⎪
⎨
⎪⎩

!osc if I > 3 and

(" (I−3) − " (I−2))(" (I−2) − " (I−1))
< 0

1.0 otherwise

(28)
!g

!#̄i
=

nk∑
k=1

[
!g

!$ik

!$ik

!hik

!hik
!&̃vik

!#̃i
!#̄i

sik + !T
k

!!

!#̄i
"k

]
,
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In the above expression, !e denotes the gather matrix for 
element e, i.e., the matrix of zeros and ones that maps the 
global solution vector to the element solution vector (cf. Fish 
and Belytschko 2007). Conversely, !T

e
 denotes the scatter 

matrix for element e that maps the element components to 
the appropriate places in the global vector. These matrices 
encode the FE assembly process in the equations in terms 
of matrix multiplications and sum over elements, but are 
never assembled or stored in the computer code. The terms 
!e0k

 and sek in (29) correspond to (9) and (8) computed for 
loading case k, respectively. The last term in (28) is obtained 
from (2) and (3) as

where !i and !i0
 denote the stiffness matrices for element i 

computed with the ersatz material of (2) and with ℂ0 , respec-
tively, and !ek and !ek denote the element adjoint and solu-
tion vectors, respectively. From (11), we have

An important point must be made regarding this expression. 
Since p − q − 1 < 0 , as noted in Sect. 2.1, !#̃i∕!#̄i will be 
undefined if "̄i = 0 . This means that, unfortunately, we can-
not accommodate !e being exactly zero. However, we can 
impose a lower bound on the design variables that is still 
much smaller than !min so that the relaxed stress becomes 
very close to zero as "̄i → 0 . Here, we choose the lower 
bound to be !2

min
.

The sensitivities of g with respect to the design vari-
ables follow from (1) as

The above expressions apply to both the ACS and MRF 
approaches. For the proposed MRF approach, we have from 
(15) that

with

(29)!!k = −

ne∑
e=1

!g

!"ek

!"ek

!hek

!hek
!$̃vek

$̃vek

s2
ek

"
T
e
#
T
e
ℂ0$"e0k

.

(30)

!T
k

!!

!#̄i
"k = !T

k
#
T
i

!!i

!#̄i
#i"k

= !T
ek

!!i

!#̄i
"ek

= p(1 − #min)#̄
p−1

i
!T
ek
!i0

"ek,

(31)
!#̃i
!#̄i

= (p − q)#̄ p−q−1

i
.

(32)
!g

!!
= !

!g

!!̄
.

(33)
!hek
!#̃vek

=
!x̂+

!x

( #̃vek

#∗
k

− 1;%, &

)
,

from (14). This form can be mathematically simplified, but 
since the terms have already been computed in (14), this 
expression reduces additional calculations while preserving 
the overflow protection. From (21), we have

We also have from (22) that

with

from (20).
For the ACS approach, we let !ek

= hek and therefore 
!"ek

∕!hek = 1 . It follows from (23) that

and for the aggregate constraint we find from (24) and (25) 
that

These sensitivities have been verified with finite difference 
checks for both approaches.

3  Examples

The MRF and ACS methods are implemented in MAT-
LAB, version R2022a. For the optimization, we employ 
the method of moving asymptotes (MMA) (Svanberg 1987, 
1998, 2007). We employ the 1999 MATLAB implementa-
tion by K. Svanberg, as we found this version significantly 
outperforms the more widely used 2007 version for both 
approaches. Both versions exhibit a similar convergence 
behavior in the first iterations; however, when some solid 
load paths have been formed but large regions of interme-
diate density material remain, the 2007 version struggles 
to continue changing toward a 0–1 design, while the 1999 
version makes steady progress in removing gray regions. 
We posit this may be due to the portions of the MMA for-
mulation that ensure a globally convergent behavior, which 

(34)!x̂+

!x
(x;#, $) =

e#(x+xs−c)

e−c# + e#(x+xs−c)

(35)
!"ek

!hek
= ehek .

(36)
!g

!hek
=

!LKS

!xi
(!;")|xi≡#ek

,

(37)
!LKS
!xi

(!;") =
e"(xi−C)∑
j e

"(xj−C)

(38)
!hek
!#̃vek

=
1

#∗
k

,

(39)!g

!hek
=

(
hek
g(!)

)P−1

.
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constitute the most significant difference between the two 
versions; an investigation of this issue, however, is outside 
the scope of this paper.

To dampen the design steps so as to prevent design 
changes that may lead to divergence or early convergence to 
poor minima, we impose a tight move limit m on the design 
variables and replace (19) with

A tighter move limit is required for the MRF approach due 
to the relatively high values of the aggregation parameter 
!max . Once the optimization has reached a design for which 
maxe,k "̃vek < 1.2"∗

k
 for every loading case k, we double the 

move limit m to speed up convergence.
To produce a more conservative approximation of the 

stress constraint in the first iterations of MMA, and in the 
spirit of Guest et al. (2011), we modify the definition of the 
asymptotes in the first two iterations of MMA in the MRF 
approach. The lower and upper asymptotes on design vari-
able xj are defined as

respectively, where k ∈ {1, 2} is the iteration number and x
j
 

and xj denote the lower and upper bounds on xj , respectively. 
The default value of s0 in MMA is 0.5. Here, we set a much 
tighter value of s0 = m . The definitions of the asymptotes in 
the third iteration and thereafter remain unchanged.

The optimization is stopped when the relative change in 
the objective function in two consecutive iterations is less 
than ΔVtol or when Imax iterations are reached. Since the tight 
move limits may occasionally cause premature satisfaction 
of the former criterion, it is also required that the optimiza-
tion continues running as long as the gray region fraction 
G, defined as

exceeds a specified value Gmax . Unless otherwise noted, 
the parameter values used in the examples are shown in 
Table 1.

2D and 3D examples are meshed with bilinear quadri-
laterals and trilinear hexahedrals, respectively. Unless oth-
erwise noted, the Young’s modulus and Poisson’s ratio of 
the fully-solid material used for all examples are E = 1 and 
! = 0.3 , respectively. The 2D examples are solved under 
plane-stress assumptions. For the 2D problems, the analy-
sis is solved using Cholesky factorization and the Cholesky 
factor is stored so that the solution of the problems of (29) 

(40)max(!2
min

, !(I−1)
e

− m) ≤ !(I)
e

≤ min(1, !(I−1)
e

+ m).

(41)L
(k)
j

= x
(k)
j

− s0(xj − x
j
)

(42)U
(k)
j

= x
(k)
j

+ s0(xj − x
j
),

(43)G ∶=
4

ne

ne∑
e=1

!e(1 − !e),

only requires a backward substitution. For the 3D example, 
we use a preconditioned conjugate gradient method with an 
incomplete Cholesky factorization for the preconditioner, 
with a convergence tolerance on the residual of 10−8 . In this 
case, a full solution must be performed for the primal analy-
sis and for each of the adjoint analyses.

3.1  L-bracket

The first example we present is the L-bracket, widely used 
as a benchmark in stress-constrained topology optimiza-
tion (see, for example, Duysinx and Bendsøe (1998)). The 
purpose of this example is to compare the performance 
of the MRF and ACS approaches for varying aggregation 
parameter values. The dimensions, loading, and boundary 

Table 1  Parameter values, note 
h
e
 is the element size, unless 

otherwise specified, these are 
the values used in all examples

aSvanberg (1998)

Parameter Value Reference

r 2.5he (1)
p 3 (3)
!min 10−3 (3)
q 2.5 (11)
! 2! (14)
! 10−3 (14)
!min 6 Section 2.3
Δ! 0.2 Section 2.3
!max 16 Section 2.3
P 10 (25)
!osc 0.8 (27)
m 0.02 (40)
!(0)e

0.5 (40)
a0 1 MMA(a)

a1 0 MMA(a)

c1 1000 MMA(a)

d1 1 MMA(a)

ΔVtol 10−5 Section 3
Imax 500 Section 3
Gmax 0.1 Section 3

100

10
0

40

40

F = 3

5

Fig. 2  L-bracket dimensions, load, and boundary conditions
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conditions are shown in Fig. 2. The load is distributed over 
a short length to avoid a stress concentration at its point 
of application. The L-bracket is meshed with element sizes 
he = 2 (1,600 elements), he = 1 (6,400 elements), and 
he = 0.5 (25,600 elements). The stress limit for this prob-
lem is !∗

1
= 2.4.

The designs obtained for this problem are shown in Fig. 3 
for the MRF approach with three values of the maximum 
aggregation parameter !max and in Fig. 7 for the ACS method 
with three values of the aggregation parameter P. In both 
cases, the second and third aggregation parameter values 
correspond to a 1/3 and 2/3 increase of the lower value, 
respectively ( !max = 12, 16, 20 for the MRF approach and 
P = 6, 8, 10 for the ACS approach). Figures 4 and 8 show 
the relaxed stresses; Figs. 5 and 9 show the objective func-
tion history; and Figs. 6 and 10 show the logarithm of the 
true maximum stress history for the two approaches. Values 
of the volume fraction, true maximum stress, and number 
of iterations to convergence for these two sets of runs are 
listed in Table 2.

Several observations can be made from these results. 
The most important difference between the two methods 

is the robustness of the proposed MRF approach with 
respect to changes in the aggregation parameter. The 
MRF designs of Fig. 3 are similar for the same element 

(a) he = 2,
βmax = 12

(b) he = 1,
βmax = 12

(c) he = 0.5,
βmax = 12

(d) he = 2,
βmax = 16

(e) he = 1,
βmax = 16

(f) he = 0.5,
βmax = 16

(g) he = 2,
βmax = 20

(h) he = 1,
βmax = 20

(i) he = 0.5,
βmax = 20

Fig. 3  L-bracket designs with MRF approach for various mesh sizes 
and aggregation parameters !max

(a) he = 2,
βmax = 12

(b) he = 1,
βmax = 12

(c) he = 0.5,
βmax = 12

(d) he = 2,
βmax = 16

1

(e) he = 1,
βmax = 16

(f) he = 0.5,
βmax = 16

(g) he = 2,
βmax = 20

(h) he = 1,
βmax = 20

(i) he = 0.5,
βmax = 20

0 0.5 1 1.5 2 2.4

Fig. 4  Relaxed stress "̃ve for the MRF L-bracket designs of Fig. 3

0 50 100 150 200 250 300 350 400 450 500
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Fig. 5  Objective function history for the MRF designs of Fig. 3
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size, whereas those of the ACS approach shown in Fig. 7 
are highly dependent on the value of the aggregation 
parameter. A small change in P leads to significantly 

0 50 100 150 200 250 300 350 400 450 500

4

6

8

10

12

14

16

Fig. 6  True maximum stress history for the MRF designs of Fig. 3

(a) he = 2,
P = 6

(b) he = 1,
P = 6

(c) he = 0.5,
P = 6

(d) he = 2,
P = 8

(e) he = 1,
P = 8

(f) he = 0.5,
P = 8

(g) he = 2,
P = 10

(h) he = 1,
P = 10

(i) he = 0.5,
P = 10

Fig. 7  L-bracket designs with ACS approach for various mesh sizes 
and aggregation parameters

(a) he = 2,
P = 6

(b) he = 1,
P = 6

(c) he = 0.5,
P = 6

(d) he = 2,
P = 8

(e) he = 1,
P = 8

(f) he = 0.5,
P = 8

(g) he = 2,
P = 10

(h) he = 1,
P = 10

(i) he = 0.5,
P = 10

0 0.5 1 1.5 2 2.4

Fig. 8  Relaxed stress "̃ve for the ACS L-bracket designs of Fig. 7

0 50 100 150 200 250 300 350 400 450 500
0.2

0.3
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Fig. 9  Objective function history for the ACS designs of Fig. 7



A maximum-rectifier-function approach to stress-constrained topology optimization  

1 3

Page 11 of 17   286 

different results, in some cases leading to suboptimal 
designs (e.g., the design for he = 0.5 , P = 6 ), inability 
to remove the stress concentration around the re-entrant 
corner ( he = 2 , P = 6 ), or occasionally divergence. It is 
likely that the continuation approach in the MRF method 
steers the optimization toward the same local minimum, 
but that is arguably an advantage, particularly given that 

the volume fraction of the MRF designs is comparable (or 
in several cases substantially better) than that obtained 
with the ACS technique.

Another stark evidence of the robustness of the proposed 
approach is its convergence behavior. As seen in 5, the 
objective function decreases smoothly, whereas the ACS 
approach (Fig. 9) exhibits a more oscillatory behavior. This 
behavior is purely a byproduct of the renormalization, and it 
not only hinders convergence, but in some cases can lead to a 
poor local minimum after having reached a better minimum, 
as in the design obtained for he = 0.5 and P = 6 (Fig. 8). To 
be sure, the ACS approach can obtain good designs, but its 
success depends on the choice of the aggregation parameter 
P. Unfortunately, there is no clear guideline as to how to 
choose a good value of P a priori, thus requiring trial and 
error.

To examine how well the aggregation function scales 
with the number of elements, we repeat the optimization 
of the L-bracket with the MRF approach using three larger 
meshes, see Fig. 11 and Table 2. All runs are performed with 
!max = 16 . As the number of elements increases, conver-
gence becomes slower and so for these runs we use a larger 
move limit ( m = 0.04 ) and filter radius than in the previous 
runs. We also impose Imax = 1, 000.

These runs show that the optimizer is able to satisfy rela-
tively well the stress constraint with the same aggregation 

0 50 100 150 200 250 300 350 400 450 500

4

6

8

10

12

14

16

Fig. 10  True maximum stress history for the ACS designs of Fig. 7

Table 2  Values for the designs 
of Figs. 3 and 7

!max denotes the true largest stress and Δ!max is its value relative to the stress limit !∗
1
 . It is the number of 

iterations to satisfy at least one of the stopping criteria

he !/P vf !max Δ!max (%) It. Figure

MRF 2 ! = 12 0.303 2.445 1.87 425 3a
2 ! = 16 0.301 2.437 1.53 385 3d
2 ! = 20 0.299 2.414 0.59 500 3g
1 ! = 12 0.264 2.284 − 4.82 223 3b
1 ! = 16 0.260 2.290 − 4.57 301 3e
1 ! = 20 0.268 2.327 − 3.03 242 3h
0.5 ! = 12 0.235 2.288 − 4.66 461 3c
0.5 ! = 16 0.230 2.340 − 2.51 455 3f
0.5 ! = 20 0.231 2.348 − 2.15 449 3i
0.25 ! = 16 0.228 2.363 − 1.54 446 11a
0.20 ! = 16 0.244 2.341 − 2.47 483 11b
0.16 ! = 16 0.307 2.376 − 1.02 1000 11c

ACS 2 P = 6 0.368 2.399 − 0.03 133 7a
2 P = 8 0.337 2.400 0.01 159 7d
2 P = 10 0.337 2.400 − 0.01 206 7g
1 P = 6 0.386 2.400 − 0.01 157 7b
1 P = 8 0.338 2.402 0.07 155 7e
1 P = 10 0.311 2.399 − 0.03 184 7h
0.5 P = 6 0.409 2.523 5.11 500 7c
0.5 P = 8 0.321 2.753 14.70 500 7f
0.5 P = 10 0.232 2.399 − 0.02 199 7i
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parameter values used before, hence the aggregation scales 
well in this sense. However, with decreasing element size, 
the optimizer is unable to efficiently remove gray regions 
after some point, even though the design is reasonable (i.e., 
similar to the ones obtained with coarser meshes). This 
behavior does not improve by decreasing or increasing 
!max . Moreover, as observed in Fig. 11, there are increas-
ingly larger gray regions with active stress constraints as 
the element size decreases. Therefore, this behavior is more 
likely due to the relaxation. A further investigation of this 
issue is deferred to future work.

Despite the fact that the proposed approach is able to rea-
sonably satisfy the stress constraints across the mesh sizes 
used in this example, we make no claim that the effective-
ness of the proposed MRF method is completely insensi-
tive to the aggregation parameter ! . It is clear from these 
examples, however, that it is a more robust method than the 
ACS approach.

It can also be observed that the MRF approach produces 
more fully-stressed designs than the ACS method, as seen 
in Figs. 4 and 8. As noted in Sect. 2.5, the sensitivities in 
the ACS approach are inconsistent as they cannot capture 
changes in the scaling parameter ! of (26). This inconsist-
ency may prevent the optimizer from getting closer to a fully 
stressed design in some cases.

Finally, it should be noted that, in general and as 
expected, the ACS approach is able to more tightly satisfy 
the stress constraint, as seen in Table 2. However, as seen in 
the table, the ACS approach can occasionally end up violat-
ing the constraint significantly, as is the case for h = 0.5 and 
P = 8 . The MRF designs are all reasonably close to the limit 
in all cases. Also, all the MRF designs are lighter than those 
obtained with the ACS approach.

There is a question as to whether a strategy of continu-
ation of the aggregation parameter could be used with the 
ACS approach. While it is possible that a more sophisti-
cated renormalization approach may cure at least some of 
the robustness issues of the ACS method, the constraint 
limit rescaling strategy is ultimately a way to compensate 
for the inaccuracy in the maximum approximation. There-
fore, renormalization fundamentally works in an opposite 
way to the continuation strategy. It should also be noted that 
often times the ACS approach converges to a good design 
and then diverges to a poorer minimum, as in the case of 
he = 1 , P = 8 (see Figs. 7e and 9). In this case, the prob-
lem is not that P = 8 is not a sufficiently high value of the 
aggregation parameter, but that the renormalization of the 
constraint limit diverts the optimizer away from an already 
good design.

3.2  Portal frame

The next example corresponds to the portal frame design 
presented in Le et al. (2010). The dimensions, loading, 
and boundary conditions are shown in Fig. 12a. In Le et al. 
(2010), the optimization minimizes the maximum stress 
subject to a volume fraction constraint of 0.3, rendering a 
design with !max = 3.3 . Here, we solve the volume fraction 
minimization problem of (16)–(19) with !∗

1
= 3.3 . A uni-

form mesh of 240 × 80 elements is deformed vertically to 
create the V-shaped cutout and horizontally to maintain a 
good aspect ratio.

Figure 12b and c shows the results of the optimization 
using the MRF and ACS methods, respectively. For compar-
ison, the minimum-compliance design is shown in Fig. 12d, 
with a constraint that the volume fraction does not exceed 
that of the optimal MRF design of Fig. 12c. This result is 
obtained with a scaling factor of 0.01 for the structural com-
pliance C and with m = 0.1 . For this example, both MRF and 
ACS approaches produce a similar design. Interestingly, they 
both render much lighter designs than the one reported in Le 
et al. (2010), which is possibly due to the smaller element 
size used here.

3.3  Cracked design region

The following example consists of the cracked design region 
presented in Emmendoerfer Jr and Fancello (2014). We 
employ the modified version shown in Giraldo-Londoño and 
Paulino (2021), with the Mode-I loading shown in Fig. 13a. 
Symmetry boundary conditions are imposed to model only 
half of the design region, with a mesh of 100 × 200 elements. 
The Young’s modulus and Poisson’s ratio for this example 
are E = 70 GPa and ! = 0.25 , respectively. The stress limit is 
!∗
1
= 100 MPa. For the ACS method, it is necessary to use a 

higher value of the aggregation parameter to obtain a design 

(a) (b) (c)

0 0.5 1 1.5 2 2.4

Fig. 11  L-bracket designs with MRF approach for larger mesh sizes. 
a he = 0.25 (102,400 elements) with r = 3he . b he = 0.20 (160,000 
elements) with r = 3he . c he = 0.16 (250,000 elements), with r = 4he
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similar in volume fraction to the one produced by the MRF 
approach; after some trial and error, we found P = 16 to be 
an adequate value.

The designs obtained with the MRF and ACS methods 
are shown in Fig. 13b and c, respectively. For this problem, 
the MRF method produces a  lighter design than the ACS 

approach. It is also interesting to note in this example that 
the MRF design shows some internal members with forked, 
Y-shaped ends, which presumably split the load going into 
the outer member to reduce stresses at the joints.

3.4  Double L-bracket

In this section, we consider the double L-bracket shown in 
Fig. 14a and introduced in Le et al. (2010). The purpose of 
this example is to demonstrate the method with multiple 
load cases. The loading for one load case is a reflection of 
the loading for the other, but the stress limits are differ-
ent: !∗

1
= 1.8 and !∗

2
= 2.4 for the right-hand and left-hand 

120

60

30

8

F = 8

5 5

(a)

(b)

(c)

(d)

Fig. 12  Portal frame design. a Dimensions, loading, and bound-
ary conditions. b MRF design with vf = 0.213 , !max = 3.311 , 
Δ!max = 0.33% , It. = 361 , and C = 5.86E3 . c ACS design with 
vf = 0.224 , !max = 3.298 , Δ!max = − 0.07% , It. = 316 , and 
C = 5.75E3 . d Minimum-compliance design with vf = 0.213 , 
!max = 9.076 , Δ!max = 175.02% , It. = 92 , and C = 4.23E3

2

2

0.
1

sy
m

1

F = 5F = 5

(a)

(b)

(c)

Fig. 13  Cracked plate design. a Dimensions (in m), loading (in 
kN), and boundary conditions. b MRF design with vf = 0.267 , 
!max = 101.316 , Δ!max = 1.32% , and It. = 442 . c ACS design with 
vf = 0.321 , !max = 100.107 , Δ!max = 0.11% , and It. = 281
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loads, respectively. The mesh uses 13,150 uniform ele-
ments of size he = 0.8 . Figure 14b and c shows the designs 
obtained with the MRF and ACS methods, respectively. 
We use P = 16 for the ACS method, as it produces a better 
design than P = 10.

The MRF and ACS approaches render similarly perform-
ing designs for this example; however, the ACS design more 
tightly satisfies the stress limits. As with the aggregate con-
straint for multiple load cases introduced in Le et al. (2010), 
the function (17) in the proposed method is equally effective 
in incorporating local stress constraints for multiple load 
cases and different stress limits using a single constraint 
(although, as discussed in Sect. 2.5, one sensitivity analysis 
per load case is nevertheless required).

3.5  3D cantilever

The last example we present corresponds to the design 
of the 3D cantilever beam shown in Fig. 15. Symmetry 
boundary conditions are employed and the half design 
region is meshed with 160 × 32 × 16 hexahedral ele-
ments. The load is distributed uniformly within a circular 
region centered at the midpoint of the end face. We use 
a filter radius r = 2he and a larger stopping criterion of 
Gmax = 0.15 for the gray region fraction. The stress limit 
is !∗

1
= 5.

The solution of the stress-constrained optimization for 
this problem using the MRF approach with the aggrega-
tion parameter value of !max = 16 listed in Table 1 renders 
a design that violates the stress constraint by about 4.7%. 
To render a tighter constraint satisfaction, we use a higher 
value of !max = 32.

Figure 16 shows the designs obtained with the MRF and 
ACS approaches. For comparison, the minimum-compliance 
design with the same volume fraction as that of the MRF 
design and with a move limit m = 0.1 is also shown. The 
ACS result is obtained using P = 20 . Looser tolerances 
ΔVtol = 5 × 10−5 and Gmax = 0.3 must be used for the ACS 
method, as no convergence was achieved with the tolerance 
values of Table 1 and with various values of P. In those 
cases, the optimizer reaches a volume fraction similar to that 
of the design shown in Fig. 16 (center) and then it diverges 
as in other examples. The MRF approach, on the other hand, 
exhibits smooth convergence and renders a design that is 
lighter and clearly more fully-stressed than the ACS design, 
with a reasonably close stress limit satisfaction.

It is also interesting to note for this example that, even 
though the design region does not have re-entrant corners, 
there is a stress concentration at the wall due to the aspect 
ratio of the design region, which prevents the development 
of a more optimal parabolic outer shape; see, for example, 
Shin et al. (2015) and Norato (2018). This explains why 
the stress-constrained designs are so different from the 

160

10
0

40

40

F = 3

5

F = 3

(a)

(b)

(c)

Fig. 14  Double L-bracket design. a Dimensions, loading, and 
boundary conditions. b MRF design with vf = 0.295 , !1max

= 1.807 , 
!2max

= 2.553 Δ!1max
= 0.41% , Δ!2max

= 6.36% , and It. = 500 . 
c ACS design with vf = 0.348 , !1max

= 1.799 , !2max
= 2.237 

Δ!1max
= − 0.07% , Δ!2max

= − 6.79% , and It. = 244

Fig. 15  Dimensions, boundary conditions, and load for the 3D canti-
lever beam example
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minimum-compliance design, since in the absence of this 
stress concentration and with a single loading, one would 
otherwise expect the strongest design to be the same as the 
stiffest design (cf., Pedersen 2000).

4  Conclusion

This work introduced an aggregation method for stress-
constrained, density-based topology optimization that does 
not require renormalization of the constraint to attain the 
specified stress limit. The presented examples demonstrate 
that the proposed method is effective and more robust with 
respect to the aggregation parameters than the ACS tech-
nique. For several of the examples, it was necessary to 
experiment with different values of the aggregation param-
eter P in the ACS approach to obtain convergence to a good 
design. The proposed MRF approach, on the other hand, 
rendered good results with no variation to the aggregation 
and rectifier parameters listed in Table 1 (with the excep-
tion of the example of Sect. 3.5, in which a higher value 
of the aggregation parameter was used to obtain a tighter 
constraint satisfaction). The proposed technique therefore 
circumvents the need for renormalization while allowing the 

strength requirements to be imposed as a separate constraint 
in the optimization problem as in all aggregation techniques.

We reiterate no claim is made that our method is param-
eter independent. However, the fact that the proposed 
approach is able to attain good designs with a fixed set of 
aggregation parameters demonstrates the significant increase 
in robustness with respect to the renormalization approach. 
As expected, the proposed method does not satisfy the stress 
constraint as tightly as the ACS approach; however, the con-
straint satisfaction is adequate for design practice.

The fact that various strategies must be employed to 
account for the nonlinearity of the constraint to prevent poor 
design steps in MMA is an indication that this method could 
greatly benefit of more robust optimization approaches—for 
instance, endowing the design step with a line search. This 
would likely circumvent the need for move limits by enforc-
ing small design steps when the approximation is inaccu-
rate and the design is away from the feasible boundary, and 
allowing for larger design steps for faster convergence oth-
erwise. As noted in Sect. 3.1, further investigation is needed 
on the stress relaxation scheme to improve the convergence 
of the proposed method for large mesh sizes.

There are many possible extensions to this work based 
on state-of-the-art techniques in stress-constrained topol-
ogy optimization, such as incorporating a projection filter to 

Fig. 16  Stress-constrained designs using MRF (left) and ACS 
(center) approaches and minimum-compliance design (right) for can-
tilever beam. Top row shows a density iso-surface of the entire beam, 
and the middle row shows a cut through the half-plane to reveal 
internal features. The bottom row shows the corresponding element 

stresses. MRF design has vf = 0.32 , !max = 5.112 , Δ!max = 2.24% , 
It. = 314 , and C = 6.89E2 . ACS design has vf = 0.358 , !max = 4.999 , 
Δ!max = − 0.01% , It. = 220 , and C = 5.34EE2 . Minimum-compli-
ance design has vf = 0.32 , !max = 7.409 , Δ!max = 48.18% , It. = 81 , 
and C = 4.87E2
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substantially reduce the gray region fraction (e.g., De Troya 
and Tortorelli 2018) or employing inexact sensitivities to 
speed up the optimization (cf., Amir 2021). These potential 
improvements were not explored here, as the goal of this 
work is to demonstrate that, even without them, the proposed 
technique effectively and robustly circumvents the need for 
renormalization.

Finally, we demonstrated our method in the context of 
density-based topology optimization with stress constraints. 
However, just as the ACS approach has been used in level-
set techniques (cf., Picelli et al. 2018) and in geometry pro-
jection methods for topology optimization with geometric 
primitives (cf., Zhang et al. 2020), we expect the proposed 
MRF technique to be readily extended to those realms. Like-
wise, we also expect it to be possible to employ the proposed 
method in fatigue-based topology optimization techniques 
for which the ACS method has been used before (e.g., Oest 
and Lund 2017; Zhang et al. 2019).

Appendix: Robust calculation of !v
e

It is worth noting that some works [for example, Duysinx 
and Bendsøe (1998) and Le et al. (2010)] define a matrix 
!e ∶= "T

e
ℂ0#ℂ0"e for each element that is computed once 

at the beginning of the optimization and stored, and subse-
quently compute se =

√
!T
e
"e!e . The matrix !e is positive 

semidefinite, thus the quadratic form in (8) can be zero. 
Indeed, se must be zero if a non-zero displacement !e cor-
responds to a rigid-body motion that would cause no defor-
mation. Although the displacement boundary conditions 
prevent a rigid-body motion of the entire structure, some 
regions can experience rigid-body motion. For example, in 
a cantilever beam with a bending load applied in between 
the wall and the free end of the beam, the region of the beam 
between the load and the free end will experience rigid-body 
motion regardless of its stiffness.

While the positive semidefiniteness of !e should cause 
no problem in exact arithmetic, it is possible (as we in fact 
observed in some of our numerical experiments) that a com-
puter calculation of !e may have a near-zero but negative 
eigenvalue, thus the quadratic form in (8) can be negative. 
Moreover, ! in ℝ3 also has a zero eigenvalue; computing 
numerically the eigenvalues of ! in ℝ3 in Matlab using the 
eig function, for example, renders a near-zero but negative 
eigenvalue, while a symbolic computation in Mathematica 
using the Eigenvalues function renders an exactly zero 
eigenvalue.

Computing se using (9) first and then (8) circumvents this 
problem, since even if ! has a negative eigenvalue, !e0

= 0 
for a rigid-body displacement, hence the argument of the 
square root would be zero. This is therefore a more robust 

approach. Furthermore, computing se in this manner requires 
significantly fewer floating point operations (about half for 
n = 2 and less than a third for n = 3 ) and storing !e requires 
less memory than storing !e (less than half for n = 2 and 
one-fourth for n = 3 ), which can be substantial for meshes 
with non-uniform element shapes, such as the one used in 
the example of Sect. 3.2.
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