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Abstract

This paper introduces a novel method for stress-constrained topology optimization in which the stress constraint is a differ-
entiable approximation of the maximum element stress violation in the structure. The element stress violation is given by a
differentiable rectifier function. A key feature of the proposed method is its ability to render designs that satisfy the stress limit
without renormalization of the constraint, as in some existing aggregation approaches. Numerical experiments demonstrate
that the proposed technique exhibits better convergence and is less sensitive to the aggregation parameter than aggregation
methods that employ renormalization. The effectiveness of the proposed method is demonstrated by several examples.

Keywords Stress constraints - Aggregation functions - Constraint scaling

1 Introduction

The incorporation of stress constraints in topology optimiza-
tion is of paramount importance, since multiple structural
design criteria driven by material failure are formulated in
terms of stress. This importance is reflected in the volume of
publications on this topic, which, at the time of writing this
manuscript, is in the thousands. The design problem typi-
cally consists of minimizing the structural weight subject to
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a constraint that the stress anywhere in the structure does not
exceed a specified value. One of the challenges presented by
this problem is the local nature of stress and thus of the con-
straint. If the stress limit must be satisfied at, for example,
every element centroid, then there are as many constraints as
elements in the finite element mesh. The ensuing large num-
ber of constraints necessitates an equally large number of
adjoint analyses to compute design sensitivities (cf. Duysinx
and Bendsge 1998), which makes the computational cost for
practical problems prohibitive.

As detailed in the recent comparative study by da Silva
et al. (2021), there are two strategies to address this chal-
lenge. The first approach is to recast the local constraints as
a single constraint that the maximum stress in the structure
does not exceed the prescribed limit (or that the maximum
element stress violation does not exceed zero). Techniques
in this category are often called aggregation approaches [for
example, Kennedy and Hicken (2015)]. Since the maximum
function is not differentiable, smooth approximations are
employed (Yang and Chen 1996; Duysinx and Sigmund
1998) so that efficient gradient-based methods can be used
for the optimization. These approximations include, for
example, the P-norm, P-mean, and the Kreisselmeier—Stein-
hauser (KS) function (cf. Verbart et al. 2017).

The second strategy consists of adding the constraints
to the objective function, either as an exterior penalty (e.g.,
Amstutz and Novotny 2010; De Troya and Tortorelli 2018)
or through an augmented Lagrangian (AL) approach (cf.
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Pereira et al. 2004; Senhora et al. 2020; Giraldo-Londoifio
et al. 2021). The constraints are multiplied by a parameter
(a penalty or Lagrange multiplier estimate) and the optimi-
zation is solved as a sequence of problems with increasing
values of the parameter. Although these approaches do not
use approximations of the maximum, they share the common
characteristic that adding all the local constraints as terms
to the objective function requires only one adjoint analysis
per load case to compute design sensitivities. Herein, we
collectively refer to these techniques as penalty methods.

A particular challenge of aggregation methods is that the
approximations of the maximum stress may significantly
overshoot or undershoot the true maximum. Consequently,
the optimization renders a design that is conservative or
unsafe, respectively. Increasing the parameter of the approxi-
mation will increase the accuracy, as these approximations
tend to the true maximum in the limit when the parameter
tends to infinity. However, this also causes the constraint to
be more nonlinear, which consequently hinders the optimi-
zation. This happens because in this case approximations
of the constraint are reasonably accurate only within a very
small neighborhood of the current design. In practice, this
means the optimizer may take poor steps, leading to a large
number of iterations to converge or causing the iterative
process to altogether diverge. A solution to this problem
was introduced by Le et al. (2010), whereby the limit of the
constraint is adaptively rescaled throughout the optimiza-
tion based on the values of the true and approximate maxi-
mum stresses of the current design. The idea is to increase,
decrease, or leave unchanged the constraint limit if the true
maximum stress is below, exceeds, or equals the desired
stress limit, respectively. We interchangeably refer to this
heuristic technique as adaptive constraint scaling (ACS) or
renormalization. This method is highly effective in tightly
satisfying the specified stress limit.

Penalty approaches do not require renormalization to
satisfy the stress limit and they are backed by proofs that
they converge to a local minimum of the original optimiza-
tion problem. Moreover, the local constraints added to the
objective function need not be differentiable everywhere;
for instance, the penalty term for each local constraint may
correspond to the true maximum between zero and the ele-
ment violation. They require, however, a strategy to initial-
ize and update the penalty parameters. The performance of
these methods can be highly sensitive to this initialization
and updating strategy, with poor choices of the penalty
parameters potentially leading to negligible or no improve-
ment in early iterations or to divergence from a good initial
design (Birgin et al. 2005; Curtis et al. 2016), particularly
for the exterior penalty methods. Methods that use the AL
approach have nevertheless reported a robust behavior with a
problem-independent parameter updating strategy (Senhora
et al. 2020). Another consideration in penalty approaches is
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the incorporation of multiple constraints in the augmented
Lagrangian, in which different parameters may have to be
chosen for different constraints, see the discussion in Russ
and Waisman (2021).

An additional challenge of the aggregation approaches is
that the value of the parameter for the approximated maxi-
mum function needed to produce good results can be highly
mesh dependent, as noted in Zhou and Sigmund (2017). Fur-
thermore, the convergence behavior when using renormali-
zation can be quite noisy, and the optimization can render
suboptimal designs.

In this work, we present a method to incorporate stress
criteria in the topology optimization in which the local stress
constraints are cast into a single, separate constraint as in
aggregation methods, but without constraint renormaliza-
tion. The stress constraint in the proposed method consists
of a differentiable approximation of the maximum element-
stress violation; in turn, the local constraint is given by a
differentiable rectifier function, i.e., the maximum between
zero and the element-stress violation (scaled by the stress
limit). We use the term rectifier following the terminology
for this type of function used in the field of artificial neu-
ral networks. Since a key goal of our method is to circum-
vent the need for renormalization in aggregation methods,
particular emphasis is given to comparing the proposed
approach with an aggregation method that uses renormali-
zation, namely the technique of Le et al. (2010).

We note that other works have used rectifier functions
in stress-constrained topology optimization. For example,
the penalty approaches of Amstutz and Novotny (2010) and
De Troya and Tortorelli (2018) use a smooth approximation
of the ramp function based on the P-norm. The aggregation
approach of Wang and Qian (2018) uses a smooth Heaviside
approximation based on the arctan function and employs
renormalization. The technique of Zhang et al. (2020) uses
an exponential smooth hinge function as rectifier, and the
aggregate stress constraint requires that the average recti-
fier does not exceed a small value; this method does not use
renormalization, and the authors report that the stress limit
is not tightly satisfied. The approach that is perhaps closest
in spirit to the one proposed in this work is in fact one of the
earliest works in stress-constrained topology optimization,
namely the method of Duysinx and Sigmund (1998). In that
work, a P-norm of a rectifier function is used as the stress
constraint; the rectifier is the (true) maximum between zero
and a function that is based on the element stress constraint
violation, but that also incorporates additional terms to
address the singular optimum problem (see Sect. 2.1) based
on e-relaxation. This approach predates renormalization
techniques and, as reported by the authors, does not render
a tight stress limit satisfaction.

The rest of the paper is structured as follows. Section 2
details the formulation of the proposed method maximum
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rectifier function (MRF) method; it also recasts the ACS
approach using a consistent notation that allows for a
sensitivity analysis formulation that accommodates both
approaches. Numerical examples in 2D and 3D to compare
the two approaches are subsequently presented in Sect. 3,
and we draw conclusions of this work in Sect. 4.

2 Formulation

This section details the formulation of the proposed stress-
constrained topology optimization. We start by defining the
element relaxed von Mises stress, which is the local quan-
tity we constrain in the optimization. Next, we define the
rectifier function that smoothly approximates the constraint
violation at each element. We then define the aggregation
function that captures the maximum constraint violation in
the structure. Finally, we state the optimization problem with
the proposed constraint.

2.1 Relaxed stress

As in all density-based methods, we consider element uni-
form pseudo-densities p, as the design variables in the opti-
mization. A linear filter of these variables is employed to
enforce a minimum length scale and to render mesh-inde-
pendent solutions. The vector of element filtered densities
is given by

p:=Hp
wip;
Hy = o
il Wipi e
X, — X
w{ 1= max <0,1——” = ’”),
p

with r the filter radius, n, the number of elements, and p
the vector of design variables. x; denotes the centroid of
element i. Matrix H is computed once at the beginning of
the optimization. We note this corresponds to the consist-
ent filtering approach (Bruns and Tortorelli 2001; Bourdin
2001), in which design variables are filtered and consistent
sensitivities are subsequently computed.

Using the filtered density, an ersatz material is defined for
element e with constitutive elasticity tensor

C, := 4., 0

Pe(Pesp) 1= (Prmin + (1 = prin)P?). 3)

where C, is the elasticity tensor of the solid material, p is
a penalization power, and 0 < p, ;. < 11is a small bound to
prevent an ill-posed analysis. This form of material interpo-
lation corresponds to the modified solid isotropic material

interpolation (SIMP) scheme (Bendsge and Sigmund 1999;
Sigmund 2007), while the standard SIMP interpolation cor-
responds to p.;, = 0. The modified SIMP scheme has the
advantage that the minimum material stiffness is independ-
ent of p, and, crucially, it allows for the element densities p,
to be zero, which is advantageous for the stress-constrained
problem, as discussed later in this section.

Without loss of generality, and as is common in stress-
constrained topology optimization, we consider the stress
at the element centroid x,. The finite element (FE) analysis
of the structure is carried out using the interpolated prop-
erties of (2) for each element, and the corresponding FE
stress (in vector Voigt notation) is computed as

o, =C.B.u,, “

where B, is the matrix corresponding to the symmetric gra-
dient of the shape functions evaluated at x_, and u, is the
element vector of nodal displacements.

The stress invariant we choose to constrain is the von
Mises stress. The FE von Mises stress is given by

o, = cl'Vo,, (5)

where V is the 3(n — 1) X 3(n — 1) matrix with components

1 ifi =jandi,j <n

1 PSS . ..
—=  ifi andi,j<n
vy=q 2 Hizjandig ®)
3 ifi=jandi,j>n
0 otherwise,

for problems in R" and n € {2,3}. From (2), (3) and (5), it
follows that

0,, = PeSe (7
Se 1=4/0, Vo, (8)
o, = CB.u.. 9)

The reader is referred to “Appendix” for a discussion on
robustly calculating o, in the computer implementation.
As per the discussion in Le et al. (2010), we cannot use
the FE stress of (5) in the constraint as the optimizer will
render the trivial solution p, = 0 Ve. To see why this occurs,
consider a homogeneous design for which p, = p*. Cor-
respondingly, p, = p* and p, = ppy + (1 = ppyin)p™ =1 j;
from (1) and (3), respectively, and the element elasticity
tensor from (2) is C, = p;C,,. Consequently, the linear-
ity of the analysis dictates that u, = (1/5))u, , where u,_
denotes the displacement that would be obtained if the
entire structure were fully solid. From (8) and (9), we then
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have s, = (1/p7)s.,, where s,_is the von Mises stress cor-
responding to the fully-solid structure. Substituting in (7),
we find that Oy, = S that is, the finite element stress for a
homogeneous design is independent of the value of p* and
therefore removing material will not affect the stress. If s,
does not exceed the specified stress limit for any element,
the trivial design is therefore the optimal minimum-mass
design.

The quantity s, in (8) cannot be used as an element con-
straint either. Due to static indeterminacy, reducing p.—
which will make the element material more compliant by
(2)—may decrease the amount of load going through the
element, thus decreasing the strain B.u, in (9) and conse-
quently s.. However, unless the element is in pure rigid-
body motion, its strain will in general be non-zero even if
p. = 0 (for which p. = p,;,). If 5. exceeds the specified stress
limit for some intermediate value of p,, the optimizer will be
unable to further decrease p., which has the effect of mak-
ing it difficult to remove gray regions from the design. More
importantly, a better design may be obtained altogether by
removing the element from the analysis, in which case there
simply is no constraint associated with that element.

The foregoing phenomenon is the so-called singular
optimum problem (Kirsch 1990; Cheng and Jiang 1992;
Rozvany and Birker 1994), in which the global optimum
lies in a degenerate (lower dimensional) region of the design
space that cannot be reached by gradient-based optimiz-
ers. This region corresponds to one or more of the design
variables being zero and their corresponding element con-
straints removed. The two primary strategies to circumvent
this issue are the e-relaxation technique (Cheng and Guo
1997; Rozvany and Sobieszczanski-Sobieski 1992; Duysinx
and Bendsge 1998; Duysinx and Sigmund 1998) and the gp
approach of Bruggi (2008) [also used in Le et al. (2010)].
Herein we employ the latter and define a relaxed stress

= e, (10)

Pe 1= p0" (11)
where ¢ is a relaxation power that must satisfy0 < p — g < 1.
Using the relaxed stress of (10) instead of the FE stress of (4)
to define the stress constraint has the effect of opening up the
degenerate regions in the design space so that they can be
reached by the optimizer. Alternatively, (10) can be seen as
a penalization where intermediate densities render a lower
strength-to-volume ratio than fully-solid material and lead
to an infeasible design. A consequence of this stress relaxa-
tion is that when p, = 0, the corresponding element stress
constraint is effectively removed from the optimization.
Following the same argument as before, for a homo-
geneous design with p, = p*, the relaxed stress of (10) is
6, = (p:)”“"lses. Since p — g — 1 <0 and s, are bounded
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in the FE analysis, as p* — 0 from above, the resulting stress
in the entire structure tends to infinity and therefore the triv-
ial design becomes highly infeasible and is thus precluded.
This does not occur for 0/1 designs in which the solid por-
tion (i.e., elements with p, ~ 1) connects the loads to the
supports, as the load will be almost entirely taken by the
solid regions so that void regions will have s, ~ 0 and con-
sequently may have a feasible relaxed stress.

A subtle but important point must be made about the defi-
nition of (11). As per the previous discussion, a requirement
of the relaxation is that lim; ., _,&, = 0. Therefore, we
cannot use j. = p.(p.;p)/ P, because p, is bounded below
by pumin» hence the limit would be infinity. An alternative
definition is g, = p.(9.:p)/Pe(Pe3q), for which g, = 1 when
Pe = Pmin and thus lim; _, 6, =s., which leads again to
the singular optima phenomenon previously discussed. The
expression of (11), on the other hand, tends exactly to zero
in the limit, and this is the advantage of using the modified
SIMP interpolation. The combined use of (2) for the mate-
rial interpolation and (11) for the stress relaxation has been
employed by other works [for example, by Oest and Lund
(2017) and Zhang et al. (2019) for fatigue-constrained topol-
ogy optimization].

2.2 Local stress constraint

In the proposed approach, the local constraint is a rectifier
of the element stress constraint violation. Multiple loading
cases can be applied to the structure, each with a possibly
different stress limit. The element stress constraint for load-
ing case k is given by

5,

h(3, ,) := max (0, . 1> <0, (12)

¢ (o3
k

where 6, , and o are the relaxed element von Mises stress
and stress limit for loading case k, respectively. The maxi-
mum function is not differentiable, and since we wish to
employ efficient gradient-based techniques for the optimiza-
tion, we replace the rectifier with a differentiable approxima-
tion. Here, we employ the softplus function given by

xt(ek) i=c+ 1 log ("9 + e_'w), (13)
K

where ¢ = max(x,0) is used to prevent numerical over-
flow and « is a parameter with lim,_, . x™(x) = max(0, x).
It should be noted that the softplus function is the Kreis-
selmeier—Steinhauser approximation (Kreisselmeier and
Steinhauser 1980) applied to the maximum between zero
and x.

As shown in Fig. 1 (solid line), the softplus function
attains a small but positive value at x = 0. Therefore,
using (13) to replace the rectifier in (12) will indicate the
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constraint is violated for stress values close to the limit
but nevertheless feasible, and the optimization will conse-
quently render a conservative design. To alleviate this, we
shift the function to the right. Since the softplus function
is never exactly zero, we cannot attain a shifted function &*
such that *(x = 0) = 0. Instead, we require 2*(x = 0) = ¢,
with € a small, specified parameter. The corresponding
shifted softplus function is given by

ek, e) i=c+ l log (eK(x+xl\.—c) " e_’“)
K
1 (14)
xs = — log(el(s _ 1),
K

with x, the horizontal shift. The corresponding function is
shown with a dashed line in Fig. 1.
With the shifted softplus function, we replace the ele-
ment constraint of (12) with
6-\/ k

h(a-v{,k) :=5c+< — - 1;:<,e> <0. (15)

Ok

2.3 Aggregated constraint

As in all aggregation methods, we define a single con-
straint in the optimization problem corresponding to the
maximum element stress violation. The optimization prob-
lem reads

—ax7(x)
—— 2 (z)

Fig. 1 Softplus smooth rectifier without (solid line) and with (dashed
line) shifting. k = 24 and € = 0.01

minv, 1= 2 Pele (16)
p Yreve
subject to
— . 17
g = maxe’k(h(avgk))) <0 arn
Ku, =f,k=1,...,m (18)
pr <p. <1l i=1...n,. (19)

In the expressions above, v, denotes the element volume and
(18) corresponds to the systems of linear equations arising
from the finite element discretization of the elasticity bound-
ary value problems for 7, loading cases, with K the global
stiffness matrix and f, the global force vector for loading
case k. We assume f,, to be design independent and the dis-
placement boundary conditions to be the same for all loading
cases. In (17), max is a differentiable approximation of the
maximum function, which in this work we take to be the
lower-bound Kreisselmeier—Steinhauser function

LKS(x;p) :=C + %1Og % Z P00 ), (20)

i

where C = max; x; is used to prevent numerical overflow, n
is the number of components of x, and f is a parameter with
limg_, ., LKS(x;f) = max; x;. Note that the maximum in (17)
is computed over all elements and all loading cases, hence
the vector passed to (20), which following (15) we hence-
forth denote as h has n n;, components. The rationale for the
lower bound on p, in (19) is explained in Sect. 2.5.

One challenge in using the LKS function of (20) to com-
pute the maximum stress violation is that this function (as is
the case with other aggregation functions) performs poorly
when the maximum is close to zero. For this reason, it is
undesirable to use a value of € in (14) that is too close to
zero. We employ two strategies to circumvent this difficulty.
First, we replace h(6, ;) with

$(5, ) 1= "), Q1)

which for a design with no element stress constraint viola-
tions renders a maximum of e¢ ~ 1. Correspondingly, we
replace the constraint (17) with

g :=LKS(¢;p)—1<0, (22)

where ¢ is the vector of exponentially scaled element stress
constraint violations.

The second strategy to address the challenge of approxi-
mating the maximum of small numbers is of course to
increase the parameter . However, as noted before, using
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too high a value of f increases the nonlinearity of the con-
straint and the optimization may converge to a poor local
minimum or diverge. To be able to attain a high value of
p, we employ a continuation strategy. The optimization
starts with a relatively low aggregation parameter S, until
max, 6, ; < 20, for every loading case k. Thereafter, f is
increased at each optimization iteration by an amount Af
until it reaches a specified value f,,,.

The parameter « in the rectifier function of (15) should
also be sufficiently high to accurately approximate the stress
constraint violation, and it also increases the nonlinearity of
the constraint. Our numerical experiments show that a ratio
of k /B =2 produces good results. Therefore, we also per-
form continuation on the rectifier parameter ¥ while main-
taining this ratio.

We note that we performed numerical experiments with
different combinations of candidate functions for the recti-
fier of (12) and the aggregation of (17). For instance, we
considered the swish function (which is the softmax function
applied to the maximum of a number and zero), a smooth
Heaviside function, and the (non-differentiable) exponen-
tial linear unit (ELU) function for the rectifier approxima-
tion. For the aggregate function, we experimented with the
P-norm, P-mean, upper-bound KS, softmax, and average
functions. Although there may certainly be combinations
of different forms for these functions that work as well or
better than the ones presented in this work, we obtained the
best results (i.e., faster convergence and robustness) with the
presented choices, namely the shifted softplus function for
the rectifier and the LKS function for the aggregation. The
KS function works well for smaller mesh sizes, but the LKS
function performs better over the range of mesh sizes pre-
sented in the examples. For combinations of the aggregation
and rectifier functions that were not effective, the optimiza-
tion tends to converge to suboptimal designs or get stuck in
designs with large gray regions. It is unclear to the authors
why this is the case, and an investigation into this aspect
is deferred to future work. It is worth noting that different
aggregation functions exhibit different asymptotic behaviors;
the reader is referred to Verbart (2015) and Kennedy and
Hicken (2015) for more details.

2.4 Adaptive constraint scaling

As noted in Sect. 1, we compare the proposed MRF method
to the ACS approach of Le et al. (2010). We do not use the
regional stress constraints introduced in that work and thus
consider a single aggregate-stress constraint. In the follow-
ing, we briefly describe the ACS method for completeness.
For convenience in the derivation and computer implemen-
tation, we employ the same notation used to describe our
method, which allows us to have a unified sensitivity analy-
sis for both techniques.

@ Springer

In the ACS approach, the element-level criterion of (15)
becomes

[T}

vk
ot (23)
k

h(&vek) =

c
and the aggregate function of (17) becomes
g :=ymax,;(h)—1<0. (24)

A P-norm is used for the differentiable approximation max,
given by

Il = lz xf] : (25)

As in our method, the maximum is taken over all elements
and all loading cases. The renormalization takes place
through the factor y in (24), which is updated at each itera-
tion 7 as

max, (6% /o] )

W],

@) — o

y + (1= @)yt (26)

where the parameter
oy ifI>3and
(=9 — yI=2)(pI=2) — y =)
<0
1.0 otherwise

a = 7

is used to control fast oscillations of the renormalization.
The parameter y is ignored in the sensitivity analysis (i.e.,
the sensitivities of g are computed with y = 1).

Although the work of Le et al. (2010) uses standard SIMP
for material interpolation, here we employ the modified SIMP
model of (3) for consistency, as there is no appreciable differ-
ence when using either scheme with ACS. The definition of
the relaxed stress of (10) is the same.

2.5 Sensitivity analysis

Design sensitivities of the aggregate functions of (17) and (24)
can be readily obtained using adjoint differentiation. A detailed
derivation is not presented here for brevity, and we only pro-
vide the resulting expressions. The sensitivity of g with respect
to the filtered density p,; is given by

e [ o 00, 91, 0n,

—_— S. T%
o5, & |o¢, on, 95,, 0p; *

(o5, (28)

where 4, are the solutions to the n; adjoint problems
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Ki = — i ag a¢ek ahek &vek
k o¢,, 0h, 05, ; s2
[ e

L!B!C,Vo, . (29)

e=1

In the above expression, L, denotes the gather matrix for
element e, i.e., the matrix of zeros and ones that maps the
global solution vector to the element solution vector (cf. Fish
and Belytschko 2007). Conversely, LZ denotes the scatter
matrix for element e that maps the element components to
the appropriate places in the global vector. These matrices
encode the FE assembly process in the equations in terms
of matrix multiplications and sum over elements, but are
never assembled or stored in the computer code. The terms
Ok and Se, in (29) correspond to (9) and (8) computed for
loading case k, respectively. The last term in (28) is obtained
from (2) and (3) as

0K 71 1IK;
llk d_ﬁiuk = 'lkLi a_p_l.Liuk
oK.
_ T 9B 30
- llek aﬁ Uy ( )

=p(l - pmin)ﬁip_l’l;rkKiouek’

where K; and K; denote the stiffness matrices for element i
computed with the ersatz material of (2) and with C,, respec-
tively, and 4,, and u,, denote the element adjoint and solu-
tion vectors, respectively. From (11), we have
aﬁi _ —p—q—1
a—ﬁi—(p—q)pi : (31
An important point must be made regarding this expression.
Since p —g — 1 <0, as noted in Sect. 2.1, dp;/dp; will be
undefined if p; = 0. This means that, unfortunately, we can-
not accommodate p, being exactly zero. However, we can
impose a lower bound on the design variables that is still
much smaller than p;, so that the relaxed stress becomes
very close to zero as p; — 0. Here, we choose the lower
bound to be p?2. .

The sensitivities of g with respect to the design vari-
ables follow from (1) as

98 98
— =H=. (32)
ap ap

The above expressions apply to both the ACS and MRF
approaches. For the proposed MRF approach, we have from

(15) that

Mo J08 (Tt 33
05, ox\o ) (33)
with

bad ex(x+xd.—c)

™ (K, €) = peprerr— (34

from (14). This form can be mathematically simplified, but
since the terms have already been computed in (14), this
expression reduces additional calculations while preserving
the overflow protection. From (21), we have

= '« 35)

We also have from (22) that

0g  OLKS
o, ax, Plize, (36)
e i
with
OLKS P
El i) = 37)
. p(x;—C)
axl Zje y
from (20).

For the ACS approach, we let ¢, = h, and therefore
0P, / oh, = 1. It follows from (23) that

oh,, 1
== (38)

96, o

and for the aggregate constraint we find from (24) and (25)
that

P-1

h
9 =< ek> : (39)
oh g(h)

¢k

These sensitivities have been verified with finite difference
checks for both approaches.

3 Examples

The MRF and ACS methods are implemented in MAT-
LAB, version R2022a. For the optimization, we employ
the method of moving asymptotes (MMA) (Svanberg 1987,
1998, 2007). We employ the 1999 MATLAB implementa-
tion by K. Svanberg, as we found this version significantly
outperforms the more widely used 2007 version for both
approaches. Both versions exhibit a similar convergence
behavior in the first iterations; however, when some solid
load paths have been formed but large regions of interme-
diate density material remain, the 2007 version struggles
to continue changing toward a 0—1 design, while the 1999
version makes steady progress in removing gray regions.
We posit this may be due to the portions of the MMA for-
mulation that ensure a globally convergent behavior, which
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constitute the most significant difference between the two
versions; an investigation of this issue, however, is outside
the scope of this paper.

To dampen the design steps so as to prevent design
changes that may lead to divergence or early convergence to
poor minima, we impose a tight move limit m on the design
variables and replace (19) with
max(p . U7 —m) < p < min(1, oIV +m). (40)

min’ pe

A tighter move limit is required for the MRF approach due
to the relatively high values of the aggregation parameter
Prax- Once the optimization has reached a design for which
max, 6, ; < 1.20; for every loading case k, we double the
move limit m to speed up convergence.

To produce a more conservative approximation of the
stress constraint in the first iterations of MMA, and in the
spirit of Guest et al. (2011), we modify the definition of the
asymptotes in the first two iterations of MMA in the MRF
approach. The lower and upper asymptotes on design vari-
able x; are defined as

L= o) @
U® =X 45y ). (42)

respectively, where k € {1,2}is the iteration number and x;
and x; denote the lower and upper bounds on x;, respectively.
The default value of s, in MMA is 0.5. Here, we set a much
tighter value of s, = m. The definitions of the asymptotes in
the third iteration and thereafter remain unchanged.

The optimization is stopped when the relative change in
the objective function in two consecutive iterations is less
than AV, or when I, iterations are reached. Since the tight
move limits may occasionally cause premature satisfaction
of the former criterion, it is also required that the optimiza-
tion continues running as long as the gray region fraction
G, defined as

SR
Gi=— > p(l=po). (43)

e e=1

exceeds a specified value G,,,,. Unless otherwise noted,
the parameter values used in the examples are shown in
Table 1.

2D and 3D examples are meshed with bilinear quadri-
laterals and trilinear hexahedrals, respectively. Unless oth-
erwise noted, the Young’s modulus and Poisson’s ratio of
the fully-solid material used for all examples are E = 1 and
v = 0.3, respectively. The 2D examples are solved under
plane-stress assumptions. For the 2D problems, the analy-
sis is solved using Cholesky factorization and the Cholesky
factor is stored so that the solution of the problems of (29)
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Table 1 Parameter values, note

- . Parameter Value Reference

h, is the element size, unless

otherwise specified, these are r 25h, (1)

the values used in all examples 3 3)
Pmin 1073 (3)
q 2.5 (11)
K 2p (14)
€ 1073 (14)
Prin 6 Section 2.3
Ap 0.2 Section 2.3
Prnax 16 Section 2.3
P 10 (25)
. 0.8 27)
m 0.02  (40)
o0 0.5 (40)
a, 1 MMA®
a, 0 MMA®
¢ 1000 MMA®@
d, 1 MMA®
AV, 10~ Section 3
I ax 500 Section 3
Gax 0.1 Section 3
“Svanberg (1998)

40
S F=3

100

-

Fig.2 L-bracket dimensions, load, and boundary conditions

only requires a backward substitution. For the 3D example,
we use a preconditioned conjugate gradient method with an
incomplete Cholesky factorization for the preconditioner,
with a convergence tolerance on the residual of 1078, In this
case, a full solution must be performed for the primal analy-
sis and for each of the adjoint analyses.

3.1 L-bracket

The first example we present is the L-bracket, widely used
as a benchmark in stress-constrained topology optimiza-
tion (see, for example, Duysinx and Bendsge (1998)). The
purpose of this example is to compare the performance
of the MRF and ACS approaches for varying aggregation
parameter values. The dimensions, loading, and boundary
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Lol

()he_Q (b) he =1, (c) he = 0.5,
5max =12 6max =12 ﬁmax =12

(d) he = 2,
ﬂmax =16

(g) he = 2, (h) he = 1, (i) he = 0.5,
ﬂmax =20 /Bmax =20 ﬂmax =20

Fig.3 L-bracket designs with MRF approach for various mesh sizes
and aggregation parameters f,,,

conditions are shown in Fig. 2. The load is distributed over
a short length to avoid a stress concentration at its point
of application. The L-bracket is meshed with element sizes
h, =2 (1,600 elements), h, =1 (6,400 elements), and
h, = 0.5 (25,600 elements). The stress limit for this prob-
lemisoy =2.4.

The designs obtained for this problem are shown in Fig. 3
for the MRF approach with three values of the maximum
aggregation parameter f,,, and in Fig. 7 for the ACS method
with three values of the aggregation parameter P. In both
cases, the second and third aggregation parameter values
correspond to a 1/3 and 2/3 increase of the lower value,
respectively (.« = 12, 16,20 for the MRF approach and
P = 6,8, 10 for the ACS approach). Figures 4 and 8 show
the relaxed stresses; Figs. 5 and 9 show the objective func-
tion history; and Figs. 6 and 10 show the logarithm of the
true maximum stress history for the two approaches. Values
of the volume fraction, true maximum stress, and number
of iterations to convergence for these two sets of runs are
listed in Table 2.

Several observations can be made from these results.
The most important difference between the two methods

(b) he = 17
/Bmax =12

(¢) he = 0.5,
/Bmax =12

(g) he =2, (h) he =1, (i) he = 0.5,
ﬁmax =20 ﬁmax =20 5max =20
0 0.5 1 1.5 2 24

Fig. 4 Relaxed stress 6, for the MRF L-bracket designs of Fig. 3

is the robustness of the proposed MRF approach with
respect to changes in the aggregation parameter. The
MREF designs of Fig. 3 are similar for the same element

0.7

' —=-he =2, Bpax = 12

0.65F | — = he =1, Brnax = 12

ol ,' 7he = 0457ﬁma.x =12
== he =2, Bruax = 16

0.55[ ‘ I —— he=1,Bnax = 16
[ he = Of)yﬁmax =16
0.5 *'*'h6=27/6max=20

——h. = lvﬁmax =20
- he = 0-57ﬁmmc =20

~ L
> 0.45

0.4

0.35-

0.3

0.25-

0.2 1 1 1 I I I I | | )
0 50 100 150 200 250 300 350 400 450 500

1

Fig.5 Objective function history for the MRF designs of Fig. 3

@ Springer



286 Page 10 of 17 J. A. Norato et al.
16 - he = Qaﬁmax =12
14F — = he =1, Bnax = 12 |4
12F —he = 0~57ﬂmax =12|]
——-he = 2aﬁmax =16
10 —— he =1, Bunax =16 |7 '- - . —— —
\'\‘ ——he = 0~57ﬁmax =16 ‘-i v@ ¢ ‘
Ibm 87\, *'*'he:216max:20 ] b i L‘ ‘
) "| 7}7«’, = 17/6max =20 )
5 oo == he = 0.5, fuax = 20, @) he =2, (b) he =1, (€) he = 0.5,
g ! P=6 P=6 P=6
| Il

Fig.6 True maximum stress history for the MRF designs of Fig. 3

size, whereas those of the ACS approach shown in Fig. 7
are highly dependent on the value of the aggregation
parameter. A small change in P leads to significantly

(b) h’e = 17

(c) he = 0.5,

Fig.7 L-bracket designs with ACS approach for various mesh sizes

and aggregation parameters
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(h) h@ - 17
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(i) he = 0.5,
P =10
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(f) he = 0.5,
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S

(e) h€:17
P=38

(g) he =2, (h) he =1, (i) he = 0.5,
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0 05 1 15 2 24

Fig.8 Relaxed stress 6, for the ACS L-bracket designs of Fig. 7
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I

Fig. 9 Objective function history for the ACS designs of Fig. 7
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Fig. 10 True maximum stress history for the ACS designs of Fig. 7

different results, in some cases leading to suboptimal
designs (e.g., the design for i, = 0.5, P = 6), inability
to remove the stress concentration around the re-entrant
corner (h, =2, P = 6), or occasionally divergence. It is
likely that the continuation approach in the MRF method
steers the optimization toward the same local minimum,
but that is arguably an advantage, particularly given that

the volume fraction of the MRF designs is comparable (or
in several cases substantially better) than that obtained
with the ACS technique.

Another stark evidence of the robustness of the proposed
approach is its convergence behavior. As seen in 5, the
objective function decreases smoothly, whereas the ACS
approach (Fig. 9) exhibits a more oscillatory behavior. This
behavior is purely a byproduct of the renormalization, and it
not only hinders convergence, but in some cases can lead to a
poor local minimum after having reached a better minimum,
as in the design obtained for #, = 0.5 and P = 6 (Fig. 8). To
be sure, the ACS approach can obtain good designs, but its
success depends on the choice of the aggregation parameter
P. Unfortunately, there is no clear guideline as to how to
choose a good value of P a priori, thus requiring trial and
error.

To examine how well the aggregation function scales
with the number of elements, we repeat the optimization
of the L-bracket with the MRF approach using three larger
meshes, see Fig. 11 and Table 2. All runs are performed with
Prax = 16. As the number of elements increases, conver-
gence becomes slower and so for these runs we use a larger
move limit (m = 0.04) and filter radius than in the previous
runs. We also impose /,,,,, = 1, 000.

These runs show that the optimizer is able to satisfy rela-
tively well the stress constraint with the same aggregation

Tablg 2 Values for the designs h, pIP vy O Ao, (%) It. Figure
of Figs. 3 and 7 :

MRF 2 p=12 0.303 2.445 1.87 425 3a
2 p=16 0.301 2.437 1.53 385 3d
2 p =20 0.299 2.414 0.59 500 3g
1 p=12 0.264 2.284 —4.82 223 3b
1 p=16 0.260 2.290 - 4.57 301 3e
1 f=20 0.268 2.327 -3.03 242 3h
0.5 p=12 0.235 2.288 - 4.66 461 3c
0.5 p=16 0.230 2.340 -2.51 455 3f
0.5 f=20 0.231 2.348 -2.15 449 3i
0.25 p=16 0.228 2.363 - 1.54 446 11a
0.20 p=16 0.244 2.341 - 247 483 11b
0.16 p=16 0.307 2.376 - 1.02 1000 llc

ACS 2 P=6 0.368 2.399 —-0.03 133 Ta
2 P=38 0.337 2.400 0.01 159 7d
2 P=10 0.337 2.400 —-0.01 206 Tg
1 P=6 0.386 2.400 —-0.01 157 7b
1 P=38 0.338 2.402 0.07 155 Te
1 P=10 0.311 2.399 -0.03 184 7h
0.5 P=6 0.409 2.523 5.11 500 Tc
0.5 P=38 0.321 2.753 14.70 500 7f
0.5 P=10 0.232 2.399 —-0.02 199 Ti

Omax denotes the true largest stress and Aoy, is its value relative to the stress limit o}. I7 is the number of

iterations to satisfy at least one of the stopping criteria
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Fig. 11 L-bracket designs with MRF approach for larger mesh sizes.
a h, =0.25 (102,400 elements) with r = 3h,. b h, = 0.20 (160,000
elements) with r = 3h,. ¢ h, = 0.16 (250,000 elements), with r = 4h,

parameter values used before, hence the aggregation scales
well in this sense. However, with decreasing element size,
the optimizer is unable to efficiently remove gray regions
after some point, even though the design is reasonable (i.e.,
similar to the ones obtained with coarser meshes). This
behavior does not improve by decreasing or increasing
Pax- Moreover, as observed in Fig. 11, there are increas-
ingly larger gray regions with active stress constraints as
the element size decreases. Therefore, this behavior is more
likely due to the relaxation. A further investigation of this
issue is deferred to future work.

Despite the fact that the proposed approach is able to rea-
sonably satisfy the stress constraints across the mesh sizes
used in this example, we make no claim that the effective-
ness of the proposed MRF method is completely insensi-
tive to the aggregation parameter . It is clear from these
examples, however, that it is a more robust method than the
ACS approach.

It can also be observed that the MRF approach produces
more fully-stressed designs than the ACS method, as seen
in Figs. 4 and 8. As noted in Sect. 2.5, the sensitivities in
the ACS approach are inconsistent as they cannot capture
changes in the scaling parameter y of (26). This inconsist-
ency may prevent the optimizer from getting closer to a fully
stressed design in some cases.

Finally, it should be noted that, in general and as
expected, the ACS approach is able to more tightly satisfy
the stress constraint, as seen in Table 2. However, as seen in
the table, the ACS approach can occasionally end up violat-
ing the constraint significantly, as is the case for 4 = 0.5 and
P = 8. The MRF designs are all reasonably close to the limit
in all cases. Also, all the MRF designs are lighter than those
obtained with the ACS approach.
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There is a question as to whether a strategy of continu-
ation of the aggregation parameter could be used with the
ACS approach. While it is possible that a more sophisti-
cated renormalization approach may cure at least some of
the robustness issues of the ACS method, the constraint
limit rescaling strategy is ultimately a way to compensate
for the inaccuracy in the maximum approximation. There-
fore, renormalization fundamentally works in an opposite
way to the continuation strategy. It should also be noted that
often times the ACS approach converges to a good design
and then diverges to a poorer minimum, as in the case of
h, =1, P =8 (see Figs. 7e and 9). In this case, the prob-
lem is not that P = 8 is not a sufficiently high value of the
aggregation parameter, but that the renormalization of the
constraint limit diverts the optimizer away from an already
good design.

3.2 Portal frame

The next example corresponds to the portal frame design
presented in Le et al. (2010). The dimensions, loading,
and boundary conditions are shown in Fig. 12a. In Le et al.
(2010), the optimization minimizes the maximum stress
subject to a volume fraction constraint of 0.3, rendering a
design with o,,,, = 3.3. Here, we solve the volume fraction
minimization problem of (16)-(19) with 67 = 3.3. A uni-
form mesh of 240 x 80 elements is deformed vertically to
create the V-shaped cutout and horizontally to maintain a
good aspect ratio.

Figure 12b and c shows the results of the optimization
using the MRF and ACS methods, respectively. For compar-
ison, the minimum-compliance design is shown in Fig. 12d,
with a constraint that the volume fraction does not exceed
that of the optimal MRF design of Fig. 12c. This result is
obtained with a scaling factor of 0.01 for the structural com-
pliance C and with m = 0.1. For this example, both MRF and
ACS approaches produce a similar design. Interestingly, they
both render much lighter designs than the one reported in Le
et al. (2010), which is possibly due to the smaller element
size used here.

3.3 Cracked design region

The following example consists of the cracked design region
presented in Emmendoerfer Jr and Fancello (2014). We
employ the modified version shown in Giraldo-Londofio and
Paulino (2021), with the Mode-I loading shown in Fig. 13a.
Symmetry boundary conditions are imposed to model only
half of the design region, with a mesh of 100 X 200 elements.
The Young’s modulus and Poisson’s ratio for this example
are £ = 70 GPa and v = 0.25, respectively. The stress limit is
o} = 100 MPa. For the ACS method, it is necessary to use a

1
higher value of the aggregation parameter to obtain a design
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(b)

(d)

Fig. 12 Portal frame design. a Dimensions, loading, and bound-
ary conditions. b MRF design with v, =0213, o, =3.311,
Ao, =0.33%, It. =361, and C =5.86E3. ¢ ACS design with
vy =0224, o0, =3298, Aoy, =-007% It.=316, and
C=5.75E3. d Minimum-compliance design with v, =0.213,
Omax = 9.076, Ao, = 175.02%, It. = 92, and C = 4.23E3

max max

similar in volume fraction to the one produced by the MRF
approach; after some trial and error, we found P = 16 to be
an adequate value.

The designs obtained with the MRF and ACS methods
are shown in Fig. 13b and c, respectively. For this problem,
the MRF method produces a lighter design than the ACS

[«e——— e
le——— —>]
F=5 F=5 [~

o

(b)

(c)

Fig. 13 Cracked plate design. a Dimensions (in m), loading (in
kN), and boundary conditions. b MRF design with Ve =0.267,
Omax = 101.316, Ao, = 1.32%, and It. = 442. ¢ ACS design with

max max

v = 0.321, 0,5 = 100.107, Aoy, = 0.11%, and It. = 281

max

approach. It is also interesting to note in this example that
the MRF design shows some internal members with forked,
Y-shaped ends, which presumably split the load going into
the outer member to reduce stresses at the joints.

3.4 Double L-bracket

In this section, we consider the double L-bracket shown in
Fig. 14a and introduced in Le et al. (2010). The purpose of
this example is to demonstrate the method with multiple
load cases. The loading for one load case is a reflection of
the loading for the other, but the stress limits are differ-
ent: o) = 1.8 and 6, = 2.4 for the right-hand and left-hand
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40
F=3 =] F=3
| 160 |
I |
(a)
(b)
()

Fig. 14 Double L-bracket design. a Dimensions, loading, and
boundary conditions. b MRF design with Ve = 0.295, oy, = 1.807,
o, =2553 Ao, =041%, Ao, =6.36%, and It.=500.
¢ "ACS design with v, =0348, o, =179, o, =2237
Aoy =-0.07%, Ao, =—6.79%, and It. = 244

loads, respectively. The mesh uses 13,150 uniform ele-
ments of size h, = 0.8. Figure 14b and ¢ shows the designs
obtained with the MRF and ACS methods, respectively.
We use P = 16 for the ACS method, as it produces a better
design than P = 10.

The MRF and ACS approaches render similarly perform-
ing designs for this example; however, the ACS design more
tightly satisfies the stress limits. As with the aggregate con-
straint for multiple load cases introduced in Le et al. (2010),
the function (17) in the proposed method is equally effective
in incorporating local stress constraints for multiple load
cases and different stress limits using a single constraint
(although, as discussed in Sect. 2.5, one sensitivity analysis
per load case is nevertheless required).
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Fig. 15 Dimensions, boundary conditions, and load for the 3D canti-
lever beam example

3.5 3D cantilever

The last example we present corresponds to the design
of the 3D cantilever beam shown in Fig. 15. Symmetry
boundary conditions are employed and the half design
region is meshed with 160 X 32 X 16 hexahedral ele-
ments. The load is distributed uniformly within a circular
region centered at the midpoint of the end face. We use
a filter radius r = 2k, and a larger stopping criterion of
G.x = 0.15 for the gray region fraction. The stress limit
iso] =5.

The solution of the stress-constrained optimization for
this problem using the MRF approach with the aggrega-
tion parameter value of f,,, = 16 listed in Table 1 renders
a design that violates the stress constraint by about 4.7%.
To render a tighter constraint satisfaction, we use a higher
value of f,, = 32.

Figure 16 shows the designs obtained with the MRF and
ACS approaches. For comparison, the minimum-compliance
design with the same volume fraction as that of the MRF
design and with a move limit m = 0.1 is also shown. The
ACS result is obtained using P = 20. Looser tolerances
AV, =5%107% and G,,,, = 0.3 must be used for the ACS
method, as no convergence was achieved with the tolerance
values of Table 1 and with various values of P. In those
cases, the optimizer reaches a volume fraction similar to that
of the design shown in Fig. 16 (center) and then it diverges
as in other examples. The MRF approach, on the other hand,
exhibits smooth convergence and renders a design that is
lighter and clearly more fully-stressed than the ACS design,
with a reasonably close stress limit satisfaction.

It is also interesting to note for this example that, even
though the design region does not have re-entrant corners,
there is a stress concentration at the wall due to the aspect
ratio of the design region, which prevents the development
of a more optimal parabolic outer shape; see, for example,
Shin et al. (2015) and Norato (2018). This explains why
the stress-constrained designs are so different from the
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Fig. 16 Stress-constrained designs using MRF (left) and ACS
(center) approaches and minimum-compliance design (right) for can-
tilever beam. Top row shows a density iso-surface of the entire beam,
and the middle row shows a cut through the half-plane to reveal
internal features. The bottom row shows the corresponding element

minimum-compliance design, since in the absence of this
stress concentration and with a single loading, one would
otherwise expect the strongest design to be the same as the
stiffest design (cf., Pedersen 2000).

4 Conclusion

This work introduced an aggregation method for stress-
constrained, density-based topology optimization that does
not require renormalization of the constraint to attain the
specified stress limit. The presented examples demonstrate
that the proposed method is effective and more robust with
respect to the aggregation parameters than the ACS tech-
nique. For several of the examples, it was necessary to
experiment with different values of the aggregation param-
eter P in the ACS approach to obtain convergence to a good
design. The proposed MRF approach, on the other hand,
rendered good results with no variation to the aggregation
and rectifier parameters listed in Table 1 (with the excep-
tion of the example of Sect. 3.5, in which a higher value
of the aggregation parameter was used to obtain a tighter
constraint satisfaction). The proposed technique therefore
circumvents the need for renormalization while allowing the

stresses. MRF design has v, = 0.32, 0,,, = 5.112, Ao, = 2.24%,
It. = 314, and C = 6.89E2. ACS design has v, = 0.358, 6,,,,, = 4.999,

max

Aoy = —0.01%, It. =220, and C = 5.34EE2. Minimum-compli-
ance design has v, = 0.32, o, = 7.409, Ao, = 48.18%, It. = 81,
and C = 4.87E2

strength requirements to be imposed as a separate constraint
in the optimization problem as in all aggregation techniques.

We reiterate no claim is made that our method is param-
eter independent. However, the fact that the proposed
approach is able to attain good designs with a fixed set of
aggregation parameters demonstrates the significant increase
in robustness with respect to the renormalization approach.
As expected, the proposed method does not satisfy the stress
constraint as tightly as the ACS approach; however, the con-
straint satisfaction is adequate for design practice.

The fact that various strategies must be employed to
account for the nonlinearity of the constraint to prevent poor
design steps in MMA is an indication that this method could
greatly benefit of more robust optimization approaches—for
instance, endowing the design step with a line search. This
would likely circumvent the need for move limits by enforc-
ing small design steps when the approximation is inaccu-
rate and the design is away from the feasible boundary, and
allowing for larger design steps for faster convergence oth-
erwise. As noted in Sect. 3.1, further investigation is needed
on the stress relaxation scheme to improve the convergence
of the proposed method for large mesh sizes.

There are many possible extensions to this work based
on state-of-the-art techniques in stress-constrained topol-
ogy optimization, such as incorporating a projection filter to
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substantially reduce the gray region fraction (e.g., De Troya
and Tortorelli 2018) or employing inexact sensitivities to
speed up the optimization (cf., Amir 2021). These potential
improvements were not explored here, as the goal of this
work is to demonstrate that, even without them, the proposed
technique effectively and robustly circumvents the need for
renormalization.

Finally, we demonstrated our method in the context of
density-based topology optimization with stress constraints.
However, just as the ACS approach has been used in level-
set techniques (cf., Picelli et al. 2018) and in geometry pro-
jection methods for topology optimization with geometric
primitives (cf., Zhang et al. 2020), we expect the proposed
MREF technique to be readily extended to those realms. Like-
wise, we also expect it to be possible to employ the proposed
method in fatigue-based topology optimization techniques
for which the ACS method has been used before (e.g., Oest
and Lund 2017; Zhang et al. 2019).

Appendix: Robust calculation of Oy,

It is worth noting that some works [for example, Duysinx
and Bendsge (1998) and Le et al. (2010)] define a matrix

M, := BIC,VCB, for each element that is computed once

at the beginning of the optimization and stored, and subse-
quently compute s, = 4/ulM_u,. The matrix M, is positive
semidefinite, thus the quadratic form in (8) can be zero.
Indeed, s, must be zero if a non-zero displacement u,, cor-
responds to a rigid-body motion that would cause no defor-
mation. Although the displacement boundary conditions
prevent a rigid-body motion of the entire structure, some
regions can experience rigid-body motion. For example, in
a cantilever beam with a bending load applied in between
the wall and the free end of the beam, the region of the beam
between the load and the free end will experience rigid-body
motion regardless of its stiffness.

While the positive semidefiniteness of M, should cause
no problem in exact arithmetic, it is possible (as we in fact
observed in some of our numerical experiments) that a com-
puter calculation of M, may have a near-zero but negative
eigenvalue, thus the quadratic form in (8) can be negative.
Moreover, V in R3 also has a zero eigenvalue; computing
numerically the eigenvalues of V in R? in Matlab using the
eig function, for example, renders a near-zero but negative
eigenvalue, while a symbolic computation in Mathematica
using the Eigenvalues function renders an exactly zero
eigenvalue.

Computing s, using (9) first and then (8) circumvents this
problem, since even if V has a negative eigenvalue, 6, = 0
for a rigid-body displacement, hence the argument of the
square root would be zero. This is therefore a more robust
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approach. Furthermore, computing s, in this manner requires
significantly fewer floating point operations (about half for
n = 2 and less than a third for n = 3) and storing B, requires
less memory than storing M, (less than half for n = 2 and
one-fourth for n = 3), which can be substantial for meshes
with non-uniform element shapes, such as the one used in
the example of Sect. 3.2.
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