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Keywords: Controlling the deflection of the aerial personal rapid transit (PRT) structure is crucial to the system’s riding
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loads is conducted to show a new mechanism to stiffen the PRT structure by using horizontal support. Although
the classic beam theory often neglects the effect of the tensile axial force, when the deflection caused by
the transverse load is large, the tensile axial force may significantly contribute to the mitigation of overall
deflection, particularly for thin, long beams. Using the governing equation of beam with an axial force, the
Green's function is obtained for different boundary conditions. To demonstrate and validate the theory, three-
point bending tests have been conducted for three boundary conditions: (1) two roller supports with a varying
horizontal load; (2) two clamped supports with a varying horizontal load; and (3) two fixed supports with
rigid constraints, which passively induce a tensile force by the transverse load. The formulation captures the
nonlinear elastic behavior of the beams with horizontal constraints or axial forces, which shows that the
maximum deflection of the 11 beams can reduce 38%-87% under the elastic load range. The Green’s function
can be applied to arbitrary transverse loads in structural design. A smart cushion system is invented to provide
horizontal support to the guideway of a lightweight, stiffened aerial PRT structure.

1. Introduction

Transportation networks are multifaceted structures that enable the
continuous flow of people and goods. Due to the growing population
and the number of private vehicles, there has been an increase in traffic
congestion, delays, gas prices, and vehicular gas emissions, causing
major concern in many cities around the world [1,2]. To improve
the current transportation system, researchers have suggested various
transportation systems that mainly focus on mass transit, of which the
Personal Rapid Transit (PRT) was first proposed by Donn Fichter [3].
Aerial PRT is a public transport mode featuring small automated vehi-
cles operating on a network of specially built guideway systems [4,5],
which can be integrated into existing transportation infrastructure sys-
tems with solar roof for energy harvesting and roadway protection [2].
Passengers can board the automated vehicle upon arriving at a station
and, with a sufficiently extensive network of tracks, take relatively
direct routes to their destination without stops [6,7].

The research community has primarily focused on the modeling and
control of PRT [8-11]. However, the structural design and integrity of
PRT infrastructure have not been well studied. In aerial PRT structures,
due to the relatively long load-transfer path from the rail, to beam, to
girder, to column, and then to foundation, the sagging of the rail under
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the loading of the automated vehicles will be particularly important for
riding comfort, energy efficiency, and safety. The rail beams are usually
designed for the deflection serviceability requirement using the classic
Bernoulli-Euler (B-E)’s beam theory, which does not consider the
significant effect of axial restraints on the deflection of beams when the
gap between rail beams is well controlled. Thereby, the deflection may
be overly estimated with an inefficient design and material wastage.
Several beam theories have been developed by different researchers
in the past [12-15], and the simplest and most widely used one is the
B-E beam theory [16]. Timoshenko’s theory of beams improves the
B-E theory by including the effect of the shear stresses on the defor-
mation and relaxes the normality assumption of plane sections that
keep normal to the deformed center line or neutral plane [17-19]. The
Timoshenko beam theory requires the shear correction factors to com-
pensate for the error due to this constant shear stress assumption. The
shear correction factors depend not only on the material and geometric
parameters but also on the loading and boundary conditions [19].
Both beam theories give analytical solutions for the deflection of
a beam subjected to only transverse loading [12,16] and the effects of
the axial force have often been disregarded. However, Timoshenko and
Woinowsky-Krieger incorporated the effect of axial load in the analysis
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of plates [12]. In many applications, when the support points provide
horizontal constraints, axial tensile force induced by the support will
produce nonlinear effects on the elastic behavior of the beam when the
curvature becomes considerable, which stiffens the beam and lowers
the deflection. This nonlinear elastic behavior can lead to an optimized
design and lightweight structures.

Nonlinear deflection has been observed for simply supported large
building integrated photovoltaic modules in solar roof applications,
as horizontal constraints are required for leakage prevention [20,21].
In addition, The case of offshore pipes and static pressure pipes that
are hooked by anchors [22,23] can be modeled as beams subjected to
combined transverse and tensile axial loading. High-fidelity design and
analysis require simultaneously considering the effect of both loads:
axial tension tends to straighten the beam, thus counteracting the
bending moments produced by the transverse load. It is significant
for the research community and industry practitioners to derive the
nonlinear elastic solution of a beam subjected to both transversal and
axial loading, which corresponds to multiple real-world conditions
where beams are subjected to both bending and stretching.

Few researchers have studied the deflection of beams subjected
to both transversal and axial loads. Kristoffersen et al. [23,24] in-
vestigated the bending of pressurized and un-pressurized steel pipes
due to a transverse load while simultaneously applying three axial
tensile loads. The paper considered three types of axial loads: no axial
load, a constant axial load, and a linearly increasing axial load. They
conducted experiments and numerical simulations and concluded that a
tensile axial force increases a pipe’s resistance to transverse bending. A
series of experimental tests on hollow rectangular stainless-steel beams
under combined loading was conducted by Zhao et al. [25,26]. Cicirello
and Palmeri [27] performed a static analysis of beams with multiple
unilateral cracks under combined axial and transverse loads; the study
led to analytical solutions with constants that can be determined using
the boundary conditions.

The ultimate resistance and failure patterns can be greatly altered
by the membrane force effects introduced by constraints [28]. Re-
searchers [28-30] have studied the stiffening effect of horizontal con-
straints on beams and slabs. The analytical solution for estimating the
capacity of fully clamped slabs was suggested by Chen et al. [30].
The solution incorporated the membrane action and studied the effect
of membrane action on the load-carrying capacity of the clamped
slab. The study showed that the load—deflection relationships of fully
clamped reinforced concrete slabs could be accurately represented by
considering compressive-tensile membrane effects.

In addition, the experimental work on hybrid fiber reinforced-
lightweight aggregate concrete beams [28], investigated the effect of
membrane forces on the beam’s capacities, by introducing member
forces through specifically designed clamps. The experimental results
showed that the ultimate load of the beams could be substantially
underestimated if membrane forces were neglected. Chen et al. [29]
introduced a simplified membrane action theory by modifying the
maximum membrane force design method to predict the total static
resistance-deflection curves of restrained beam-slab reinforced con-
crete structures. The paper also conducted experimental tests on con-
strained beams, and the results showed that the static load-carrying
capacity and membrane force increased with the enhancement of the
restraint stiffness.

This paper investigated the nonlinear effect of tensile axial load on
the deflection of beams. Considering the straightening effect of axial
tensile loads on beams, the Green’s function caused by a unit point
force is formulated for different boundary conditions. The deflection
for an arbitrarily distributed load can be derived by the integral of the
Green’s function. Specifically, analytical solutions for three different
boundary conditions were determined: (1) roller-supported beams on
two roller supports with varying tensile axial load, (2) end-clamped
beams clamped at both ends with varying axial load, and (3) fixed-end

supported beams with rigid constraints at both ends, which induce a
tensile force in the horizontal plane by the transverse load.

The analytical solutions were further validated by the experimental
results in which a transversal point load is applied at the mid-span
of the beams with three boundary conditions. In Case 3, when the
restrained beams were subjected to a transversal point load, horizontal
forces were created due to the change in length. These horizontal
forces reduced the curvature of the beam and led to a nonlinear
deflection. The existing beam design [13,16] do not consider the effect
of horizontal forces on the deflection of beams, thereby overestimating
the deflection of fully restrained beams. The present formulation can
be used in the design and analysis of beams, and the formulation can
be extended to different boundary conditions.

The remainder of this paper first states the problem in Section 2.
Section 3 reviews the beam theory and formulates the governing equa-
tion of beam bending under both transverse and horizontal loads.
The Green’s functions for the three kinds of boundary conditions are
derived, and can be used for arbitrarily distributed transverse loads.
Section 4 introduces the experimental design and setups for three
testing configurations. Section 5 shows the comparisons between the
experimental results and the theoretical prediction, which demonstrates
that the present formulation can predict the experimental results very
well while the B-E theory cannot capture the nonlinear deflection.
Section 6 shows the applications of the present formulation in the
design of a lightweight rail for the aerial PRT system [2,31], in which
a smart mounting system is invented to provide the horizontal support
for nearly seamless guideways.

2. Problem statement

PRT is an energy-efficient electric transit system that combines the
beneficial characteristics of personal automobiles, the advantages of
public transportation, and clean technologies for a sustainable transit
system [7,32]. Fig. 1 shows the design of a solar aerial PRT system,
which exhibits the following features [2,31]:

1. Additional transit mode of lightweight vehicles alleviates con-
gestion by taking advantage of aerial space.

2. Computer-aided sensing and control systems guarantee non-
stop routes to the destination for riders through infrastructure-
vehicle-rider communications.

3. Solar energy harvested from its building integrated photovoltaic
(BIPV) roof can power lightweight vehicles and charge surface
electric vehicles.

4. The roof structure provides shade for roadway and surface traffic
protection from ultraviolet (UV) and temperature degradation as
well as rain or snow influence.

While PRT has significant advantages in regard to efficiency and
sustainability, there are also challenges that need to be addressed.
The design of PRTs is also very complex, having to incorporate the
characteristics of the PRT system with the traffic demand, accessibility,
city aesthetic, and space availability. In addition, regular maintenance
of the infrastructure is essential as it affects the ride quality. The
vehicles travel along a network of guideways, which are rail beams
supported by columns, and the deflection of these beams impacts com-
fort causes safety concerns, and affects the visual aesthetic. Therefore,
for economic, architectural, and community benefits, it is desirable to
design a lightweight and seamless guideway system with a larger span,
in which the deflection under the traffic load can be a controlling factor
for energy efficiency, riding comfort, and structural safety.

The BIPV roof structure can be designed according to the existing
building codes for wind, snow, earthquake, and service loads [33,34].
However, the load transfer from a vehicle to the guideway beam,
girder, and column, and finally, the foundation shall be carefully in-
vestigated and designed. As the vehicle size will be well controlled by
using lightweight materials mainly for thermal and acoustic insulation,
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Fig. 1. Design of a solar PRT section with a lightweight vehicle riding on a guideway covered by photovoltaic modules.

a 4-6 rider vehicle will be in a range of 900-1200 kg, including riders,
which shall be considered in the living loads for the stress analysis in
the structural design. However, to minimize the weight of the guideway
with a large span of 10-50 m, the deflection of rail beams shall be
specially considered.

In this paper, we focus on the deflection of these rail beams due to
vehicular loads. While the vehicular loads are dynamic in reality, we
considered the critical condition that the vehicular load is located at the
middle span for the worst-case scenario with the maximum deflection.
A simplified one-span beam is used in this paper to represent the PRT
rail beams, and a concentrated point load is applied at the mid-span to
represent the vehicular load.

Consider the geometry of the beam with cross-sectional area A, a
moment of inertia [, length L, and height H:; mechanical properties
including Young's modulus E, shear modulus ¢ and yield strength ¢*;
the loads on the rail beam including the uniformly distributed load g
and the point load O at the midpoint of the beam. The deformation
of the beam will depend on the boundary conditions. Three types of
boundary conditions are considered:

1. The beam is rested on the girder by simple supports with hori-
zontal constraints to avoid the railing collapse in shortening;

2. The beam is clamped with the neighboring beams for a continu-
ous guideway on the girder with small temperature expansion cushions
to avoid a bulging effect;

3. The beam is welded with the neighboring beams by a rigid
connection on the girder, which is perfectly continuous but requires
a large horizontal force to keep the geometry.

The three connection conditions can be idealized as the simple,
clamped, and fixed supports, respectively, but each exhibits a hori-
zontal force P to keep the gap between the beams nearly zero for
structural stability, noise control, and riding comfort. Each connection
condition exhibits advantages and disadvantages in the construction
cost, deflection control, maintenance, and load capacity, which will be
revisited in Section 6, subsequently.
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Fig. 2. An infinitesimally small beam segment of length dx.

3. Formulation
3.1. Governing equation and general solution

Consider an infinitesimally small segment of the beam of length dx,
as shown in Fig. 2, that is subjected to a distributed transversal load,
g(x), and a tension force, P, which is assumed to be applied at the
centroid of the cross-section. The deflection, dw, is the displacement
in the y-direction of any point on the axis of the beam. To include
the effect of the axial force on the deflection of a beam, equilibrium
is considered in the displaced configuration.

The equilibrium of forces in the vertical direction gives:

V—(V+dV)—g(x)dx =0 8))
dv
i —g(x) (2

Moment equilibrium about the rightmost edge at the neutral axis
yields:

—M—de+M+dM—Pdw+q{x)dx% =0 (3)

The square of the infinitesimally small length of dx is a higher-order
term that will be neglected. By rearranging the terms,

y=2" 4 pt¥ @
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Fig. 3. A roller-supported beam subjected to both axial and transversal load.

According to the moment—curvature relation,

d?w

dx?
Substituting Egs. (2) and (4) into Eq. (5), the governing equation can
be written as,

M=-EI

(5)

4 2

E1%8 - PE2 — a0 ©
In order to simplify the derivation, a dimensionless parameter is defined
as a’ = -;‘"7 And the governing equation can be rewritten as,

d*w 2d?w  g(x)

dxt “ dx2  EI @
which can be found in the literature [12,21,35]. Solving the above
ordinary differential equation with boundary conditions, one can ob-
tain the deflection and then stress distribution. There are two types of
solution: the trigonometric functions can fit the differential equation in
the series form [12], which produces artificial oscillation and requires
many terms to approach the accurate solution; whereas the exponential
function or hyperbolic function exhibits simplicity and accuracy [21,
35]. This paper uses the second one. For example, when a uniform load
g(x) = g, is applied, the deflection solution can be obtained as:

w(x) = Cy sinh ax + C, coshax + C, x + €, — % (8)
where C,.C,.C,, and C; are constants that can be determined by using
the boundary conditions. The first four terms form the general solution,
and the last term is the particular solution to the governing equation.

When an arbitrary load is applied to the beam, the deflection can be
obtained by the Green’s function of the beam [36,37]. Therefore, the
constants in Eq. (8) can be directly obtained by the Green’s function as
follows because the Green’s function satisfies the boundary conditions
already.

3.2. Green’s function for roller supported beams

In this section, a case of the roller-supported beam shown in Fig. 3
that is subjected to a unit concentrated transversal load at an arbitrary
point x', namely g(x) = &(x — x'), and a tensile axial load, P, is
considered.

For a simply supported beam, the boundary conditions are given by
the deflection and moment at the supporting ends as

w(0) = w(L)=10 (€))]

w0y =w(L)y=0 (10)

The deflection can be represented by the Green’s function G(x.x'),
which denotes the deflection at any point x caused by a unit point force
at x’ as:

d*G _ 2d’G _ 3(x—X)
dx* dx? El

in which the deflection and its first derivative, or slope, shall be
continuous. Similarly to Eq. (8), the Green’s function can be written
in terms of the general solution and particular solution as follows:

(1n

EIG(x,x") = Cysinhax + C, coshax + Cyx + Cy

sinha(x — x') — a(x — x’)

H{x—x") (12)

{.I’"‘
where H(x — x') is the Heaviside function, and C,.C,.C,, and C; are
constants that will be determined by using the boundary conditions of
Eq. (9) and (10), or

GO, x")=G(L.x")=0; G"0,x)=6"(L,x)=0 (13)

By applying Eq. (13) to the Green’s function in Eq. (12), the constants
C,. (i =0.1,2,3) are obtained as follows.
X _1 sinha(L — )

|
Coa=6G=0 Ci=—(l-=) GC= 5
o = 1 .-;1'( L) 3 al sinhal

Therefore the Green’s function for a roller-supported beam sub-
jected to a transverse point load placed anywhere along the length L
is simplified as:

a4

sinha(L — x' L=
L e R P o e PO 155
a sinhar L s
‘\' h — ol
sinh a(x xai a{x — x )H(x =l (15)

For a roller-supported beam subjected to a point load of Q at the
mid-span, namely x’ = L/2, the Green’s function Eq. (15) can further
be simplified to provide the deflection function as w(x) = Q,G(x, L/2),
or:

sinh a(x — %) —a(x — %)

wix) =

H(x—%)

EI | 222~ 2a3 cosh % at

% [ x sinhax

(16)

where the maximum deflection is at the mid-span, x = L/2, as foll-
ows:

al
Oy ( B dnh
2ET 2a? a?
Given an arbitrarily distributed load g(x), the deflection function can
be provided by the integral of the Green's function as follows:

w(L/2)= ) a7

L

w(x) = Gix, xg(x")dx" (18)

E =0
For example, the simply supported beam under a uniformly distributed
load g(x) = g, can be derived by the above integral as:

L
do cosh af e x)
wix) = -1]+
- a*El ( cosh"TL

Alternatively, using the classic B-E beam theory, the deflection of a
simply supported beam subjected to a concentrated transversal load,
0Oy, at the mid-span can be calculated using the green’s function as
follows;

The B-E beam formula for a unit load applied at x = X’ can be
written as,

gpx(L —x)

19
2a’El =

d*w d*G
EI— =EJ
dx* dxt

After integration, the Green's function is obtained as

=d(x—x") (20)

"3 3 .« y2
%H(_x—xr)i—% + %4’1‘3_\"}'{'4 (21)
By substituting the boundary conditions in Eq. (13), the deflection
equation for a roller-supported beam subjected to a point load of O,
loaded at x' = L/2 is,

x-2) 3 g2
w Q"(—x 2 H(x—£1—£+Lx) (22)

G(x.x') =

T EI 6 2’7127 16
The maximum deflection at L = x/2 is,

Ql] L

48ET 23

wix) =
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Fig. 4. A double clamped beam subjected to both axial and transversal load.

3.3. Green’s function for double clamped beam

Consider a beam with both ends clamped and subjected to a con-
centrated transversal load and tensile axial loads, as shown in Fig. 4.

Following the same procedure in Section 3.2, the deflection can
be represented by the Green’s function G(x.x’') in Eqg. (12), where
Cy.C,. Gy, and C; are to be determined by using the following boundary

conditions:
GO.x"Y=G(L.x"Y=0; G'0,x)=G"(L.x"Y=0 (24)

By substituting Eq. (12) into Eq. (24), the constants C,(i = 0, 1.2.3) are
calculated for G(x, x’) as,

o [cosha(L — x") — 1](sinh el — al) — [sinha(L — x") — (L. — x")](coshal — 1)
2 a*[(coshaL —1)? — sinh e L(sinhal —al)]
a5 cosha(L —x') — 1 + a’C, sinha L
o a(coshal — 1)
C=—Cia
C=—06,
(25)

The constants calculated above can be substituted into Eq. (12)
to get the Green's function for double-clamped beams. For a clamped
beam with a point load at the mid-span, the constants C,.i = 0,1.2.3
can be simplified for G(x.1/2) as;

cosh % -1 cosh % -1

1
QE—r—t G555 QS ; G=
2a? sinh 2= 247 2 sinh “ >

1
5 (26)

which leads to the Green’s function for double clamped beam with a
point load at the mid-span as follows:

1 cosh % -1 3
EfG(x.f/Z):—ﬁsinhux-b— - i Cosh:.rx—!——z
‘a 20 sinh == 2a
ra = 27)
cosh =— — = o o
B 3 3 sinha(x — x') —a(x — x )H(x _
2a’ sinh %F a?

Similarly, for a clamped beam subjected to a point load of Oy at
the mid-span, namely x’ = L/2, the Green's function in Eq. (27) can
provide the deflection function as w(x) = QyG(x, L/2), or:

(cosh ax — 1)(cosh ok 1)
wix) = 2] - | ax — sinhax + > 2
2E1a3 sinh =
2 (28)
sinhu(_x—%}—u(x—%) L
+ = H(x——
at 2 ) l
The maximum deflection, occurring at the mid-span of x = é, can be
simplified into:
Qy(la — 4tanh £%)
w(l)2)= — 2 (29)

4 ET
In addition, the deflection function for an arbitrarily distributed
load g(x) can be provided by the integral of the Green's function

== —
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Fig. 5. Deflection of a restrained beam and the membrane force created.

Eg. (18). The deflection for a distributed load g(x) = g, is obtained
as

cosh 22 (1= 2 — cosh L=
1.05;}12 (I 1_) .':nsh2 gox(L — x)

2a’El

(30)

sinh ’T"
3.4. Nonlinear elastic behavior for beams with rigid supports

Consider a beam of length, L, with horizontal, vertical, and rota-
tional constraints at both ends in Fig. 5. It is equivalent to the clamped
beam with a certain axial force P to make the horizontal displacement
to be zero. When a transverse load, Qy, is applied, the beam undergoes
a deflection w(x) in the downward direction, causing the beam to curl
as shown in Fig. 5. The change of length caused by the curvature of the
beam leads to a membrane force P, in the axial direction. Therefore,
although no additional horizontal forces are applied, the rigid supports
will produce the horizontal force with the increase of the transverse
force, which causes a non-linear deformation of the beam.

Similarly, by considering symmetry, the governing equation and
boundary conditions for a beam with rigid constraints are similar to
the case of double-clamped beams, resulting in a similar deflection
equation Eq. (28).

After the application of the axial load, the beam curls up, resulting
in a slope, f#, which results in a small length change. The projected
horizontal length of the deflected beam is given by,

r
L, =/ cosBd s (31)
(1]

The change of length of a beam due to bending, i.e., the difference
between its original length and the horizontal projection of the curved
beam, can be determined by the slope function [38];

L Ly odw
A=L—L. = [ (1—cosf) z/ —(=—)%dx (32)
0 0 2 dx

Based on displacement compatibility, the axial elongation of the beam
is equal to the change of length 4, which is written as,
_PL

T EA

Equating Egs. (32) and (33), the characteristic equation for a« can be
written as,

2a2L1 L dw
= 29 34
= A (dx) x (34

A (33)

Finally, the value of « can be numerically solved using Egs. (28) and
(34); subsequently, the deflection can be calculated using Eq. (28).

The above analysis can be generalized to the simply supported beam
with rigid supports, in which Eq. (16) shall be used. However, the
experimental studies in this paper focus on fixed supports only.

As a reference of the classic B-E beam theory without horizontal
supports (P = (), the deflection of a fixed end beam subjected to a
concentrated transversal load, O at the midpoint is,

0, Lx? qu"

I6ET 12ET (35)

wix) =
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Table 1
Material description of 11 beams of 4 groups tested under three setups: Groups A and B for simply supported, C for clamped, and D for fixed
ends.
Group Name Malerial Width (mm) Depth (mm) Length (mm) o, (MPa) E (GPa)
Group A Al low carbon steel 127 6.35 596.9 345 200
A2 low carbon steel 12.7 6.35 596.9 345 200
A3 low carbon steel 127 6.35 596.9 345 200
Group B Bl low carbon steel 12.7 1.5875 546.1 250 200
B2 low carbon steel 12.7 1.5875 546.1 250 200
B3 low carbon steel 12.7 1.5875 546.1 250 200
Group C L low carbon steel 12.7 1.5875 274.3 250 200
cz2 low carbon steel 12.7 1.5875 274.3 250 200
c3 low carbon steel 12.7 1.5875 274.3 250 200
Group D D1 Aluminum 25.4 3.378 226 276 69
D2 Aluminum 25.4 3.225 226 276 69

Fig. 6. A simply supported beam specimen mounted on a bending and axial stretching lest setup.

which disregards the effect of the axial force P so that the clamped
beam and fixed beam share the same form of the deflection function.

In the following sections, analytical solutions will be calculated us-
ing the new formulation Eq. (28) and will be compared to the deflection
calculated using the B-E solution in Eq. (35). The new formulation
accounts for the effect of the induced axial tensile force leading to
a non-linear defection, while the latter fails to take into account the
straightening effect of the axial load and thereby overestimating the
deflection of restrained beams.

4. The experimental design and testing
4.1. Experimental plan and material properties

Three different experimental tests using low-carbon steel and alu-
minum specimens were conducted at the Carlton Laboratory at Colu-
mbia University, with the aim of investigating the effect of axial
loads and horizontal restraints on the deflection of beams with var-
ious boundary conditions. A total of 11 beams, 6 roller-supported, 3
double-clamped, and, 2 fully restrained beams, were tested. The roller-
supported and double-clamped beams were subjected to a concentrated
load at mid-span and horizontal tensile axial loads. The fully restrained
beam was subjected to a concentrated load at mid-span through the
three-point bending testing.

The specimen tested in the experiment are grouped into four groups,
Group A, B, C, and D. Group A, B, and C are tested for a combined
loading, concentrated load at mid-span and axial tensile loading at both
ends, while Group D was tested for three-point loading with the fixed

ends. The beams in Groups A and B are roller-supported beams, while
Group C consists of double-clamped beams, with rotational and vertical
translation restraints at both ends. Group D consists of rigid supports
at the fixed end against rotational, vertical, and horizontal translation.
The properties of these steel specimens used are summarized in Table 1
below.

4.2. Experimental setups for combined transversal and axial tensile loading

A test setup capable of applying an axial load while at the same
time bending a specimen transversely was designed and assembled in
the Carlton laboratory at Columbia University. This setup was used to
test the roller-supported and double-clamped beams and is shown in
Figs. 6 and 7, respectively. The maximum deflection of the beam was
recorded by using a transducer that was placed at the mid-span.

A load hanger is placed at the mid-span to load the beam trans-
versely (three-point bending). To apply the axial load, on the left-hand
side of the beam, a wire connects the specimen to a load hanger by
passing through a pully. While on the right-hand side, the beam is
connected to a fixed fixture, thereby subjecting it to a tensile reaction
force.

The transversal load was applied first by placing load heads on the
hanger. After the beam deflected due to the transversal load, the axial
load was applied gradually with a linear increase of 89 N, from 0 N
to a maximum of 979 N. The value of the applied axial load for Group
A, B, and C was checked using simplified beam calculations Eq. (36) as
follows and is well below the elastic limit of all specimens:

F,=0,A (36)
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Fig. 7. A clamped beam specimen mounted on a bending and axial stretching test setup.

A maximum of 1/20th, 1 /5th and, 1/5th of the tensile capacity was
loaded for Groups A, B, and C, respectively. The maximum applied
transversal load for Groups A, B, and C was 155.7, 26.7, and 31.1 N,
respectively, well below the yielding limit of the elastic beam as well.

4.3. Three-point bending test for the beams with fixed ends

The beam specimens are clamped within two steel blocks with
multiple bolts to provide rigid support for rotation and deflection. The
blocks are fixed to a steel frame to provide a nearly rigid constraint
of horizontal deformation of the aluminum beam specimens. Three-
point bending testing was carried out using the Instron Universal
Testing Machine on a fully restrained beam to investigate the effect
of membrane forces on the deflection of the beam. The experimental
setup for the three-point loading is shown in Fig. 8.

Note that although the steel support frame is much stiffer than the
thin aluminum beams, the assumption of perfectly rigid support may
affect the accuracy due to the small deformation of the steel during the
actual experiments.

5. Results and discussion

To validate the formulation, the deflection data obtained from the
experiments were compared with the results predicted by the formu-
lation and the results from the numerical simulation using ABAQUS.
The beams are modeled as a solid element using quadrilateral CPS4R
elements. The beams were modeled to replicate the experimental tests
and the material properties listed in Table 1 were used for the FEM
models. A concentrated point load is added at the mid-span point and
axial tensile load were defined for Group A, B and C. For beams in
Group D, fully fixed boundary conditions were defined and the beams
were subjected to axial loads at the midpoint. The schematic diagram
of finite element model is shown in Fig. 9 and the deflected shape of a
fully restrained beam, D1, is shown in Fig. 10

The analytical solutions for the roller-supported and double-clamped
beams were computed for a constant transversal load and linearly
varying tensile forces. The deflection results were plotted against the
applied axial load while keeping the transversal load constant. The

Fig. 8. Three-point bending test setup for the beams with fixed ends.

analytical results are then compared to the values obtained from the
experimental results and FEM simulation results .
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Fig. 9. Schematic diagram of finite element model.

Fig. 10. Displacement contour for restrained beam, D1.

Figs. 11 and 12 show a comparison of the deflections obtained
from the analytical solution, FEM and experimental tests for the roller-
supported beams for Groups A and B, respectively. The transversal load
applied for groups A and B is a constant load of 155.7 and 26.7 N, re-
spectively. Note that the classic beam theory only considers the effect of
the transversal load and is not sensitive to the axial load at all. From the
figures, it can be seen that there is a good agreement between the three
sets of results, with the maximum difference between the deflections
being 10% and 15% for Groups A and B, respectively. The errors may be
caused by the load transfer efficiency in the testing fixture in Fig. 6 and
the plane assumption in the beam’s theory. From the graphs, it can be
clearly seen that the maximum deflection decreases non-linearly with
increasing tensile force. As the axial load P increases from 0 to 980 N,
the maximum deflection of the beams reduces by approximately 45%
and 87%, for group A and group B, respectively.

For the double-clamped beams, Fig. 13 shows a comparison of the
deflections obtained from analytical solution, FEM and experimental

tests. The transversal load applied is constant, 31.1 N. The deflections
obtained from the analytical solution and the experiments are very
similar. From the graph, when axial load, P increases from 0 to 980 N,
the maximum deflection of the beam reduces by approximately 60%.

In addition, the relationship between the maximum deflection and
the applied axial tension force P shows that the maximum deflection
decreases non-linearly with increasing axial tension force.

For the restrained beams, Beam D1 and D2, the deflection calculated
using the classic B-E beam theory, FEM and the new formulation
were compared with the experimental results in Figs. 14 and 15,
respectively. The relationship between the applied transversal load and
the maximum deflection is linear for the classic beam theory, while
the experimental results, FEM and the formulation show nonlinear
behavior as the load increases. The new formulation captures the non-
linearity of the experimental data very well. The results from the
experiment and the classic beam theory are similar for smaller loads,
but the structure becomes stiffer as the load increases due to the
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membrane force. The classic beam theory does not consider the effect of
the membrane force and thus does not capture the nonlinear behavior
well and overestimates the deflection. The deflection calculated by the
classic beam theory for 500 N transversal load is 38% higher than
that of the experimental deflection, hence proving the significance of
considering membrane forces in the deflection calculation of axially
restrained beams.

Overall, the present formulation captures the nonlinear elastic be-
havior of the beams with horizontal constraints or axial tension, which
shows the maximum deflection of beams can reduce significantly even
when the load is in the elastic range. Another example of the tension
member in the structure is a long-span cable, in which the maximum
deflection can also be controlled by the axial tension. However, the

stress distribution in the cross-section of the cable is assumed to be
uniform, so the effect of bending is not considered. The present model
fills the gap between the cable and classic beam theories so that both
tension and bending effects are well captured. As the axial tension
reduces the deflection and stiffens the beam, the combination of the
transverse loading and axial tension leads to more complex deforma-
tion, and the superposition principle is not applicable even though
the beam is still under elastic deformation because the interaction
between the two loads produces a nonlinear elastic deformation. This
phenomenon can be used to reduce the deflection of large-span struc-
tures. Particularly in the lightweight railway structure, the rail sagging
under the vehicle loading will be significant for riding comfort and
efficiency. The application of the present formulation in the design of
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a lightweight rail for the aerial PRT system [2,31] is shown in the next
section.

6. Application to aerial PRT design with a smart cushion

6.1. Design of the PRT structure

The structural performance criteria for the design of PRT systems
include the stress analysis to avoid strength failure at the extreme
loading scenario and the serviceability requirement to satisfy the de-
flection limit. Due to the relatively long load transferring path of the
rail-beam-girder-column-foundation, the sagging of the rail under the
pod loading will be particularly important for riding comfort and safety.
The rail beams are usually designed for the deflection serviceability
requirement using the classic B-E beam theory, but this theory fails
to recognize the significant effect of axial restraints on the deflection
of beams. Thereby, overestimating the deflection leads to inefficient
design and material wastage, which further increases the self-weight of
the structure. To improve the design of these rail beams, a new smart
mounting system is proposed in this section [2,31]. This smart mount-
ing system is designed to stiffen the rail supporting the autonomous
vehicles, which enables large spans between footings and high energy
efficiency of the system with improved riding comfort.

Fig. 16. Schematic structure design of the PRT: (a) Personal rapid transit system; (b)
a pre-tensioned PRT rail with a smart cushion.

Fig. 16 shows the schematic structure design of the guideway con-
necting with the PRT structure through the smart cushion. The pre-
tension frame AB supports a section of the guideway A B between two
supporting piles m. Note that the superstructure can be installed by
modular construction with pre-fabricated frames including the solar
roof and rail beams, so that the PRT system can be rapidly constructed
with minimized interruption to surface traffic. The end for each section
can be supported by a single pile in Fig. 1 or double piles in Fig. 16.
The neighboring sections shall be well-connected so that the vehicle can
move through the guideway smoothly with high structural integrity and
stability.

The frame AB is connected with neighboring girders AE and p
throughout the guideway AB by the force-sensitive connecting bolts.
The girders p and AE are connected to a central beam CD to distribute
the load on the piles m to the ground. The first girder AE is fixed
on the supporting piles m and k, and the other girder p is supported
by a roller that allows for horizontal motion. Rigid connections are
fabricated between the girders AE, p and frame AB and between the
first girder AE and the central beam C D during manufacturing. A smart
cushion j, is installed between the second girder p and the central
beam CD. The central beam CD uses a smart cushion to provide a
compressive force to the central beam CD and to elongate the frame
AB. The smart cushion adjusts the length of the guideway section based
on changes in environmental temperature.

At an initial condition, the geographic region’s highest working
temperature T}, is determined. For example, T}, = 50 °C for New York
state. The length of the frame AB at T, = 50 °C is calculated as L.
Suppose on the date of the installation, the temperature differs. In that
case, the smart cushion D is used to adjust the length to L,, which
means when the temperature reaches T},, the smart cushion D exhibits
zero force.

Frame AB can be installed using modular construction. Frame AB
with length L, is installed onto the piles m with sufficient horizontal
support to stabilize frame AB. The connecting bolts o are used to link
frame AB and frame BG together. The connecting bolts o are pressure
sensitive. The installation pressure (or tension force in the bolt) is given
at TO. The frames can be installed with substantially zero gaps between
frame AB and frame BG so that the pods can drive smoothly on the
guideway.

When the temperature changes, the bold pressure T0 shifts to T.
This triggers the smart cushion p to adjust the elongation of the frame
AB such that the pressure on the connecting bolts O can recover to T0.
In this manner, the frame AB functions as a pre-tension mechanism.
The pre-tension mechanism is applied to the modular construction
of the guideway structure. The pre-tension of the rail is monitored
and controlled according to predetermined parameters under different
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seasons or ambient temperature changes such that the rail gap between
frame AB and frame BG remains nearly zero.

In summary, the pre-tension in the guideway reduces the sagging
at a ratio of 50-90% depending on the length of the frame AB and
the weight of the pods that will move through the frame, which will
increase the driving energy efficiency and riding comfort as well. Due
to the reduced sagging, longer spans of the supporting structure may
be used for different road conditions, which significantly reduces the
construction difficulty and costs.

6.2. Mechanism of the smart cushion

Fig. 17(a) illustrates the smart cushion J shown on Fig. 16 coupled
to the central beam CD; and Fig. 17(b) shows the electrical circuit
to control the spacing between the second girder p of frame AB and
the first girder n of frame BG by the smart cushion j. Referring to
Fig. 17(a), the smart cushion j includes a rhombus-shaped frame 1120
with four hinge points A-D, each of which is free to rotate around
a hinge center point. A first horizontal hinge point A is fixed on the
second girder p of the frame AB, and a second horizontal hinge point
B is fixed on the first girder » of the adjacent frame BG. The two vertical
hinge points C-D are able to move toward or away from each other as
the gap between the girders p and n increases or decreases, respectively.
The horizontal hinge point A and vertical hinge point D are fixed on
the girder p and the girder » respectively, with a distance a; during the
installation of the frame AB and BG. Links 1105-1108 are installed
between the hinge points A-D and are configured at an equal angle of
90 degrees. Therefore, the distance between the points C and D is also
ﬂw

The smart cushion j includes two pairs of electrodes 1131-1132
coupled to a motor 1110 with a screw block. A first pair of electrodes
1131 is installed on the inside distance between the vertical hinge
points C-D. A second pair of electrodes 1132 is installed on the outside
distance between the vertical hinge points C-D. The electrodes 1131-
1132 are configured along a line consistent with vertical hinge points
C-D and exhibit a distance (e.g., approximately 0.2 mm, based on a

sensitivity requirement) between the electrodes 1131-1132 and the
closest electrode at point C or D. A battery 1135 is connected to the
electrodes 1131-1132. The electrodes 1131-1132 function as a switch
for the motor 1110, as described below.

When the frame AB experiences contraction due to a temperature
decrease, the distance between the girder p and the girder n increases
from their initial distance. As a result, the distance between the hor-
izontal hinge points A-B increases from their initial distance, and the
vertical hinge points C-D move toward each other. When the vertical
hinge points C-D touch the inside electrodes 1131, the electrodes 1131
complete a first circuit 1101 and triggers the motor 1110. As illustrated
in Fig. 17(b), a current flows from the inside electrodes 1131 to the
motor 1110, causing the motor 1110 to move the girder P away from
the central beam CD, increasing the force on the central beam CD,
and increasing the distance between the girder p and the girder AE.
This causes the girder P to move closer to the girder n so that the
distance between the horizontal hinge points A-B decreases. When the
horizontal hinge points A-B recover their initial distance, the vertical
hinge points C-D disengage from the electrodes 1131, turning off the
motor 1110.

On the other hand, when the frame AB experiences an expansion
due to temperature increase, the opposite happens, and the girder p
moves away from the girder » so that the distance between the hori-
zontal hinge points A-B increases. When the horizontal hinge points A-B
recover their initial distance, the vertical hinge points C-D disengage
from the electrodes 1132, turning off the motor 1110.

6.3. Design of a lightweight rail for PRT

In this section, the formulation is applied to design a lightweight rail
for the solar personal rapid transit (PRT) system [2,31]. A case study of
a restrained lightweight rail with a span of 5 m for a vehicle of 8900 N
positioned at the mid-span is designed for an allowable deflection of
50 mm. The beam is made out of Low carbon steel with a yield strength
of 345 MPa and 200 GPa elastic modulus. The width of the beam is
100 mm.

As shown in Fig. 18 a and b, the rail deflection was checked for
two depths, 34 mm, and 41 mm, respectively. Using the classic beam
theory, Eq. (35), for a beam depth of 34 mm, the deflection calculated
is 88.51 mm, however when the horizontal constraints are considered,
the deflection is 50 mm, which makes a 43% reduction in deflection.
Therefore 34 mm depth does satisfy the deflection requirements, but if
the classic beam theory is used for design, a depth of 43 mm will be
required to fulfill the deflection limit. This leads to a 17% decrease in
the depth of the beam. Hence it can be concluded that by including
the effect of horizontal constraints, we can design more efficient and
economical sections. In addition, it is evident that the impact of hori-
zontal constraints is very significant and should be considered in beam
design; this was further validated by including FEM analysis as shown
in Fig. 18.

7. Conclusions

The governing equation and the Green's function for the deflection
of a roller-supported and double-clamped beam have been derived
using the principles of the B-E beam theory for a combined system
of transversal and tensile axial loads. The validity of the analytical
solution was independently confirmed by cross-checking the results
against those obtained from experimental testing and FEM simulations.
From the results, it can be concluded that the maximum deflection
decreases non-linearly with increasing axial tension force. In addition,
an analytical solution using the Green's function for a restrained beam
was calculated and compared against experimental results, FEM anal-
ysis and the classic beam theory. The experimental results, FEM and
the analytical solution, show a nonlinear relationship between the load
and the deflection. This nonlinearity is caused by the membrane force,
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Fig. 18. Relationship between maximum deflection and vehicular point load for a PRT beam with (a) 34 mm depth (b) 41 mm depth.

resulting in the beam’s length change due to curling. The classic beam
theory fails to consider the membrane forces’ effect, hence overestimat-
ing the deflection. Therefore, The theoretical model presented in this
study could be fundamental to understanding the nonlinear behavior
of restrained beams and can provide the basis for the structural design
and analysis of restrained beams. In addition, the study showed that
beams could be stiffened by providing horizontal restraints, revealing
its applicability in aerial PRT by using smart cushions.
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