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ABSTRACT: The ability of HIV-1 to rapidly mutate leads to antiretroviral therapy
(ART) failure among infected patients. Drug-resistance mutations (DRMs), which
cause a fitness penalty to intrinsic viral fitness, are compensated by accessory
mutations with favorable epistatic interactions which cause an evolutionary trapping
effect, but the kinetics of this overall process has not been well characterized. Here,
using a Potts Hamiltonian model describing epistasis combined with kinetic Monte
Carlo simulations of evolutionary trajectories, we explore how epistasis modulates
the evolutionary dynamics of HIV DRMs. We show how the occurrence of a drug- =%
resistance mutation is contingent on favorable epistatic interactions with many other ~ -
residues of the sequence background and that subsequent mutations entrench 7
DRMs. We measure the time-autocorrelation of fluctuations in the likelihood of
DRMs due to epistatic coupling with the sequence background, which reveals the
presence of two evolutionary processes controlling DRM kinetics with two distinct time scales. Further analysis of waiting times for
the evolutionary trapping effect to reverse reveals that the sequences which entrench (trap) a DRM are responsible for the slower
time scale. We also quantify the overall strength of epistatic effects on the evolutionary kinetics for different mutations and show
these are much larger for DRM positions than polymorphic positions, and we also show that trapping of a DRM is often caused by
the collective effect of many accessory mutations, rather than a few strongly coupled ones, suggesting the importance of multiresidue
sequence variations in HIV evolution. The analysis presented here provides a framework to explore the kinetic pathways through
which viral proteins like HIV evolve under drug-selection pressure.
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1. INTRODUCTION

HIV evolves rapidly, with studies indicating that in the absence

HIV-1 population is therefore key to overcoming the issue of
drug resistance.

of drug pressure, HIV explores the majority of all single-point
mutations for a specific protein within a single patient many
times daily,' > rendering the development of an effective
vaccine as a significant challenge and driving the emergence of
drug-resistant strains through the course of antiretroviral
therapy (ART)." Recent studies indicate drug resistance
develops in up to 68% of patients undergoing monotherapy”
and in up to 21% of patients underégoing current combination
antiretroviral therapy (c-ART),° making tackling drug
resistance one of the crucial issues in the development of
future therapeutics. Although the evolution of HIV, like any
other virus, is largely limited by constraints due to function,
structural viability, thermodynamics, and kinetics,” "% the
application of drug selection pressure can force the virus to
explore otherwise unfavorable regions of the fitness landscape
resulting in complex mutation patterns that arise at residues
located both near and far from the drug active site”'"'* and
provide escape pathways to the virus with a complex interplay
in the functions of primary and secondary mutations.'”* A
detailed understanding of the evolution of these complex
patterns of resistance mutations within the drug-experienced
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While most drug-resistance mutations (DRMs) naturally
occur within the patient viral reservoir in the absence of drug

15—18
pressure,

these mutations are unlikely to persist in the
drug-naive population, being disfavored in the wild-type viral
sequence background(s) due to their detrimental effects on
fitness. In the presence of specific patterns of accessory
mutations, however, primary drug-resistance mutations can
become highly favored by their respective sequence back-
grounds with a fitness penalty for reversion back to the wild-
type, leading to an evolutionary trapping or “entrenchment” of
the mutation.'”"”™>* The entrenchment of drug-resistance
mutations is a consequence of, and is modulated by, epistatic
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interactions with the entire sequence background that can
strongly influence the evolutionary kinetics of HIV.

Although there have been many studies showing how
epistasis shapes the fitness landscapes of viral proteins,
including those for HIV,'®'7**727 it remains remains poorly
characterized how epistatic interactions with the sequence
background modulate the kinetics of drug-resistance muta-
tions. Previous work has shown that epistatic interactions in
HIV proteins can cause strong background-dependent fitness
biases for particular residue types or mutations at each
position.'”"” This background dependence is a unique
property of the epistatic fitness landscape and has important
implications for evolutionary kinetics over the landscape, but
these previous studies have not explicitly modeled the time
dependence of the background-dependent biases. Here, we
model a sequence of events in discrete time using kinetic
Monte Carlo (KMC) simulation. The time is represented in
terms of KMC steps or sequence of events (attempted
mutation/position) throughout the manuscript.

In this study, we introduce a model of evolutionary kinetics
using a Metropolis scheme, to describe evolution over an
epistatic fitness landscape we have inferred from observed
patient viral sequence data using “Potts” inference, which
determines all residue—residue epistatic couplings based on
deconvolution of observed mutational covariation. Building on
previous work,'*'? we determine how a mutant coevolves with
the sequence background, studying how the sequence
background changes in the lead up to the mutation occurring,
gradually becoming more favorable on average before it occurs
(“contingency”), and how it changes after the mutation occurs,
evolving to trap or entrench the mutation (“entrenchment”).
We confirm and demonstrate that these contingency and
entrenchment effects arise as a consequence of epistasis during
evolution over the epistatic HIV fitness landscape inferred
from sequence data, by performing ensemble averages over
simulated trajectories in “evolutionary equilibrium” over this
landscape. While an ultimate practical application of these
kinetic models can be to predict mutational pathways in
specific sequences in response to drug and immune/vaccine
pressure, in this work we limit our focus to the effects of
epistasis in “equilibrium” ensemble averages of trajectories, in
order to establish baselines for the effects of epistasis on
evolutionary kinetics, in order to be able to distinguish these
from nonequilibrium behaviors. Fitness is defined relative to an
environment, and we focus on viral evolution in the presence
of drugs in order to model the behavior of the DRMs
(tabulated in Table S1). The aim of this study is to provide a
framework to explore the kinetic behavior of the drug-
resistance mutations in HIV under a drug treatment environ-
ment.

Using ensembles of evolutionary trajectories, we demon-
strate the effects of epistatic coupling on kinetics using
different metrics. Using the time-autocorrelations of the
fluctuations in background-dependent epistatic biases for
DRMs we reveal the presence of two evolutionary processes
(at a coarse-grained level) that modulate the kinetics of the
DRMs with two different time scales. We further support this
picture by analysis of the waiting times for the background-
dependent mutation biases to revert, demonstrating that the
kinetics over the epistatic HIV fitness landscape at shorter time
scales are controlled by sequences where the background-
dependent biases do not favor or trap the DRM, while for
sequences which trap or entrench the DRM, relaxation of the

sequence background is necessitated in order to revert the
evolutionary trapping effect, resulting in slower kinetics over
longer time scales. We also quantify the overall strength of
epistatic coupling between residues for different mutations
using dispersion indices, showing the importance of epistasis in
regulating the waiting time distributions for DRMs to decay
back to the most probable residue (wild-type).

We mainly focus on the enzyme Protease (PR), which has
been a prominent target of antiretroviral therapies.”* > HIV-1
PR is a dimeric enzyme from the family of aspartic
proteases””*’ responsible for processing of the gag and gag-
pol polyproteins during virion maturation. The activity of this
enzyme is essential for virus infectivity, renderin§ the protein a
major therapeutic target for AIDS treatment.”>* We have also
extended our study to Reverse Trascriptase (RT) which is an
essential enzyme to convert its RNA to viral DNA.

2. COMPUTATIONAL METHODS

In this section, we discuss the Potts Hamiltonian model used
in this study. We will also describe the Kinetic Monte Carlo
methods used for simulations. The details of waiting time
distribution and autocorrelation are discussed in this section.

2.1. Potts Hamiltonian Model. The Potts model is a
probabilistic model which aims to describe the probabilities of
observing specific states of a system that is constructed to be as
unbiased as possible except to agree with the average first- and
second-order observable (marginals) from the data. In a set of
protein sequences, the single and pair amino acid frequencies
are average quantities that can be estimated from the finite
samples using the data. The Potts model method improves on
older methods by deconvoluting the “Direct” from “Indirect”
mutational interactions, as it is a global model of the observed
mutational covariations in multiple sequence alignments
(MSAs) of proteins from a common protein family, which
arise durin§ the course of evolution through compensatory
effects.’> ™ These predicted interactions have been found to
correspond well to physical contacts within the 3D structure of
proteins, and models inferred from protein sequence data have
shown great promise for elucidating the relationship between
protein sequence, structure and function.””~*’

The model is based on the approximation of the unknown
empirical probability distribution P(S) which best describes
HIV-1 sequences S of length L, where each residue is encoded
in an alphabet Q, by a model probability distribution P"(S).**
The “least biased” or maximum entropgr distribution is
considered as the model distribution.””* The maximum
entropy model takes the exponential distribution form given
below:

L L(L-1)/2 )
E@S) =D hi+ Y ji

i i<j Y (1)
P™(S) = exp(—E(S)) ()

where E(S) is the Potts Hamiltonian giving the statistical
energy of a sequence S of length L, the model parameters hj
called “fields” represent the statistical energy of residue S; at
position i in sequence S and ]ZS, are “couplings” representing
the energy contribution of a position pair ij. In this form, the
Potts Hamiltonian consists of LQ field parameters ks and

(IZ“)QZ coupling parameters j‘g,s’ and for the exponential
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distribution P"(S) = exp(—E(S)), negative fields and couplings
signify favored amino acids. The change in Potts energy due to
mutating a residue at position i in S to f is then presented as

L
AE(&;—»/})) = E(S(lx) - E(S}}) = h(ll - h;i + Z]ZS/ - ]Zs]

i
()

In this form, (AE(S,,_4) > 0) implies that the residue /3 is more
favorable than residue a at positioni for the given sequence S.
If a represents the wild-type residue at i and # the mutant, then
the mutant is favorable over the wild-type if AE > 0 for the
change and vice versa. The approach followed in this study is
like the one followed in Flynn et al.'” for HIV-1 PR (for
further details on derivation and description of the model
parameters see their “Materials and Methods” section as well as
their Supporting Information). Our previous studyso confirms
that the models are fit using sufficient data with minimal
overfitting.

There are multiple inference algorithms to solve the
parameters Jj; which give a model which correctly regulates
the input bivariate frequencies. We use the Mi3-GPU software
package software to infer the model,”' as it makes a few
approximations and gives a model which accurately recapit-
ulates sequence statistics.

Currently, new machine learning methods are being
investigated to analyze large data sets of protein sequences,
much like the Potts model. However, we have found that the
Potts model accurately captures pairwise and higher order
correlations between sites in protein families, better than state-
of-the art deep neural networks;** this combined with the
physical interpretability of the model parameters has led to the
use of these models in protein biophysics and evolutionary
dynamics. We use the Potts Hamiltonian model for these
reasons in this work for studying the evolutionary dynamics of
HIV drug-resistance mutations.

2.2. Data Collection and Processing. The protein
sequences used in this study are collected from the Stanford
HIV database.”® The filtering criteria used here are HIV-1,
subtype B and nonCRF, and drug-experienced (of PI = 1-9
for PR, of NRTI = 1-9), removal of mixtures, and
unambiguous amino acid sequences (amino acids are ‘—
ACDEFGHIKLMNPQRSTVWY’). Sequences with insertions
(“) and deletions (“~”) are removed. MSA columns and rows
with more than 1% gaps (‘") are removed. This resulted in a
final MSA size of N = 5710 sequences of length L = 99 for PR,
N = 19194 sequences of length L = 188 for RT. The detailed
discussion of the data processing is available in our previous
work."*

We obtain the subtype B consensus sequence from the Los
Alamos HIV sequence database” and consensus and ancestral
sequence alignments.”* The subtype B consensus sequence,
which is derived from an alignment of subtype B sequences
maintained at the Los Alamos HIV Sequence Database” and is
a commonly used reference sequence to which new sequences
are compared, is used as our reference wild-type (WT)
consensus sequence. In the presence of drug pressure, any
mutations that occur in patients and affects in vitro drug
susceptibility are known as drug-resistance mutations and
commonly found in persons experiencing virological fail-

56,57
ure.

2.3. Kinetic Monte Carlo (KMC) Simulations. The KMC
technique is a Monte Carlo method intended to simulate the

time evolution of processes occurring, typically with known
transition rates between states.

Here we have used Metropolis algorithm®®*” to evaluate the
metropolis acceptance probability of a mutation such as W
(Wild-Type) - M (Mutant) at a randomly chosen position i
in a given sequence background at every simulation step given

by f wa

f\/l\\//[iTM = min {1, Py;/Py}

= min {1, eAEW_,M} (4)

where AEy_\ = Eyy — Ey is the change in Potts energy in
going from residue W to M in the given background.

We begin the simulation process with a set of seed
sequences, which are Drug experienced sequences. In each
step, we choose a random position i (out of L positions) and
random residue a (of the four letters in the reduced alphabet,
including the current letter at that position). The amino acid
character at the chosen position i is either preserved or
mutated based on the Metropolis acceptance rate fy™ .

HIV sequence data sets are highly conserved, and it is very
rare to observe more than 4 different residue types at any
position in the HIV proteins. Most amino acids are never seen
at each position. Therefore, a reduced alphabet of 4 letters is
used instead of the full 20 letter alphabet. Previous studies have
shown that a reduced grouping of alphabets based on statistical
properties accurately capture the information provided by the
full 20 letter alé)habet set while increasing the computational
efficiency.'”'”®" For example, a mutation L9OM from
L(Leucine) — M(Methionine) at position 90 in HIV-1

protease (99 residues long) has a probability (919>eAEL9&M

associated with the mutation each KMC step. Figure 1 shows
the schematic for the KMC process starting from a single seed
sequence.

When run for many steps, these trajectories reach Markov
equilibrium satisfying the detailed balance conditions, P(S;)
fs—s, = P(Sy)fs,—s, consistent with the definition from the

Potts model above that P(S) & e ). Thus, if an ensemble of
parallel trajectories is run for long enough to reach equilibrium,
then the final sequence from each trajectory the ensemble will
follow the distribution P(S), which also describes the
distribution of sequences in our seed sequence data set.
Since our seed sequences reflect an equilibrium state, all of our
ensemble averages reflect equilibrium averages.

The effect of HIV evolutionary kinetics is illustrated by
studying the time-dependent contingency and entrenchment
effects using the KMC simulations quantified as the average
contingency and entrenchment score Cy(0) = 0 which is
formulated as

(Cp(7)) = (AEy(t = 7)) — (AEy(t = 0)) (%)

where, (Cy(7)) is the average contingency and entrenchment
score for mutation M, (AEy(t = 7)) is the average effect of the
mutation (M) in background at time t = 7, and (AEy(t=0)) is
the average effect of the mutation (M) in background at time ¢
= 0 when the mutation occurred.

The detailed process of evaluating the contingency and
entrenchment score <CM(T)> for a speciﬁc drug—resistance
mutation (L90M) in PR HIV-1 is discussed in section 3.2.

2.4. Restricted Potts Models. In order to explore the
collective effects of epistatic interactions on evolutionary
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Figure 1. Schematic diagram of the metropolis algorithm which is
used during the kinetic Monte Carlo simulation to model the
evolution process of HIV sequences.

kinetics, we construct “restricted” Potts models in which some
positions are epistatically “decoupled” from the rest, in order to
observe the effects of this decoupling on evolutionary
dynamics. To construct a restricted Potts model in which a
position only covaries with a limited number of other
positions, we first determine the “least strongly” coupled
positions to a chosen focal position. As a measure of overall
coupling strength in our epistatic model between two positions
i,j, we use a standard measure, the Frobenius norm, defined as

E=2 ()
ap (6)
where the model parameters J; are evaluated in the “zero-
mean” gauge as described in previous publications.so’61 We
then remove columns with low F; from the MSA, infer a Potts
model on this reduced MSA, and generate an ensemble of
trajectories using out KMC scheme.

We then evaluate the autocorrelation of the mutant indicator
function for this ensemble of trajectories. The mutant indicator
I,(t) is 1 at times ¢ that the sequence has the mutant m, and 0
otherwise. The autocorrelation of the mutant indicator
function is evaluated as

p (‘L') — <(Im(t) - Tm)(lm(t + T) - K)>
! <(Im(t) - Tm)2> (7)
where T,, = (I,(t)) = P"(S).

3. RESULTS AND DISCUSSION

3.1. Epistasis Causes Amino Acid Biases in the Drug-
Experienced State. As a consequence of epistasis, the effect
of fitness of a mutation, at the time of its introduction, depends
on the presence of specific patterns of other mutations in the

genomic sequence background;**~** the likelihood of fixation
of this mutation then depends on the preceding history of
other mutations, a phenomenon known as “contingency” in
evolutionary biology.”*~"® Here, we will denote this mutation
as the “focal” mutation of interest, and other mutations in the
sequence background as “accessory”. After the focal mutation
occurs, it will increase the likelihood of certain subsequent
mutations at other sites which themselves increase the fitness
of the focal mutation, and reversion of the focal mutation can
become increasingly deleterious with the passage of time, thus,
leading to an evolutionary “entrenchment” of the focal
mutation.”””" Mutations that become entrenched, although
typically nearly neutral at the time the mutation occurs, would
be highly deleterious in the absence of the preceding
mutations, and conversely once entrenched, can become
increasingly deleterious to revert over time.

Here, we explore the phenomena of contingency and
entrenchment in the context of evolution of drug resistance
in HIV. We model the epistatic effects for HIV drug-target
proteins using a Potts model, inferred from the observed
mutational covariation patterns in large multiple sequence
alignments obtained from patient viral samples, where the
model parameters represent pairwise epistatic interaction
strengths between all residues at all position-pairs (see section
2). The Potts model provides a log-likelihood function E(S)
for each sequence S which is interpreted as a proxy for fitness;
sequences with higher log-likelihoods have higher fitness and
vice versa. Thus, E(S) defines an epistatic “fitness landscape”,
giving a fitness for every possible sequence. Critically, this
model is “generative”, as one can generate new sequences from
the model (by very long Monte Carlo trajectories) which
reproduce the mutational covariation statistics of the data
set.”” Our multiple sequence alignment data set is composed of
viral sequences from patients under drug treatment, collected
in the Stanford HIV Database (see section 2); therefore our
inferred Potts model represents the HIV fitness landscape in a
drug-exposed viral environment.

The favorability of a mutation occurring at a particular
position in a given sequence background S can then be
evaluated by the change in the Potts statistical energy' ™' for
acquiring that specific mutation from the wild-type residue (eq
8).

AE(S,_ ) = E(S}) — E(S}) (8)

where AE = 0 indicates the neutral situation where a focal
mutation is neither favored or disfavored by the background,
i.e,, the sequence with the mutant has equal fitness as with the
wild-type residue at that position. We define a small range
(=0.5 < AE < 0.5) near the neutral point (AE = 0) as the
neutral zone. Sequences whose energy difference fall above the
neutral zone (AE > 0.5) are entrenching backgrounds favoring
the mutation, and whose energy falls below the neutral zone
(AE < — 0.5) are disfavorable, i.e., the mutant sequence fitness
is less than the wild-type fitness. We emphasize that because of
the epistatic nature of the fitness landscape, a mutation will
have different favorabilities in different sequences.

We choose the primary drug-resistance mutation (DRM)
L90M in HIV protease as an illustrative mutation to depict the
epistatic effects of the sequence background. L90M leads to
drug resistance toward a variety of ART drugs (SQV, NFV,
IDV, and LPV).”””*Figure 2 shows the predicted favorability
of the mutation L90M as a function of the number of
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Figure 2. Effect of epistasis and entrenchment on the favorability of a
primary resistance mutation. The Potts favorability (AE) for a focal
mutation LOOM (y-axis) is evaluated for all sequences in our data set,
and the distribution is shown as box plots annotating the first, second,
and third interquartile ranges conditional on the total number of other
mutations in each sequence with respect to wild-type consensus (x-
axis). Whiskers extend to 1.5 times the interquartile ranges with
outlier sequences marked as X symbols, and the mean values are
marked as black square boxes. The black dashed line indicates AE = 0,
and the area around AE = 0 is indicated with green dashed lines
(—0.5 < AE < 0.5) to define the neutral zone. Sequences whose
energy difference fall above the neutral zone are defined as
entrenching backgrounds favoring the mutation. The mutation
L90M becomes favorable on average when there are about more
than 9 mutations with respect to wild-type consensus (red box plots).
The black solid lines represent AE = 2.5 (1 standard deviation
around AE = 0). The distribution of the total number of mutations
with respect to the HIV-1 subtype B wild-type consensus sequence
within the drug-experienced patient population in Protease (PR) are
shows at the bottom of the box plot, gray. A version of this figure has
been shown in previous studies.'®"’

mutations (Hamming distances)'*"” relative to the HIV-1
subtype B consensus sequence, for drug-experienced sequences
found in the Stanford HIV drug database.

For sequences with fewer mutations away from the wild-type
consensus, the L9OM mutation is on average highly disfavored.

However, for sequences with greater numbers of accessory
mutations, the primary mutation L90M is increasingly favored,
eventually becoming entrenched when AE > 0.5 when there
are 9 or more mutations on average. However, it is not just the
number of mutations but “which” mutations are present
(Figure 2 whiskers in boxplots), that determine the entrench-
ment of the primary mutation, as even for a fixed number of
accessory mutations we observe large variability in the
favorability of the primary mutation.

We emphasize that Figure 2 does not explicitly show a time-
ordering of sequences, as this figure shows independent
sequences sampled from different patients undergoing drug
therapy, rather than a set of sequences sampled from a single
patient over time.

However, it is commonly observed that a single host’s HIV
population consensus sequence is initially more close to wild-
type HIV before drug exposure,””>’° but after drug exposure
over time additional DRMs are accumulated which leads to
ART failure.’**” In the next section we establish a concrete
model for such time-course kinetics.

3.2. Contingency and Entrenchment of Drug-Resist-
ance Mutations in HIV. We now develop a model of
evolutionary kinetics over this fitness landscape. We model
sequence evolution under drug-selection pressure using the
KMC method with a drug-experienced Potts Hamiltonian
fitness landscape. In each of a series of time-steps, we attempt
mutations at randomly chosen positions and accept mutations
based on the change in Potts energies, using the Metropolis
criterion, as described in methods. By this scheme we model
the evolutionary process as a kinetic Markov process where the
Markov states are equivalent to sequences, and the transition
rates are functions of Potts AE. When run for many steps until
Markov equilibrium (see section 2), this method generates
new sequences whose mutation frequencies and covariation
statistics match those of the observed patient sequences the
Potts model was built on.

Using these kinetic simulations, we first illustrate and
quantify the effect of epistasis in HIV evolutionary kinetics by
demonstrating the time-dependent contingency and entrench-
ment effects defined in the previous section (section 2.3). This
effect becomes apparent by averaging over DRM events in
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Figure 3. Contingency and Entrenchment of the primary mutation L90M as a function of KMC steps. Plot (A) shows the effect of contingency and
entrenchment quantified as the contingency and entrenchment score (Cy(7)) of the primary drug-resistance mutations L90M as a function of the
Kinetic Monte Carlo steps. Plot (B) is the zoomed panel of plot (A) near the neutral region (z = 0) where we can see more variation of
contingency and entrenchment score (Cy(7)). The variance is plotted with vertical lines at each KMC step in plots A and B.
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many independent long-running trajectories which have
reached Markov equilibrium as defined above. This averaging
eliminates effects due to nonequilibrium starting conditions
rather than due to epistasis, for instance if the initial sequences
have very low favorability for the mutation which can then only
rise. In Figure 3, we demonstrate contingency and entrench-
ment in the KMC HIV trajectories, by evaluating the relative
background-dependent bias for a focal DRM as a function of
time relative to the moment that DRM occurred, averaged over
many DRM mutation events.'”'**"%*7® We choose the
primary DRM L90M in HIV protease (PR) to depict the
epistatic effects of the sequence background as it evolves over
time, in accordance with ref 14, showing that epistatic
interactions play a stronger role determining the fitness
landscape of HIV proteins affected by DRMs compared to
non-resistance-associated mutations (Figure 3).

In detail, for each trajectory we find all time windows
centered such that a reference time (¢ = 0) is a KMC step in
which the focal mutation L90OM occurred, and the time-
window extends forward and backward 120 KMC steps from
that reference time. Overall, the average contingency and
entrenchment score {Cy(7)) plotted in Figure 3 is calculated
by averaging over all such time windows for each trajectory and
over all trajectories. We compute the bias or the favorability for
the focal DRM (L90M mutation), AE, at each point within
each time window and subtract the AE at the reference time ¢
= 0 from each window giving an entrenchment score Cy(7), so
that the value at Cy(0) = 0 for all windows. In other words, the
entrenchment score Cy(7) is the difference between the
favorability of L9OM at time t relative to the favorability of
L90M at the moment it occurred at t = 0. As the value of
Cy(7) increases from zero it represents the increasing
likelihood or favorability of that DRM at time t relative to
the occurrence reference point (f = 0). On the other hand,
more negative Cy,(7) values shows the disfavorability of that
DRMs at that point of time compared to the reference point (¢
=0).

Before the mutation event, as other mutations are gradually
accumulated, changes in the background reduce the bias for
the wildtype residue, allowing the focal L90M substitution to
occur (Figure 3, blue color). The average contingency and
entrenchment score (Cy(7)) gradually increases from ca. —1.0
to 0, and the fitness costs for the focal mutation decrease from
an initial (AE) = —1.09 until the mutational event occurs at
nearly neutral ((AE) = —0.34 at t = 0) cost to fitness
(“contingency”). After the mutational event, (Figure 3A,B,
right side, colored with red) a “back reaction” of the sequence
background due to the focal L9OM mutation increases the
likelihood of compensatory mutations at coupled positions,
and these mutations accumulate to entrench the focal
mutation, with a mean fitness benefit (AE) = 1.25. The
favorability of the focal mutation continues to increase as the
mutation becomes “entrenched” in its background with
reversion being increasingly disfavored.

A non-DRM A71T in PR is also studied to analyze the
contingency and entrenchment effect on non-DRMs. We
found that the contingency and entrenchment effect is less
pronounced in A71T (Figure S1) compared to L9OM.
Similarly we have extended our study to DRMs in RT. We
have studied the contingency and entrenchment behavior of
the K65R drug-resistance mutation in RT. Like PR, RT
mutations show similar contingency and entrenchment effects
(Figure S2). Overall, the contingency and entrenchment effect

is a general feature of evolving mutations irrespective of the
particular protein. The characteristics of the contingency and
entrenchment effects can differ significantly depending on the
environment, e.g, the strongest effect observed for DRMs
compared with non-DRMs.

Gupta and co-workers showed that the most entrenched
mutations are the ones which are at some local maxima in the
fitness landscape and accumulating correlated mutations as
observed in Figure 3, can unlock pathways to these local fitness
maxima.”” The local maxima can be 100 times more favorable
in particular backgrounds, and these highly entrenching
sequences pose a significant risk for the transmission of drug
resistance and in the persistence of drug-resistant viruses.
Therefore, in the context of patient populations, a study of the
dynamics (autocorrelation decay) of entrenched sequences is
very relevant, and in this section, we study the equilibrium
dynamics of such highly entrenching sequences within the
drug-experienced ensemble.

3.3. Fluctuations in the Background-Dependent
Evolutionary Constraint Reveal Two Time Scales. Having
demonstrated the existence of a kinetic trapping effect for HIV
DRMs, we next consider the question: What are the relative
time scales over which this trapping effect fluctuates? To
explore this question, we study the autocorrelation function of
the Potts DRM relative biases (AE), which reflects the kinetic
behavior of the background coupling and the time required to
“forget” the fluctuation of the background energy difference
AE from its equilibrium average (AE) due to the dynamics
associated with a focal mutation’s interactions with its
background.

The relative time scales over which background trapping
fluctuates is of interest because we expect that the mechanisms
which determine these time scales are related to those that
determine clinical time scales for drug escape as well as
reversion of DRMs on removal of therapy or after transmission
to a new host. It has been shown in previous studies’®”” that
large differences in escape times for the virus to evade host
immune pressure targeting the same epitope in different
patients can be explained by differences in patient viral
background mutations. Likewise, for drug-pressure escape
mutations in response to antiretroviral therapy (ART) it has
been suggested'”'” that many of the most strongly entrenched
drug-resistance mutations in HIV proteins revert slowly in
drug-naive patients with transmitted resistance or in drug-
experienced patients after withdrawal of ART.**™*® These
trapping effects can cause DRMs to be 100 times more
favorable in some backgrounds than others, and such highly
entrenching backgrounds pose a significant risk for the
transmission of drug resistance, and in the persistence of
drug-resistant viruses.

We evaluate the decay of the autocorrelation function in
order to characterize how, on average, the focal mutation
evolves on the fitness landscape. As a sequence evolves, the
favorability of a particular potential mutation as measured by
AE will vary due to epistasis, which we annotate as a function
of time as AE(t). At long times, this favorability will fluctuate
around a mean value (AE) corresponding to the log likelihood
of the mutation relative to the wildtype residue at equilibrium
which is different for different mutations, where '(...)’
represents ensemble averages. For a particular mutation, we
measure the fluctuations from the average favorability as
SAE(t) = AE(t) — (AE). The autocorrelation of SAE(t), i.e.,
the correlation of the fluctuations at a reference time 0 relative
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Figure 4. Decay of the function SAE autocorrelations in the drug-experienced ensemble with the function of the average number of mutations
attempted per site depends on the length of the protein (99 in PR) in HIV-1 Protease. (A) Decay of the fluctuations of the SAE, SAE
autocorrelations as a function of the number of mutations attempted at a site on average for primary resistance mutations LOOM in HIV-1 PR, are
fitted with single exponential (red) and double exponential (blue) fitting, respectively. (B) Zoomed in panel of (A) where it can be seen that the
OAE autocorrelation function is better fitted with double exponential decay than single exponenetial decay.

Table 1. Autocorrelation Function Decay Times and KMC Steps Associated with Decay Times, Amplitudes, and Coeflicients
of Determination (R*) of Major DRMs in PR

RZ
mutations time constant (z,)” time constant (z,)” amplitude (4,) amplitude (A,) double exponential single exponential

D30N 82.64 14.08 0.26 0.74 0.99 0.92

V32l 38.27 3.60 0.40 0.60 0.99 0.92

G48V 50.76 8.26 0.33 0.67 0.99 0.94

154V 181.81 22.22 0.19 0.81 0.99 0.91

L76V 41.66 4.04 0.28 0.72 0.99 0.85

184V 90.90 9.90 0.26 0.74 0.99 0.83

LooM 76.92 13.69 0.24 0.76 0.99 0.94
“The average number of mutations attempted per position (The length of the protein is 99 for PR).
to those at time 7 function, will illustrate the time scales over evolutionary kinetics under Potts-like fitness functions are not
which the background-dependent favorability or constraints a simple process like an Ornstein—Uhlenbeck process, which

84,85

vary. The autocorrelation function, R(7), is given by has also been noted in other studies.

In Table 1, we find that SAE autocorrelation function for
(OAE(t) SAE(t + 7)) some DRMs decay faster than others, for instance time scales
<5AE(t)2> 9) for the autocorrelation function for LOOM decays are greater
than those for V32I and L76V. We hypothesize that mutations
with slower decaying SAE’s autocorrelation function are
indicative of mutations whose favorability depends more
extensively on the sequence background, which we investigate
further below. In our double-exponential fits, we also observe
significant differences in two time scales for each DRM (Figure
4, Table 1), and by comparing the amplitude parameters we
observe that, the fast time scale is the dominant one. Similarly,
the autocorrelation functions of a few DRMs in RT (Figure S4
and Table S1) are also studied to generalize our observations.
We have found alike behavior of autocorrelation functions in

R(7) =

Autocorrelation function plots for our focal mutation of
interest are shown in Figure 4.

To extract time scales over which the evolutionary constraint
varies, it is common to perform an exponential fit to the
autocorrelation function, assuming it decays exponentially. For
instance, the autocorrelation function for stochastic processes
such as the Ornstein—Uhlenbeck process, which model a
stochastic variable that fluctuates around its mean value much
like AE(t), has an exponential autocorrelation decay. However,
we find that the autocorrelation function for SAE(t) in our
evolutionary kinetic simulations is better described by a sum of
two exponential for primary DRMs in PR (see Table 1). We the DRMs in RT.

use a double exponential fit, as Y = A ) 4 (1 = A) e¥/0) We hypothesize that the slower decay time scale is caused by
with two distinctive phases (fast and slow) with different decay highly entrenched sequences within the population which
times (¢, and t,) and amplitudes (A and (1 — A)). In all cases, remain trapped longer, in contrast to the nonentrenched
we find the p-value of an F-test comparing the double- sequences which tend to relax faster. We will further examine
exponential fit to the single-exponential is p < le™, meaning this hypothesis below by examining the waiting times for
the double-exponential fit is significantly better. The results of DRMs to occur, and also by examining the autocorrelation
the fit for different DRMs are shown in (Table 1, Figures 4 and decay time of the mutation indicator function, both defined
S1). This shows that parameters such as AE arising from below.

10628 https://doi.org/10.1021/acs.jpcb.2c06123
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3.4. DRM Waiting Times Support a Bimodal Trapping
Effect. The trapping effect introduced above has many
consequences on DRM kinetics, which we can further illustrate
by examining the waiting times for DRMs to occur in
simulated trajectories. We evaluate the waiting times for the
focal mutation, which we define as the time spans in a
trajectory starting from the moment the focal position mutates
from wild-type to the focal mutant residue (start point of the
waiting time) and then revert back to wildtype (end point of
waiting time). We calculate the waiting-time for all DRM
mutation events across our ensemble of trajectories, from
which we calculate the statistics described next.

A previous study’® has shown that differences in sequence
background mutations of the viral strains in patients can lead
to large differences in immune escape times for HIV patients
targeting the same epitope. Viruses like HIV subject to
antiretroviral therapy (ART) are expected to give analogous
results.'* If the primary resistance mutation is favorably
coupled to the background, then the escape mutation will
likely take much longer to revert in the population as
mutations in the background must occur to reduce the biases
favoring the focal mutation, and it has been suggestedm’19 that
many of the most strongly entrenched mutations in HIV
proteins revert slowly in drug-naive patients with transmitted
resistance or in drug-experienced patients after withdrawal of
ART.47’86_88

To test our trapping hypothesis, we examine the relationship
between waiting time and AE by evaluating AE at the moment
the focal mutation occurs, and computing the mean waiting
time for focal mutant events with similar initial AE. We find
that for L90M in PR (Figure S), longer waiting times are
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Figure S. Relation between average AE| g at the moment the focal
mutation occurs, with the focal mutant waiting time, in time units of
average mutations attempted per site, for the drug-experienced HIV-1
PR fitness landscape. The back dashed line represents the neutral
point (AE = 0). The solid black lines around AE = 0 shows the
neutral zone (—0.5 < AE < 0.5) of a L90M mutation.

associated with entrenched sequence backgrounds (AE > 0).
In a previous section (Figure 4), we showed that there are two
time scales for the autocorrelation decay of the fluctuations in
the Potts energy differences, SAEs for different DRMs. The
shorter and longer time scales associated with LOOM are ~14
and ~70 attempted mutations per position respectively (Figure
5). Figure 4 shows the relationship between the waiting times

to relax back to wild-type residue leucine (L) at position 90
following the mutation to methionine (M) at that position
(L90M mutation). For long waiting times (>70 attempted
mutation per position, or equivalently 6860 KMC steps), the
average background bias (A(E)) when the mutation first
occurred is ~ +2.74 corresponding to the sequences which are
highly entrenched at the time of mutation. In contrast, for the
majority (76%) of waiting times which correspond to short
waiting times (<14 attempted mutations per position), the
average background bias (A(E)) when the mutation first
occurred is ~ —0.62 which favors the wildtype residue leucine
at position 90, so it is not necessary for the sequence
background to relax in order to promote the transition of the
methionine DRM back to the wildtype residue (leucine). This
supports our hypothesis (section 3.3) that the slower decay
time scale in the fluctuation of SAE autocorrelation function is
caused by highly entrenched sequences within the population,
in contrast to the nonentrenched sequences which decay much
faster.

In summary, we have observed that the time autocorrelation
function of AE as well as the relationship between mutant
waiting times and AE indicate the presence of two distinct
processes at different time scales: the faster reversion of the
mutation in nonentrenching sequence backgrounds followed
by the slower reversion in entrenching sequence backgrounds.
The kinetics of the decay/reversion process is dictated by the
nature of mutations and “entrenchment” in the sequence
background, with the degree of entrenchment determining
how slow or fast the reversion process happens.

3.5. Epistasis Causes Qualitatively Different Waiting-
Time Kinetics than Site-Independent Evolution. Epistasis
and the trapping effect have other important impacts on
kinetics which become apparent by contrast to kinetics under a
site-independent model. Analogous to the Potts model, we can
infer a nonepistatic “independent” model, given patient
sequence data such as used to infer the Potts epistatic fitness
landscape, but which differs in that the favorability of a
mutation does not depend on the sequence background, and
there is no epistasis. Like the Potts fitness landscape, the
Independent fitness landscape can be used generatively to
produce sequences with the same mutant frequencies as the
data set, but unlike the Potts model it cannot capture
mutational covariation patterns or epistasis. Here, we fit an
Independent model to the same drug-experienced sequence
data set as we used to infer the Potts epistatic fitness landscape,
and simulate kinetics over both landscapes using our kinetic
model, and compare these kinetics. In this section, along with
DRMs, we also consider polymorphic mutations in HIV-1 PR.
The polymorphic mutations are defined as frequently
occurring mutations in viruses that are not exposed to selective
drug pressure and they have been known to have very little
coupling with other mutations and can be a representation of
the independent model.*””

The log probability distribution of waiting times for DRMs
and polymorphic mutations in HIV-1 PR within the drug-
experienced state, collected across an ensemble of trajectories,
is shown in (Figure 6). We observe two qualitative effects:
First, in all cases the coupled model on average has longer
waiting times than the independent model, showing that
epistatic coupling tends to slow the DRM and polymorphic site
evolutionary dynamics. Second, the shape of the distribution is
different for the coupled versus independent fitness models,
with a longer high-waiting-time tail for the coupled model. It is
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Figure 6. Waiting time (as a function of the average number of mutations attempted per site depends on the length of the protein (99 in PR) in
HIV-1 PR) distribution using independent and coupled model. The distribution in plot (A) drug-resistance mutation or DRM (L90M), (B)
polymorphic mutation (A71T) in protease (PR). The waiting time distribution with independent model are shown by orange color and with
coupled model are shown by blue color. (C) Waiting time distribution of polymorphic mutations (A71T) and two drug-resistance mutation (I54V

and L90M) in PR using coupled model.

known analytically that the distribution of waiting times, as we
have defined it above, for the independent model follows a
single exponential decay, since the favorability (and so mutant
acceptance rate) is fixed. A standard way to quantify the
deviation of such a process from a single-exponential
(Poissonian) waiting process is by the “index of disper-
sion”,**”" which is the ratio of the variance 6(n) to the mean
u(n) of a related distribution, the number of events n per time-

interval, or
R = o’(n)/u(n) (10)

The distribution of number of events per time interval is
computed from the waiting time distribution by choosing a
fixed time interval T and given the waiting-time distribution
counting how many sequential events would occur in that time
span. In other words, we set a clock to “tick” only during
moments the focal mutation is present, and we divide time into
intervals of size T and measure the mean and variance of the
number of mutant events per interval. A key property is that
since the independent model gives a single exponential waiting
time distribution, its distribution of number of events per time-
interval is a Poisson distribution which has R = 1, and therefore
deviations of the index of dispersion from 1 indicate deviations
from site-independent (Poissonian) behavior, due to epistasis.

In Table 2, we show R computed for the coupled and
independent models for different focal mutants. We obtain
values very close to R = 1 in all cases for the independent
model as required, with small errors due to computational
precision limits. In the Potts coupled model, the deviation of
index of dispersion from 1 emphasizes the epistatic coupling

Table 2. Index of Dispersion of DRMs and Polymorphic
Mutation Using Independent and Coupled Model

index of dispersion

DRMs coupled model independent model

D30N 1.6 1.0

G48V 14 1.0

184V 1.8 1.0

LooM 3.2 1.0

V321 2.2 1.0

154V 2.1 1.0

L76V 1S 1.0

polymorphic mutations coupled model independent model

L10T (PR) 1.1 1.0
A71T (PR) 1.1 1.0
V771 (PR) 12 1.0

between the sites. As the coupling between sites increases, a
mutation in a position tends to be more favored by its
background and is likely to spend a longer time in the mutant
state compared to the independent model which leads to
overdispersion (Figure 6A,B). We can interpret the index of
dispersion as a quantitative measure of the overdispersion and
the strength of coupling of a position with the background.
These calculations show that the polymorphic sites have
indexes of dispersion close to 1, similarly to an independent
model. On the other hand, primary DRM positions have larger
R (Table 2). We have plotted the distribution of waiting time
of a polymorphic mutation, A71T, and three primary DRMs
(154V and L90OM) in Figure 6C. We observe that DRMs like

https://doi.org/10.1021/acs.jpcb.2c06123
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L90M and 154V have higher deviation from an independent
model compared to the polymorphic mutation (A71T), as
confirmed by their R values. This is also consistent with the
decay time observed in Table 1 in the autocorrelation function
section (section 3.3) where we found that the favorability
autocorrelation functions for L9OM and 154V decay more
slowly, as expected due to the stronger coupling between the
drug resistance position with other compensatory positions,
resulting in a mutation becoming favored or entrenched by the
background and tending to spend more time in the mutant
state. Overall, we find the strength of epistatic effects on the
evolutionary dynamics is much larger for DRM positions than
polymorphic positions, as expected due to their larger
coupling.

3.6. Trapping Effect is Controlled by Many Coupled
Positions. The previous results show that epistatic coupling
between residues tends to both slow down and qualitatively
change the evolutionary dynamics of mutants, and by different
amounts for different mutants. To further investigate the
mechanisms by which these effects arise, we examine the
question of whether this slowing can be best explained through
strong coupling of the focal mutation to a small number of
other positions or whether it is due to larger scale collective
effects of chains and networks of couplings involving many
positions. To test this, in this section we gradually decouple the
focal position from other positions, and examine the effect on
the focal mutant’s dynamical time scales.

To decouple the focal position from others we fit a series of
Potts models to restricted MSAs in which only certain columns
of the original MSA are included. This strategy holds fixed the
univariate and bivariate marginals of the focal position, to
eliminate time scale biases due to different levels of
conservation. In these restricted Potts models, the mutant
position can only co-vary with this restricted position set. For
each of these reduced Potts model fitness landscapes, we then
simulate evolutionary trajectories using our kinetic scheme,
and compute the autocorrelation function of the mutant
indicator function. As detailed in section 2, the mutant
indicator is 1 when the mutant is present and 0 when not
present, and the autocorrelation of the mutant indicator
function measures the time scales over which the residue at the
focal position is “forgotten” and thus gives an overall measure
of the time scale of evolutionary dynamics. From each such
autocorrelation curve, we use a simple and standard measure of
the overall autocorrelation time scale, which is the time at
which the autocorrelation becomes less than 1/e (0.368), as in
the common case of an exponentially decaying autocorrelation
curve this will reflect a mean time scale. Starting from the fully
coupled model used above in which the focal position can co-
vary with all other positions, we gradually remove columns
from the original MSA, starting with the positions we
determine are the “least strongly coupled” to the mutant
position in the full Potts model. We define “least coupled” to
be the positions i with lowest Frobenius norm F; with the
mutant position j in the full model (see section 2), which is a
standard measure of coupling strength between positions i;.

We carry out this procedure for the mutants L90OM and
D30N, which we hypothesized could have different behaviors
since D30N is known to co-vary with few other mutations,
primarily N88D, while L90M appears to co-vary with a greater
number of positions (Figure 7). We recapitulate the overall
slowing effect for LOOM as its autocorrelation time scale is 2.1
attempted mutations per position (attempts/pos) when it

Autocorrelation Timescale

—— L90M strongest interactions
~== L90M weakest interactions
D30N strongest interactions

0-r T T T T
0 20 40 60 80

Number of Coupled Positions

A A
(Independent) (Fully Coupled)
Figure 7. A mutation’s evolutionary dynamics speed up as the mutant
position is gradually decoupled from other positions. For the mutants
L9OM (solid blue) and D30ON (solid orange), we measure the
autocorrelation time scale (see text) of the mutant indicator function,
using Potts models built on restricted MSAs in which the mutant
position is only coupled to a limited set of other positions. This varies
from all positions (the full Potts model, right) to no coupled positions
(the mutant position varies independently of all others, left), gradually
uncoupling positions from right to left such that the positions in the
full model most weakly coupled (as defined in the text) to the mutant
position are decoupled first (solid lines). If instead the most strongly
coupled positions are decoupled first, then we obtain a different curve,

shown for L90M (dashed line).

varies independently from all other positions, which rises to 9.2
attempts/pos when it is fully coupled to all other positions
(Figure 7, solid blue line). We also observe that this slowing
effect cannot be simply explained as coupling to a small
number of other positions: As we couple position 90 to only
the top 9 most strongly coupled positions, the autocorrelation
time scale rises to 3.7 attempts/pos, much less than the full
slowing effect of 9.2 attempts/pos. When coupled to 20
positions, the L9OM time scale rises to 5.4 attempts/pos,
halfway between the uncoupled and fully coupled time scale,
and when 50 other positions are included the time scale rises
to 8.5 attempts/pos, or 90% of the increase in time scale to the
tully coupled case. Thus, to capture the majority of the slowing
effect due to coupling, it appears that collective epistaic effects
including a large fraction of the protein must be included, such
as 50 positions out of the 99 total positions. While the most
strongly coupled positions (top 9) individually contribute
more to the coupling effect, together they only contribute a
relatively small fraction of the total by these measures. We also
test the autocorrelation time scale as position 90 is gradually
decoupled from the most strongly coupled positions in the full
model, in order to observe the slowing effects of the weakly
coupled positions in the absence of the most strongly coupled
positions (dashed blue). Similarly to before, we find that while
the most strongly coupled positions individually cause the
greatest increase in the autocorrelation time scale, as seen in
the left end of the plot, they contribute only a minority of the
total increase from the uncoupled case. We also observe that
the marginal contribution of the top 9 most strongly coupled
positions appears larger in this ordering, as the increase due to
the 9 in the right end of the dashed line (3.0 attempts/pos
difference) is larger than the increase due to the 9 in the left
end of the solid line (1.6 attempts/pos difference). This
suggests that the slowing effect of the top 9 is increased when

https://doi.org/10.1021/acs.jpcb.2c06123
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covariation with the weakly coupled positions is also allowed,
suggestive of a network or chaining effect in which the top
coupled positions indirectly couple the focal position to other
positions.

In contrast we observe a smaller overall slowing effect for
D30N, as the autocorrelation rises from 2.8 attempts/pos
when fully uncoupled to 8.2 attempts/pos when fully coupled.
When fully uncoupled, the D30N mutant has a higher
autocorrelation time scale than L9OM because it is rarer, at
7% frequency in the data set as opposed to L90OM which has
30% frequency. In the site-independent case in our kinetic
model using metropolis kinetics, one can predict analytically
that positions with higher conservation will have larger
autocorrelation time scales. However, this expected relation
between conservation and longer evolutionary time scale which
we expect from site-independent variation no longer holds
once epistasis is incorporated, and in the fully coupled models
the L90M autocorrelation time scale becomes higher than for
D30N, demonstrating the importance of modeling epistatic
effects. For D30N, we also observe that a smaller number of
coupled positions contribute to the slowing effect, as when
including the single most coupled position (which is position
88), the time scale of 6.4 attempts/pos is already more than
halfway to its maximum of 8.2 attempts/pos, and it reaches
90% of the difference to its maximum value when 20 most
strongly coupled mutations are included. This contrast
between D30N and L90M shows that there is no universal
rule: Some positions like 90 are coupled to larger networks of
other positions, while others like 30 are only coupled to a small
number.

4. CONCLUSIONS

The evolution of viruses like HIV under drug and immune
selection pressures induces correlated mutations due to
constraints on structural stability and fitness (ability to
assemble, replicate, and propagate infection) of the virus,”
as a manifestation of the epistatic interactions in the viral
genome. It has been shown that long-range epistasis can shift a
protein’s mutational tolerance during HIV evolution'® and can
make adaptation contingent on evolutionary history.” In this
study, we follow the dynamics of evolution of drug resistance
in HIV through the phases of “contingency” and “entrench-
ment” as first described in refs 20 and 21 using the changes in
Potts energy of a sequence due to a drug-resistance mutation
as a proxy for fitness. We show that the entrenchment of
primary resistance mutations is in time on the specific pattern
of prior changes (mutations) that have accumulated in the
sequence background and cannot be simply explained from the
number of background mutations alone. This suggests that
epistasis plays a major role in the evolutionary kinetics of HIV
under drug selection pressure, and both primary and accessory
drug-resistance mutations exhibit strong epistatic interactions.
Therefore, entrenchment is a likely mechanism by which drug-
resistance mutations accumulate and become trapped within
the population and in the persistence of drug resistance.
Previous studies of sequence evolution have shown that the
longer an amino acid residue has been present at a site, the
more deleterious it is to revert and lower is the reversion rate
to the ancestral amino acid."*'”**”* This is what is to be
expected for DRMs in HIV based on their “entrenchment” in
the sequence back§rounds observed in HIV drug-experienced
patient sequences'”'” and in our simulations. In this study, we

»

demonstrated the presence of “contingency” and “entrench-

ment” effects in “evolutionary equilibrium” over the inferred
fitness landscape. To follow the kinetics of drug resistance in
the population related to the entrenchment of DRMs, we look
at the decay of the time autocorrelation function for the
fluctuations in Potts AE, which has been shown to be an
accurate predictor of the likelihoods of mutations in a given
sequence background.'*"” The decay of the autocorrelation
function reveals the presence of two distinct processes at
different time scales, that govern the changes in the favorability
of a focal mutation. To further investigate the two distinct
processses, we then look at waiting times for the Potts AE of a
mutation in drug-experienced HIV patient protein sequences
to reach the ensemble average value, (AE ), which illustrates
that the slower time-scale is dominated by the decay of the
mutation from highly entrenching sequence backgrounds,
whereas decays from disfavoring but nonentrenching sequence
backgrounds dominate the faster decay time-scales. The role of
epistatic coupling leading to the trapping effect on the overall
kinetics at different sites are analyzed; the epistatic effect is
much larger on the drug resistance positions compared with
other positions. We also found, by gradually decoupling a
DRM from other positions, that the trapping effect in the HIV
proteins we tested is often due to covariation with a large
number (>20) of accessory positions. This suggests it is often
insufficient to consider only one or two accessory positions
when evaluating the likelihood of a DRM arising in a patient,
and that correlated multiresidue sequence variations play a
central role in HIV evolution.

We focused on the equilibrium aspects of DRM kinetics,
using ensemble averages over sequence trajectories in a drug-
experienced fitness environment. It is ultimately of clinical
interest to understand how drug resistance is acquired starting
from an initial state consisting of an ensemble of drug-naive
sequences, evolving under drug pressure after a drug is
administered. Nevertheless, the equilibrium kinetic properties
provide important baselines for studying the entrenchment
effect, and the equilibrium properties strongly inform non-
equilibrium behavior. The entrenchment effect showing the
rise in mutant favorability due to an epistatic “back-reaction”
with the sequence background is best demonstrated in
equilibrium. In a nonequilibrium setting the favorability can
rise or fall purely due to a drift toward equilibrium, for instance
if the initial sequences were in a highly disfavorable state for
the mutant, rather than due to an epistatic phenomenon. Our
results using equilibrium averages can then serve as a control in
future nonequilibrium studies of epistatic phenomena. In
addition, many nonequilibrium properties can be suggested by
the equilibrium case. It is well-known in statistical physics, for
instance, through “flutuation dissipation” theorems, that the
fluctuations in equilibrium of many-body systems such as
described by a Potts model, as well as the autocorrelation
functions, are related to the response of the system due to
external biases (for instance, administration of a drug) and the
rate of decay back to equilibrium. We should then expect that
the different autocorrelation time scales we measured for
different focal mutants will relate to their acquisition rate in
clinically relevant nonequilibrium scenarios, and our results
again can serve as a reference point in a future study of the
nonequilibrium case.

Shah et al.”' have suggested that even relatively small
degrees of epistatic effects (nonadditivity in the stability effects
of mutations) can have large effects on the evolutionary
process. In this work, we have explored how epistasis affects
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the evolutionary kinetics of drug resistance in HIV and found
that the role of entrenchment in the sequence background is
key to the dynamics of how drug resistance evolves and persists
in the HIV patient population. The analysis presented in this
study provides a framework to further explore the kinetic
pathways through which viral proteins like HIV evolve under
drug selection pressure. Our simulation results on epistasis
provide a clear direction for the future investigation of the
kinetic pathways through which DRMs evolve from being
disfavored in the drug-naive HIV patient population to
eventually becoming entrenched in drug-experienced patients.
Overall, we also find that the Potts model is a powerful
classifier that can identify complex sequence patterns that
highly favor (entrench) or disfavor each DRM, and their
entrenchment is an important factor reinforcing the emergence
of drug-resistant viral strains and in the persistence of
resistance. Elucidating the dynamics of these epistatic effects
for key resistance mutations has the potential to impact the
future of HIV therapies, with implications for future drug
design strategies to be based on the patient viral reservoir.
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