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ABSTRACT

Recurrent Classifier Chains (RCCs) are a leading approach for multi-
label classification as they directly model the interdependencies
between classes. Unfortunately, existing RCCs assume that every
training instance is completely labeled with all its ground truth
classes. In practice often only a subset of an instance’s labels are an-
notated, while the annotations for other classes are missing. RCCs
fail in this missing label scenario, predicting many false negatives
and potentially missing important classes. In this work, we propose
Robust-RCC, the first strategy for tackling this open problem of
RCCs failing for multi-label missing-label data. Robust-RCC is a
new type of deep recurrent classifier chain empowered to model
inter-class relationships essential for predicting the complete label
set most likely to match the ground truth. The key to Robust-RCC
is the design of the Multi Incomplete Label Risk (MILR) function,
which we prove to be equal in expectation to the true risk of the
ground truth full label set despite being computed from incom-
pletely labeled data. Our experimental study demonstrates that
Robust-RCC consistently beats six state-of-of-the-art methods by
as much as 30% in predicting the true labels.
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Figure 1: Goal: train a recurrent classifier chain to learn label
dependencies on multi-label data with missing labels.

1 INTRODUCTION

Background. Recurrent Classifier Chains (RCCs) are a state-of-
the-art approach for multi-label classification [30]. They directly
model inter-dependencies between multiple labels, which leads to
high classification accuracy [35].

RCCs are often preferred over other multi-label methods be-
cause they condition their model of label dependencies on each
input instance: the correlation between labels changes based on the
attributes of an individual instance [30]. This is superior to many
other multi-label methods, such as graph-based methods [9, 47],
which typically model unconditioned, static label dependencies that
do not change based on the input.

Unfortunately, existing RCCs assume that their training data are
fully-labeled: they perform poorly when training labels are miss-
ing,! meaning when the labels given for an instance are a subset of
its true labels. This is so, because RCCs wrongly infer that missing
labels are always negative, i.e., do not apply to the instance. By
treating missing labels as negatives during training, RCCs incor-
rectly predict many false negatives during testing. This results in
poor performance on such multi-label missing-label (MLML) data.

High false negative rates greatly limit the applicability of RCCs
as missing labels are ubiquitous in real-world datasets [37]. For
instance, images for training computer vision systems are often

As clearly demonstrated by our experimental study in Section 6.
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incompletely labeled by time-pressured and underpaid annotators.
Such under-labeling has proven to be more pervasive than many re-
searchers previously thought, cropping up even in popular datasets
like ImageNet [13, 37]. Similarly, medical records often have miss-
ing labels too: over-worked healthcare staff, often specialists and/or
restricted in time or authority, will not assess and thus label each
patient for every conceivable ailment.

State-of-the-Art. RCCs have gained great popularity in the
recent literature [20, 43, 54]. These methods have been applied
to many multi-label tasks, including early classification [20], text
mining [30], and computer vision [54], while numerous extensions
of classifier chains have also been proposed [20, 43, 54]. However,
no RCC model to date has been equipped to handle missing labels.

Missing labels are pervasive, so learning in their presence is
actively researched [44]. While most approaches only study binary
classification, some multi-label approaches emerged recently [1,
11, 23, 27, 41, 46, 52]. However, these new approaches make strict
assumptions [39, 49, 51, 58]. For instance, it is commonly assumed
that a fully-labeled dataset is available alongside an unlabeled or
MLML dataset [26, 29, 45], or some explicit negative labels are given
(known as Explicit MLML) [48, 50, 55]. However, it is unrealistic to
expect explicit negative labels in practice. For instance, annotators
typically provide labels for what is in the given image, and do not
give negative labels for every possible thing not in the image. The
few approaches that do focus on our implicit MLML setting do not
directly apply to RCCs, instead requiring other architectures like
graph-based models [41] or ranking algorithms [23].

Problem Definition. Our work is the first to extend the leading
multi-label classification method, RCCs, to the implicit MLML sce-
nario. More concretely, we address the challenging problem setting
where an instance’s given set of labels is a subset of its true classes.
We do not assume that we are given explicit negative labels (we
are never told when classes do NOT apply). While implicit MLML
is the precise name for this setting [28], for ease of readability we
henceforth call this setting MLML unless it is contextually unclear.

Our MLML setting matches the most common approach for
labeling multi-label data [30]: annotations are assumed to be a set
of positive labels [37]. The popular ImageNet benchmark dataset
exemplifies MLML, where only positive annotations are given for
the images and no explicit negative labels. In the fully-labeled
setting, a class being absent from the label set would imply that
the instance is a negative instance of that class (the class does not
apply to this instance). In contrast, with MLML, the absence of an
annotation does not imply that the class is negative. Our goal thus is
to train a RCC model that returns the label set that is most likely to
match the complete true label set rather than some incomplete label
set, even when trained only on MLML data without any explicit
negative labels.

Technical Challenges. We identify two core challenges in
addressing the implicit MLML setting. First, our MLML setting
matches the multi-label Positive Unlabeled (PU) setting [3] in that
we lack explicit negative labels. The lack of negative labels and
the ambiguity of unlabeled instances (i.e., being either positive or
negative) makes the PU setting classically difficult [3]. Second, it is
particularly challenging to learn label dependencies when labels
can be missing. For instance, while class 1 and class 2 might be
highly correlated, the label for class 2 might be missing from an
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instance and thus the inferred correlations are weaker. Learning
these dependencies is clearly essential for multi-label learning.

Proposed Approach. In this work, we propose Robust-RCC,
the first RCC for MLML data. The Robust-RCC learns to model
the inter-class dependencies of the true labels in order to predict
the complete label set most likely to match the unobserved ground
truth.

The Robust-RCC architecture consists of three core components:
1) R-RCC Featurization Network finds a representation of the input
data useful for classification.

2) R-RCC Classifier takes in the featurized data and performs
order-free class predictions, so classes can be predicted in any order.
To address the MLML setting, this component is not necessarily
punished if it predicts a class not in the annotated label set.

3) R-RCC Prior Estimator estimates the number of positive in-
stances of each class from incompletely labeled data. Knowledge of
this quantity empowers us to compute an unbiased loss term that
leads the R-RCC Classifier to model the true label dependencies
even given MLML data.

More specifically, for the loss function, we introduce a novel
multi-incomplete-label risk (MILR) function, which allows us to
compute an unbiased estimate of the expected multi-label binary
cross entropy (BCE) loss between the Robust-RCC’s predicted la-
bel set and the unobserved ground truth label set. This addressed
the second challenge of learning label dependencies from MLML
data, as this results in the Robust-RCC learning the conditional
probability of the true joint label set.

MILR is computed directly from incompletely-labeled instances
and class priors, leading to effective training without negative labels,
while still being an unbiased estimator of the ground truth risk.

Contributions. Our work contributes the following:

o We identify and characterize the important open problem of
training RCCs on multi-label missing-label (MLML) data.

e Our proposed method, Robust-RCC, the first solution to this
open problem, leverages our novel multi-incomplete-label
risk (MILR) function to train an accurate RCC from MLML
data.

e We theoretically prove that MILR is an unbiased estimate of
the risk between the model’s prediction and the true, unob-
served ground truth, yet utilizes only MLML data.

e With a series of rigorous experiments on several real-world
datasets, we demonstrate that Robust-RCC outperforms state-
of-the-art methods by about 30% on the strictest multi-label
metric, Subset Accuracy.

2 RELATED WORK

Classifier Chains. Standard classifier chains (CCs) consist of a
sequence of classifiers, each of which is trained to predict a single
class while taking in observed data features as well as preceding
class labels as input [35]. By conditioning each label prediction on
those previously predicted labels, classifier chains succeed to learn
joint label dependencies. While these classic methods use indepen-
dent models for each predicted label [34], most recent works use
recurrent neural networks (RNN) [8, 19, 30, 43]. Such recurrent clas-
sifier chains allow for parameter sharing between label predictions,
often leading to better performance [30]. The most recent RCCs
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are order-free, meaning, they also learn the best label orderings
[8, 43], which we adopt in this work. However, as all RCC meth-
ods rely on the strict assumption that all training data are labeled
perfectly [8, 30, 43], they fail when trained on MLML data - as we
demonstrate in Section 6

Multi-Label Learning with Incomplete Labels. Multi-label
classification from incompletely-labeled data is an active area of
research [1, 11, 23, 27, 41, 46, 52]. The broad category of learning
with incomplete labels encompasses several problem settings [28].

Semi-supervised multi-label learning (SS-ML) assumes that the
training data comes in the form of a fully-labeled subset and an
unlabeled subset [26, 29, 39, 45, 58]. This does not match our prob-
lem setting, where the set of labels applied to an instance may be
incomplete.

Explicit Multi-Label learning with Missing Labels (Explicit MLML)
differ from SS-ML by allowing each instance to be partially labeled
[28]. They assume that for each class a given instance is given either
a positive, negative, or explicitly missing label [48-51, 55]. This
means that they assume that explicit negative labels are given in
addition to some missing labels. As we discussed in the introduction,
assuming the availability of negative labels is often unrealistic.

Implicit Multi-Label learning with Missing Labels (Implicit MLML)
is our particular problem setting. Implicit MLML methods assume
that for each class, an instance is either given a positive label for
that class or else receives no label for the class [12, 23, 27, 40, 42,
53, 56]. In other words, no explicit negative labels are given and
unlabeled classes could be either positive or negative. Note that
implicit MLML methods can be applied to explicit MLML data
by simply disregarding the negative labels. Alternatively, explicit
MLML methods generally can’t be applied to implicit MLML data
as these methods may require explicit negative labels.

Existing implicit MLML methods optimize for metrics such as
hamming accuracy and ranking loss [23], and are thus not suitable
for training RCCs. This is because those metrics can be optimized
for without learning the joint conditional interdependencies [10],
in contrast to the motivation behind RCCs which is to learn such
dependencies. Others require specific architecture choices [58] that
make them incompatible with RCCs. To-date, no method has been
proposed that extends RCCs into the MLML setting.

Positive Unlabeled Learning. Positive Unlabeled (PU) learning
is very closely related to implicit MLML. Like MLML, PU learning
assumes that some positive labels are given while negative instances
are not labeled [3]. Unlike MLML, PU methods are classically bi-
nary classification problems [16, 38], not multi-label. In this sense,
implicit MLML can be seen as being synonymous with multi-label
PU. PU learning is also an active area of research [7, 18, 22, 36, 57],
with recent works showing that unbiased positive-negative risk
minimization can be achieved in both the standard setting [25] and
even when the labels are applied with a selection bias [4]. However,
due to focusing on binary classification, classic PU methods are
not applicable to RCCs. Multi-label PU methods such as RankPU
[23] optimize for ranking loss, which can be optimized for without
learning label dependencies [10] and is thus not appropriate for
training RCCs.
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Symbol Meaning
Lowercase bold symbol | A vector
Uppercase bold symbol | A matrix

y | Ground-truth full label vector
Yy~ | Incomplete label vector

i | Predicted full label set
kth entry in vector (-)

Class prior of kth class
Input instance
L | Number of possible classes

Table 1: Notation for commonly used symbols.

3 PROBLEM FORMULATION

Formally, we define our problem as follows: Let D = {(x;,y; )} /=1
be a dataset consisting of n pairs of input features x; of an instance
and its incomplete label sets y; . For the sake of readability, we
drop the subscript i when referring to a particular instance, when
none-ambigious. Let y* be represented as a vector of labels, and
[y* ]k be the kth element of y*. As y* is the vector representation
of the incomplete label set, [y* ] = 1 implies the kth class applies
to the instance, while [y*]; = 0 implies that the kth class can
be either positive or negative—the true value is unknown. This
implies that in our incompletely label setting, we have no explicit
negative labels for any class. We assume that the labels are missing
at random, as is standard [23]. This means that the probability that
a true positive instance of a class k is labeled is some constant value
csie, p([y* ]k = 1| [yle = 1) = ¢, where y is the fully labeled
ground truth vector such that [y] is the true value of the k-th
class for this instance. Our goal is to train a classifier fy : X - ),
where y € ) is the corresponding completely-labeled version of
y”, given only observations from X’ and corresponding incomplete
label vectors y*. Table 1 lists the meaning of the most important
notation used in this work.

4 BACKGROUND: RCCS
RCCs model the conditional joint probability of the labels [30].

More formally, they model p(y|x) = p([y]1, [y]2, --- [y]L|x). They
accomplish this by factorizing the joint probability as follows:

L
p([yls, [yl2. - [y]Llx) = p([yhlx) QP([y]i\[y]q,x), 1

where [y]<i = ([y]1, [y]2 .- [y]i=1)- RCCs model the above as
a recurrent neural network. The recurrent network reads in the
feature attributes along with the observations of each class sequen-
tially; i.e., at the ith step it reads in the observation for the ith
class. It thus parameterizes [y]<; as hj_1, where h;_1 is the hid-
den state of the recurrent network at the i — 1th step. Likewise,
it gives p([y]i|[y]<i, x) as the output of a feed forward network
conditioned on h;_1.

As described, the RCC factorizes the classes in a predefined or-
der; i.e., class 2 is predicted after class 1. However, recent RCC
methods [8, 43] can predict the classes in an arbitrary order that dif-
fers instance-to-instance. Thus, they instead provide an alternative
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factorize to Equation 2 as:

L
Pyl [yle. - [yllx) = T p([ylillyl<ix).
i€cO(x)

@
where O(x) is an ordered list of class indices specific to instance x.

5 METHODOLOGY

5.1 Overview of Robust-RCC

In this work, we propose the Robust-RCC, the first RCC for MLML
data. The Robust-RCC learns the true conditional label dependen-
cies from incompletely labeled data. Robust-RCC is composed of
a featurization network and a recurrent network with the later
optimized using a novel reformulation of multi-label risk which we
derive in this work.

First, the R-RCC Featurization Network transforms an input
instance to a latent vector representation. Second, the latent repre-
sentation is then fed to a novel R-RCC Classifier (R-RCC Backbone),
which learns the conditional distribution of the ground truth label
vector given MLML training data. We achieve this training the R-
RCC Backbone using a novel multi-incomplete-label risk function
(MILR), which reformulates the multi-label risk to be computable
from incomplete labels. This is achieved using knowledge of the
class priors, estimated by the R-RCC Prior Estimator from incom-
pletely labeled data.

We first describe the novel risk function. Then, we describe the
architecture of Robust-RCC in detail and show how the R-RCC
Backbone can learn the order in which to predict classes even when
given incomplete labels.

5.2 Reformulating the Multi-Label Risk.
In the traditional fully labeled setting, RCCs are trained by mini-
mizing the Binary Cross Entropy (BCE) between the predicted label
sets and the true label sets [30]. In other words, they aim to find
the parameters 8* of a model f() that minimizes:

E  BCE(fy(x).y),

xy~Pxy

0" = arg min 3)
where Py y is the joint probability of features and ground truth
label vectors. However, we observe that Equation 3 cannot be cal-
culated in the MLML setting due to requiring the expectation over
the completely-labeled instances y, to which we have no access.
Instead, we propose the following multi-incomplete-label risk that
can be computed given only implicit MLML data while still being
minimized by the ground-truth label vector:

L
MILR=Y[m. B L*(fy(x)[k])
I A

(el

k

L ([fo@]o)]-

k

©

+(meep —m) E
[y*]
+(lfﬂkck) E
[y*]

Here, 7 refers to the k-th class prior, 7 = p([ylx = 1), ¢ =
p({y*lk=1) and E

T [y*];F refers to Ex’[y*]kN(X,[Y*]k:1/0)~ L™ and
L* refer to the components of the decomposed BCE loss, such that

L*/" for a given class is the loss incurred by BCE for that class

585

Walter Gerych et al.

assuming that the ground truth is positive or negative, respectively.
While Positive Unlabeled risk functions have been proposed in the
setting of binary classification [14], this is the first general PU risk
formulation for multi-label learning.

Equation 4 succeeds to optimize the multi-label BCE, requiring
only expectations over positive instances (E[y*]z) and unlabeled in-

stances (]E[yyr ];) per individual class. It is important to note that we
can approximate these expectations from MLML data, while expec-
tations over negative instances would not be. However, Equation
4 is not useful if it were to produce biased label sets. Fortunately,
we can establish that this is not the case, as stated in the theorem

below.

THEOREM 1. The expected value of the MILR risk function com-
puted from incompletely labeled data is equal in expectation to the
expectation of multi-label binary cross entropy loss computed from
the ground-truth full label vectors.

Proor. Let fy(x) be the estimate of y for instance x such that
fo is the output of a probabilistic RCC parameterized by 6 and
[fo(x)]x is the RCC’s estimate of p([y]x|x). To train a standard
RCC, we would minimize the BCE:

0 = argmin  E  BCE(fp(x),y), (5)
9 xye(X,Y)
where BCE(fp(x),y) is defined as
L
BCE(fy (x).y) =+ 3 ~[ylilog([fo(x) 1)
L% (6)

- (1= [yl)log(1 - [fo () i)

Inspired by binary Positive Unlabeled (PU) methods [14], we
reformulate the risk in Equation 6 to be expressed in terms of only
positive and unlabeled instances in the multi-label setting.

Let L ([fp ()]i) = log([fo (x)]i0) and L~ (1fo () J¢) = log(1 -
[f5(x)]x)- Then, because the expectation is a linear operator, Equa-
tion 5 can be rewritten as:

L
6" = argmin Z E
0 Tk lylee(X[Y]k)

(L ([fo ()]k)
+L™ ([fo(x)]x)]-

/- refer t0 Ey [y],~(X,[Y]x=1/0)- Then, we split the

™)

Let E[y]

expectation of the BCE into an expectation of positive and negative
instances for each class:

L
0" =argmin ) [m, E L ([fp(x)]x)
o & YK

+(1-m) B L ([fo()]K)]
[Y]

k

®)

where 7 refers to the k-th class prior, 7 = p([y] = 1). Next, note
that the expectation of L™ over all instances of a given class can be
rewritten as:

E L ([fao(x)]x) =m E L ([fo(x)]k)
[Y]k [YI£

- ©)
+(1-m) E L ([fo(x)]k)
(Y]

k
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For each class, let p(x) be the PDF of the features,and p, ;_/,/,, ()
be the PDF of the positive instance, negative instances, labeled
positive instances, and unlabeled instances respectively. Then, for
each class k, x ~ mp+(x) + (1 = m)p-(x) ~ mpeppe(x) + (1 -
micr ) pu(x) [3], where ¢ = 1%2’(:1) (which can be explicitly cal-
culated from the data given ). With that in mind, we can rewrite
the expectation of L™ over the negative instances in terms of the
expectation over all instances and the expectation over positive
instances:

(1-m) B L ([fo(x)]e) =-m B L ([fo(x)]k)
(Y] [Yl; (10)
+ B L ([fo(x)]x)-

[Y]k

And likewise the unconditioned expectation over all instances
can be written in terms of positive and unlabeled distributions as

E L ([fo()) =mex E L ([fo(x)]k)
Y]k Ylf (11)
+(1-me) E L ([fo(x)]k)
[Ylx

where By} = B [ylee(X,[Y*]e=0)-

We can replace the expectation over negative instances in Equa-
tion 8 with the right hand side of Equation 10 and the expectation
over unconditioned instances with Equation 11 to arrive at our
reformulated BCE loss function:

L
0" =argminy [ B L™ ([fp(x)]x)+
o kDN

(meer —me) B L ([fo(x)]k) (12)
[Ylf

E L ([fo(0)]W)]-

+(1 - mey)
kCk [¥]:

Lastly, as we assume that there is no selection bias in which
classes are labeled for each instance, we can write the above expec-
tation over positive instances of the true label set with positively
labeled instances of the incomplete label set:

L
9*:argmin2[ﬂk E L*([fo(x)]i)+
0 k[

(@)

k

L (o)1)

k

(13)

(meex —m) E
[Y*]

+(1 - ﬂkck) E
[Y*]

Theorem 1 implies that we can replace the BCE risk with the
MILR risk (Equation 4) in order to train RCCs, without introducing
bias into our predicted label sets.

Equation 4 requires us to compute the expectations of losses
over feature-label pairs. During the training, since we have finite
training data, we thus can replace Equation 4 with the empirical
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MILR, MILR:

S L))

L 3
MILR(fy) = 2[7
k xit[yF =1

!
(meer —m) <
DY

3 L ([fo(xp)lk) (19
xji[y] le=1

(1fnf,f,k0k) S () ]o)]
xm:[y;n]kzo

Through Equation 14, we succeed to present the very first risk
function that can be used to train an RCC to model the true con-
ditional class distribution even for MLML data. Most importantly,
Equation 14 does not require negative labels, yet it minimizes Equa-
tion 3.

5.3 Robust-RCC Architecture.

We next discuss the Robust-RCC’s architecture. There are three
main components of the Robust-RCC’s architecture: the R-RCC
Featurization Network, the R-RCC Backbone model, and the R-
RCC Prior Estimator. These components are trained together to
minimize Equation 14.

First, the R-RCC Featurization Network, F, produces a latent
vector representations of input instances x, namely, o = F (x).
In this work, we use ResNet-18 [21] pre-trained on ImageNet to
produce a featurized representation, as we focus on image datasets.
However, many alternate options could equally be plugged in for
this component based on the nature of the task at hand (ie., a
transformer for text data).

Second, the R-RCC Backbone is a recurrent network that takes
in this latent representation and produces one class probability per
step. At step ¢, the R-RCC Backbone outputs [ fy(x)]c,, such that
[fo(x)]e; = p([y]e; = 1]x) where c; is the class predicted at step ¢.
At each step, the input is v = v’ ® [fy(x)]c,_,, the concatenation
of the feature representation ' with the previous class probability.

We use a gated recurrent unit (GRU) for the R-RCC Backbone,
though in practice any recurrent network could be used. Thus the
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predicted class probabilities [ fy(x)]c, are given as:

rt = o(Wro + Urhs—1 + by) (15)
2zt =o(Wzo +Uzhs—1 + b2) (16)
st =0(Wao+Uqu(rr®ar —1) + bg) (17)
ar=zt0ar_1+(1-2zt) Ost (18)
[fo(x)]c, = o(Wrar +by), (19)

where Wy 4 and Uy ;4 are the weight matrices of the GRU and
Wpe R s the weight matrix of a feed-forward layer used to
convert the hidden representation of the GRU into a class proba-
bility. o is the sigmoid function and ® is the hyperbolic tangent
function.

The final component of the Robust-RCC is the R-RCC Prior Esti-
mator, which estimates the frequency of each class: 7 = p([y]x =
1) for k = 1,..,, L. This value is required by our risk function, as
discussed in Section 5.2. If the class priors are known, they may
be substituted here. Otherwise, we use TiCE [2], a leading prior
estimation method, to estimate the class prior of each class. TiCE
utilizes top-down decision tree induction to estimate the labeling
frequency ¢ = p([y*]x = 1|[y]x = 1) in subdomains of the data.
Under the assumption that there is no bias in the labeling, subdo-
mains with a higher ratio of labeled to unlabeled instances provide
a better estimate of the labeling frequency. The class prior can be
recovered form the labeling frequency by the simple conversion
me = p([y* e = 1)/c 3].

Order-free Classification. The order in which classes are pre-
dicted should be learned and not pre-determined, because p(y|x)
can be factorized into any order of conditional probabilities. How-
ever, most RCCs are forced to predict labels in a pre-defined order
(often frequent-to-rare or rare-to-frequent [30, 35]) despite the large
impact of such selection on performance [35]. To overcome this,
recent work has shown that classification can be improved with
order-free approaches, where the RCC learns the order in which
to predict classes based on the input. In our work, we use such an
order-free approach inspired by [8]. We show experimentally that
this choice is well justified. To predict a new class label at step ¢, our
model chooses from the set of previously not yet predicted labels
Cy:

¢t = argmax|p¢ | (20)
c’eC)

fo, = fo,_, + [pt]e (21)

Ct =Cry —{er), (22)

where c; is the prediction of the class predicted at the ¢-th step, pr
is the predicted distribution over labels at step ¢, and [p¢]c, is the
marginal for that class.

6 EXPERIMENTS

6.1 Datasets and Metrics.

We evaluate the Robust-RCC on the following three multi-label
datasets using four metrics.

PASCAL VOC 20072[17]: This standard multi-label image dataset
consists of 9,963 natural images.

2http://host.robots,ox.ac.uk/pascal/VOC/voc2007/ , https://www.flickr.com/help/terms

587

Walter Gerych et al.

Algorithm 1: Training algorithm for Robust-RCC
function train_Robust-RCC(D, H, fy, prior_identifier);

Input : Training dataset D, featurization network H,
order-free RCC classifier fp, class prior
identification method prior_identifier

Output  :Parameters 6*

for k in classes do
| 7 = prior_identifier(X,Y[k])
end
for epoch < 1 to num_epochs do
for batch in batches do
for xp, yy, in batch do
forc < 1toL do

Ve = [HCxp): fo(Vie-1)]
predict fp(V},) using Equation 19 and 22
end
end

Calculate loss according to Equation 14
Update 6 according gradient descent
end

end
return 0

Scene®[5]: This dataset contains 2407 scenery images, each
with up to six labels: beach, sunset, fall foliage, field, mountain and
urban. Instead of using ResNet-18, these images have already been
featurized into 294-dimensional vectors corresponding to the spatial
color moments in the LUV space.

Corel 5k*[15]: This dataset is made up of 5,000 images taken
from the Corel Photo Gallery.

These three datasets were chosen as they are standard image
datasets that are naturally multi-label.

Feature Representations Each method used a feature repre-
sentation of the images in each dataset. For the Corel 5k[15] and
the PASCAL VOC 2007[17] datasets, we used a pretrained ResNet-
18 [21] model to featurize the input images into 512-dimensional
vectors. Specifically, we used the pretrained ResNet-18 model avail-
able in PyTorch, and extracted the feature representations from the
final average pooling layer. The Scene[5] dataset was already fea-
turized into 294-dimensional vectors corresponding to the spatial
color moments in the LUV space, so we did not use the ResNet-18
model on this dataset and instead used these pre-computed features.

We use four standard multi-label metrics: subset accuracy,
hamming loss, macro F1, and micro F1. The subset accuracy is of
particular interest to us, as optimizing for this metric means that
the model must learn the dependencies between labels [10]. We
report on the top 10 labels for each dataset.

6.2 Compared Methods.

We compare Robust-RCC against the following state-of-the-art
methods for learning with incomplete labels:

3http://Www.uco.es/kdis/mllresources/#SceneDesc, license: PDDL
4https://github.com/corel—Sk—pytorch/corel—Sk, license: Non-comercial use only
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Metric Percent Approaches
Labeled R RCC (ours) PUCC SMiLE RankPU  CleanLab RCC CleanLab CC RCC

10% 0.395:0.012  0.000£0.000 0.068£0.022  0.089+0.082  0.000:£0.000 0.000£0.000  0.000-0.000
Subset 20% 0.557+0.018  0.021£0.017 0.260£0.015  0.07320.049  0.000:£0.000 0.000£0.000  0.000+0.000
ncouracy 0% 0.563+0.056  0.154:0.035 0.347£0.012  0.041£0.026  0.000:£0.000 0.000£0.000  0.000+0.000
40% 0.599:0.036  0.323:0.028 0.419£0.010  0.162£0.053  0.000:£0.000 0.000£0.000  0.021:0.000
50% 0.575:0.028  0.465:0.036 0.468£0.008  0.103:0.073  0.010:£0.008 0.007£0.010  0.170:0.000
10% 0.084:0.003  0.127+0.000 0.118£0.003 0.181£0.029  0.127:£0.000 0.1274£0.000  0.127:£0.000
Homming 2% 0.061:0.002  0.124+0.002 0.093£0.003  0.199+0.043  0.127:£0.000 0.127£0.000  0.127+0.000
e 30% 0.059:0.006  0.106+0.005 0.081£0.001  0.207£0.033  0.127:£0.000 0.127£0.000  0.127+0.000
40% 0.054:0.003  0.083:0.005 0.071£0.001  0.152£0.030  0.127:£0.000 0.127£0.000  0.124:0.006
50% 0.058:0.002  0.065:0.004 0.065:0.001 0.177£0.028  0.1250.001 0.126£0.001  0.106:0.010
10% 0.401:0.024  0.000£0.000 0.034:£0.008 0.589:+0.050  0.000::0.000 0.000£0.000  0.0000.000
Macro 20% 0.646:0.029  0.013+0.013 0.169+0.013 0.587+0.074  0.000::0.000 0.000£0.000  0.0000.000
o 30% 0.670:0.046  0.087+0.025 0.283£0.013  0.585£0.061  0.000:£0.000 0.000£0.000  0.000+0.000
40% 0.708:0.026  0.274+0.047 0.374£0.019  0.63820.053  0.000:£0.000 0.000£0.000  0.03420.067
50% 0.67820.018  0.489+0.046 0.446:0.015 0.619+0.048  0.006:£0.006 0.006£0.006  0.243+0.161
10% 0.626:0.016  0.000+0.000 0.122+0.045  0.551£0.042  0.000::0.000 0.000£0.000  0.0000.000
Micro 20% 0.749:0.011  0.038£0.031 0.427+0.030  0.545:0.049  0.000:£0.000 0.000£0.000  0.0000.000
o 30% 0.765:0.019  0.284+0.056 0.535£0.013  0.536£0.035  0.000::0.000 0.000£0.000  0.000-0.000
40% 0.786:0.010  0511+0.041 0.617£0.010  0.607£0.044  0.000:£0.000 0.000£0.000  0.041%0.094
50% 0.771£0.008  0.659+0.032 0.665£0.007  0.576£0.039  0.023:£0.010 0.025£0.010  0.293+0.142

Table 2: Performance of each method on the Pascal VOC 2007 benchmark dataset.

Positive Unlabeled Classifier Chains (PU CC) [16, 34]. We train a
classifier chain using the standard PU method modification tech-
nique [16], as proposed in [42].

SMILE [41]: This recently-proposed method for learning from
incomplete labels uses a graphical model to learn correlations be-
tween classes. It optimizes its predictions to preserve the learned
class correlations. Unlike our method, SMiLE learns the uncondi-
tional class relations rather than the conditional relations.

RankPU [23]: Similar to Robust-RCC, RankPU extends Positive
Unlabeled learning to the multi-label setting. However, RankPU is
designed to optimize for ranking algorithms and is not applicable
to RCCs.

CleanLab [32]: This identifies instances that are likely mislabeled
and removes them before training a classifier. As CleanLab is de-
signed to work with any probabilistic classifier, we compare against
two versions: one using an RCC as classifier, and the other using
the ensemble-based classifier chain.

Recurrent Classifier Chain [30]: We compare against an RCC that
treats all unlabeled instances as true negatives. This is the standard
approach for maximizing subset accuracy in the fully-labeled set-
ting. We expect other methods to outperform this approach as it
does not naturally account for the incompletely labeled nature of
the data.

6.3 Implementation Details.
Base RCC Architecture. Robust-RCC, RankPU[23], the Positive Unla-

beled Classifier Chain (PUCC) [16, 34], and the Recurrent Classifier
Chain (RCC) [30] were each implemented in PyTorch [33]. The
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recurrent methods (Robust-RCC and RCC) consisted of a 1-layer
GRU with a hidden space size of 100. Additionally, each recurrent
method had a 1-layer feed forward network to map from the 100
dimensional latent space into prediction probabilities.

Base Feed Forward Network Architecture. The non-recurrent meth-
ods (PUCC and RankPU) consisted of a feed-forward network that
mapped from the feature space to a 100 dimensional latent space,
replacing the GRU of the recurrent methods. These methods like-
wise had an additional feed-forward layer to map from the latent
space into prediction probabilities.

CleanLab Implementation. The CleanLab methods (CleanLab CC
and CleanLab RCC) [32] used the above feed-forward and GRU
models respectively. We used the publicly available code for Clean-
Lab in order to identify and remove the unlabeled positives prior
to training the classifier components.

SMILE Implementation. We did not implement our own version
of SMILE [41], as the authors had made the code for this method
publicly available. We used their code’ and the parameter settings
used in their paper, although we modified the neighbor parameter
to 400. This is higher than the number used in their paper, and was
modified as the default value produced 0 subset accuracy for nearly
all runs. We found the value of 400 for the neighbor hyperparameter
to produce optimal results for this method.

Training Hyperparameters. For each method, we used a batch size
of 128 and a learning rate of 0.001. We used the Adam optimizer [24]
and PyTorch’s exponential learning rate scheduler with gamma set
to 0.99. Each method was trained until convergence for 200 epochs.

> https://github.com/Jopepato/SMiLE



CIKM 22, October 17-21, 2022, Atlanta, GA, USA

Walter Gerych et al.

Metric Percent Approaches
Labeled g_RCC (ours) PUCC SMiLE RankPU  CleanLab RCC CleanLab CC RCC
10% 0.308+0.095  0.000£0.000 0.060+0.059 0.113£0.054  0.000::0.000 0.000+£0.000  0.000::0.000
Subset 20% 0.424+0.116  0.000£0.000 0.068+0.062 0.181£0.125  0.000::0.000 0.000+£0.000  0.000::0.000
Accuracy 3% 0.474+0.115  0.001£0.001 0.109+0.071 0.148£0.074  0.000::0.000 0.000+£0.000  0.000-:0.000
40% 0.509+0.087  0.010£0.005 0.078+0.066 0.123£0.027  0.000::0.000 0.000+£0.000  0.048+0.078
50% 0.415 £0.039  0.021+0.008 0.099+0.056 0.142+0.024  0.134:0.072 0.010+£0.004  0.230+£0.062
10% 0.149:0.016  0.181+0.000 0.347+0.124 0.264+0.035  0.181+0.000 0.181£0.000  0.181+0.000
Homming 2% 0.140:0.008  0.181£0.000 0.347+0.083 0.226£0.057  0.181+£0.000 0.181+0.000  0.181:0.000
e 30% 0.124:0.016  0.181£0.000 0.305:0.111 0.235:0.033  0.181+0.000 0.181+0.000  0.181:0.000
40% 0.128:0.013  0.180£0.002 0.374:0.115 0.249:£0.023  0.181+£0.000 0.181+0.000  0.1730.013
50% 0.127:0.008  0.178+0.001 0.314:£0.081 0.233£0.027  0.158:0.022 0.179+0.001  0.143:0.012
10% 0.305:0.061  0.000£0.000 0.261£0.030 0.575:£0.028  0.000+0.000 0.000+0.000  0.000:£0.000
Macro 20% 0.605:0.056  0.000£0.000 0.274:0.016 0.606:0.046  0.000+0.000 0.000+0.000  0.000:£0.000
r 30% 0.646+0.057  0.003+0.003 0.310+£0.035 0.606£0.027  0.000+0.000 0.000+0.000  0.000::0.000
40% 0.698+0.017  0.009+0.017 0.308+£0.029  0.600£0.020  0.0000.000 0.000+0.000  0.079::0.128
50% 0.683+0.025  0.037+0.012 0.322+0.029 0.611£0.032  0.233+0.100 0.174+0.060  0.3470.084
10% 0.344+0.072  0.000£0.000 0.267+0.023 0.538+0.040  0.000+0.000 0.000+0.000  0.000:£0.000
Micro 20% 0.635+0.033  0.000+0.000 0.278+£0.015 0.585+0.053  0.0000.000 0.000+0.000  0.000:0.000
- 30% 0.667+0.027  0.002+0.003 0.307+0.037 0.581£0.030  0.000+0.000 0.000+0.000  0.000:0.000
40% 0.702+0.009  0.009+0.017 0.305+£0.024 0.573£0.021  0.000+0.000 0.000+0.000  0.086+0.141
50% 0.692+0.011  0.038+0.014 0.318+0.028 0.585+0.023  0.241+0.020 0.175+0.042  0.371:£0.087
Table 3: Performance of each method on the Scene benchmark dataset.
Metric Percent Approaches
Labeled g RpCC (ours)y PUCC SMILE RankPU  CleanLab RCC CleanLab CC RCC

10% 0.139:0.042  0.000+£0.000  0.005:+0.005 0.021£0.018  0.000::0.000 0.000+0.000  0.000::0.000
Subset 20% 0.247+0.023  0.001£0.002 0.032+0.015 0.049+0.037  0.000::0.000 0.000+0.000  0.000:0.000
nccuracy V" 0.293+0.046  0.020£0.019 0.077+0.012  0.045:0.013  0.000::0.000 0.000+0.000  0.000::0.000
40% 0.321+0.019  0.077+£0.022 0.098+0.010  0.031£0.032  0.000::0.000 0.000+0.000  0.000:0.000
50% 0.304:0.048  0.158£0.036 0.13320.016 0.031£0.037  0.003+0.004 0.006:£0.011  0.014+0.022
10% 0.137+0.008  0.156+ 0.000 0.155:0.000 0.259+0.028  0.156::0.000 0.156+0.000  0.156::0.000
Homming 207 0.122+0.005  0.156+ 0.000 0.152+0.001 0.237+0.044  0.156::0.000 0.156+0.000  0.156::0.000
oo, 30% 0.119+0.009  0.152+ 0.002 0.148£0.001 0.246£0.016  0.156::0.000 0.156+0.000  0.156:0.000
40% 0.118+0.005  0.140+ 0.003 0.143£0.001  0.270£0.069  0.156::0.000 0.156+0.000  0.156::0.000
50% 0.120£0.009  0.124x 0.006 0.138£0.002 0.243£0.037  0.155+0.001 0.154:0.003  0.1530.003
10% 0.313£0.075  0.000£0.000 0.009+0.011 0.508+0.033  0.0000.000 0.000+£0.000  0.000::0.000
Macro 20%  0.0493+0.040  0.004:+0.008 0.051+0.019 0.521+0.038  0.000+0.000 0.000+0.000  0.000::0.000
- 30% 0.542+0.044  0.035£0.016 0.109+0.017  0.520£0.029  0.000::0.000 0.000+0.000  0.000+:0.000
40% 0.582+0.046  0.136£0.020 0.149+0.014 0.512+0.043  0.000::0.000 0.000+0.000  0.000::0.000
50% 0.585:0.012  0.274£0.040 0.199:£0.015 0.536:0.044  0.030+0.016 0.035+ 0.020  0.068+0.063
10% 0.331+£.093  0.000£0.000 0.006+0.006 0.494+0.021  0.000:0.000 0.000+0.000  0.000::0.000
Micto 20% 0.493+0.030  0.002+0.004 0.044+0.016 0.526+0.049  0.000:0.000 0.000+£0.000  0.000::0.000
- 30% 0.567+0.036  0.048+0.033 0.107+0.014 0.521£0.015  0.000::0.000 0.000+0.000  0.000+:0.000
40% 0.596+0.037  0.187+0.035 0.155:0.015 0.505£0.049  0.000::0.000 0.000+0.000  0.000+:0.000
50% 0.607+0.008  0.350£0.059 0.217£0.020 0.523+0.037  0.016::0.007 0.021% 0.020  0.051%0.050

Table 4: Performance of each method on the Corel 5k benchmark dataset.
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Figure 3: Order-free compared to FTR and RTF Robust-RCC
on the PASCAL VOC dataset. The shaded region is the 95% con-
fidence interval.

Experiments were performed on a computing cluster, using a In-
tel(R) Xeon(R) Platinum 263 8160 CPU @ 2.10GHz CPU, an NVIDIA
Tesla V100 SXM2 GPU, and 128 GB of RAM.

6.4 Classification with Incompletely Labeled
Data.

We first demonstrate that the Robust-RCC classifies implicit MLML
data more accurately than the five state-of-the-art alternatives.
To do this, inspired by the approach taken by many other incom-
plete labeling experiments [2, 6, 14, 16, 23, 41], we remove various
amounts of labels such that for each dataset only 10% to 50% of the
positive instances are labeled. Positive instances from each class
thus had the same labeling probability. The results for the PASCAL
VOC, Scene, and Corel 5k datasets are shown in Tables 2, 3, and
4, respectively. Notably, the Robust-RCC routinely outperforms all
other methods for the important subset accuracy metric. This is
expected, as recurrent classifier chains are designed to learn the
label dependencies required to optimize subset accuracy.

Interestingly, the Robust-RCC also nearly always outperforms
the others on macro and micro F1 metrics. Micro F1 is a measure of
classification performance for each label individually, and not the
label set as a whole. However, if the subset accuracy is very high,
then it is expected to be high because a high number of exactly-
right label sets implies a high number of individually-correct class
predictions. The macro F1 is a measure of how well classification
performed per-class and having a very high subset accuracy like-
wise implies a good macro F1 score by a similar argument. Of
note is that the performances of the Robust-RCC and the other
PU methods do not monotonically increase as the percentage of
labeled data increases. This looks surprising at first, but fits the
observations previously made about PU methods [31]. Namely, it
has been shown they perform better on incompletely-labeled data,
as unlabeled points can act to regularize the model [31].
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The next-best performing methods are SMiLE [41] and RankPU,
depending on the metric. SMiLE is perhaps the most similar method
to the Robust-RCC in intent, as it aims to enforce class correlations
during training. However, SMiLE enforces the unconditioned mar-
ginal class correlations rather than the joint probability of the labels
conditioned on the input. This difference gives the Robust-RCC an
edge in classification performance. RankPU is similar to the Robust-
RCC in that it is a Positive-Unlabeled method, although it does not
explicitly encourage label correlations. RankPU outperforms the
Robust-RCC in macro and micro F1 score in a few cases and gener-
ally has a high score for these metrics. Despite this, RankPU has
a low subset accuracy score. This fits with prior work that shows
that a high score on multi-label metrics such as the F-1 scores does
not imply that label correlations are being learned, as learning the
label correlations would imply a high subset accuracy [10]. Other
than the baseline RCC model, the CleanLab classifiers are the worst
performing, likely because CleanLab drops instances from the train-
ing data that it identifies as unlabeled positives. This significantly
decreases the amount of training data when a large proportion of
class instances are unlabeled, as is the case in this experiment. This
indicates that merely dropping likely unlabeled positive instances
is not a viable solution in this setting due to the fact that nearly
every instance will likely have some class unlabeled.

6.5 Ablation Study: Order Free Component

To understand the effect of the order-free classification on the
Robust-RCC’s performance, we also perform an ablation study
comparing the Robust-RCC with two common label prediction or-
ders, frequent-to-rare (FTR) and rare-to-frequent (RTF), on PASCAL
VOC 2007. As expected, Figure 3 shows that order-free outperforms
these preset orderings. Second-best is frequent-to-rare, indicating
that it may be better for the Robust-RCC to predict the “easier”
classes before the “harder” classes in most cases. Additionally, the
order-free predictions have lower variance than the ordered predic-
tions. This implies that allowing learnable orderings does indeed
mitigate the challenge of error propagation during label prediction.

7 CONCLUSION

In this work, we introduce Robust-RCC, the first approach for train-
ing RCCs given multi-label data with missing labels. To achieve
this, we introduce the multi-incomplete-label risk (MILR), a novel
formulation of the multi-label risk that we prove can safely be com-
puted from incompletely labeled data. With MILR, we succeed to
train a recurrent classifier chain to match the distribution of the
true fully-labeled data, despite access to only incomplete labels.
Using three multi-label datasets, we conclusively demonstrate that
our approach outperforms all major state-of-the-art alternatives on
four common metrics. Our approach takes a large step forward for
multi-label classification by RCCs to be applicable even in domains
where fully labeled data is not available.
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