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practical engineering problems, they have not been shown, theoretically or empirically,
to converge to the underlying PDE solution with arbitrarily high accuracy. The primary
difficulty lies in solving the highly non-convex optimization problems resulting from the

Keywords: neural network discretization, which are difficult to treat both theoretically and practically.
Neural networks It is our goal in this work to take a step toward remedying this. For this purpose, we
Partial differential equations develop a novel greedy training algorithm for shallow neural networks. Our method
Greedy algorithms is applicable to both the variational formulation of the PDE and also to the residual
Generalization accuracy minimization formulation pioneered by physics informed neural networks (PINNs). We

analyze the method and obtain a priori error bounds when solving PDEs from the function
class defined by shallow networks, which rigorously establishes the convergence of the
method as the network size increases. Finally, we test the algorithm on several benchmark
examples, including high dimensional PDEs, to confirm the theoretical convergence rate.
Although the method is expensive relative to traditional approaches such as finite element
methods, we view this work as a proof of concept for neural network-based methods,
which shows that numerical methods based upon neural networks can be shown to
rigorously converge.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Machine learning based approaches in the computational mathematics community have increased rapidly in recent years.
One of the main new applications of machine learning has been to the numerical solution of differential equations. In
particular, neural network-based discretization has become a revolutionary tool for solving differential equations [26,84,33]
and for learning the underlying physics behind experimental data [70]. This approach has been applied to a wide variety
of practical problems with astounding success [10,11,58,72,64]. The benefit of this new approach is that neural networks
can lessen or even overcome the curse of dimensionality for high-dimensional problems [40,33,32,44]. This is due to the
dimension independent approximation properties of neural networks [6,42], which have been compared with finite element
methods (FEMs) and other tradition methods in approximation theory [91,81,25,19,92,51,75].
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Broadly speaking, there are three approaches for solving PDEs using neural networks which have been extensively studied
recently. The first approach is to use neural networks to parameterize a set of functions in which the PDE is solved. This
approach is taken by the deep Ritz method [89] and by physics informed neural networks (PINNs) [70], and has been
used to effectively solve the Schrodinger equation [34,15]. Another common approach is to learn the PDE solution operator
using neural networks. This allows the efficient approximation of new solutions as parameters of the underlying PDE are
varied and is a non-linear analogue of model reduction [73]. The effectiveness of this approach has been shown through
the success of DeepONet [52], the Fourier neural operator [48], and the Galerkin Transformer [14], which have recently
been theoretically analyzed [43,44]. Finally, there is the approach of learning the underlying PDE itself from data using deep
neural networks, which was pioneered by PINNs [70]. In the following, we consider exclusively the first approach, where
neural networks are used to parameterize a set of functions in which the equation is solved.

Generally speaking, we classify the numerical error of the neural network discretization into three parts: 1) the modeling
error incurred by solving the PDE over a restricted function class; 2) the optimization error incurred by failing to fully
optimize over the function class; and 3) discretization error incurred by discretizing the integrals appearing in the weak
form of the equation (More details in Section 3). There are some results which bound the modeling error by considering
how efficiently the PDE solution can be approximated with neural networks. For instance, the convergence analysis of the
finite neuron method is discussed by considering a family of H™-conforming piecewise polynomials based on artificial
neural network [91]. The convergence rate of the deep Ritz method depends on the dimensionality [29]. The error estimate
of the deep Ritz Method for elliptic problems with different boundary conditions is established in [62]. The convergence
analysis of the least-squares method based on residual minimization in PINNs has been studied in [77] based on strong and
variational formulations. The convergence of PINNs to the PDE solution is analyzed in [76] for linear second-order elliptic
and parabolic PDEs.

The optimization error arises when the highly non-linear and non-convex optimization problem resulting from discretiz-
ing using neural networks is only approximately solved. There have been some results in the literature which work toward
bounding this error. For instance, it has been shown that gradient descent applied to a sufficiently wide network will reach
a global minimum [54,27,2,94,4]. In addition, the convergence of stochastic gradient descent (SGD) and Adam [41] has been
analyzed in Fourier space. This results in the empirical observation that the error converges fastest in the lowest frequency
modes which is known as the frequency principle or spectral bias of neural network training [55,69]. In practice, Adam
or SGD are typically used to solve the resulting optimization problems, although other methods, such as a randomized
Newton’s method [16] and novel specialized methods, for instance the Active Neuron Least Squares method [1], have also
been explored. Recently, an interesting optimization method which resembles the greedy algorithms we introduce has been
developed for shallow ReLU neural networks [1].

However, the important point is that none of these algorithms empirically achieve asymptotic convergence as the net-
work size increases [89,70]. More specifically, the relative L, error of the deep Ritz method using the SGD optimizer
stabilizes as the number of neurons increases (Table 1 in [89]), and the relative L, error of PINNs using the L-BFGS op-
timizer even increases as the number of neurons increases (Tables A.2 & A.3 in [70]). Moreover, for one-hidden-layer neural
network with fixed inner weights with the ReLU activation function, one can prove that the condition number of the mass
matrix is @(n?), where n is the number of neurons [37]. This implies that gradient descent method converges very slow
especially when n is large. We want to stress that this lack of convergence in no way diminishes the practical utility of
PINNs and the deep Ritz methods. In many practical problems, these methods achieve more than sufficient accuracy. How-
ever, from a mathematical point of view the question of whether neural network methods can be used to provably solve
differential equations remains interesting.

Concerning the generalization accuracy, there are also some analytical results along this direction. For instance, a priori
generalization analysis of the deep Ritz method is studied using the Barron norm with activation function SP; in [53].
The empirical risk of the PDE solution represented by an over-parameterized-two-layer neural network achieves a global
minimizer under some assumptions [54]. The generalization error of PINNs can be bounded by the training error [59]. The
generalization error of deep learning-based methods is also analyzed for high dimensional Black-Scholes PDEs to overcome
the curse of dimensionality in [9].

However, there are significant gaps in the existing convergence and generalization theory. In particular, the wide net-
works which are required to make gradient descent or SGD converge cannot be guaranteed to generalize well. On the other
hand, networks which are small enough or satisfy an appropriate bound on their coefficients to guarantee generalization
cannot be provably optimized using gradient descent or its variants. Recently, this gap has been closed for shallow neural
networks in [36].

To control these three numerical errors and observe the asymptotic convergence order numerically, we propose provably
convergent algorithms in this paper for efficiently solving the neural network optimization problem. The key idea is to
use a greedy algorithm to train shallow neural networks instead of gradient descent. Greedy algorithms have previously
been proposed for solving PDEs using a basis of separable functions [30,12,3,45], and have been proposed for training
shallow neural networks [46]. Our contributions are to develop a convergence analysis when using greedy algorithms for
training shallow neural networks to solve PDEs, to show the practical feasibility of this method even in high dimensions,
and to demonstrate that the theoretically derived convergence rates are achieved. To the best of our knowledge, this work
is the first rigorous analysis without gaps which uses neural networks to solve PDEs and also the first neural network
training algorithm which observes asymptotic convergence numerically. Although the method is currently not particularly

2



J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084

efficient, we view it as a proof-of-concept which demonstrates the viability of using neural networks to rigorously solve
PDEs. Improving the efficiency of the method and extending it to deeper networks with more complex architectures is a
promising future research direction.

The remaining part of the paper is organized as follows: in Section 2, we introduce the problem setup and discuss the
class of elliptic PDEs we will solve. We overview the basic machine learning theory for PDEs in Section 3 and introduce the
neural network model classes in Section 4, where we also discuss the approximation error associated with using a neural
network discretization. In Section 5, we discuss greedy algorithms for non-linear dictionary approximation and their con-
vergence analysis, which bounds the optimization error. In section 7, we show how to bound the discretization error when
discretizing the PDE energy. Several numerical examples are used to demonstrate the efficiency of the greedy algorithms in
Section 9 and finally a conclusion is given in Section 10.

2. Basic setup and the model problem
2.1. Variational formulation

We follow here largely the setting in [91]. Let @ C R¢ be a bounded domain with a sufficiently smooth boundary 3<2.
For any integer m > 1, we consider the following 2m-th order partial differential equation with certain boundary conditions:

1)

Lu = f inQ,
B¥w) = 0 ondQ (O<k<m-—1),

where BX(u) denotes the Dirichlet, Neumann, or mixed boundary conditions which will be discussed in detail in the follow-
ing. Here L is the partial differential operator defined as follows

Lu= Y (=1)™3%(ax(x) 9% u) + ao(v)u, (2.2)
loe|=m
where o denotes n-dimensional multi-index « = (a1, - - - , ap) with

n w gl
w=Ya =
P X axg”

For simplicity, we assume that a, are strictly positive and bounded on  for |o| =m and @ = 0, namely, Jp > 0, a1 < o0,
such that

ap <dy(x),a0(x) <1 Vx€ Q, |a|=m. (23)

Further, when considering deterministic numerical quadrature in Section 7.3, we will make the additional assumption that
a, are sufficiently smooth.
Given a nonnegative integer k and a bounded domain 2 c R, let

HK(Q) = {veLz(Q),a"‘v e 12(Q), | §k} (2.4)
be standard Sobolev spaces with norm and seminorm given respectively by
1/2 1/2
Iile:={ D 0%vig | . vles=| D 1% v
lor| <k ot |=k

For k =0, HO(Q) is the standard L%(2) space with the inner product denoted by (-, -)o . Similarly, for any subset K C €,
L?(K) inner product is denoted by (-, -)o_x. We note that, by a well-known property of Sobolev spaces, the assumption (2.3)
implies that

a(v,v) 2 VI3, q. Vv € H™(R), (2.5)

where a(u, v) := Z (aq0%u, 0%v)o.q + (apu, v).
|la|=m
Next, we discuss the boundary conditions in detail. A popular type of boundary conditions is the Dirichlet boundary
condition when B¥ = B’,‘J are given by the following Dirichlet type trace operators

aku
B (u) := ook O<k<m-—1), (2.6)
V
Q2
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with v being the outward unit normal vector of 9. Using (2.6), we define
Hom(SZ):{veHm(Q):B’B(v):0,0fkgm—l}. (2.7)
For the aforementioned Dirichlet boundary condition, the elliptic boundary value problem (2.1) is equivalent to
Minimization Problem D: Find u € HJ'(2) such that

u=arg min R(v), (2.8)
veHJ ()

with the energy function R defined by

R(v):%a(v,v)—/fvdx. (2.9)
Q

Next we consider the following minimization problem over the whole space H™(2)
Minimization Problem N: Find u € H™(2) such that

u=arg min R(v), (2.10)
veH™(Q)

with energy function R defined by (2.9).
The optimization problem (2.10) is equivalent to the following pure Neumann boundary value problems for the PDE
operator (2.2):

Lu = f ing,
{B’I‘V(u) = 0 ond2 (O<k<m-1), (211)
where
B H*™(Q) > L2(0Q) (212)
N - .
such that the following identity holds
m—1
(Lu,v)=a(u,v) — Y _(B{ @), B)(V))o.0- (213)
k=0
In particular,
e For m=1, we have BX (u) = 2L
e For m=2 and d =2, we have Byu= 2 (Au+ ‘3%‘) — 2 (ks 3Y) eI Bju= 24 o
In order to handle Dirichlet boundary conditions, we consider the mixed boundary value problem:
Lus=f in Q,
k k (2.14)
B} (us) + 8By (us) =0, 0 <k<m-—1.
It is easy to see that (2.14) is equivalent to the following optimization problem:
us=arg min Rs(v) (2.15)
veH™(Q)
where
1
Rs(v) = 5a5(v. v) — (f,v) (2.16)
and
m—1
as(u, v) =a(u, v)+5" > (BY ). B(V)ose. (217)
k=0

Using the theory developed in [91], we have an estimate between u and ugs as follows
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Lemma 1. [91, Lemma 5.4] Define | - |la.s = +/@s(:, -). Let u be the solution of (2.1) with Bk = B’{), 0<k<m-—1,and us be the
solution of (2.14). Then

lu = usllas S Vlullzmg- (2.18)
2.2. Residual formulation

The second type of problem we will consider are more general (potentially) non-elliptic and non-symmetric linear PDEs
given by

Lu=finQ, (219)

where the operator L is given by

Lu= Z Ay (x)0%u. (2.20)

l|<m

We approach such an equation using the residual minimization technique poineered by physics informed neural networks
(PINNs) [70]. This approach minimizes the residual norm

1

RW) =5 / (Lv — f)%dx + / B(v)dx, (2.21)
Q Ele}

where B(v) are our boundary conditions.

The advantage of the PINNs approach is exceptional flexibility which allows arbitrary equations, boundary conditions,
data assimilation, and unknown terms in the equation itself to be treated in a straightforward manner which can be imple-
mented rapidly. This flexibility has driven multiple recent breakthroughs in scientific computing [10,11,58,72,64].

Our theory will allow us to obtain both a priori and a posteriori bounds on the PDE residual R(v). Relating this to the
solution error is an important problem which has been studied for a variety of PDEs under certain assumptions, including
for linear elliptic and parabolic PDEs [76,60], for Kolmogorov PDEs [21], and for the Navier-Stokes equation [20].

3. Basic machine learning theory for PDEs

In this section, we describe the basics of machine learning and statistical learning theory and explain their connections
with numerical methods for solving PDEs. Our focus will be on the connections with numerical PDEs, while the statistics
and probability theory background can be found in standard references on statistical learning theory [74,61].

3.1. General objective

We consider the following general setup corresponding to classification or regression. Let X,Y and Z denote three sets.
Here X represents the input space, Y the label space, and Z is the prediction space. We are trying to ‘learn’ a function
u: X — Z. We suppose that u minimizes the risk, defined by

u=arg mi; R(v), where R(v) = Ey y~qullx, ¥, v(x))] = f Ix, y, vix)du(x, y), (31)
ve
XxY
over an appropriate function class F. Here [: X x Y x Z — R is an appropriate loss function, and du is a probability
measure on X x Y.

For example, in a binary image classification problem we would set X =[0, 1]"*" and Y = Z = {0, 1}. Here X represents
the set of possible n x n pixel arrangements, i.e. images, and Y and Z represent the two possible classes. The function
u: X — Y maps an image x to a label u(x) € {0, 1}. A typical loss function would be the indicator function

0 y=z

l(x,y,z)=y(1—Z)+Z(1—y)={1 Vtz (3.2)

In this case the risk (3.1) is exactly the classification error, since we calculate

RW) =E,y)~dullx, ¥y, v))] =P y)~auly # vX)]. (33)

The function class F could be taken as the set of all measurable functions from X to Z, for instance.
To give another example which is more closely related to the situation when solving PDEs, we consider a regression
problem, where X = R¢ is the space of regressors, and Y = Z =R is the space of responses. In this case, we would take
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1
lx,y,2) =2y = 2? (34)
for instance. In this case the risk is exactly the expected ¢ regression error
1
R(V) =Egy~aullx. y. vl = 5 / ly — v Pdu(x, ). (3.5)
RIxR

To put the solution of PDEs into this framework, we let X = Q@ c RY, Y = {0} (i.e. we have no labels) and Z = R,
and consider the function class F = H™(2). The distribution du on X x Y, which we can simply identify with X = ,
is the uniform distribution on the domain . We frame the solution of the PDE as the minimization of the risk (3.1) for
an appropriate loss function I. For the solution of PDEs, the loss function must depend upon the derivatives of u, so we
consider the somewhat more general risk

R(V) =Exwqullx, v(x), Dv(x), ..., D"v(x))] = / I(x, v(x), DV(X), ..., D"v(x))du(x). (3.6)
X

There are two prominent approaches for framing a PDE in this manner. One, known as the deep Ritz method [89] is to
consider the variational formulation of the PDE. For the elliptic PDE (2.1), this corresponds to setting

l(x,v(x),Dv(x),...,D"v(x)):% > aa@IB* v + a0 v?® | - FRVE) (3.7)

|la|=m

to solve the 2m-th order elliptic equation (2.1). In the case of Dirichlet boundary conditions, we must add to this an
expectation of an appropriate penalty over the boundary of the domain X = £, i.e. our risk becomes

R(v)=/l(x,v(x),Dv(x),...,Dmv(x))d/L(x)—i-(S_l/ch(x,v(x),Dv(x),...,Dm_lv(x))d,ugc(x). (3.8)
X 8X
Here the loss function for the boundary conditions is given by
m—1 m—1 Bkv 2
Ic(X, v(X), DV(x), ..., D" v (x)) = 12; BY (v(x))? = 12(; (W(x)> , (3.9)
K=! k=

where v denotes the outward normal vector. The distribution wppc is the uniform distribution on the boundary of the
domain €.

The other main approach we consider, which was pioneered in the breakthrough work on physics informed neural
networks (PINNs) [70], sets the loss function to the L? residual of the PDE, i.e. in order to solve the m-th order equation
Lu = f, we set our loss function to

2
1 1
I(x, v(x), DV(X), ..., D"v(x)) = E(Lu - = 3 Z g (X)3%v(x) — f(x) | , (3.10)
la|<m

which results in the risk (2.21) when appropriate boundary conditions are added.
3.2. A priori bounds and statistical learning theory

Our goal in the work is to design a method for solving PDEs using shallow neural networks which permits a priori esti-
mates. Such a method has the property that it can be guaranteed to work as long as the true solution is well-approximated
by a given function class. The field of statistical learning theory is concerned with deriving such a priori error estimates for
different machine learning methods.

The basic framework of statistical learning theory analyzes the empirical risk minimization procedure. In this method,
we draw samples and minimize a potentially modified empirical risk over a restricted function class Fg (depending upon a
set of parameters ©) to obtain the estimate

N
1
ue N = arg min Ry (v), where Ry(v) = — » "I'(xi, v(xi), ). (3.11)
veFo N =1
Here the modified loss function I’ is not necessarily the same as loss function [ occurring in (3.6). This is because the loss
function | may not be differentiable or even continuous, which makes the numerical optimization of the empirical risk
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(3.11) intractable. For example, the classification loss in (3.2) is discontinuous and this presents significant problems when
optimizing. As a result, the classification loss may be replaced by a soft margin SVM loss

I'(x,y,2) =max(0,1— yz), (3.12)

where the model output z€ Z =R and the label y € {+1}. In this case the prediction is not a label, but rather a real
number, which can be converted into a label via thresholding. It is easily verified that the SVM loss is a convex upper
bound on the classification loss (3.2).

When solving PDEs, the loss function is continuously differentiable so we usually set I’ =1. In addition, the distribution
du is known explicitly and the empirical risk can be approximated using numerical quadrature instead of sampling (recall
that we have no labels z in this case as well)

N
ug N =arg min Ry(v), where Ry(v) = Z wil(xi, v(Xi)), (3.13)

veFo i—1

where w; and x; are quadrature weights and points in domain 2. When solving equations with Dirichlet boundary condi-
tions, we also need to discretize the integral on the boundary occurring the definition of the risk (3.8). In this case, our
empirical risk would become

N No
Rns(V) =D wil(xi, v(xi), z0) + 871> Wilgc (i, v(%)), (3.14)
i=1 i=1

where the w; and X; are quadrature weights and points on the boundary of the domain €. Our notation here contains the
case where a Monte Carlo discretization is used. In this case the weights w; = 1/N and the x; are randomly sampled from
a distribution dpu.

In practice, some algorithm is used to approximately solve the optimization problem (3.11) to obtain an estimate ug .
The risk can then be bounded as

R(ue,n) — R(u) = [R(ue,n) — Rn(ue,n)] + [Rn(ie,n) — Rn(ue,n)] +
[Rn(ue,N) — Rn(ue)]+ [Rny(ue) — R(ue)] + [R(ue) — R,

where ug = arg m}_p R(v) is the minimizer of the true risk over the function class Fg and u is the global minimizer of the
veseo

(3.15)

risk (i.e. the function we are trying to learn).
We bound the first and fourth terms in (3.15) by

IR(ue,N) — Rn(UeN)| + RN (Ue) — R(ue)| <2 Sth R(v) = Rn(WV)| (3.16)

and note that the term Ry (ue N) — Rn(ue) is non-positive by definition to obtain the following fundamental theorem.

Theorem 1. The true risk (also called generalization error) is bounded by

R(ie,N) — Ru) <R(ue) — R(u) +2 SL;P [R(u) — RnW)| + Rn(lie.n) — Ry (U, N)- (317)
ueseo
When using Monte Carlo sampling to discretize the risk, we take an expectation over the samples X1, ..., xy on both sides of the above
equation to get

|2 Sljg IRW) — RNW)| ] + Ex,....xy[RN(llo.N) — RN (UeN)] (3.18)

ueFe
modelling error ° optimization error
discretization error

.....

The term on the left hand side here is the generalization error which we are trying to bound. We will proceed to analyze
the three terms on the right hand side.

The term Ry (e, n) — Rn(Ue,N) is the optimization error of the method. This measures the failure to completely optimize
over the model class Fg. In traditional methods for solving PDEs, for example finite element methods, this term corresponds
to the error in solving the discrete linear system.

The middle term 2sup,c 7, [R(u) — Rn(u)| is called the discretization error and measures the error incurred by discretiz-
ing the integral defining the risk (3.1). In the theory of linear finite elements this term corresponds to numerical quadrature
error, which is typically bounded using Strang’s lemma [85]. When using a non-linear model class Fg, we must develop
new methods for bounding this term. The key tool in our analysis is the Rademacher complexity [8].
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Finally, the term R(ug) — R(u) is called the modelling error and measures the failure of the model class Fg to capture
the true solution, or ground truth u. In statistical learning theory, this term cannot be theoretically controlled since the
ground truth is unknown. The validity of this assumption is checked experimentally either by calculating the empirical risk
Rn(ue,n) of the learned model or by using a new test dataset if the discretization error cannot be bounded. The advantage
of being able to bound the other error terms is that one can conclude that if the method does not empirically perform well
on the given data, then this must be due to the model class Fg not accurately capturing the ground truth.

Bounding this term in the PDE context requires an estimate on how accurately the model class Fg can approximate
the solution of the PDE. This requires both a regularity result on the solution of the PDE and an approximation theoretic
result concerning the model class Fg. For the Barron space model class we introduce in Section 4 such bounds have been
obtained in [91,53,18,17] for certain equations. In addition, sharp approximation results for neural networks on the Barron
space can be found in [83,79].

In typical applications of deep learning, including to PDEs [70,89] the empirical risk (3.11) is minimized using stochastic
gradient descent (SGD) or a variant like ADAM [41]. Bounding both the optimization and discretization error for such
methods is a significant challenge. There are results which bound the optimization error by showing that sufficiently large
neural networks can be trained to match arbitrary training data using SGD [4,28]. However, when using such a large network
the function class Fg is very large and this precludes the estimation of the discretization error. This makes analyzing the
solution error when solving PDEs using neural networks a significant challenge if SGD or ADAM are used for training.
Indeed, a convergence of the error as the size of the network increases cannot be found empirically when solving PDEs [89],
although these methods have reliably been able to attain an acceptable accuracy for many practical problems [10,11,58,72,
64]. Our approach to this problem is to use greedy algorithms for training instead of SGD or ADAM. This allows us to obtain
a priori estimates on our error, i.e. to bound the optimization and discretization errors.

3.3. Test error bounds

Next, we consider the problem of obtaining bounds on the risk R when Theorem 1 does not apply. Suppose that a
function u* has been obtained in some manner, potentially via an unknown black-box method. Our goal is to estimate the
risk R(u*), i.e. to test the single function u*. Such a situation would occur when we are unable to bound the optimization,
discretization, or modelling errors on the right hand side of Theorem 1.

In typical machine learning problems, the distribution du in (3.1) is unknown and we can only interact with it by
drawing i.i.d. samples from du. The (true) risk (3.1) is then approximated by the empirical risk

1 ¥
Ry () = = > I u* (%), zi). (3.19)
i=1

where (x;, z,-)?’:/ ; are iid. samples from du constituting the test dataset. This is akin to a Monte Carlo discretization of the
integral in (3.1). For applications in numerical PDEs, however, the distribution du is typically known explicitly. In these
cases, the integral in (3.1) can potentially be more effectively discretized as
N/
Ry (u*) =Y wil(xi, u* (x1), 20, (3.20)
i=1
where the w; are quadrature weights and the (x;, zj) are quadrature points. The weights and points can be taken to be
accurate to a given high order or may be determined via quasi-Monte Carlo integration methods [49], for instance.

To ensure that we are accurately estimating the true risk of the function u* we need to obtain a bound on the discretiza-
tion error

RN (u*) — R(u™)|. (3.21)

As an example, in the case of the classification loss we can apply Hoeffding’s inequality [35] to obtain

PRy (u*) — R(u™)| > €) < 2exp(—2€%/N'), (3.22)

since the loss | is bounded between 0 and 1. This implies that with a large number of samples N’, we can estimate the

classification error probability of a given fixed model u* to accuracy O((N’)*%) with high probability.

We remark that in order for this approach to be rigorously correct, the test dataset used to evaluate Ry (u*) must be
independent of the function u*. This means for instance that the procedure used to determine u* cannot depend upon the
test accuracy (using the same test dataset) Ry (u’) of any other model u’, i.e. it cannot depend upon previously published re-
sults run on the same test dataset. Of course, in practice this is violated in the deep learning community due to the expense
of obtaining datasets and the consequent necessity of reusing test datasets many times for different models. Nonetheless,
deviating from the ideal of redrawing a new test dataset for each model has been shown empirically to result in models
that exhibit a significant drop in accuracy on new data [71].
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The disadvantage of an a posteriori bound is that if the estimated function u* does not have small risk, there is no
way to fix this other than to try again with a different method for estimating u* (i.e. “to tweak the hyperparameters of
the method”) and hope for the best, since we do not know why the method is failing. This is why we are trying to solve
PDEs using neural networks in a way which allows a priori error estimates to be obtained as described in Section 3.2. This
will allow us to obtain error bounds before applying our method, and further, if the method does not work, it allows us to
conclude that the model class Fg cannot accurately approximate the PDE solution.

We also note that the simple test error bound derived in (3.22) relied critically upon the fact that the loss function is
bounded (in the case of classification). Unfortunately, the loss functions used to solve PDEs are typically not bounded. This
means that the test error cannot be used to bound the generalization error in this context. The reason is that one would
have to know how smooth the neural network function is in order to use quadrature which guarantees a certain error. Such
bounds on the derivative norms of trained neural networks are not available to the best of our knowledge. In our method,
the fact that we can control the complexity of the numerical solution, see Section 7, implies that we can obtain bounds
on the true (i.e. continuous) energy and on the true residual in the case of the variational formulation and PINNs loss,
respectively. This enables us to calculate a posteriori estimates on the energy and on the residuals using a new test dataset
(or a new set of quadrature points). This permits the calculation of reference solutions even when the true solution is not
known, which to the best of our knowledge cannot be done with other neural networks based methods.

4. Shallow neural network model classes

In this section, we introduce the model class Fg over which we will optimize the empirical loss (3.11). This classical
choice is to take Fg to be an n-dimensional subspace of an appropriate Sobolev space. In our approach, we instead take
Feo to be non-linear expansions with respect to a suitable collection of functions ID, called a dictionary.

Specifically, for a set D c C™(£2), we consider

n n
zn,M(D)={Za,-di, dieD, Z‘|a,»|§1v1}. (4.1)
i=1

i=1

Note that here we restrict the £!-norm of the coefficients g; in the expansion. In addition, we take our dictionary D c C™(2)
(instead of H™(R2) since we will discretize the resulting integrals using quadrature point evaluations). In some cases, we
will also need to consider the set

n
oo (D) = [Zaidi, d; eD] (4.2)
i=1
with no restriction on the coefficients. We then take the model class Fg to be
-7'-n,M = En,M(D) (4-3)

which is parameterized by ® = (n, M). Here the dependence on D is suppressed since the dictionary ID will typically be
fixed throughout our analysis.
For shallow neural networks with ReLU¥ activation function o = max(0, x)¥ the dictionary ID would be taken as [78]

D=P!:={op(@-x+b): e S, belcy,cal} C L2(BY), (4.4)
where S 1 ={weR?: |w| =1} is the unit sphere. Here c1 and c, are chosen to satisfy
cp<inflx-w:xeQ,we Sd’l} <sup{x-w:xeQ,we Sd’l} < Cy. (4.5)

The default choice [c1, c2] =[—2,2] is used in our experiments in Section 8 for the cases € C BY, where B‘lj is the closed
d-dimensional unit ball. We note that P,f C C™(2) whenever k > m and that in this case |]P’,f| = sup |Igllum(@) < oc. In this

gEPkd
case the model class would be given by
n n
Fam=Znum(PY) = {Zaiffk(a)i x+bp), w e biela, el Y lal <My, (4.6)
i=1 i=1

which is the class of shallow ReLU¥ neural networks with width n and coefficients bounded in ¢! by M.
In the case of a general activation function o, the corresponding dictionary is given by

Dy ={o(w-x+b): (w,b) € O}, (4.7)

where © c RY x R is compact. In this case, we have D, c C™(Q) and |Dy| < co whenever ¢ € C™(). In this case, the
function class would consist of



J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084

n n
Fam=Zam@s) =1 aio(@i-x+by, (@, b) €O, Y |ai| < M} : (4.8)
i=1 i=1

which is the class of shallow neural networks with activation function o, bounded inner coefficients and outer coefficients
bounded in ¢! by M.

4.1. Barron space regularity

In this section, we introduce the notion of regularity which corresponds to the model class of shallow neural networks
introduced in Section 4. As in Section 4, we give this notion in the abstract setting of a general dictionary D c C™().
Consider the closed convex hull of ID, defined by

B1(D) :=|_J Zn1 (D), (49)

n=1

where X, is defined in (4.1). Note that here the closure is taken in H™(£2). Associated with the convex set B1(DD), we
define the gauge norm (also called the Minkowski functional) by

I flix, @) =inf{c>0: f ecB1(D)}. (4.10)
The norm || - ||k, (), which is also called the variation norm corresponding to the dictionary D, is constructed precisely so
that B1(ID) its unit ball. We further define the function space

K1) :={f € H"(Q) : | fllx,m) < o0} (411)

Important fundamental properties of this space, for instance is the fact that if D is a uniformly bounded dictionary, i.e. if
supgep lldllg = Kp < oo, then the space /C;(D) is a Banach space, can be found in [80].

The utility of the space /C1(ID) is due to the fact that its elements can be efficiently approximated by non-linear dictio-
nary expansions. In particular, the following classical bound holds [6,68]

[N

fnezl?fﬂ(n) I f = fallam@ < DI fllc,@n 2, (412)
for M = || fllx, ). Because of this approximation result, we consider regularity assumptions with respect to the K;(ID)-
norm, i.e. we assume that the variation norm of the PDE solution can be controlled. For the specific variation spaces
corresponding to the dictionaries IP’,f, such regularity results for a variety of PDEs have been obtained [91,53,18,17].

Recently, the spaces K4 (IP,f) for the dictionaries IP,? corresponding to shallow ReLU¥ neural networks have been charac-
terized in terms of the Radon transform [80,65,63,66] and they are closely related to the Ridgelet spaces [13]. In addition,
precise approximation theoretic properties of the space Ky (]P’,f), such as the asymptotics of its metric entropy and n-widths
can be found in [83]. In [83] it is also shown that the approximation rate (4.12) can be improved to

1_2k+1

inf |If = fallgm@) S fll, peyn” 27 20, (4.13)
fa€Znm (P 10

with M < ”f”IQ(IP’,f’) for the dictionary D = IP’,f’. Similar results for more general activation functions can be found in [79].

Pointwise properties of functions in ICl(IP’f), which is also called the Barron space [56], have also been obtained in [90].
5. Greedy algorithms

In this section, we address the problem of bounding the optimization error in Theorem 1 when optimizing the empirical
loss over the model class Fo = ¥, y(D) introduced in Section 4. For simplicity, we denote the numerical solution iig N =
Un M,N as Uy in this section.

As in Section 4, let D C H be a dictionary in Hilbert space H (in our applications typically H = H™($2) for some domain
Q). Greedy algorithms for expanding a function u € H as a linear combination of the dictionary elements D are fundamental
in approximation theory [24,87,86] and signal processing [57,67]. Greedy methods have also been proposed for optimizing
shallow neural networks [46,22] and for solving PDEs numerically [30,12,3,45].

The class K1(ID) which was introduced in Section 4.1 is a natural target space in the analysis of greedy algorithms
[87,86]. Given the dictionary D and a target function u or a convex loss function £, greedy algorithms either approximate
f or approximately minimize £ by a finite linear combination of dictionary elements:

n
Up :Zaigi’ (51)
i=1

10
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with g; € D. The two types of greedy algorithm we discuss here are the relaxed greedy algorithm (RGA) and orthogonal
greedy algorithm (OGA).

5.1. Relaxed greedy algorithm

We consider the following version of the RGA, which explicitly optimizes £ over the convex hull of the dictionary,
up=0, gn= arg?e%(g’ VL(Un-1))H, Un = (1 —ap)pn—1 — Mangn. (5.2)

Here the dictionary D is assumed to symmetric (i.e. g € D implies that —g € D as well), the sequence «;, is given by
op = min <1, %) and M is a regularization parameter which controls the Ki(ID)-norm of the iterates uy,. This algorithm

was first introduced and analyzed by Jones [38] for function approximation (i.e. £(u) = |u — f||f1), and has been extended
to the optimization of general convex objectives as well [93]. The convergence theorem we will use in our analysis, which
is closely related to Theorem IV.2 in [93], is the following.

Theorem 2. Suppose that the dictionary D is symmetric and satisfies supyep l|d||g < C < oc. Let the iterates uy, be given by the RGA
(5.2). Assume that the loss function L is convex and K-smooth (on the Hilbert space H). Recall that K-smoothness means that for any
u, v € H we have

K
ﬁ(u)fﬁ(v)—i—(Vﬁ(v),u—v)H+E||u—v||%,. (5.3)
Then we have u, € X, v and

2
L (up) — inf L(v) < M

(5.4)
Vi, =M

This theorem will be applied in the case £ =Ry is the empirical risk to bound the optimization error. In particular it
yields that

RN (Un) — inf(D RN(V) <RN (up) — inf Ry(v) <n~l. (5.5)
)

veTpm Ivllx, )

We remark that this theorem holds for any convex and K-smooth loss function. This means that the RGA can be applied
to non-linear equations in addition to the linear equations introduced in Section 2, provided that the non-linear equations
admit a variational formulation with a convex energy function.

Proof. Since up =0 and uy is a convex combination of uy_; and —Mgi, we see by induction that uy € Xy p. The K-
smoothness of the objective £ implies that

K
L) = L) + (VL) e = Uk—1) + 5 Ui — Ui I (56)

Using the iteration (5.2), we see that uy — ug_1 = —SkUx_1 — Ms,gk. Plugging this into the above equation, we get

Ks?
Lug) < L(Ug—1) — Sk(VL(UE_1), Ug—1 + Mgk) + Tk lluk—1 + Mgkl%. (5.7)

Since the dictionary elements g satisfy ||gklly < C and [ux—1lix, ) < M, we see that |ug_1l|y < CM as well. Plugging this
into the previous equation implies the bound

L(ug) < L(Ug—1) — Sk{VL(Uk-1), Uk—1 + Mgk) + 2(CM)*Ks}. (5.8)

Now let z with ||z||x, )y <M be arbitrary. Then also || — z|lx,»y <M and the argmax characterization of gy (6.2) implies
that

(VL(ug-1), =2) < (VL(Uk-1), Mgk). (5.9)
Using this in equation (5.8) gives
L(ug) < LUg-1) = Sn(VL(Uk-1), U1 — 2) + 2(CM)*K'sg. (5.10)

The convexity of £ means that L(ux_1) — £(z) < (VL(ug_1), Ux_1 — z). Using this and subtracting £(z) from both sides of
the above equation gives

11
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L(ug) — L£(z2) < (1 = sp)(LUg—1) — L(2)) + 2(CM)*Ks}. (5.11)

Expanding the above recursion (using that s, < 1), we get that

L(up) — L(2) < (]‘[(1 —sk>> (L(uo) — L@) +2CM’K Y [ ] a1 =s0 ] st (512)

k=1 i=1 \k=i+1
Using the choice s, = max (1, %) for which s; =1, we get

n

Llun) — L&) <2CMPKY | [T a=s0 st (513)
i=1 \k=i+1

Finally, we bound the product l_[ (1 — si) using that log(1 + x) < x as

k=i+1
n n n 5 nJrl2
| 1-— < — =— - < - —dx <2(og(i+1) —1 1 14
0g ]_[ 1-s0 | = Z Sk Z P < / ~dx<2(log(i +1) — log(n + 1)), (5.14)
k=i+1 k=i+1 k=i+1 it1
for i > 1. Thus, n2:1+1(1 — S < ((;:11))22 Using this in equation (5.13), we get
1 (i41)2 1 L (i +1)2
L(up) — L(z) <2(CM)’K Y  ——-52 <8(CM)*K . 515
(un) — L(2) <2(CM) §<n+1>2'—( ) (n+1)2§ 7 (5.15)

ing (+D? ;
Crudely bounding = 4 for i > 1, we get

2
_ 32CM?K

L(up) — L(2) < 32(CM)*K EEEITE — (5.16)
Taking the infimum over z with ||z]|x, ) < M gives the result. O
5.2. The orthogonal greedy algorithm
The OGA only applies to function approximation, not to general convex optimization, and is given by
uo =0, gn=argl;1€%<|<g,un_1 —uHl, up = Pn(u), (517)

where P, is the orthogonal projection onto the span of gi, ..., g,. Note here that the residual u,_1 — u is the gradient
V L(up—1) for the quadratic function £(uy—1) = %Hunq - u||12_1. We remark that since this algorithm only applies to function
approximation in a Hilbert space, our methods based upon the OGA can only be used to solve linear PDEs.

This algorithm was first analyzed in [24], where an O (n*%) convergence rate is derived. Recently, it has been shown that
this convergence rate can be significantly improved for the dictionaries whose convex hull B;(ID) has small entropy [82].
In this section, we explain how to use the orthogonal greedy algorithm to solve linear PDEs and analyze the optimization
error this induces.

When solving linear PDEs, the discretized energy function Ry (v) (or Ry s(v)) defined in (3.11) or (3.14) is a quadratic
function of v. In particular, we have

1 N N N
RN(W) =5 | Dowigo@dv (i) + ) D wida () 07V (i) | = 3 wi f (xi)v(x), (5.18)

i=1 i=1 |a|=m i=1

with Neumann boundary conditions and an analogous expression with Dirichlet boundary conditions. In the following we
assume that the quadrature weights w; > 0. Then the loss £ =Ry(v) is equivalent to

RN(V) = [ Im N (V) — un | y- (5.19)

where the evaluation map I,y : C™(Q2) — RP is given by evaluating the function v and all derivatives of order m at the
quadrature points x;. Specifically, this map is given by

12
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(ImN () ;= 8% v(X), (5.20)
where the index set (c, i) runs over all multi-indices & such that either || =0 (the terms with no derivatives) or |o| =m
and indices i =1, ..., N. Consequently P = N x N(m;fl_l). The norm || - [|lo.,n on RP is given by the weighted norm

Ixlz N = Wita (X)XG, ;- (5.21)

(o, 1)
Finally, uy is the minimizer of the quadratic (5.18) in RP. Specifically, the components of uy are given by
0 | =m
aox) ' f(x;) |a|=0.

Crucially, uy can be determined solely from knowledge of the right hand side f and the coefficients ag and does not require
knowledge of the true solution u.
Using the orthogonal greedy algorithm to minimize the quadratic objective (5.19) results in the iteration

UN)(@.i) = (5.22)

uon =0, gn = argmaﬁ( [{Im,N(&), Un—1,N — UN)a,Nl, Un,N = Pn(un), (5.23)
ge

where the projection P, is onto the span of the elements Iy n(g1), ..., Im,n(gn) With respect to the norm | - [[q,n On RP.
In a similar manner the PINNs risk (2.21) can be handled using the orthogonal greedy algorithm as long as the equation
is linear. In this case the discretized risk is given by

2

N
D owilaoven) + Y aax)d®via) — fFoa) | |- (5.24)

i=1 la|=m

1
Rn(v) = 3
This defines a quadratic function, and thus an inner product (possibly with kernel) on R”. We then maximize and project
with respect to this inner product and the dictionary is embedded into R’ via the map In ., resulting in an analogous
method to (5.23). Using the PINN risk allows us to tackle non-symmetric linear problems which may not have a variational
formulation.

The estimation of the optimization error follows from the estimates derived in [82]. In particular, we quote the following
theorem. Note that this theorem gives an upper bound and for certain dictionaries it is possible that the convergence rate
of the OGA may be even faster.

Theorem 3. Let H be a Hilbert space and D C H a dictionary such that the metric entropy of the convex hull of D satisfies

€n(B1(D)y <Cn~2 7Y (5.25)

for some y > 0. Then for any v € K1 (D), we have
lun —ullfy < v —ullfy + KIvIE, pn~ 27, (5.26)

where K is a constant only depending upon C and y.

Here the metric entropy €,(B1(ID))y is a measure of compactness of the set B;(ID) with respect to the norm of H. For
a precise definition and development of its properties, see for instance [50], Chapter 15. The important point is that the
dictionary P satisfies [83]
1 2(k=m)+1
en(BI(PH)pmegy Sn™2= " 2.
Thus, for this dictionary the value of y in Theorem 3 is y = . When solving the discrete equation (5.19) using
the orthogonal greedy algorithm it is important to note that up to logarithmic factors this entropy bound also holds in the
C™(2)-norm when k =m + 1 [5,83]. It is conjectured but not yet proven that this also holds for larger values of k. This
means that since the evaluation map I, y : C™(2) — R” is bounded uniformly in N we have

(5.27)

2(k—m)+1
2d

1
€n(ln N (B1(P))an < Cn 277 (5.28)
holds uniformly in N for y = 2¢=T+1
we have for any M that

. Hence, denoting by u, y € Zn,oo(IP’,f) the solution produced by the OGA at step n,

_ . _ . _ _2(k—m)+1
Rn(linn) — inf  Ry(V) <Rn(ipn) —  inf  Ry(v)<n 177 @ .
veZnu®f) |V|)<1(P;j)51v1

(5.29)

13
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This follows by taking the infimum over vk, ) < M in the conclusion of Theorem 3. This is precisely the optimization
error bound we desire. Of course, this analysis applies to more general dictionaries D as well, provided that the metric
entropy €,(ID) can be estimated.

Although the OGA attains the best convergence rate of the greedy algorithms, it is also the most computationally expen-
sive since it requires an orthogonal projection at every step. In addition, it can only be applied to function approximation,
which corresponds in our case to linear PDEs. A final drawback of the OGA is that the /C; (ID)-norm of the iterates cannot
be a priori bounded for general dictionaries as shown in [82]. As a result, we can only have a priori guarantee that the
numerical solution satisfies il y € X 00(ID). This means that our a priori generalization analysis only holds when using the
RGA to optimize the empirical loss. Despite this, we have empirically observed the improved convergence rate of the OGA a
posteriori and it significantly outperforms the RGA in our experiments.

6. Solving the argmax sub-problem

In order to implement the relaxed and orthogonal greedy algorithms, we need to be able to numerically solve the substep
gn =argmax|(g, VL(up—1))!. (6.1)
geD

In fact, for the convergence analysis it is sufficient that the argmax in (6.1) is not solved exactly, but rather is approximated
in the following sense

1
[{&n, VL(Un-1))| > — max (g, VL(up—1))| (6.2)
R geD
for some fixed R > 1. This is a more tractable problem for most dictionaries.
6.1. Exactly solving the argmax sub-problem

We remark that in low dimensions and for certain dictionaries the argmax subproblem can be efficiently solved exactly.
This is due to the fact that the objective

N
g, VL@ =Y Y (aed¥un—1(x), 9% g(x1) + (@otn—1(x;) — f(Xi), £(xi) (63)
i=1 |o|=m
is really a sum over a finite number N of quadrature points. In this case the set of possible hyperplane partitions of the
quadrature points x; can be enumerated and this can be used to exactly determine the argmax in (6.1). This algorithm
is unfortunately intractable in high dimensions since its complexity scales as O (N%log(N)) [8,82]. As a result, for higher
dimensional problems we must resort to heuristics to approximate the subproblem (6.1) or consider different dictionaries
for which this problem can be solved more efficiently. In our high dimensional numerical experiments, we use a special
dictionary for which this argmax can be efficiently solved.

6.2. Numerical approximation of the argmax sub-problem

Next we describe the numerical heuristics we use in our experiments to approximately solve the argmax sub-problem in
(6.1). Note that here the inner product in (6.1) is the energy inner product associated with the elliptic PDE we are solving.
Our first step is to make the target function |(g, VL(un—1))| differentiable, so we instead consider the following equivalent
optimization problem:

_ 1 2
gn—argrglglr)g 2(g7V£(Un71)), (6.4)
where
(o(w-x+Db), VL(Up_1)) = Z‘ (ag0%up—1,0%0 (@ - x+ b)) + (@oun—1 — f.0(@-x+b)). (6.5)
la|=m

Here we choose the dictionary D c R? as D = ]P’,f, which is naturally parameterized by w € S9! and b € [—c, c] [80]. We
also enforce the constraint ||w| =1 by taking w = 41 for 1D case and w = (cosf, sin®) based on the polar coordinates for
2D case. The low-dimensional optimization problem in (6.4) is typically non-convex so it may be very difficult to obtain
the global minimum. Our approach is to obtain a good initial guess by choosing many samples initially on w — b parameter

space and evaluating the objective function at each of them. More specifically, we sample b; = —c + f\,—cbi, (i=0,---,Np),
wo=—1, wy =1 (1D case), and 6; = 2,(}—0] (j=0,---,Ng) (2D case) to find the best initial samples by evaluating (6.4) at

each (b;, w;j). We then further optimize the best initial sample points using gradient descent or Newton’s method. For the
RGA, we optimize g, = arg m%}r)g —(g,VL(up—1)) instead of (6.1).
ge

14
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7. Uniform error bounds

In this section, we explain how to bound the discretization error
sup [Rn(f) —R(F)I (7.1)
feFo
in Theorem 1 when solving elliptic PDEs. Recall that the loss function we consider in this work corresponds to the variational
formulation of an elliptic PDE and is given in equation (3.7).

7.1. Uniform Monte Carlo error

The tool which we use to analyze the discretization error when the Monte Carlo discretization in equation (3.11) is used
is the Rademacher complexity [8]. Given a class of functions F : 2 — R, and a collection of sample points xi, ..., Xy € €2,
the empirical Rademacher complexity of F is defined by

y 1N
RN(F) =Eg, _en [225—.’ N;sihm)} (7.2)

where &1, ..., &, are Rademacher random variables, i.e. uniformly distributed signs. The Rademacher complexity is obtained
by averaging over the samples x;, which we take to be uniformly distributed over €2, i.e. we have

N
RN(F) =Ex,.y~uEs. . &y [sup % Z&-h(xi)} : (7.3)
heF i=1
where p is the uniform distribution on Q. For the mixed boundary value problem, we will also need the Rademacher
complexity with respect to the uniform distribution on the boundary 92, which we denote by Ry n(F).

The utility of the Rademacher complexity is its role in giving a law of large numbers which is uniform over the class F,
detailed by the following theorem.

Theorem 4. [88, Proposition 4.11] Let F be a set of functions. Then

1 N
N ohe) — [ heodu| < 2R (). (74)
i=1

heF

In order to apply Theorem 4 to the solution of PDEs via the class of Barron functions, we need to estimate the
Rademacher complexity Ry(Ly) of the model class

Ly ={l(u, Du,...,D™u): ue Fyum}, (7.5)

where the loss function [ is given in equation (3.7) and the model class F;, u is described in section 4. We remark that the
Rademacher complexity of the Barron class Fy, m corresponding to shallow ReLU networks has been estimated in [56], so
the novelty of our contribution is to generalize these bounds to the class £y obtained by composing with the loss function
(3.7).

For this we will utilize the following fundamental lemma.

Lemma 2. Let F, S be classes of functions on 2. Then the following bounds hold.

e Ry(conv(F)) = Ry (F).
e Define theset F + S ={h(x) + g(x): he F, g € S}. We have

RN(F +8) =Rn(F) + Rn(S). (7.6)
e Suppose that ¢ : R — R is L-Lipschitz. Let ¢ o F = {¢(h(x)) : h € F}. Then

Rn(¢ o F) < LRn(F). (7.7)
e Suppose that f : Q@ — R is a fixed function. Let f - F = {f (x)h(x) : h € F}. Then
RN(f - F) =1 f @)oo Ry (F). (7.8)
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Proof. The first, second, and third of these statements are well-known facts, see [74, Lemma 26.7] for the first, [61, Page
56] for the second and [74, Lemma 26.9] for the third, so we only prove the fourth.

Suppose that || f(x)||i~) < 1, the general result follows by a scaling argument. Let xq,...,xy € Q and consider the
empirical Rademacher complexity

N
- 1
RN(f - F)=Eg...en [:sg N ;&f(xi)h(xi)} : (7.9)

We observe that the right-hand side of the above equation, being an average of a supremum of linear functions, is a
convex function of f = (f(x7), ..., f(xn)). Consequently, its maximum must be achieved at the extreme points of the set
{(¥y: 11¥lloc <1}, which correspond to the points where each component is £1. Thus we only need to consider the case

where f(xj) = ¢; € {£1}. But then

N N
1 1 -
Eg, .. sup — E &eih(x) | =Eg, ..., sup — E &h(x;) | = Rn(F), (7.10)
&1,.6N |:he]-' N £ i€i i :| £1,-6N |:he]-‘ N £ i i

since the ¢; simply permute the choices of sign &; in the expectation. Taking an average over the sample points X, ..., Xy
completes the proof. O

Utilizing this lemma, we prove the following bound on the Rademacher complexity of the set Ly.

Theorem 5. Let D C CX(2) for k > m be a dictionary. Suppose that llag L), laollL=() < K and supgcp ||d||lwmoe < C. Then the
Rademacher complexity of the set Ly is bounded by

RN(Lym) <CKM Z RN(*D) + CKMRn(D) + || fll Loy MRN (D), (711)

|la|=m

where %D = {0%d : d e D}.

Theorem 5 implies that to bound the Rademacher complexity of the set of interest, we only need to bound the
Rademacher complexity of the derivatives of the dictionary D, which is a much simpler task. In the Section 7.2 we will
detail how to do this for the specific dictionaries corresponding to shallow neural networks.

Proof. The proof is a straightforward application of Lemma 2. We begin by noting that

Ly C Z Ao - [¢ 0 BM(3*D)] +aq - [¢p o Bu(D)]+ f - Bu(D), (712)

loe|=m

where ¢ (x) = 3x? and By (D) = MB1(D) = {f : |Iflic,m) < M}.
Utilizing the first part of Lemma 2, we see that for all o

Rn(BM(39D)) < MRy (39D). (713)
The third part of the Lemma, combined with the bound ||d||wm < C and the fact that ¢ is locally Lipschitz, imply that
Rn(¢ o Bu(3*D)) < CMRN(3'D). (7.14)

Finally, the second and fourth parts of the Lemma, combined with the bounds on a, and ag complete the proof. O

We are primarily interested in the following corollary of this result, which uniformly bound the Monte Carlo discretiza-
tion error when discretizing elliptic PDEs. The next corollary provides a bound on the discretization error incurred in such
a discretization.

Corollary 1. Suppose the empirical and true risk are defined as in (3.6) and (3.19) for the loss function (3.7) corresponding to the
variational form of an elliptic PDE. Then, under the assumptions of Theorem 5, we have that

Ey..y SUP_|RN(V) =RV <2CKM Y Ry(3“D) +2CKMRy (D) + 2|l f ||~y MRy (D). (715)
veBy (D) la|=m ’

Proof. This follows immediately by combining Theorem 5 with Theorem 4. O
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7.2. Rademacher bounds for neural networks

In this section, we show how the Rademacher complexity can be bounded for dictionaries corresponding to shallow
neural networks. Specifically, we consider dictionaries of the form

Dy = {0 (w-x+b): (w,b) € O} C H™(Q), (7.16)

where the parameter set ® C R4 is compact. Of particular importance are the dictionaries corresponding to ReLU¥ ac-
tivation functions, IP’S, which were introduced in [78] and described in more detail in Section 4.1. Our main result is the
following bound on the Rademacher complexity. This generalizes the results of [56], which calculate the Rademacher com-
plexity of the unit ball in the Barron space for ReLU neural networks (see also [31], Theorem 2 and [39], Theorem 3).

Theorem 6. Suppose that 6 € W™1-%°_ Then for any a with |a| < m, we have

RN(3“D) SN2, Ry n(39D) SN~ (717)

where the implied constant is independent of N.

Proof. This result follows immediately upon noting that

3D = {00 @ (w-x+b): (w,b) € O). (7.18)

Since ® is a compact set, |w?| is bounded. Further, since ¢ € W™+1- we have that 0@ is Lipschitz. Using the third point
in Lemma 2, we obtained

Rn(3°D) SRy({w-x+b: (w,b) € B}, (7.19)

and likewise for Ry y(3¢DD).
It is well-known that the Rademacher complexity of the set of linear functions is bounded by [74, Section 26.2]

Ry(fw-x+b: (w,b) e ®) SN2, (7.20)

for any distribution on x which is bounded almost surely. This applies both to the uniform distribution on @ as well as to
the uniform distribution on 92, which completes the proof. O

7.3. Numerical quadrature

In this section we bound the discretization error when the Gauss-Legendre quadrature rule is used to compute the
1
energy inner-product (6.4) and the error ||u — u,llq. Let 7, C Q be a partition on  with mesh size h, where h=O(N" @)

and N is the number of quadrature points. For each T; € Ty, =1, ---, L, the quadrature rule satisfies
t
/ pydx=Y " pxi)wi, VYpePur1(Ty), (7.21)
7, i=0

where Py;+1(T) is the space of polynomials with degree less equal than 2t + 1. Therefore, we have
L Lt N
f fodx=" f fdx=Y"Y"funwi=Y_ fxpwj, Yf e Paup1(Th), (7.22)
Q =17 I=1 i=0 j=1

where Py 1(Th) = {g € L2(Q) : g|1 € Pary1(T), VT € Ty} is the space of piece-wise polynomial functions on the partition
Th. We define the error operator

N L L t
Ec(f) = f fdx =Y fxpwj=> E(fH=) / fFdx =Y fxiwi (7.23)
o j=1 =1 \7, i=0

=1

for f € Wkt1.20(Q). It is clear that E,; e (WK1 (T))* if k <2t + 1.

Theorem 7. Let By (D) = {f € K1(D) : || flix, ) < M}. Suppose the integrand f € By (D) where supy ldll wir1.00¢) < C, and the
Gauss-Legendre quadrature rule is accurate for Py. Then it holds that

|Ec(f)] < CLCMN— ", (7.24)

where t > [k;—]] + 1 and N is the number of quadrature points.
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Proof. Using the Bramble-Hilbert Lemma, we get

|E, +(PI = CIIEn,fII*‘:‘,kﬂ,xmlfIWm.m(f) (7.25)
on the reference domain 7. By the standard scaling argument, it gives on 7, that

|En(£)] < M| fllwis.oo (g < CCMRH (7.26)
The relation h = O(N’é) gives the result. O

The accuracy with respect to N in (7.24) allows us to use the numerical quadrature (7.22) to compute the generalization
errors such as ||u —uy||;2 and ||u — uy||q. Since ReLUK(w - x+ b) is in the W*2°(2) Sobolev space where €2 is bounded, then
we have K1 (Pf) c Wk (Q) which satisfies the condition of Theorem 7.

8. Balancing the error terms

In this section, we combine the estimates of the optimization, discretization, and modelling errors obtained in the previ-
ous sections to obtain a complete convergence theory and explain how to choose the hyperparameters N and n in each of
the different situations discussed. Specifically, when using the relaxed greedy algorithm we have the following convergence
theorem.

Theorem 8. Suppose that the Relaxed Greedy Algorithm (RGA) (5.2) is applied to the discretized loss function Ry corresponding to the
risk formulation (3.6) of the PDE (2.1). Suppose further that the solution u satisfies ||ulx, )y < M and that

e Monte Carlo quadrature is used and the assumptions of Theorem 5 are satisfied. If the dictionary D satisfies Ry (39D) < N=3
and we set N = n?, we have the convergence rate

Ruen) —Rw Sn " (8.1)
In particular, since the objective error is comparable to the squared H™-error, we also have

1
lue.n —ullgm@) Sn™2. (8.2)

d
o Numerical quadrature of order k is used and ) is uniformly bounded in W*+1-°°(Q). If we set N = n2®+1 , then we have

R(uen) —R@) Sn'. (83)

We also have
_1
lue.N — tllgm@y Sn™ 2. (84)

Note in particular that the assumptions of this theorem hold when using shallow neural network dictionaries. We remark
that when using the orthogonal greedy algorithm, the /C; (ID)-norm cannot be a priori bounded and this is a missing ingre-
dient in obtaining an a priori bound on the discretization error. Nonetheless, we obtain good performance in practice for
the orthogonal greedy algorithm. In addition, if the solution u does not satisfy the bound |ul|x,»y < M, then the method
will nonetheless still optimize the risk over this set. In this case, a bound on the error can be obtained by determining how
efficiently the solution can be approximated by a function u which satisfies ||u|/x, ) < M. The proper theory here is the
theory of interpolation spaces (see for instance [23], Chapter 6, or [7]), but we do not go into detail here.

9. Numerical experiments

In this section, we provide numerical experiments demonstrating the effectiveness of the proposed algorithms on a
variety of problems. For all the experiments below, the energy functions are discretized using Gaussian quadrature with the
default setting t =2 and L =4000 in (7.22) for 1D and t =2 x 2, L =400 x 400 for 2D. For simplicity, we use u, to denote
the numerical solution and use u to represent the analytical solution in this section. We also define ||u — u,||; to be the
discretization error in the energy norm which is defined in Section 5.2. For a specific type of second order elliptic equation
discussed in (2.9), the energy norm is identical to the H! norm. In addition, the discretization error in the L2 norm is also
reported. For the detailed computation of these norms, we refer to the technique presented in Section 7.3 and the definition
of norms (5.21). We remark that when calculating these norms we used a new and large set of quadrature points different
from the ones used for training the network.

Section 9 is organized as follows. In Example 1 we test our method on a simple one-dimensional problem with both
Dirichlet and Neumann boundary conditions. We do this with both the energy and PINN loss formulation of the problem and
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Table 1
L? and H'! numerical error of OGA v.s. the number of neurons n for
Example 1.

n lu—upll;z  orderm™3)  |lu—uply  order(n=?)

16 7.86e-04 - 2.79e-02 -

32 7.70e-05 335 5.89e-03 2.24

64 8.45e-06 3.19 1.36e-03 211

128 9.68e-07 313 3.22e-04 2.08

256 1.18e-07 3.04 7.81e-05 2.04

512 1.44e-08 3.03 1.94e-05 2.01

1024 1.83e-09 297 4.86e-06 1.99

2048 2.50e-10 2.88 1.28e-06 193

Table 2

Numerical results of OGA for Example 1 with Dirichlet
boundary condition. Here we take § = 0.1 x n—2.

n llu —unll2 order llu —uplla,s order(n~")
16 6.72e-04 - 4.40e-02 -

32 1.70e-04 2.01 2.20e-02 1.00

64 4.17e-05 2.00 1.10e-02 1.00

128  1.04e-05 2.00 5.49e-03 1.00

256 2.63e-06 1.99 2.75e-03 1.00

512 8.10e-07 1.70 1.37e-03 1.00

compare our method with the common SGD, ADAM and L-BFGS optimizers to demonstrate its effectiveness. In Example 2 we
present a 1D benchmark to verify the empirical adaptive property of greedy algorithms. Next we consider solving high order
and high dimensional PDEs using the OGA. Examples 3 and 4 confirm our theoretical convergence rates for two dimensional
elliptic problems with second and fourth order. In Example 5 we develop a method using a restricted dictionary designed
for high dimensional problems. We show that our method can tackle high-dimensional problems as long as the solution is
well-approximated by the convex hull of the fictionary. Finally, we give an example of non-linear PDEs in Section 9.2 using
the relaxed greedy algorithm (RGA). We note that Theorem 2 holds for any convex and smooth energy function. Therefore,
we can get convergence for non-linear equations provided the equation has a variation formulation with a convex energy.

9.1. Linear PDEs

Example 1 (1D elliptic equation). We consider the 1D elliptic equation
—u"+u=f, xe(-1,1),

u(-1)=u'(1)=0, o)
with the source term f = (1 + %) cos (x) which has the analytical solution u(x) = cos (77x). The energy function is dis-
cretized using Guassian quadrature with t =2 and L = 4000 in (7.22) and the discrete energy is minimized using the
orthogonal greedy algorithm OGA with dictionary IP’Z1 (i.e. corresponding to ReLU?). The convergence rate is shown in Ta-
ble 1. We obtain second order convergence in H!((—1, 1)) which matches the theoretical convergence rate of the orthogonal
greedy algorithm. In addition, we obtain third order convergence in L%((—1, 1)) which matches the theoretically predicted
approximation rates of shallow neural networks [83].

Next we consider the same equation with Dirichlet boundary conditions and consider the forcing term f(x) = (1 +

"Tz)cos(%x) so that the analytical solution is given by u(x) = cos(5x). We use the orthogonal greedy algorithm with
D= IP’zl to minimize a discretized version of the penalized energy Ry s, which is discretized using the same Gaussian
quadrature. To balance the errors, we let § scale as n—2. The convergence order is given in Table 2 and matches the ex-
pected rate obtained by combining the convergence order of the orthogonal greedy algorithm with the error incurred by
the penalization.

We also use the first example with Neumann’s boundary conditions to compare with the deep Ritz method [89] using
SGD and ADAM [41] as the optimizers. The numerical solution of the deep Ritz method is represented by a single hidden
layer neural network with ReLU? activation function. We run both SGD and ADAM optimizers for 10000 epochs using Gauss
quadrature points with random initialization. The initial learning rate for each experiment is 1 x 10~3 and is decreased by
5 every 3000 epochs. The numerical errors shown in Table 3 are the average results of 30 independent experiments, where
we can see that both SGD and ADAM do not achieve any convergence order numerically as n gets larger (i.e. the size of the
network gets larger).

Next, we compare with the widely used PINN method [70] which has been proven exceptionally successful in practical
engineering applications. Specifically, we optimize a discretization of the PINN risk (2.21), given by
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Table 3
The numerical convergence test of the deep Ritz method with both Adam and SGD optimizers on one-
hidden-layer ReLU? neural network v.s. the number of neurons n for Example 1.

Adam SGD

n llu —unll2 order [lu —upllg order llu —unll2 order llu —upllg order
16 1.61e-02 - 1.45e-01 - 1.30e-02 - 1.52e-01 -

32 3.71e-03 212 5.84e-02 1.32 9.35e-03 0.47 1.13e-01 0.43
64 1.80e-03 1.04 3.46e-02 0.76 7.11e-03 0.39 8.64e-02 0.38
128 5.52e-04 1.70 1.43e-02 1.27 5.91e-03 0.27 7.22e-02 0.26
256 2.26e-04 1.29 6.99e-03 1.04 5.75e-03 0.04 7.03e-02 0.04
512 1.88e-04 0.27 3.90e-03 0.84 4.41e-03 0.38 5.40e-02 0.38
1024  2.09e-04 -0.16 2.56e-03 0.61 1.52e-03 1.54 1.99e-02 143
2048  4.11e-04 -0.97  2.51e-03 0.03 3.22e-03 -1.09 3.56e-02 -0.84

Table 4

The numerical convergence test of the PINN model with L-BFGS optimizer on
one-hidden-layer ReLU? neural network v.s. the number of neurons n for Exam-

ple 1.
n PINN-loss  order  [lu —uy|2 order  [lu —up|y order
16 9.19e-02 - 5.08e-03 - 3.17e-02 -
32 7.65e-02 0.27 4.11e-03 0.31 2.54e-02 0.32
64 1.86e-03 5.37 1.44e-04 4.84 1.62e-03 3.97
128 1.84e-04 333 5.20e-05 1.47 3.02e-04 2.43
256 1.13e-05 4.03 5.22e-06 332 4.50e-05 2.74
512 5.58e-06 1.02 3.58e-06 0.54 3.10e-05 0.54
1024  3.28e-05 -2.55 1.73e-05 -2.27 1.28e-04 -2.04
2048  1.52e-05 111 1.30e-05 0.42 8.15e-05 0.65
Table 5

The loss function and numerical error of OGA in L? and H'! norms v.s. the num-
ber of neurons n for Example 1.

n PINN-loss  order llu —unll2 order llu —unlly order
16 2.64e-03 - 5.05e-04 - 2.02e-03 5.8
32 1.50e-04 414  1.04e-04 229  2.54e-04 2.99
64 810e-06 421  2.28e-05 218 4.43e-05 2.52
128  510e-07 399  5.03e-06 218  1.26e-05 181
256 3.16e-08 401  3.49e-06 053  5.40e-06 122
512 198e-09 400  5.45e-07 268  1.76e-06 1.62
1024  111e-10 416 1.81e-07 159  5.74e-07 1.62
2048  554e-12 432  6.67e-08 144 214e-07 143
MSE = MSE ¢ + MSEj,, (9.2)
where
1Y
2 / 2 / 2
MSEf ==Y | = Aun(x) +un(xi) — f()I* and MSEpe = [u' (=D)I? + [u' (DI, (93)
fis
Ng

Here the collocation points {x;};*, are randomly chosen from the uniform distribution on [—~1, 1] where Ny = 10000. The
numerical solution uy is computed by optimizing the MSE loss with two stages. First the network is trained using ADAM’s
optimizer up to 10000 steps. In the next stage we change the optimizer into L-BFGS, where the learning rate is determined
by the line search with the strong Wolfe’s condition, and stop when the update of MSE loss is less than 10716, Since the
gradient based training method requires the computation of first order derivatives, we change the activation function into
ReLU® to satisfy the regularity demand. The result shown in Table 4 is the mean error of 30 independent experiments.
Similar to the results of the Deep Ritz method, we do not observe any stable numerical convergence with respect to n.

For comparison, next we use the orthogonal greedy algorithm to train the neural network using the same loss function
(9.3) with Ny =10000 and the dictionary IP’31. We compute the numerical errors using the quadrature with a number of
points that is large enough to get a good accuracy. We observe convergence for both the loss function and the numerical
error in Table 5:

Example 2 (Adaptivity in 1D). Next, we test the OGA using the dictionary Ile on the 1D elliptic equation (9.1) where f is
chosen so that the exact solution is given by:
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Fig. 1. Grid points of a 1-hidden layer neural network solution with N =128 for Example 2.

Table 6
L% and H! numerical errors and convergence orders of OGA for
Example 2.
n lu—unll;2 orderm™3)  |lu—uplyn  order(n=?)
16 5.05e-02 - 1.43e+00 -
32 1.96e-03 469 1.62e-01 314
64 2.08e-04 3.23 3.93e-02 2.05
128 1.99e-05 3.39 8.42e-03 2.22
256 2.34e-06 3.09 2.04e-03 2.04
512 2.85e-07 3.04 4.83e-04 2.08
x+0.5)2 x? x — 0.5)2
ux) =1+x2%1—x*(0.5exp _ 4057 +exp|—= ) +0.5exp _x= 057 , (9.4)
K K K
for x€ @ =(—1,1) and K = 0.01. The exact solution has three peaks as shown in Fig. 1. In this example, we illustrate the
adaptivity of the neural network discretization by identifying the grid points x = (x1,---,xy)T such that wix+b; =0, i.e.

where the second derivative of the numerical solution changes. Since u(x) has three peaks, we see that the grid points are
gathered mainly at places with a larger curvature and are adaptive to fit the three peaks shown in Fig. 1. Furthermore,
both the numerical error and the convergence order are shown in Table 6, where we see the theoretical convergence order
achieved numerically. Note that the adaptivity is mainly a result of the neural network function class we are using and is
likely to be present for other training algorithms as well. This merely demonstrates that a greedy algorithm is able to adapt
to sharp changes in the solution.

Example 3 (2D elliptic equation). We consider the 2D elliptic equation in € = (0, 1)% given by

—Au+u=f, xe(0,1)7?
du ) (9.5)
— =0, x€d(0,1)?,
on

where the right hand side f is chosen so that the exact solution is given by u(x, y) = cos(2mx) cos(2rr y). We discretize
the energy using Gaussian quadrature of order 2 with 400 points in each direction. We optimize the discrete energy using
the orthogonal greedy algorithm with the dictionary IP’22. The convergence orders with both L2 and H! errors are shown in
Table 7 and confirm the theoretical orders of 1.75 and 1.25 for L? and H! errors, respectively. Note that the convergence
order appears even to be slightly better than predicted by our theory. This demonstrates that we have only proved an
upper bound, and for certain dictionaries the convergence rate of the orthogonal greedy algorithm may even by faster than
predicted by Theorem 3. Due to the computational difficulty of solving the argmax subproblem (6.1) to the required high
degree of accuracy, we were not able to run this example beyond 356 neurons with the variational loss.

Next we consider the dictionary IP32 and optimize the PINN formulation instead of the energy formulation of the problem.
Specifically, we optimize a discretization of the PINN risk (2.21), given by

MSE = MSE s + MSEj,
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Table 7
Convergence order test of OGA with both L? and H' errors for Exam-
ple 3.
n lu—upllz  order™'7®)  |u—up|y1  order(n~1-%)
16 5.13e-02 - 9.74e-01 -
32 9.72e-03 2.40 3.07e-01 1.66
64 2.26e-03 2.10 1.07e-01 153
128 5.86e-04 1.95 4.04e-02 1.40
256 1.42e-04 2.04 1.51e-02 142
356 7.68e-05 1.87 9.82e-03 130
Table 8

The loss function and numerical error of OGA in L? and H'! norms v.s. the num-
ber of neurons n for Example 3 using the PINN loss.

n PINN-loss  order llu —unll2 order llu —uplly order
16 9.51e+01 - 2.93e-01 - 1.41e+00 -

32 1.34e+01 2.83 7.04e-02 2.06 4.09e-01 1.79
64 1.79e+00 2.90 1.49e-02 2.24 1.09e-01 191
128 1.91e-01 3.23 4.67e-03 1.68 3.78e-02 1.52
256 2.67e-02 2.84 5.88e-04 2.99 8.13e-03 222
512 3.27e-03 3.03 5.60e-04 0.07 2.17e-03 1.90
1024  5.33e-04 2.62 5.22e-04 0.10 7.24e-04 1.58
2048  7.96e-05 2.74 9.43e-05 2.47 2.08e-04 1.80

where MSE is the discrete L2-residual in the domain (0, 1)2:
1
MSEf=N—fZ|—Aun<x,-f>+un(x,-f)—f<x,-f>|2, (9.6)
i=1
and MSEy. is the residual on the boundary §(0, 1)%:

(9.7)

Here we take Ny = 20000 and 2000 samples on each edge of 9(0, 1)? so that Nj, = 8000. The samples {xif}:\’:f] and {x?c}?’f]
are randomly chosen in the corresponding domains from the uniform distribution. The following table shows the numerical
result where the neural network is trained by OGA. We compute the numerical errors using the quadrature with a number
of points large enough to get a good accuracy. We see that although the PINN loss converges with a good order as expected,
the solution errors converge somewhat more slowly and less reliably than the loss. However, a good accuracy is nonetheless

finally obtained even in terms of the solution error. (See Table 8.)

Example 4 (2D fourth-order differential equation). We consider the fourth-order equation
Au+u=f, xe(=1,12,
BS(u) =0, xed(—1,1)%, (9.8)
BhN(u) =0, xed(—1,1)°.

We choose the right hand side so that the exact solution is u(x, y) = (x2 — 1)*(y%® — 1)*. We discretize the energy using
Gaussian quadrature of order 2 with 400 points in each direction and using the orthogonal greedy algorithm with the
dictionary IP’32 to optimize the discrete energy. We plot the convergence orders for the L energy norms in Table 9. Each of
these errors is calculated by using finer Gaussian quadrature. For this example, we were again only able to run the algorithm
with 256 neurons due to the computational difficulty of the argmax subproblem (6.1).

Example 5 (High-dimensional example). We consider the following 10d elliptic equation:
—V-(@Vu)+u=f, xe (0,1
du 10 (9.9)
—=0,x€0(0,1)",
on
with
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Table 9
The convergence order of OGA with |- ||;2 and || - || errors for Exam-
ple 4.
n lu—upll;z  order(m™22%)  |u—uplq order(n=12%)
16 1.72e-01 - 4.84e+00 -
32 1.89e-02 3.18 1.60e+00 1.59
64 3.36e-03 2.50 5.85e-01 1.46
128 4.24e-04 2.99 2.04e-01 152
256 8.25e-05 2.36 8.19e-02 132
Table 10

The convergence order of OGA on a high-dimensional problem with
Il-ll;2 and || - [|y1 errors for Example 5.

n lu—unll;2 ordern™3)  |lu—upllyn  order(n=?)
16 5.02e-01 - 3.18e+00 -

32 4.70e-02 342 5.99e-01 241

64 4.63e-03 3.34 1.10e-01 244

128 4.44e-04 3.38 2.27e-02 2.28

256 5.41e-05 3.04 5.19e-03 213

(9.10)
We choose the right hand side f so that the exact solution is given by
10
u= Zcos(nxi). (9.11)
i=1
In order to be able to solve the argmax problem arising in (6.1) we use the restricted dictionary
P,*" = {o(w -x+b), o==%e;, i=1,.,10, be[-2,2]}, (912)

where ¢ = ReLU?. We note that the solution u was specifically chosen to lie in the convex hull of Isz’r, which is given by

10 10
Bi(P,"N =1 f = fitx), D IfPlev <1¢. (913)
i=1 i=1

Note that the equation itself is not separable due to the complicated coefficients ¢, and all that is required for the method to
work is that the solution be well approximated by the dictionary. We discretize the energy using 100 million quasi-Monte-
Carlo samples in [0, 1]'? generated by the Halton sequence, and optimize the energy using the orthogonal greedy algorithm
with dictionary leo,r. The results are shown in Table 10. The point of this example is to demonstrate that the proposed
method converges as expected even in high-dimensions as long as the solution is well-approximated by the dictionary ID.
For this example we were only able to run the algorithm for 256 iterations due to the very large number of quasi-Monte
Carlo samples required for the high dimensional problem.

9.2. Nonlinear PDEs

Next, we test the convergence order of the RGA on a nonlinear Poisson-Boltzmann PDE to confirm the theoretically
derived first order convergence in Theorem 2. We also test both sigmoid and ReLU? activation functions and compare RGA
with OGA in the 1D example. For all the RGA’s results, we report the generalization error defined in the left hand side of

(3.17) in a relative sense, i.e., % which is computed by using the numerical quadrature scheme.

Example 6 (2D Poisson-Boltzmann equation, [47]). We consider the 2D Poisson-Boltzmann equation on the sphere {(x, y)|x* +
y? < 4}, with Neumann boundary conditions, namely,
— Au+ksinh(w) = f, (x,y) € Q=B>(0),
au (9.14)
I =0, (x,y)€9B2(0).

The energy functional for this problem is
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Table 11
Convergence order of RGA for the 2D
Poisson-Boltzmann equation in Exam-

ple 6.

n % order(n~1)
16 8.18e+00 -

32 4.19e+00 0.96

64 2.96e+00 0.50

128 6.95e-01 2.09

256 2.54e-01 145

512 7.70e-02 1.72

1024 2.90e-02 141

2048 1.39e-02 1.06

0.5

Fig. 2. Numerical solution of the 2D Poisson-Boltzmann equation obtained by RGA with n = 4096 for Example 6.
1 2
Ru) = 5|Vu| + Kk cosh(u) — fu ) dx,
Q

which is a strictly convex and coercive energy with respect to u as long as ¥ > 0 and this implies the existence and
uniqueness of the solution. We set ¥k =1 and consider the radially symmetric solution u(x, y) = cos(%\/x2 + y2), which

gives the source terms f. We use Monte-Carlo quadrature with the number of samples N = 0 (n?) = % to approximate the
integration. The dictionary for the RGA algorithm is taken as

D = {o(W1x + w2y + b)|(w1, w2, b) € [-20, 20)%},

where o is the sigmoidal activation function and we set M = 20 in (5.2). The convergence order test is shown in Table 11
and the numerical solution is plotted in Fig. 2.

10. Conclusion

The process of training neural networks is the main bottleneck in applying neural networks to solve PDEs, both in terms
of the effort required to tune hyperparameters and in the computational complexity required for the training process. In
order to solve the resulting highly non-convex optimization problems, typically SGD or ADAM is used to train the neural
networks. Despite their breakthrough empirical performance, these algorithms are often difficult to properly tune and re-
quire multiple tries and additional tricks to obtain good performance. Moreover, it is often difficult or impossible to exhibit
convergence as the network size increases. In order to overcome this problem, we develop a greedy training algorithm for
neural network discretizations of PDEs, which we theoretically prove will exhibit convergence to the solution as network
size increases. Empirical experiments validate the theory and exhibit the predicted convergence. This demonstrates that
neural network can, at least in principle, be used to rigorously solve PDEs. One drawback of the approach is the large
amount of computational effort required in each greedy step. Improving the efficiency of this step is an ongoing research
problem.
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