
Journal of Computational Physics 484 (2023) 112084
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Greedy training algorithms for neural networks and

applications to PDEs

Jonathan W. Siegel a,∗, Qingguo Hong a, Xianlin Jin b, Wenrui Hao a, Jinchao Xu a

a Department of Mathematics, Pennsylvania State University, University Park, PA, 16802, USA
b School of Mathematical Sciences, Peking University, Beijing, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 July 2022
Received in revised form 10 March 2023
Accepted 19 March 2023
Available online 23 March 2023

Keywords:
Neural networks
Partial differential equations
Greedy algorithms
Generalization accuracy

Recently, neural networks have been widely applied for solving partial differential
equations (PDEs). Although such methods have been proven remarkably successful on
practical engineering problems, they have not been shown, theoretically or empirically,
to converge to the underlying PDE solution with arbitrarily high accuracy. The primary
difficulty lies in solving the highly non-convex optimization problems resulting from the
neural network discretization, which are difficult to treat both theoretically and practically.
It is our goal in this work to take a step toward remedying this. For this purpose, we
develop a novel greedy training algorithm for shallow neural networks. Our method
is applicable to both the variational formulation of the PDE and also to the residual
minimization formulation pioneered by physics informed neural networks (PINNs). We
analyze the method and obtain a priori error bounds when solving PDEs from the function
class defined by shallow networks, which rigorously establishes the convergence of the
method as the network size increases. Finally, we test the algorithm on several benchmark
examples, including high dimensional PDEs, to confirm the theoretical convergence rate.
Although the method is expensive relative to traditional approaches such as finite element
methods, we view this work as a proof of concept for neural network-based methods,
which shows that numerical methods based upon neural networks can be shown to
rigorously converge.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Machine learning based approaches in the computational mathematics community have increased rapidly in recent years.
One of the main new applications of machine learning has been to the numerical solution of differential equations. In
particular, neural network-based discretization has become a revolutionary tool for solving differential equations [26,84,33]
and for learning the underlying physics behind experimental data [70]. This approach has been applied to a wide variety
of practical problems with astounding success [10,11,58,72,64]. The benefit of this new approach is that neural networks
can lessen or even overcome the curse of dimensionality for high-dimensional problems [40,33,32,44]. This is due to the
dimension independent approximation properties of neural networks [6,42], which have been compared with finite element
methods (FEMs) and other tradition methods in approximation theory [91,81,25,19,92,51,75].

* Corresponding author.
E-mail address: jus1949@psu.edu (J.W. Siegel).
https://doi.org/10.1016/j.jcp.2023.112084
0021-9991/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2023.112084
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2023.112084&domain=pdf
mailto:jus1949@psu.edu
https://doi.org/10.1016/j.jcp.2023.112084

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
Broadly speaking, there are three approaches for solving PDEs using neural networks which have been extensively studied
recently. The first approach is to use neural networks to parameterize a set of functions in which the PDE is solved. This
approach is taken by the deep Ritz method [89] and by physics informed neural networks (PINNs) [70], and has been
used to effectively solve the Schrödinger equation [34,15]. Another common approach is to learn the PDE solution operator
using neural networks. This allows the efficient approximation of new solutions as parameters of the underlying PDE are
varied and is a non-linear analogue of model reduction [73]. The effectiveness of this approach has been shown through
the success of DeepONet [52], the Fourier neural operator [48], and the Galerkin Transformer [14], which have recently
been theoretically analyzed [43,44]. Finally, there is the approach of learning the underlying PDE itself from data using deep
neural networks, which was pioneered by PINNs [70]. In the following, we consider exclusively the first approach, where
neural networks are used to parameterize a set of functions in which the equation is solved.

Generally speaking, we classify the numerical error of the neural network discretization into three parts: 1) the modeling
error incurred by solving the PDE over a restricted function class; 2) the optimization error incurred by failing to fully
optimize over the function class; and 3) discretization error incurred by discretizing the integrals appearing in the weak
form of the equation (More details in Section 3). There are some results which bound the modeling error by considering
how efficiently the PDE solution can be approximated with neural networks. For instance, the convergence analysis of the
finite neuron method is discussed by considering a family of Hm-conforming piecewise polynomials based on artificial
neural network [91]. The convergence rate of the deep Ritz method depends on the dimensionality [29]. The error estimate
of the deep Ritz Method for elliptic problems with different boundary conditions is established in [62]. The convergence
analysis of the least-squares method based on residual minimization in PINNs has been studied in [77] based on strong and
variational formulations. The convergence of PINNs to the PDE solution is analyzed in [76] for linear second-order elliptic
and parabolic PDEs.

The optimization error arises when the highly non-linear and non-convex optimization problem resulting from discretiz-
ing using neural networks is only approximately solved. There have been some results in the literature which work toward
bounding this error. For instance, it has been shown that gradient descent applied to a sufficiently wide network will reach
a global minimum [54,27,2,94,4]. In addition, the convergence of stochastic gradient descent (SGD) and Adam [41] has been
analyzed in Fourier space. This results in the empirical observation that the error converges fastest in the lowest frequency
modes which is known as the frequency principle or spectral bias of neural network training [55,69]. In practice, Adam
or SGD are typically used to solve the resulting optimization problems, although other methods, such as a randomized
Newton’s method [16] and novel specialized methods, for instance the Active Neuron Least Squares method [1], have also
been explored. Recently, an interesting optimization method which resembles the greedy algorithms we introduce has been
developed for shallow ReLU neural networks [1].

However, the important point is that none of these algorithms empirically achieve asymptotic convergence as the net-
work size increases [89,70]. More specifically, the relative L2 error of the deep Ritz method using the SGD optimizer
stabilizes as the number of neurons increases (Table 1 in [89]), and the relative L2 error of PINNs using the L-BFGS op-
timizer even increases as the number of neurons increases (Tables A.2 & A.3 in [70]). Moreover, for one-hidden-layer neural
network with fixed inner weights with the ReLU activation function, one can prove that the condition number of the mass
matrix is O(n4), where n is the number of neurons [37]. This implies that gradient descent method converges very slow
especially when n is large. We want to stress that this lack of convergence in no way diminishes the practical utility of
PINNs and the deep Ritz methods. In many practical problems, these methods achieve more than sufficient accuracy. How-
ever, from a mathematical point of view the question of whether neural network methods can be used to provably solve
differential equations remains interesting.

Concerning the generalization accuracy, there are also some analytical results along this direction. For instance, a priori
generalization analysis of the deep Ritz method is studied using the Barron norm with activation function SPτ in [53].
The empirical risk of the PDE solution represented by an over-parameterized-two-layer neural network achieves a global
minimizer under some assumptions [54]. The generalization error of PINNs can be bounded by the training error [59]. The
generalization error of deep learning–based methods is also analyzed for high dimensional Black-Scholes PDEs to overcome
the curse of dimensionality in [9].

However, there are significant gaps in the existing convergence and generalization theory. In particular, the wide net-
works which are required to make gradient descent or SGD converge cannot be guaranteed to generalize well. On the other
hand, networks which are small enough or satisfy an appropriate bound on their coefficients to guarantee generalization
cannot be provably optimized using gradient descent or its variants. Recently, this gap has been closed for shallow neural
networks in [36].

To control these three numerical errors and observe the asymptotic convergence order numerically, we propose provably
convergent algorithms in this paper for efficiently solving the neural network optimization problem. The key idea is to
use a greedy algorithm to train shallow neural networks instead of gradient descent. Greedy algorithms have previously
been proposed for solving PDEs using a basis of separable functions [30,12,3,45], and have been proposed for training
shallow neural networks [46]. Our contributions are to develop a convergence analysis when using greedy algorithms for
training shallow neural networks to solve PDEs, to show the practical feasibility of this method even in high dimensions,
and to demonstrate that the theoretically derived convergence rates are achieved. To the best of our knowledge, this work
is the first rigorous analysis without gaps which uses neural networks to solve PDEs and also the first neural network
training algorithm which observes asymptotic convergence numerically. Although the method is currently not particularly
2

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
efficient, we view it as a proof-of-concept which demonstrates the viability of using neural networks to rigorously solve
PDEs. Improving the efficiency of the method and extending it to deeper networks with more complex architectures is a
promising future research direction.

The remaining part of the paper is organized as follows: in Section 2, we introduce the problem setup and discuss the
class of elliptic PDEs we will solve. We overview the basic machine learning theory for PDEs in Section 3 and introduce the
neural network model classes in Section 4, where we also discuss the approximation error associated with using a neural
network discretization. In Section 5, we discuss greedy algorithms for non-linear dictionary approximation and their con-
vergence analysis, which bounds the optimization error. In section 7, we show how to bound the discretization error when
discretizing the PDE energy. Several numerical examples are used to demonstrate the efficiency of the greedy algorithms in
Section 9 and finally a conclusion is given in Section 10.

2. Basic setup and the model problem

2.1. Variational formulation

We follow here largely the setting in [91]. Let � ⊂ Rd be a bounded domain with a sufficiently smooth boundary ∂�.
For any integer m ≥ 1, we consider the following 2m-th order partial differential equation with certain boundary conditions:{

Lu = f in �,

Bk(u) = 0 on ∂� (0 ≤ k ≤ m − 1),
(2.1)

where Bk(u) denotes the Dirichlet, Neumann, or mixed boundary conditions which will be discussed in detail in the follow-
ing. Here L is the partial differential operator defined as follows

Lu =
∑

|α|=m

(−1)m∂α(aα(x) ∂α u) + a0(x)u, (2.2)

where α denotes n-dimensional multi-index α = (α1, · · · , αn) with

|α| =
n∑

i=1

αi, ∂α = ∂ |α|

∂xα1
1 · · · ∂xαn

n
.

For simplicity, we assume that aα are strictly positive and bounded on � for |α| = m and α = 0, namely, ∃α0 > 0, α1 < ∞,
such that

α0 ≤ aα(x),a0(x) ≤ α1 ∀x ∈ �, |α| = m. (2.3)

Further, when considering deterministic numerical quadrature in Section 7.3, we will make the additional assumption that
aα are sufficiently smooth.

Given a nonnegative integer k and a bounded domain � ⊂Rd , let

Hk(�) :=
{

v ∈ L2(�), ∂α v ∈ L2(�), |α| ≤ k
}

(2.4)

be standard Sobolev spaces with norm and seminorm given respectively by

‖v‖k :=
⎛
⎝∑

|α|≤k

‖∂α v‖2
0

⎞
⎠1/2

, |v|k :=
⎛
⎝∑

|α|=k

‖∂α v‖2
0

⎞
⎠1/2

.

For k = 0, H0(�) is the standard L2(�) space with the inner product denoted by (·, ·)0,� . Similarly, for any subset K ⊂ �,
L2(K) inner product is denoted by (·, ·)0,K . We note that, by a well-known property of Sobolev spaces, the assumption (2.3)
implies that

a(v, v) � ‖v‖2
m,�,∀v ∈ Hm(�), (2.5)

where a(u, v) :=
∑

|α|=m

(aα∂αu, ∂α v)0,� + (a0u, v).

Next, we discuss the boundary conditions in detail. A popular type of boundary conditions is the Dirichlet boundary
condition when Bk = Bk

D are given by the following Dirichlet type trace operators

Bk
D(u) := ∂ku

∂νk

∣∣∣∣∣ (0 ≤ k ≤ m − 1), (2.6)

∂�

3

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
with ν being the outward unit normal vector of ∂�. Using (2.6), we define

Hm
0 (�) = {v ∈ Hm(�) : Bk

D(v) = 0,0 ≤ k ≤ m − 1}. (2.7)

For the aforementioned Dirichlet boundary condition, the elliptic boundary value problem (2.1) is equivalent to

Minimization Problem D: Find u ∈ Hm
0 (�) such that

u = arg min
v∈Hm

0 (�)
R(v), (2.8)

with the energy function R defined by

R(v) = 1

2
a(v, v) −

∫
�

f vdx. (2.9)

Next we consider the following minimization problem over the whole space Hm(�)

Minimization Problem N: Find u ∈ Hm(�) such that

u = arg min
v∈Hm(�)

R(v), (2.10)

with energy function R defined by (2.9).
The optimization problem (2.10) is equivalent to the following pure Neumann boundary value problems for the PDE

operator (2.2):{
Lu = f in �,

Bk
N(u) = 0 on ∂� (0 ≤ k ≤ m − 1),

(2.11)

where

Bk
N : H2m(�) �→ L2(∂�) (2.12)

such that the following identity holds

(Lu, v) = a(u, v) −
m−1∑
k=0

〈Bk
N(u), Bk

D(v)〉0,∂�. (2.13)

In particular,

• For m = 1, we have Bk
N(u) = ∂u

∂n .

• For m = 2 and d = 2, we have B0
N u = ∂

∂n

(
�u + ∂2u

∂s2

)
− ∂

∂s

(
κs

∂u
∂s

)∣∣∣
∂�

and B1
N u = ∂2u

∂n2

∣∣∣
∂�

.

In order to handle Dirichlet boundary conditions, we consider the mixed boundary value problem:{
Luδ = f in �,

Bk
D(uδ) + δBk

N(uδ) = 0, 0 ≤ k ≤ m − 1.
(2.14)

It is easy to see that (2.14) is equivalent to the following optimization problem:

uδ = arg min
v∈Hm(�)

Rδ(v) (2.15)

where

Rδ(v) = 1

2
aδ(v, v) − (f , v) (2.16)

and

aδ(u, v) = a(u, v) + δ−1
m−1∑
k=0

〈Bk
D(u), Bk

D(v)〉0,∂�. (2.17)

Using the theory developed in [91], we have an estimate between u and uδ as follows
4

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
Lemma 1. [91, Lemma 5.4] Define ‖ · ‖a,δ = √
aδ(·, ·). Let u be the solution of (2.1) with Bk = Bk

D , 0 ≤ k ≤ m − 1, and uδ be the
solution of (2.14). Then

‖u − uδ‖a,δ �
√

δ‖u‖2m,�. (2.18)

2.2. Residual formulation

The second type of problem we will consider are more general (potentially) non-elliptic and non-symmetric linear PDEs
given by

Lu = f in �, (2.19)

where the operator L is given by

Lu =
∑

|α|≤m

aα(x)∂αu. (2.20)

We approach such an equation using the residual minimization technique poineered by physics informed neural networks
(PINNs) [70]. This approach minimizes the residual norm

R(v) = 1

2

∫
�

(Lv − f)2dx +
∫
∂�

B(v)dx, (2.21)

where B(v) are our boundary conditions.
The advantage of the PINNs approach is exceptional flexibility which allows arbitrary equations, boundary conditions,

data assimilation, and unknown terms in the equation itself to be treated in a straightforward manner which can be imple-
mented rapidly. This flexibility has driven multiple recent breakthroughs in scientific computing [10,11,58,72,64].

Our theory will allow us to obtain both a priori and a posteriori bounds on the PDE residual R(v). Relating this to the
solution error is an important problem which has been studied for a variety of PDEs under certain assumptions, including
for linear elliptic and parabolic PDEs [76,60], for Kolmogorov PDEs [21], and for the Navier-Stokes equation [20].

3. Basic machine learning theory for PDEs

In this section, we describe the basics of machine learning and statistical learning theory and explain their connections
with numerical methods for solving PDEs. Our focus will be on the connections with numerical PDEs, while the statistics
and probability theory background can be found in standard references on statistical learning theory [74,61].

3.1. General objective

We consider the following general setup corresponding to classification or regression. Let X, Y and Z denote three sets.
Here X represents the input space, Y the label space, and Z is the prediction space. We are trying to ‘learn’ a function
u : X → Z . We suppose that u minimizes the risk, defined by

u = arg min
v∈F R(v), where R(v) = Ex,y∼dμ[l(x, y, v(x))] =

∫
X×Y

l(x, y, v(x))dμ(x, y), (3.1)

over an appropriate function class F . Here l : X × Y × Z → R is an appropriate loss function, and dμ is a probability
measure on X × Y .

For example, in a binary image classification problem we would set X = [0, 1]n×n and Y = Z = {0, 1}. Here X represents
the set of possible n × n pixel arrangements, i.e. images, and Y and Z represent the two possible classes. The function
u : X → Y maps an image x to a label u(x) ∈ {0, 1}. A typical loss function would be the indicator function

l(x, y, z) = y(1 − z) + z(1 − y) =
{

0 y = z,

1 y �= z.
(3.2)

In this case the risk (3.1) is exactly the classification error, since we calculate

R(v) =E(x,y)∼dμ[l(x, y, v(x))] = P(x,y)∼dμ[y �= v(x)]. (3.3)

The function class F could be taken as the set of all measurable functions from X to Z , for instance.
To give another example which is more closely related to the situation when solving PDEs, we consider a regression

problem, where X =Rd is the space of regressors, and Y = Z =R is the space of responses. In this case, we would take
5

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
l(x, y, z) = 1

2
(y − z)2, (3.4)

for instance. In this case the risk is exactly the expected
2 regression error

R(v) =E(x,y)∼dμ[l(x, y, v(x))] = 1

2

∫
Rd×R

|y − v(x)|2dμ(x, y). (3.5)

To put the solution of PDEs into this framework, we let X = � ⊂ Rd , Y = {0} (i.e. we have no labels) and Z = R,
and consider the function class F = Hm(�). The distribution dμ on X × Y , which we can simply identify with X = �,
is the uniform distribution on the domain �. We frame the solution of the PDE as the minimization of the risk (3.1) for
an appropriate loss function l. For the solution of PDEs, the loss function must depend upon the derivatives of u, so we
consider the somewhat more general risk

R(v) =Ex∼dμ[l(x, v(x), D v(x), ..., Dm v(x))] =
∫
X

l(x, v(x), D v(x), ..., Dm v(x))dμ(x). (3.6)

There are two prominent approaches for framing a PDE in this manner. One, known as the deep Ritz method [89] is to
consider the variational formulation of the PDE. For the elliptic PDE (2.1), this corresponds to setting

l(x, v(x), D v(x), ..., Dk v(x)) = 1

2

⎛
⎝ ∑

|α|=m

aα(x)|∂α v(x)|2 + a0(x)v(x)2

⎞
⎠− f (x)v(x) (3.7)

to solve the 2m-th order elliptic equation (2.1). In the case of Dirichlet boundary conditions, we must add to this an
expectation of an appropriate penalty over the boundary of the domain X = �, i.e. our risk becomes

R(v) =
∫
X

l(x, v(x), D v(x), ..., Dm v(x))dμ(x) + δ−1
∫
∂ X

lBC (x, v(x), D v(x), ..., Dm−1 v(x))dμBC (x). (3.8)

Here the loss function for the boundary conditions is given by

lBC (x, v(x), D v(x), ..., Dm−1 v(x)) =
m−1∑
k=0

Bk
D(v(x))2 =

m−1∑
k=0

(
∂k v

∂νk
(x)

)2

, (3.9)

where ν denotes the outward normal vector. The distribution μBC is the uniform distribution on the boundary of the
domain �.

The other main approach we consider, which was pioneered in the breakthrough work on physics informed neural
networks (PINNs) [70], sets the loss function to the L2 residual of the PDE, i.e. in order to solve the m-th order equation
Lu = f , we set our loss function to

l(x, v(x), D v(x), ..., Dm v(x)) = 1

2
(Lu − f)2 = 1

2

⎛
⎝ ∑

|α|≤m

aα(x)∂α v(x) − f (x)

⎞
⎠2

, (3.10)

which results in the risk (2.21) when appropriate boundary conditions are added.

3.2. A priori bounds and statistical learning theory

Our goal in the work is to design a method for solving PDEs using shallow neural networks which permits a priori esti-
mates. Such a method has the property that it can be guaranteed to work as long as the true solution is well-approximated
by a given function class. The field of statistical learning theory is concerned with deriving such a priori error estimates for
different machine learning methods.

The basic framework of statistical learning theory analyzes the empirical risk minimization procedure. In this method,
we draw samples and minimize a potentially modified empirical risk over a restricted function class F� (depending upon a
set of parameters �) to obtain the estimate

u�,N = arg min
v∈F�

RN(v), where RN(v) = 1

N

N∑
i=1

l′(xi, v(xi), zi). (3.11)

Here the modified loss function l′ is not necessarily the same as loss function l occurring in (3.6). This is because the loss
function l may not be differentiable or even continuous, which makes the numerical optimization of the empirical risk
6

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
(3.11) intractable. For example, the classification loss in (3.2) is discontinuous and this presents significant problems when
optimizing. As a result, the classification loss may be replaced by a soft margin SVM loss

l′(x, y, z) = max(0,1 − yz), (3.12)

where the model output z ∈ Z = R and the label y ∈ {±1}. In this case the prediction is not a label, but rather a real
number, which can be converted into a label via thresholding. It is easily verified that the SVM loss is a convex upper
bound on the classification loss (3.2).

When solving PDEs, the loss function is continuously differentiable so we usually set l′ = l. In addition, the distribution
dμ is known explicitly and the empirical risk can be approximated using numerical quadrature instead of sampling (recall
that we have no labels z in this case as well)

u�,N = arg min
v∈F�

RN(v), where RN(v) =
N∑

i=1

wil(xi, v(xi)), (3.13)

where ωi and xi are quadrature weights and points in domain �. When solving equations with Dirichlet boundary condi-
tions, we also need to discretize the integral on the boundary occurring the definition of the risk (3.8). In this case, our
empirical risk would become

RN,δ(v) =
N∑

i=1

wil(xi, v(xi), zi) + δ−1
N0∑

i=1

w̃ilBC (x̃i, v(x̃i)), (3.14)

where the w̃i and x̃i are quadrature weights and points on the boundary of the domain �. Our notation here contains the
case where a Monte Carlo discretization is used. In this case the weights wi = 1/N and the xi are randomly sampled from
a distribution dμ.

In practice, some algorithm is used to approximately solve the optimization problem (3.11) to obtain an estimate ū�,N .
The risk can then be bounded as

R(ū�,N) −R(u) = [R(ū�,N) −RN(ū�,N)] + [RN(ū�,N) −RN(u�,N)] +
[RN(u�,N) −RN(u�)] + [RN (u�) −R(u�)] + [R(u�) −R(u)], (3.15)

where u� = arg min
v∈F�

R(v) is the minimizer of the true risk over the function class F� and u is the global minimizer of the

risk (i.e. the function we are trying to learn).
We bound the first and fourth terms in (3.15) by

|R(ū�,N) −RN(ū�,N)| + |RN(u�) −R(u�)| ≤ 2 sup
v∈F�

|R(v) −RN(v)| (3.16)

and note that the term RN (u�,N) −RN (u�) is non-positive by definition to obtain the following fundamental theorem.

Theorem 1. The true risk (also called generalization error) is bounded by

R(ū�,N) −R(u) ≤ R(u�) −R(u) + 2 sup
u∈F�

|R(u) −RN(u)| +RN(ū�,N) −RN(u�,N). (3.17)

When using Monte Carlo sampling to discretize the risk, we take an expectation over the samples x1, ..., xN on both sides of the above
equation to get

Ex1,...,xN [R(ū�,N) −R(u)]
≤ R(u�) −R(u)︸ ︷︷ ︸

modelling error

+Ex1,...,xN

[
2 sup

u∈F�

|R(u) −RN(u)|︸ ︷︷ ︸
discretization error

]+Ex1,...,xN [RN(ū�,N) −RN(u�,N)︸ ︷︷ ︸
optimization error

] (3.18)

The term on the left hand side here is the generalization error which we are trying to bound. We will proceed to analyze
the three terms on the right hand side.

The term RN (ū�,N) −RN (u�,N) is the optimization error of the method. This measures the failure to completely optimize
over the model class F� . In traditional methods for solving PDEs, for example finite element methods, this term corresponds
to the error in solving the discrete linear system.

The middle term 2 supu∈F�
|R(u) −RN (u)| is called the discretization error and measures the error incurred by discretiz-

ing the integral defining the risk (3.1). In the theory of linear finite elements this term corresponds to numerical quadrature
error, which is typically bounded using Strang’s lemma [85]. When using a non-linear model class F� , we must develop
new methods for bounding this term. The key tool in our analysis is the Rademacher complexity [8].
7

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
Finally, the term R(u�) −R(u) is called the modelling error and measures the failure of the model class F� to capture
the true solution, or ground truth u. In statistical learning theory, this term cannot be theoretically controlled since the
ground truth is unknown. The validity of this assumption is checked experimentally either by calculating the empirical risk
RN (ū�,N) of the learned model or by using a new test dataset if the discretization error cannot be bounded. The advantage
of being able to bound the other error terms is that one can conclude that if the method does not empirically perform well
on the given data, then this must be due to the model class F� not accurately capturing the ground truth.

Bounding this term in the PDE context requires an estimate on how accurately the model class F� can approximate
the solution of the PDE. This requires both a regularity result on the solution of the PDE and an approximation theoretic
result concerning the model class F� . For the Barron space model class we introduce in Section 4 such bounds have been
obtained in [91,53,18,17] for certain equations. In addition, sharp approximation results for neural networks on the Barron
space can be found in [83,79].

In typical applications of deep learning, including to PDEs [70,89] the empirical risk (3.11) is minimized using stochastic
gradient descent (SGD) or a variant like ADAM [41]. Bounding both the optimization and discretization error for such
methods is a significant challenge. There are results which bound the optimization error by showing that sufficiently large
neural networks can be trained to match arbitrary training data using SGD [4,28]. However, when using such a large network
the function class F� is very large and this precludes the estimation of the discretization error. This makes analyzing the
solution error when solving PDEs using neural networks a significant challenge if SGD or ADAM are used for training.
Indeed, a convergence of the error as the size of the network increases cannot be found empirically when solving PDEs [89],
although these methods have reliably been able to attain an acceptable accuracy for many practical problems [10,11,58,72,
64]. Our approach to this problem is to use greedy algorithms for training instead of SGD or ADAM. This allows us to obtain
a priori estimates on our error, i.e. to bound the optimization and discretization errors.

3.3. Test error bounds

Next, we consider the problem of obtaining bounds on the risk R when Theorem 1 does not apply. Suppose that a
function u∗ has been obtained in some manner, potentially via an unknown black-box method. Our goal is to estimate the
risk R(u∗), i.e. to test the single function u∗ . Such a situation would occur when we are unable to bound the optimization,
discretization, or modelling errors on the right hand side of Theorem 1.

In typical machine learning problems, the distribution dμ in (3.1) is unknown and we can only interact with it by
drawing i.i.d. samples from dμ. The (true) risk (3.1) is then approximated by the empirical risk

RN ′(u∗) = 1

N ′
N ′∑

i=1

l(xi, u∗(xi), zi), (3.19)

where (xi, zi)
N ′
i=1 are i.i.d. samples from dμ constituting the test dataset. This is akin to a Monte Carlo discretization of the

integral in (3.1). For applications in numerical PDEs, however, the distribution dμ is typically known explicitly. In these
cases, the integral in (3.1) can potentially be more effectively discretized as

RN ′(u∗) =
N ′∑

i=1

wil(xi, u∗(xi), zi), (3.20)

where the ωi are quadrature weights and the (xi, zi) are quadrature points. The weights and points can be taken to be
accurate to a given high order or may be determined via quasi-Monte Carlo integration methods [49], for instance.

To ensure that we are accurately estimating the true risk of the function u∗ we need to obtain a bound on the discretiza-
tion error

|RN ′(u∗) −R(u∗)|. (3.21)

As an example, in the case of the classification loss we can apply Hoeffding’s inequality [35] to obtain

P (|RN ′(u∗) −R(u∗)| ≥ ε) ≤ 2 exp(−2ε2/N ′), (3.22)

since the loss l is bounded between 0 and 1. This implies that with a large number of samples N ′ , we can estimate the
classification error probability of a given fixed model u∗ to accuracy O ((N ′)− 1

2) with high probability.
We remark that in order for this approach to be rigorously correct, the test dataset used to evaluate RN (u∗) must be

independent of the function u∗ . This means for instance that the procedure used to determine u∗ cannot depend upon the
test accuracy (using the same test dataset) RN (u′) of any other model u′ , i.e. it cannot depend upon previously published re-
sults run on the same test dataset. Of course, in practice this is violated in the deep learning community due to the expense
of obtaining datasets and the consequent necessity of reusing test datasets many times for different models. Nonetheless,
deviating from the ideal of redrawing a new test dataset for each model has been shown empirically to result in models
that exhibit a significant drop in accuracy on new data [71].
8

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
The disadvantage of an a posteriori bound is that if the estimated function u∗ does not have small risk, there is no
way to fix this other than to try again with a different method for estimating u∗ (i.e. “to tweak the hyperparameters of
the method”) and hope for the best, since we do not know why the method is failing. This is why we are trying to solve
PDEs using neural networks in a way which allows a priori error estimates to be obtained as described in Section 3.2. This
will allow us to obtain error bounds before applying our method, and further, if the method does not work, it allows us to
conclude that the model class F� cannot accurately approximate the PDE solution.

We also note that the simple test error bound derived in (3.22) relied critically upon the fact that the loss function is
bounded (in the case of classification). Unfortunately, the loss functions used to solve PDEs are typically not bounded. This
means that the test error cannot be used to bound the generalization error in this context. The reason is that one would
have to know how smooth the neural network function is in order to use quadrature which guarantees a certain error. Such
bounds on the derivative norms of trained neural networks are not available to the best of our knowledge. In our method,
the fact that we can control the complexity of the numerical solution, see Section 7, implies that we can obtain bounds
on the true (i.e. continuous) energy and on the true residual in the case of the variational formulation and PINNs loss,
respectively. This enables us to calculate a posteriori estimates on the energy and on the residuals using a new test dataset
(or a new set of quadrature points). This permits the calculation of reference solutions even when the true solution is not
known, which to the best of our knowledge cannot be done with other neural networks based methods.

4. Shallow neural network model classes

In this section, we introduce the model class F� over which we will optimize the empirical loss (3.11). This classical
choice is to take F� to be an n-dimensional subspace of an appropriate Sobolev space. In our approach, we instead take
F� to be non-linear expansions with respect to a suitable collection of functions D, called a dictionary.

Specifically, for a set D ⊂ Cm(�), we consider

�n,M(D) =
{

n∑
i=1

aidi, di ∈ D,

n∑
i=1

|ai| ≤ M

}
. (4.1)

Note that here we restrict the
1-norm of the coefficients ai in the expansion. In addition, we take our dictionary D ⊂ Cm(�)

(instead of Hm(�) since we will discretize the resulting integrals using quadrature point evaluations). In some cases, we
will also need to consider the set

�n,∞(D) =
{

n∑
i=1

aidi, di ∈D

}
(4.2)

with no restriction on the coefficients. We then take the model class F� to be

Fn,M = �n,M(D) (4.3)

which is parameterized by � = (n, M). Here the dependence on D is suppressed since the dictionary D will typically be
fixed throughout our analysis.

For shallow neural networks with ReLUk activation function σ = max(0, x)k the dictionary D would be taken as [78]

D = Pd
k := {σk(ω · x + b) : ω ∈ Sd−1, b ∈ [c1, c2]} ⊂ L2(Bd

1), (4.4)

where Sd−1 = {ω ∈Rd : |ω| = 1} is the unit sphere. Here c1 and c2 are chosen to satisfy

c1 < inf{x · ω : x ∈ �,ω ∈ Sd−1} < sup{x · ω : x ∈ �,ω ∈ Sd−1} < c2. (4.5)

The default choice [c1, c2] = [−2, 2] is used in our experiments in Section 8 for the cases � ⊂ Bd
1, where Bd

1 is the closed
d-dimensional unit ball. We note that Pd

k ⊂ Cm(�) whenever k > m and that in this case |Pd
k | = sup

g∈Pd
k

‖g‖Hm(�) < ∞. In this

case the model class would be given by

Fn,M = �n,M(Pd
k) =

{
n∑

i=1

aiσk(ωi · x + bi), ωi ∈ Sd−1, bi ∈ [c1, c2],
n∑

i=1

|ai| ≤ M

}
, (4.6)

which is the class of shallow ReLUk neural networks with width n and coefficients bounded in
1 by M .
In the case of a general activation function σ , the corresponding dictionary is given by

Dσ = {σ(ω · x + b) : (ω,b) ∈ �} , (4.7)

where � ⊂ Rd × R is compact. In this case, we have Dσ ⊂ Cm(�) and |Dσ | < ∞ whenever σ ∈ Cm(�). In this case, the
function class would consist of
9

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
Fn,M = �n,M(Dσ) =
{

n∑
i=1

aiσ(ωi · x + bi), (ωi,bi) ∈ �,

n∑
i=1

|ai| ≤ M

}
, (4.8)

which is the class of shallow neural networks with activation function σ , bounded inner coefficients and outer coefficients
bounded in
1 by M .

4.1. Barron space regularity

In this section, we introduce the notion of regularity which corresponds to the model class of shallow neural networks
introduced in Section 4. As in Section 4, we give this notion in the abstract setting of a general dictionary D ⊂ Cm(�).

Consider the closed convex hull of D, defined by

B1(D) :=
∞⋃

n=1

�n,1(D), (4.9)

where �n,1 is defined in (4.1). Note that here the closure is taken in Hm(�). Associated with the convex set B1(D), we
define the gauge norm (also called the Minkowski functional) by

‖ f ‖K1(D) = inf {c > 0 : f ∈ cB1(D)} . (4.10)

The norm ‖ · ‖K1(D) , which is also called the variation norm corresponding to the dictionary D, is constructed precisely so
that B1(D) its unit ball. We further define the function space

K1(D) := { f ∈ Hm(�) : ‖ f ‖K1(D) < ∞} . (4.11)

Important fundamental properties of this space, for instance is the fact that if D is a uniformly bounded dictionary, i.e. if
supd∈D ‖d‖H = KD < ∞, then the space K1(D) is a Banach space, can be found in [80].

The utility of the space K1(D) is due to the fact that its elements can be efficiently approximated by non-linear dictio-
nary expansions. In particular, the following classical bound holds [6,68]

inf
fn∈�n,M (D)

‖ f − fn‖Hm(�) ≤ |D|‖ f ‖K1(D)n
− 1

2 , (4.12)

for M = ‖ f ‖K1(D) . Because of this approximation result, we consider regularity assumptions with respect to the K1(D)-
norm, i.e. we assume that the variation norm of the PDE solution can be controlled. For the specific variation spaces
corresponding to the dictionaries Pd

k , such regularity results for a variety of PDEs have been obtained [91,53,18,17].
Recently, the spaces K1(Pd

k) for the dictionaries Pd
k corresponding to shallow ReLUk neural networks have been charac-

terized in terms of the Radon transform [80,65,63,66] and they are closely related to the Ridgelet spaces [13]. In addition,
precise approximation theoretic properties of the space K1(Pd

k), such as the asymptotics of its metric entropy and n-widths
can be found in [83]. In [83] it is also shown that the approximation rate (4.12) can be improved to

inf
fn∈�n,M (Pd

k)

‖ f − fn‖Hm(�) � ‖ f ‖K1(Pd
k)

n− 1
2 − 2k+1

2d , (4.13)

with M � ‖ f ‖K1(Pd
k)

for the dictionary D = Pd
k . Similar results for more general activation functions can be found in [79].

Pointwise properties of functions in K1(Pd
1), which is also called the Barron space [56], have also been obtained in [90].

5. Greedy algorithms

In this section, we address the problem of bounding the optimization error in Theorem 1 when optimizing the empirical
loss over the model class F� = �n,M(D) introduced in Section 4. For simplicity, we denote the numerical solution ū�,N =
ūn,M,N as un in this section.

As in Section 4, let D ⊂ H be a dictionary in Hilbert space H (in our applications typically H = Hm(�) for some domain
�). Greedy algorithms for expanding a function u ∈ H as a linear combination of the dictionary elements D are fundamental
in approximation theory [24,87,86] and signal processing [57,67]. Greedy methods have also been proposed for optimizing
shallow neural networks [46,22] and for solving PDEs numerically [30,12,3,45].

The class K1(D) which was introduced in Section 4.1 is a natural target space in the analysis of greedy algorithms
[87,86]. Given the dictionary D and a target function u or a convex loss function L, greedy algorithms either approximate
f or approximately minimize L by a finite linear combination of dictionary elements:

un =
n∑

ai gi, (5.1)

i=1

10

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
with gi ∈ D. The two types of greedy algorithm we discuss here are the relaxed greedy algorithm (RGA) and orthogonal
greedy algorithm (OGA).

5.1. Relaxed greedy algorithm

We consider the following version of the RGA, which explicitly optimizes L over the convex hull of the dictionary,

u0 = 0, gn = arg max
g∈D

〈g,∇L(un−1)〉H , un = (1 − αn)un−1 − Mαn gn. (5.2)

Here the dictionary D is assumed to symmetric (i.e. g ∈ D implies that −g ∈ D as well), the sequence αn is given by
αn = min

(
1, 2

n

)
, and M is a regularization parameter which controls the K1(D)-norm of the iterates un . This algorithm

was first introduced and analyzed by Jones [38] for function approximation (i.e. L(u) = ‖u − f ‖2
H), and has been extended

to the optimization of general convex objectives as well [93]. The convergence theorem we will use in our analysis, which
is closely related to Theorem IV.2 in [93], is the following.

Theorem 2. Suppose that the dictionary D is symmetric and satisfies supd∈D ‖d‖H ≤ C < ∞. Let the iterates un be given by the RGA
(5.2). Assume that the loss function L is convex and K -smooth (on the Hilbert space H). Recall that K -smoothness means that for any
u, v ∈ H we have

L(u) ≤ L(v) + 〈∇L(v), u − v〉H + K

2
‖u − v‖2

H . (5.3)

Then we have un ∈ �n,M and

L (un) − inf‖v‖K1(D)≤M
L(v) ≤ 32(C M)2 K

n
(5.4)

This theorem will be applied in the case L = RN is the empirical risk to bound the optimization error. In particular it
yields that

RN (un) − inf
v∈�n,M (D)

RN(v) ≤ RN (un) − inf‖v‖K1(D)

RN(v) � n−1. (5.5)

We remark that this theorem holds for any convex and K -smooth loss function. This means that the RGA can be applied
to non-linear equations in addition to the linear equations introduced in Section 2, provided that the non-linear equations
admit a variational formulation with a convex energy function.

Proof. Since u0 = 0 and uk is a convex combination of uk−1 and −Mgk , we see by induction that uk ∈ �k,M . The K -
smoothness of the objective L implies that

L(uk) ≤ L(uk−1) + 〈∇L(uk−1), uk − uk−1〉 + K

2
‖uk − uk−1‖2

H . (5.6)

Using the iteration (5.2), we see that uk − uk−1 = −skuk−1 − Msk gk . Plugging this into the above equation, we get

L(uk) ≤ L(uk−1) − sk〈∇L(uk−1), uk−1 + Mgk〉 + K s2
k

2
‖uk−1 + Mgk‖2

H . (5.7)

Since the dictionary elements gk satisfy ‖gk‖H ≤ C and ‖uk−1‖K1(D) ≤ M , we see that ‖uk−1‖H ≤ C M as well. Plugging this
into the previous equation implies the bound

L(uk) ≤ L(uk−1) − sk〈∇L(uk−1), uk−1 + Mgk〉 + 2(C M)2 K s2
k . (5.8)

Now let z with ‖z‖K1(D) ≤ M be arbitrary. Then also ‖ − z‖K1(D) ≤ M and the arg max characterization of gk (6.2) implies
that

〈∇L(uk−1),−z〉 ≤ 〈∇L(uk−1), Mgk〉. (5.9)

Using this in equation (5.8) gives

L(uk) ≤ L(uk−1) − sn〈∇L(uk−1), uk−1 − z〉 + 2(C M)2 K s2
k . (5.10)

The convexity of L means that L(uk−1) −L(z) ≤ 〈∇L(uk−1), uk−1 − z〉. Using this and subtracting L(z) from both sides of
the above equation gives
11

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
L(uk) −L(z) ≤ (1 − sk)(L(uk−1) −L(z)) + 2(C M)2 K s2
k . (5.11)

Expanding the above recursion (using that sk ≤ 1), we get that

L(un) −L(z) ≤
(

n∏
k=1

(1 − sk)

)
(L(u0) −L(z)) + 2(C M)2 K

n∑
i=1

⎛
⎝ n∏

k=i+1

(1 − sk)

⎞
⎠ s2

i . (5.12)

Using the choice sk = max
(

1, 2
k

)
, for which s1 = 1, we get

L(un) −L(z) ≤ 2(C M)2 K
n∑

i=1

⎛
⎝ n∏

k=i+1

(1 − sk)

⎞
⎠ s2

i . (5.13)

Finally, we bound the product
n∏

k=i+1

(1 − sk) using that log(1 + x) ≤ x as

log

⎛
⎝ n∏

k=i+1

(1 − sk)

⎞
⎠≤ −

n∑
k=i+1

sk = −
n∑

k=i+1

2

k
≤ −

n+1∫
i+1

2

x
dx ≤ 2(log(i + 1) − log(n + 1)), (5.14)

for i ≥ 1. Thus,
∏n

k=i+1(1 − sk) ≤ (i+1)2

(n+1)2 . Using this in equation (5.13), we get

L(un) −L(z) ≤ 2(C M)2 K
n∑

i=1

(i + 1)2

(n + 1)2
s2

i ≤ 8(C M)2 K
1

(n + 1)2

n∑
i=1

(i + 1)2

i2
. (5.15)

Crudely bounding (i+1)2

i2 ≤ 4 for i ≥ 1, we get

L(un) −L(z) ≤ 32(C M)2 K
n

(n + 1)2
≤ 32(C M)2 K

n
. (5.16)

Taking the infimum over z with ‖z‖K1(D) ≤ M gives the result. �
5.2. The orthogonal greedy algorithm

The OGA only applies to function approximation, not to general convex optimization, and is given by

u0 = 0, gn = arg max
g∈D

|〈g, un−1 − u〉H |, un = Pn(u), (5.17)

where Pn is the orthogonal projection onto the span of g1, ..., gn . Note here that the residual un−1 − u is the gradient
∇L(un−1) for the quadratic function L(un−1) = 1

2 ‖un−1 − u‖2
H . We remark that since this algorithm only applies to function

approximation in a Hilbert space, our methods based upon the OGA can only be used to solve linear PDEs.
This algorithm was first analyzed in [24], where an O (n− 1

2) convergence rate is derived. Recently, it has been shown that
this convergence rate can be significantly improved for the dictionaries whose convex hull B1(D) has small entropy [82].
In this section, we explain how to use the orthogonal greedy algorithm to solve linear PDEs and analyze the optimization
error this induces.

When solving linear PDEs, the discretized energy function RN (v) (or Rn,δ(v)) defined in (3.11) or (3.14) is a quadratic
function of v . In particular, we have

RN(v) = 1

2

⎛
⎝ N∑

i=1

wia0(xi)v(xi)
2 +

N∑
i=1

∑
|α|=m

wiaα(xi)(∂
α v(xi))

2

⎞
⎠−

N∑
i=1

wi f (xi)v(xi), (5.18)

with Neumann boundary conditions and an analogous expression with Dirichlet boundary conditions. In the following we
assume that the quadrature weights wi > 0. Then the loss L = RN (v) is equivalent to

RN(v) = ‖Im,N (v) − uN‖2
a,N , (5.19)

where the evaluation map Im,N : Cm(�) → RP is given by evaluating the function v and all derivatives of order m at the
quadrature points xi . Specifically, this map is given by
12

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
(
Im,N(v)

)
α,i = ∂α v(xi), (5.20)

where the index set (α, i) runs over all multi-indices α such that either |α| = 0 (the terms with no derivatives) or |α| = m
and indices i = 1, ..., N . Consequently P = N × N

(m+d−1
d−1

)
. The norm ‖ · ‖a,N on RP is given by the weighted norm

‖x‖2
a,N =

∑
(α,i)

wiaα(xi)x2
(α,i). (5.21)

Finally, uN is the minimizer of the quadratic (5.18) in RP . Specifically, the components of uN are given by

(uN)(α,i) =
{

0 |α| = m

a0(xi)
−1 f (xi) |α| = 0.

(5.22)

Crucially, uN can be determined solely from knowledge of the right hand side f and the coefficients a0 and does not require
knowledge of the true solution u.

Using the orthogonal greedy algorithm to minimize the quadratic objective (5.19) results in the iteration

u0,N = 0, gn = arg max
g∈D

|〈Im,N(g), un−1,N − uN〉a,N |, un,N = Pn(uN), (5.23)

where the projection Pn is onto the span of the elements Im,N (g1), ..., Im,N (gn) with respect to the norm ‖ · ‖a,N on RP .
In a similar manner the PINNs risk (2.21) can be handled using the orthogonal greedy algorithm as long as the equation

is linear. In this case the discretized risk is given by

RN(v) = 1

2

⎛
⎜⎝ N∑

i=1

wi

⎛
⎝a0(xi)v(xi) +

∑
|α|=m

aα(xi)∂
α v(xi) − f (xi)

⎞
⎠2
⎞
⎟⎠ . (5.24)

This defines a quadratic function, and thus an inner product (possibly with kernel) on RP . We then maximize and project
with respect to this inner product and the dictionary is embedded into RP via the map Im,N , resulting in an analogous
method to (5.23). Using the PINN risk allows us to tackle non-symmetric linear problems which may not have a variational
formulation.

The estimation of the optimization error follows from the estimates derived in [82]. In particular, we quote the following
theorem. Note that this theorem gives an upper bound and for certain dictionaries it is possible that the convergence rate
of the OGA may be even faster.

Theorem 3. Let H be a Hilbert space and D ⊂ H a dictionary such that the metric entropy of the convex hull of D satisfies

εn(B1(D))H ≤ Cn− 1
2 −γ (5.25)

for some γ > 0. Then for any v ∈K1(D), we have

‖un − u‖2
H ≤ ‖v − u‖2

H + K‖v‖2
K1(D)n

−1−2γ , (5.26)

where K is a constant only depending upon C and γ .

Here the metric entropy εn(B1(D))H is a measure of compactness of the set B1(D) with respect to the norm of H . For
a precise definition and development of its properties, see for instance [50], Chapter 15. The important point is that the
dictionary Pd

k satisfies [83]

εn(B1(P
d
k))Hm(�) � n− 1

2 − 2(k−m)+1
2d . (5.27)

Thus, for this dictionary the value of γ in Theorem 3 is γ = 2(k−m)+1
2d . When solving the discrete equation (5.19) using

the orthogonal greedy algorithm it is important to note that up to logarithmic factors this entropy bound also holds in the
Cm(�)-norm when k = m + 1 [5,83]. It is conjectured but not yet proven that this also holds for larger values of k. This
means that since the evaluation map Im,N : Cm(�) →RP is bounded uniformly in N we have

εn(Im,N (B1(P
d
k)))a,N ≤ Cn− 1

2 −γ (5.28)

holds uniformly in N for γ = 2(k−m)+1
2d . Hence, denoting by ūn,N ∈ �n,∞(Pd

k) the solution produced by the OGA at step n,
we have for any M that

RN(ūn,N) − inf
v∈�n,M (Pd

k)

RN(v) ≤ RN(ūn,N) − inf‖v‖K (Pd)≤M

RN(v) � n−1− 2(k−m)+1
d . (5.29)
1 k

13

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
This follows by taking the infimum over ‖v‖K1(Pd
k)

≤ M in the conclusion of Theorem 3. This is precisely the optimization
error bound we desire. Of course, this analysis applies to more general dictionaries D as well, provided that the metric
entropy εn(D) can be estimated.

Although the OGA attains the best convergence rate of the greedy algorithms, it is also the most computationally expen-
sive since it requires an orthogonal projection at every step. In addition, it can only be applied to function approximation,
which corresponds in our case to linear PDEs. A final drawback of the OGA is that the K1(D)-norm of the iterates cannot
be a priori bounded for general dictionaries as shown in [82]. As a result, we can only have a priori guarantee that the
numerical solution satisfies ūn,N ∈ �n,∞(D). This means that our a priori generalization analysis only holds when using the
RGA to optimize the empirical loss. Despite this, we have empirically observed the improved convergence rate of the OGA a
posteriori and it significantly outperforms the RGA in our experiments.

6. Solving the argmax sub-problem

In order to implement the relaxed and orthogonal greedy algorithms, we need to be able to numerically solve the substep

gn = arg max
g∈D

|〈g,∇L(un−1)〉|. (6.1)

In fact, for the convergence analysis it is sufficient that the argmax in (6.1) is not solved exactly, but rather is approximated
in the following sense

|〈gn,∇L(un−1)〉| ≥ 1

R
max
g∈D

|〈g,∇L(un−1)〉| (6.2)

for some fixed R > 1. This is a more tractable problem for most dictionaries.

6.1. Exactly solving the argmax sub-problem

We remark that in low dimensions and for certain dictionaries the argmax subproblem can be efficiently solved exactly.
This is due to the fact that the objective

|〈g,∇L(un−1)〉| =
∣∣∣∣∣∣

N∑
i=1

∑
|α|=m

(
aα∂αun−1(xi), ∂

α g(xi)
)+ (a0un−1(xi) − f (xi), g(xi))

∣∣∣∣∣∣ (6.3)

is really a sum over a finite number N of quadrature points. In this case the set of possible hyperplane partitions of the
quadrature points xi can be enumerated and this can be used to exactly determine the arg max in (6.1). This algorithm
is unfortunately intractable in high dimensions since its complexity scales as O (Nd log(N)) [8,82]. As a result, for higher
dimensional problems we must resort to heuristics to approximate the subproblem (6.1) or consider different dictionaries
for which this problem can be solved more efficiently. In our high dimensional numerical experiments, we use a special
dictionary for which this argmax can be efficiently solved.

6.2. Numerical approximation of the argmax sub-problem

Next we describe the numerical heuristics we use in our experiments to approximately solve the argmax sub-problem in
(6.1). Note that here the inner product in (6.1) is the energy inner product associated with the elliptic PDE we are solving.
Our first step is to make the target function |〈g, ∇L(un−1)〉| differentiable, so we instead consider the following equivalent
optimization problem:

gn = arg min
g∈D

−1

2
〈g,∇L(un−1)〉2, (6.4)

where

〈σ(ω · x + b),∇L(un−1)〉 =
∑

|α|=m

(
aα∂αun−1, ∂

ασ (ω · x + b)
)+ (a0un−1 − f ,σ (ω · x + b)) . (6.5)

Here we choose the dictionary D ⊂Rd as D = Pd
k , which is naturally parameterized by ω ∈ Sd−1 and b ∈ [−c, c] [80]. We

also enforce the constraint ‖ω‖ = 1 by taking ω = ±1 for 1D case and ω = (cosθ, sin θ) based on the polar coordinates for
2D case. The low-dimensional optimization problem in (6.4) is typically non-convex so it may be very difficult to obtain
the global minimum. Our approach is to obtain a good initial guess by choosing many samples initially on ω − b parameter
space and evaluating the objective function at each of them. More specifically, we sample bi = −c + 2ci

Nb
, (i = 0, · · · , Nb),

w0 = −1, w1 = 1 (1D case), and θ j = 2π j
Nθ

, (j = 0, · · · , Nθ) (2D case) to find the best initial samples by evaluating (6.4) at
each (bi, w j). We then further optimize the best initial sample points using gradient descent or Newton’s method. For the
RGA, we optimize gn = arg min −〈g, ∇L(un−1)〉 instead of (6.1).
g∈D

14

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
7. Uniform error bounds

In this section, we explain how to bound the discretization error

sup
f ∈F�

|RN(f) −R(f)| (7.1)

in Theorem 1 when solving elliptic PDEs. Recall that the loss function we consider in this work corresponds to the variational
formulation of an elliptic PDE and is given in equation (3.7).

7.1. Uniform Monte Carlo error

The tool which we use to analyze the discretization error when the Monte Carlo discretization in equation (3.11) is used
is the Rademacher complexity [8]. Given a class of functions F : � → R, and a collection of sample points x1, ..., xN ∈ �,
the empirical Rademacher complexity of F is defined by

R̃ N(F) = Eξ1,...,ξN

[
sup
h∈F

1

N

N∑
i=1

ξih(xi)

]
, (7.2)

where ξ1, ..., ξn are Rademacher random variables, i.e. uniformly distributed signs. The Rademacher complexity is obtained
by averaging over the samples xi , which we take to be uniformly distributed over �, i.e. we have

R N(F) = Ex1,...,xN∼μEξ1,...,ξN

[
sup
h∈F

1

N

N∑
i=1

ξih(xi)

]
, (7.3)

where μ is the uniform distribution on �. For the mixed boundary value problem, we will also need the Rademacher
complexity with respect to the uniform distribution on the boundary ∂�, which we denote by R∂,N (F).

The utility of the Rademacher complexity is its role in giving a law of large numbers which is uniform over the class F ,
detailed by the following theorem.

Theorem 4. [88, Proposition 4.11] Let F be a set of functions. Then

Ex1,...,xN∼μ sup
h∈F

∣∣∣∣∣ 1

N

N∑
i=1

h(xi) −
∫

h(x)dμ

∣∣∣∣∣≤ 2R N(F). (7.4)

In order to apply Theorem 4 to the solution of PDEs via the class of Barron functions, we need to estimate the
Rademacher complexity R N (LM) of the model class

LM = {l(u, Du, ..., Dmu) : u ∈ Fn,M}, (7.5)

where the loss function l is given in equation (3.7) and the model class Fn,M is described in section 4. We remark that the
Rademacher complexity of the Barron class Fn,M corresponding to shallow ReLU networks has been estimated in [56], so
the novelty of our contribution is to generalize these bounds to the class LM obtained by composing with the loss function
(3.7).

For this we will utilize the following fundamental lemma.

Lemma 2. Let F , S be classes of functions on �. Then the following bounds hold.

• R N (conv(F)) = R N (F).
• Define the set F + S = {h(x) + g(x) : h ∈F , g ∈ S}. We have

R N(F + S) = R N(F) + R N(S). (7.6)

• Suppose that φ :R →R is L-Lipschitz. Let φ ◦F = {φ(h(x)) : h ∈F}. Then

R N(φ ◦F) ≤ LR N(F). (7.7)

• Suppose that f : � →R is a fixed function. Let f ·F = { f (x)h(x) : h ∈F}. Then

R N(f ·F) ≤ ‖ f (x)‖L∞(�)R N(F). (7.8)
15

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
Proof. The first, second, and third of these statements are well-known facts, see [74, Lemma 26.7] for the first, [61, Page
56] for the second and [74, Lemma 26.9] for the third, so we only prove the fourth.

Suppose that ‖ f (x)‖L∞(�) ≤ 1, the general result follows by a scaling argument. Let x1, ..., xN ∈ � and consider the
empirical Rademacher complexity

R̃ N(f ·F) = Eξ1,...,ξN

[
sup
h∈F

1

N

N∑
i=1

ξi f (xi)h(xi)

]
. (7.9)

We observe that the right-hand side of the above equation, being an average of a supremum of linear functions, is a
convex function of �f = (f (x1), ..., f (xN)). Consequently, its maximum must be achieved at the extreme points of the set
{�y : ‖�y‖∞ ≤ 1}, which correspond to the points where each component is ±1. Thus we only need to consider the case
where f (xi) = εi ∈ {±1}. But then

Eξ1,...,ξN

[
sup
h∈F

1

N

N∑
i=1

ξiεih(xi)

]
=Eξ1,...,ξN

[
sup
h∈F

1

N

N∑
i=1

ξih(xi)

]
= R̃ N(F), (7.10)

since the εi simply permute the choices of sign ξi in the expectation. Taking an average over the sample points x1, ..., xN

completes the proof. �
Utilizing this lemma, we prove the following bound on the Rademacher complexity of the set LM .

Theorem 5. Let D ⊂ Ck(�) for k ≥ m be a dictionary. Suppose that ‖aα‖L∞(�), ‖a0‖L∞(�) ≤ K and supd∈D ‖d‖W m,∞ ≤ C. Then the
Rademacher complexity of the set LM is bounded by

R N(LM) ≤ C K M
∑

|α|=m

R N(∂αD) + C K M R N(D) + ‖ f ‖L∞(�)M R N(D), (7.11)

where ∂αD = {∂αd : d ∈D}.

Theorem 5 implies that to bound the Rademacher complexity of the set of interest, we only need to bound the
Rademacher complexity of the derivatives of the dictionary D, which is a much simpler task. In the Section 7.2 we will
detail how to do this for the specific dictionaries corresponding to shallow neural networks.

Proof. The proof is a straightforward application of Lemma 2. We begin by noting that

LM ⊂
∑

|α|=m

aα · [φ ◦ B M(∂αD)] + a0 · [φ ◦ B M(D)] + f · B M(D), (7.12)

where φ(x) = 1
2 x2 and B M(D) = M B1(D) = { f : ‖ f ‖K1(D) ≤ M}.

Utilizing the first part of Lemma 2, we see that for all α

R N(B M(∂αD)) ≤ M R N(∂αD). (7.13)

The third part of the Lemma, combined with the bound ‖d‖W m,∞ ≤ C and the fact that φ is locally Lipschitz, imply that

R N(φ ◦ B M(∂αD)) ≤ C M R N(∂αD). (7.14)

Finally, the second and fourth parts of the Lemma, combined with the bounds on aα and a0 complete the proof. �
We are primarily interested in the following corollary of this result, which uniformly bound the Monte Carlo discretiza-

tion error when discretizing elliptic PDEs. The next corollary provides a bound on the discretization error incurred in such
a discretization.

Corollary 1. Suppose the empirical and true risk are defined as in (3.6) and (3.19) for the loss function (3.7) corresponding to the
variational form of an elliptic PDE. Then, under the assumptions of Theorem 5, we have that

Ex1,...,xN sup
v∈BM (D)

|RN(v) −R(v)| ≤ 2C K M
∑

|α|=m

R N(∂αD) + 2C K M R N(D) + 2‖ f ‖L∞(�)M R N(D). (7.15)

Proof. This follows immediately by combining Theorem 5 with Theorem 4. �

16

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
7.2. Rademacher bounds for neural networks

In this section, we show how the Rademacher complexity can be bounded for dictionaries corresponding to shallow
neural networks. Specifically, we consider dictionaries of the form

Dσ = {σ(ω · x + b) : (ω,b) ∈ �} ⊂ Hm(�), (7.16)

where the parameter set � ⊂ Rd+1 is compact. Of particular importance are the dictionaries corresponding to ReLUk ac-
tivation functions, Pd

k , which were introduced in [78] and described in more detail in Section 4.1. Our main result is the
following bound on the Rademacher complexity. This generalizes the results of [56], which calculate the Rademacher com-
plexity of the unit ball in the Barron space for ReLU neural networks (see also [31], Theorem 2 and [39], Theorem 3).

Theorem 6. Suppose that σ ∈ W m+1,∞ . Then for any α with |α| ≤ m, we have

R N(∂αD) � N− 1
2 , R∂,N(∂αD) � N− 1

2 (7.17)

where the implied constant is independent of N.

Proof. This result follows immediately upon noting that

∂αD = {ωασ (α)(ω · x + b) : (ω,b) ∈ �}. (7.18)

Since � is a compact set, |ωα | is bounded. Further, since σ ∈ W m+1,∞ , we have that σ (α) is Lipschitz. Using the third point
in Lemma 2, we obtained

R N(∂αD) � R N({ω · x + b : (ω,b) ∈ �}, (7.19)

and likewise for R∂,N (∂αD).
It is well-known that the Rademacher complexity of the set of linear functions is bounded by [74, Section 26.2]

R N({ω · x + b : (ω,b) ∈ �} � N− 1
2 , (7.20)

for any distribution on x which is bounded almost surely. This applies both to the uniform distribution on � as well as to
the uniform distribution on ∂�, which completes the proof. �
7.3. Numerical quadrature

In this section we bound the discretization error when the Gauss-Legendre quadrature rule is used to compute the
energy inner-product (6.4) and the error ‖u − un‖a . Let Th ⊂ � be a partition on � with mesh size h, where h = O(N− 1

d)

and N is the number of quadrature points. For each Tl ∈ Th , l = 1, · · · , L, the quadrature rule satisfies∫
Tl

p(x)dx =
t∑

i=0

p(xl,i)ωi, ∀p ∈ P2t+1(Tl), (7.21)

where P2t+1(T) is the space of polynomials with degree less equal than 2t + 1. Therefore, we have∫
�

f (x)dx =
L∑

l=1

∫
Tl

f (x)dx =
L∑

l=1

t∑
i=0

f (xl,i)ωi =
N∑

j=1

f (x j)ω j, ∀ f ∈ P2t+1(Th), (7.22)

where P2t+1(Th) = {g ∈ L2(�) : g|T ∈ P2t+1(T), ∀T ∈ Th} is the space of piece-wise polynomial functions on the partition
Th . We define the error operator

Et(f) =
∫
�

f (x)dx −
N∑

j=1

f (x j)ω j =
L∑

l=1

Et,l(f) =
L∑

l=1

⎛
⎜⎝∫

Tl

f (x)dx −
t∑

i=0

f (xl,i)ωi

⎞
⎟⎠ (7.23)

for f ∈ W k+1,∞(�). It is clear that Et,l ∈ (W k+1,∞(Tl))
∗ if k ≤ 2t + 1.

Theorem 7. Let B M(D) = { f ∈K1(D) : ‖ f ‖K1(D) ≤ M}. Suppose the integrand f ∈ B M(D) where supd ‖d‖W k+1,∞(�) ≤ C , and the
Gauss-Legendre quadrature rule is accurate for Pk. Then it holds that

|Et(f)| ≤ CkC MN− k+1
d , (7.24)

where t ≥ [k−1] + 1 and N is the number of quadrature points.
2

17

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
Proof. Using the Bramble-Hilbert Lemma, we get

|En,T̂ (f̂)| ≤ C‖En,T̂ ‖∗
W k+1,∞(T̂)

| f̂ |W k+1,∞(T̂)
(7.25)

on the reference domain T̂ . By the standard scaling argument, it gives on Th that

|En(f)| ≤ Ckhk+1‖ f ‖W k+1,∞(�) ≤ CkC Mhk+1. (7.26)

The relation h =O(N− 1
d) gives the result. �

The accuracy with respect to N in (7.24) allows us to use the numerical quadrature (7.22) to compute the generalization
errors such as ‖u − un‖L2 and ‖u − un‖a . Since ReLUk(ω · x + b) is in the W k,∞(�) Sobolev space where � is bounded, then
we have K1(Pd

k) ⊂ W k,∞(�) which satisfies the condition of Theorem 7.

8. Balancing the error terms

In this section, we combine the estimates of the optimization, discretization, and modelling errors obtained in the previ-
ous sections to obtain a complete convergence theory and explain how to choose the hyperparameters N and n in each of
the different situations discussed. Specifically, when using the relaxed greedy algorithm we have the following convergence
theorem.

Theorem 8. Suppose that the Relaxed Greedy Algorithm (RGA) (5.2) is applied to the discretized loss function RN corresponding to the
risk formulation (3.6) of the PDE (2.1). Suppose further that the solution u satisfies ‖u‖K1(D) ≤ M and that

• Monte Carlo quadrature is used and the assumptions of Theorem 5 are satisfied. If the dictionary D satisfies R N(∂αD) � N− 1
2

and we set N = n2 , we have the convergence rate

R(u�,N) −R(u) � n−1. (8.1)

In particular, since the objective error is comparable to the squared Hm-error, we also have

‖u�,N − u‖Hm(�) � n− 1
2 . (8.2)

• Numerical quadrature of order k is used and D is uniformly bounded in W k+1,∞(�). If we set N = n
d

2(k+1) , then we have

R(u�,N) −R(u) � n−1. (8.3)

We also have

‖u�,N − u‖Hm(�) � n− 1
2 . (8.4)

Note in particular that the assumptions of this theorem hold when using shallow neural network dictionaries. We remark
that when using the orthogonal greedy algorithm, the K1(D)-norm cannot be a priori bounded and this is a missing ingre-
dient in obtaining an a priori bound on the discretization error. Nonetheless, we obtain good performance in practice for
the orthogonal greedy algorithm. In addition, if the solution u does not satisfy the bound ‖u‖K1(D) ≤ M , then the method
will nonetheless still optimize the risk over this set. In this case, a bound on the error can be obtained by determining how
efficiently the solution can be approximated by a function u which satisfies ‖u‖K1(D) ≤ M . The proper theory here is the
theory of interpolation spaces (see for instance [23], Chapter 6, or [7]), but we do not go into detail here.

9. Numerical experiments

In this section, we provide numerical experiments demonstrating the effectiveness of the proposed algorithms on a
variety of problems. For all the experiments below, the energy functions are discretized using Gaussian quadrature with the
default setting t = 2 and L = 4000 in (7.22) for 1D and t = 2 × 2, L = 400 × 400 for 2D. For simplicity, we use un to denote
the numerical solution and use u to represent the analytical solution in this section. We also define ‖u − un‖a to be the
discretization error in the energy norm which is defined in Section 5.2. For a specific type of second order elliptic equation
discussed in (2.9), the energy norm is identical to the H1 norm. In addition, the discretization error in the L2 norm is also
reported. For the detailed computation of these norms, we refer to the technique presented in Section 7.3 and the definition
of norms (5.21). We remark that when calculating these norms we used a new and large set of quadrature points different
from the ones used for training the network.

Section 9 is organized as follows. In Example 1 we test our method on a simple one-dimensional problem with both
Dirichlet and Neumann boundary conditions. We do this with both the energy and PINN loss formulation of the problem and
18

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
Table 1
L2 and H1 numerical error of OGA v.s. the number of neurons n for
Example 1.

n ‖u − un‖L2 order(n−3) ‖u − un‖H1 order(n−2)

16 7.86e-04 - 2.79e-02 -
32 7.70e-05 3.35 5.89e-03 2.24
64 8.45e-06 3.19 1.36e-03 2.11
128 9.68e-07 3.13 3.22e-04 2.08
256 1.18e-07 3.04 7.81e-05 2.04
512 1.44e-08 3.03 1.94e-05 2.01
1024 1.83e-09 2.97 4.86e-06 1.99
2048 2.50e-10 2.88 1.28e-06 1.93

Table 2
Numerical results of OGA for Example 1 with Dirichlet
boundary condition. Here we take δ = 0.1 × n−2.

n ‖u − un‖L2 order ‖u − un‖a,δ order(n−1)

16 6.72e-04 - 4.40e-02 -
32 1.70e-04 2.01 2.20e-02 1.00
64 4.17e-05 2.00 1.10e-02 1.00
128 1.04e-05 2.00 5.49e-03 1.00
256 2.63e-06 1.99 2.75e-03 1.00
512 8.10e-07 1.70 1.37e-03 1.00

compare our method with the common SGD, ADAM and L-BFGS optimizers to demonstrate its effectiveness. In Example 2 we
present a 1D benchmark to verify the empirical adaptive property of greedy algorithms. Next we consider solving high order
and high dimensional PDEs using the OGA. Examples 3 and 4 confirm our theoretical convergence rates for two dimensional
elliptic problems with second and fourth order. In Example 5 we develop a method using a restricted dictionary designed
for high dimensional problems. We show that our method can tackle high-dimensional problems as long as the solution is
well-approximated by the convex hull of the fictionary. Finally, we give an example of non-linear PDEs in Section 9.2 using
the relaxed greedy algorithm (RGA). We note that Theorem 2 holds for any convex and smooth energy function. Therefore,
we can get convergence for non-linear equations provided the equation has a variation formulation with a convex energy.

9.1. Linear PDEs

Example 1 (1D elliptic equation). We consider the 1D elliptic equation

−u′′ + u = f , x ∈ (−1,1),

u′(−1) = u′(1) = 0,
(9.1)

with the source term f = (1 + π2
)

cos
(
πx
)

which has the analytical solution u(x) = cos
(
πx
)
. The energy function is dis-

cretized using Guassian quadrature with t = 2 and L = 4000 in (7.22) and the discrete energy is minimized using the
orthogonal greedy algorithm OGA with dictionary P 1

2 (i.e. corresponding to ReLU2). The convergence rate is shown in Ta-
ble 1. We obtain second order convergence in H1((−1, 1)) which matches the theoretical convergence rate of the orthogonal
greedy algorithm. In addition, we obtain third order convergence in L2((−1, 1)) which matches the theoretically predicted
approximation rates of shallow neural networks [83].

Next we consider the same equation with Dirichlet boundary conditions and consider the forcing term f (x) = (1 +
π2

4

)
cos(π

2 x) so that the analytical solution is given by u(x) = cos(π
2 x). We use the orthogonal greedy algorithm with

D = P 1
2 to minimize a discretized version of the penalized energy RN,δ , which is discretized using the same Gaussian

quadrature. To balance the errors, we let δ scale as n−2. The convergence order is given in Table 2 and matches the ex-
pected rate obtained by combining the convergence order of the orthogonal greedy algorithm with the error incurred by
the penalization.

We also use the first example with Neumann’s boundary conditions to compare with the deep Ritz method [89] using
SGD and ADAM [41] as the optimizers. The numerical solution of the deep Ritz method is represented by a single hidden
layer neural network with ReLU2 activation function. We run both SGD and ADAM optimizers for 10000 epochs using Gauss
quadrature points with random initialization. The initial learning rate for each experiment is 1 × 10−3 and is decreased by
5 every 3000 epochs. The numerical errors shown in Table 3 are the average results of 30 independent experiments, where
we can see that both SGD and ADAM do not achieve any convergence order numerically as n gets larger (i.e. the size of the
network gets larger).

Next, we compare with the widely used PINN method [70] which has been proven exceptionally successful in practical
engineering applications. Specifically, we optimize a discretization of the PINN risk (2.21), given by
19

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
Table 3
The numerical convergence test of the deep Ritz method with both Adam and SGD optimizers on one-
hidden-layer ReLU2 neural network v.s. the number of neurons n for Example 1.

Adam SGD

n ‖u − un‖L2 order ‖u − un‖H1 order ‖u − un‖L2 order ‖u − un‖H1 order

16 1.61e-02 - 1.45e-01 - 1.30e-02 - 1.52e-01 -
32 3.71e-03 2.12 5.84e-02 1.32 9.35e-03 0.47 1.13e-01 0.43
64 1.80e-03 1.04 3.46e-02 0.76 7.11e-03 0.39 8.64e-02 0.38
128 5.52e-04 1.70 1.43e-02 1.27 5.91e-03 0.27 7.22e-02 0.26
256 2.26e-04 1.29 6.99e-03 1.04 5.75e-03 0.04 7.03e-02 0.04
512 1.88e-04 0.27 3.90e-03 0.84 4.41e-03 0.38 5.40e-02 0.38
1024 2.09e-04 -0.16 2.56e-03 0.61 1.52e-03 1.54 1.99e-02 1.43
2048 4.11e-04 -0.97 2.51e-03 0.03 3.22e-03 -1.09 3.56e-02 -0.84

Table 4
The numerical convergence test of the PINN model with L-BFGS optimizer on
one-hidden-layer ReLU3 neural network v.s. the number of neurons n for Exam-
ple 1.

n PINN-loss order ‖u − un‖L2 order ‖u − un‖H1 order

16 9.19e-02 - 5.08e-03 - 3.17e-02 -
32 7.65e-02 0.27 4.11e-03 0.31 2.54e-02 0.32
64 1.86e-03 5.37 1.44e-04 4.84 1.62e-03 3.97
128 1.84e-04 3.33 5.20e-05 1.47 3.02e-04 2.43
256 1.13e-05 4.03 5.22e-06 3.32 4.50e-05 2.74
512 5.58e-06 1.02 3.58e-06 0.54 3.10e-05 0.54
1024 3.28e-05 -2.55 1.73e-05 -2.27 1.28e-04 -2.04
2048 1.52e-05 1.11 1.30e-05 0.42 8.15e-05 0.65

Table 5
The loss function and numerical error of OGA in L2 and H1 norms v.s. the num-
ber of neurons n for Example 1.

n PINN-loss order ‖u − un‖L2 order ‖u − un‖H1 order

16 2.64e-03 - 5.05e-04 - 2.02e-03 5.28
32 1.50e-04 4.14 1.04e-04 2.29 2.54e-04 2.99
64 8.10e-06 4.21 2.28e-05 2.18 4.43e-05 2.52
128 5.10e-07 3.99 5.03e-06 2.18 1.26e-05 1.81
256 3.16e-08 4.01 3.49e-06 0.53 5.40e-06 1.22
512 1.98e-09 4.00 5.45e-07 2.68 1.76e-06 1.62
1024 1.11e-10 4.16 1.81e-07 1.59 5.74e-07 1.62
2048 5.54e-12 4.32 6.67e-08 1.44 2.14e-07 1.43

M S E = M S E f + M S Ebc, (9.2)

where

M S E f = 1

N f

N f∑
i=1

| − �un(xi) + un(xi) − f (xi)|2 and M S Ebc = |u′(−1)|2 + |u′(1)|2. (9.3)

Here the collocation points {xi}N f

i=1 are randomly chosen from the uniform distribution on [−1, 1] where N f = 10000. The
numerical solution un is computed by optimizing the MSE loss with two stages. First the network is trained using ADAM’s
optimizer up to 10000 steps. In the next stage we change the optimizer into L-BFGS, where the learning rate is determined
by the line search with the strong Wolfe’s condition, and stop when the update of MSE loss is less than 10−16. Since the
gradient based training method requires the computation of first order derivatives, we change the activation function into
ReLU3 to satisfy the regularity demand. The result shown in Table 4 is the mean error of 30 independent experiments.
Similar to the results of the Deep Ritz method, we do not observe any stable numerical convergence with respect to n.

For comparison, next we use the orthogonal greedy algorithm to train the neural network using the same loss function
(9.3) with N f = 10000 and the dictionary P 1

3 . We compute the numerical errors using the quadrature with a number of
points that is large enough to get a good accuracy. We observe convergence for both the loss function and the numerical
error in Table 5:

Example 2 (Adaptivity in 1D). Next, we test the OGA using the dictionary P 1
2 on the 1D elliptic equation (9.1) where f is

chosen so that the exact solution is given by:
20

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
Fig. 1. Grid points of a 1-hidden layer neural network solution with N = 128 for Example 2.

Table 6
L2 and H1 numerical errors and convergence orders of OGA for
Example 2.

n ‖u − un‖L2 order(n−3) ‖u − un‖H1 order(n−2)

16 5.05e-02 - 1.43e+00 -
32 1.96e-03 4.69 1.62e-01 3.14
64 2.08e-04 3.23 3.93e-02 2.05
128 1.99e-05 3.39 8.42e-03 2.22
256 2.34e-06 3.09 2.04e-03 2.04
512 2.85e-07 3.04 4.83e-04 2.08

u(x) = (1 + x)2(1 − x2)

(
0.5 exp

(
− (x + 0.5)2

K

)
+ exp

(
− x2

K

)
+ 0.5 exp

(
− (x − 0.5)2

K

))
, (9.4)

for x ∈ � = (−1, 1) and K = 0.01. The exact solution has three peaks as shown in Fig. 1. In this example, we illustrate the
adaptivity of the neural network discretization by identifying the grid points x = (x1, · · · , xN)T such that w1x + b1 = 0, i.e.
where the second derivative of the numerical solution changes. Since u(x) has three peaks, we see that the grid points are
gathered mainly at places with a larger curvature and are adaptive to fit the three peaks shown in Fig. 1. Furthermore,
both the numerical error and the convergence order are shown in Table 6, where we see the theoretical convergence order
achieved numerically. Note that the adaptivity is mainly a result of the neural network function class we are using and is
likely to be present for other training algorithms as well. This merely demonstrates that a greedy algorithm is able to adapt
to sharp changes in the solution.

Example 3 (2D elliptic equation). We consider the 2D elliptic equation in � = (0, 1)2 given by

−�u + u = f , x ∈ (0,1)2

∂u

∂n
= 0, x ∈ ∂(0,1)2,

(9.5)

where the right hand side f is chosen so that the exact solution is given by u(x, y) = cos(2πx) cos(2π y). We discretize
the energy using Gaussian quadrature of order 2 with 400 points in each direction. We optimize the discrete energy using
the orthogonal greedy algorithm with the dictionary P 2

2 . The convergence orders with both L2 and H1 errors are shown in
Table 7 and confirm the theoretical orders of 1.75 and 1.25 for L2 and H1 errors, respectively. Note that the convergence
order appears even to be slightly better than predicted by our theory. This demonstrates that we have only proved an
upper bound, and for certain dictionaries the convergence rate of the orthogonal greedy algorithm may even by faster than
predicted by Theorem 3. Due to the computational difficulty of solving the argmax subproblem (6.1) to the required high
degree of accuracy, we were not able to run this example beyond 356 neurons with the variational loss.

Next we consider the dictionary P 2
3 and optimize the PINN formulation instead of the energy formulation of the problem.

Specifically, we optimize a discretization of the PINN risk (2.21), given by

M S E = M S E f + M S Ebc,
21

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
Table 7
Convergence order test of OGA with both L2 and H1 errors for Exam-
ple 3.

n ‖u − un‖L2 order(n−1.75) ‖u − un‖H1 order(n−1.25)

16 5.13e-02 - 9.74e-01 -
32 9.72e-03 2.40 3.07e-01 1.66
64 2.26e-03 2.10 1.07e-01 1.53
128 5.86e-04 1.95 4.04e-02 1.40
256 1.42e-04 2.04 1.51e-02 1.42
356 7.68e-05 1.87 9.82e-03 1.30

Table 8
The loss function and numerical error of OGA in L2 and H1 norms v.s. the num-
ber of neurons n for Example 3 using the PINN loss.

n PINN-loss order ‖u − un‖L2 order ‖u − un‖H1 order

16 9.51e+01 - 2.93e-01 - 1.41e+00 -
32 1.34e+01 2.83 7.04e-02 2.06 4.09e-01 1.79
64 1.79e+00 2.90 1.49e-02 2.24 1.09e-01 1.91
128 1.91e-01 3.23 4.67e-03 1.68 3.78e-02 1.52
256 2.67e-02 2.84 5.88e-04 2.99 8.13e-03 2.22
512 3.27e-03 3.03 5.60e-04 0.07 2.17e-03 1.90
1024 5.33e-04 2.62 5.22e-04 0.10 7.24e-04 1.58
2048 7.96e-05 2.74 9.43e-05 2.47 2.08e-04 1.80

where M S E f is the discrete L2-residual in the domain (0, 1)2:

M S E f = 1

N f

N f∑
i=1

| − �un(x f
i) + un(x f

i) − f (x f
i)|2, (9.6)

and M S Ebc is the residual on the boundary ∂(0, 1)2:

M S Ebc = 1

Nbc

Nbc∑
j=1

∣∣∣∣∂un

∂n
(xbc

j)

∣∣∣∣2 . (9.7)

Here we take N f = 20000 and 2000 samples on each edge of ∂(0, 1)2 so that Nbc = 8000. The samples {x f
i }N f

i=1 and {xbc
j }Nbc

j=1
are randomly chosen in the corresponding domains from the uniform distribution. The following table shows the numerical
result where the neural network is trained by OGA. We compute the numerical errors using the quadrature with a number
of points large enough to get a good accuracy. We see that although the PINN loss converges with a good order as expected,
the solution errors converge somewhat more slowly and less reliably than the loss. However, a good accuracy is nonetheless
finally obtained even in terms of the solution error. (See Table 8.)

Example 4 (2D fourth-order differential equation). We consider the fourth-order equation

�2u + u = f , x ∈ (−1,1)2,

B0
N(u) = 0, x ∈ ∂(−1,1)2,

B1
N(u) = 0, x ∈ ∂(−1,1)2.

(9.8)

We choose the right hand side so that the exact solution is u(x, y) = (x2 − 1)4(y2 − 1)4. We discretize the energy using
Gaussian quadrature of order 2 with 400 points in each direction and using the orthogonal greedy algorithm with the
dictionary P 2

3 to optimize the discrete energy. We plot the convergence orders for the L2 energy norms in Table 9. Each of
these errors is calculated by using finer Gaussian quadrature. For this example, we were again only able to run the algorithm
with 256 neurons due to the computational difficulty of the argmax subproblem (6.1).

Example 5 (High-dimensional example). We consider the following 10d elliptic equation:

−∇ · (α∇u) + u = f , x ∈ (0,1)10

∂u

∂n
= 0, x ∈ ∂(0,1)10,

(9.9)

with
22

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
Table 9
The convergence order of OGA with ‖ · ‖L2 and ‖ · ‖a errors for Exam-
ple 4.

n ‖u − un‖L2 order(n−2.25) ‖u − un‖a order(n−1.25)

16 1.72e-01 - 4.84e+00 -
32 1.89e-02 3.18 1.60e+00 1.59
64 3.36e-03 2.50 5.85e-01 1.46
128 4.24e-04 2.99 2.04e-01 1.52
256 8.25e-05 2.36 8.19e-02 1.32

Table 10
The convergence order of OGA on a high-dimensional problem with
‖ · ‖L2 and ‖ · ‖H1 errors for Example 5.

n ‖u − un‖L2 order(n−3) ‖u − un‖H1 order(n−2)

16 5.02e-01 - 3.18e+00 -
32 4.70e-02 3.42 5.99e-01 2.41
64 4.63e-03 3.34 1.10e-01 2.44
128 4.44e-04 3.38 2.27e-02 2.28
256 5.41e-05 3.04 5.19e-03 2.13

α =
√√√√1 +

10∑
i=1

(xi − 1

2
)2. (9.10)

We choose the right hand side f so that the exact solution is given by

u =
10∑

i=1

cos(πxi). (9.11)

In order to be able to solve the argmax problem arising in (6.1) we use the restricted dictionary

P 10,r
2 = {σ(ω · x + b), ω = ±ei, i = 1, ..,10, b ∈ [−2,2]}, (9.12)

where σ = ReLU2. We note that the solution u was specifically chosen to lie in the convex hull of P 10,r
2 , which is given by

B1(P
10,r
2) =

{
f (x) =

10∑
i=1

f i(xi),

10∑
i=1

‖ f 2
i ‖B V ≤ 1

}
. (9.13)

Note that the equation itself is not separable due to the complicated coefficients α, and all that is required for the method to
work is that the solution be well approximated by the dictionary. We discretize the energy using 100 million quasi-Monte-
Carlo samples in [0, 1]10 generated by the Halton sequence, and optimize the energy using the orthogonal greedy algorithm
with dictionary P 10,r

2 . The results are shown in Table 10. The point of this example is to demonstrate that the proposed
method converges as expected even in high-dimensions as long as the solution is well-approximated by the dictionary D.
For this example we were only able to run the algorithm for 256 iterations due to the very large number of quasi-Monte
Carlo samples required for the high dimensional problem.

9.2. Nonlinear PDEs

Next, we test the convergence order of the RGA on a nonlinear Poisson-Boltzmann PDE to confirm the theoretically
derived first order convergence in Theorem 2. We also test both sigmoid and ReLU2 activation functions and compare RGA
with OGA in the 1D example. For all the RGA’s results, we report the generalization error defined in the left hand side of
(3.17) in a relative sense, i.e., R(un)−R(u)

R(u0)−R(u)
, which is computed by using the numerical quadrature scheme.

Example 6 (2D Poisson-Boltzmann equation, [47]). We consider the 2D Poisson-Boltzmann equation on the sphere {(x, y)|x2 +
y2 ≤ 4}, with Neumann boundary conditions, namely,⎧⎨

⎩
− �u + κ sinh(u) = f , (x, y) ∈ � = B2(0),

∂u

∂n
= 0, (x, y) ∈ ∂ B2(0).

(9.14)

The energy functional for this problem is
23

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
Table 11
Convergence order of RGA for the 2D
Poisson-Boltzmann equation in Exam-
ple 6.

n R(un)−R(u)
R(u0)−R(u)

order(n−1)

16 8.18e+00 -
32 4.19e+00 0.96
64 2.96e+00 0.50
128 6.95e-01 2.09
256 2.54e-01 1.45
512 7.70e-02 1.72
1024 2.90e-02 1.41
2048 1.39e-02 1.06

Fig. 2. Numerical solution of the 2D Poisson-Boltzmann equation obtained by RGA with n = 4096 for Example 6.

R(u) =
∫
�

(
1

2
|∇u|2 + κ cosh(u) − f u

)
dx,

which is a strictly convex and coercive energy with respect to u as long as κ > 0 and this implies the existence and
uniqueness of the solution. We set κ = 1 and consider the radially symmetric solution u(x, y) = cos(π

2

√
x2 + y2), which

gives the source terms f . We use Monte-Carlo quadrature with the number of samples N = O (n2) = n2

10 to approximate the
integration. The dictionary for the RGA algorithm is taken as

D = {σ(w1x + w2 y + b)|(w1, w2,b) ∈ [−20,20]3},
where σ is the sigmoidal activation function and we set M = 20 in (5.2). The convergence order test is shown in Table 11
and the numerical solution is plotted in Fig. 2.

10. Conclusion

The process of training neural networks is the main bottleneck in applying neural networks to solve PDEs, both in terms
of the effort required to tune hyperparameters and in the computational complexity required for the training process. In
order to solve the resulting highly non-convex optimization problems, typically SGD or ADAM is used to train the neural
networks. Despite their breakthrough empirical performance, these algorithms are often difficult to properly tune and re-
quire multiple tries and additional tricks to obtain good performance. Moreover, it is often difficult or impossible to exhibit
convergence as the network size increases. In order to overcome this problem, we develop a greedy training algorithm for
neural network discretizations of PDEs, which we theoretically prove will exhibit convergence to the solution as network
size increases. Empirical experiments validate the theory and exhibit the predicted convergence. This demonstrates that
neural network can, at least in principle, be used to rigorously solve PDEs. One drawback of the approach is the large
amount of computational effort required in each greedy step. Improving the efficiency of this step is an ongoing research
problem.
24

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
CRediT authorship contribution statement

Jonathan W. Siegel: Conceptualization, Formal analysis, Investigation, Methodology, Supervision, Writing – original draft.
Qingguo Hong: Formal analysis, Writing – original draft. Xianlin Jin: Investigation, Software, Writing – original draft. Wenrui
Hao: Supervision, Writing – review & editing. Jinchao Xu: Conceptualization, Formal analysis, Funding acquisition, Project
administration, Resources, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] Mark Ainsworth, Yeonjong Shin, Active neuron least squares: a training method for multivariate rectified neural networks, SIAM J. Sci. Comput. 44 (4)
(2022) A2253–A2275.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, Zhao Song, A convergence theory for deep learning via over-parameterization, in: International Conference on Machine
Learning, PMLR, 2019, pp. 242–252.

[3] Amine Ammar, et al., A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling
of complex fluids, J. Non-Newton. Fluid Mech. 139 (3) (2006) 153–176.

[4] Sanjeev Arora, et al., Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks, in: International Con-
ference on Machine Learning, PMLR, 2019, pp. 322–332.

[5] Francis Bach, Breaking the curse of dimensionality with convex neural networks, J. Mach. Learn. Res. 18 (1) (2017) 629–681.
[6] Andrew R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inf. Theory 39 (3) (1993) 930–945.
[7] Andrew R. Barron, et al., Approximation and learning by greedy algorithms, Ann. Stat. 36 (1) (2008) 64–94.
[8] Peter L. Bartlett, Shahar Mendelson, Rademacher and Gaussian complexities: risk bounds and structural results, J. Mach. Learn. Res. 3 (2002) 463–482.
[9] Julius Berner, Philipp Grohs, Arnulf Jentzen, Analysis of the generalization error: empirical risk minimization over deep artificial neural networks

overcomes the curse of dimensionality in the numerical approximation of Black–Scholes partial differential equations, SIAM J. Math. Data Sci. 2 (3)
(2020) 631–657.

[10] Shengze Cai, et al., Physics-informed neural networks (PINNs) for fluid mechanics: a review, Acta Mech. Sin. (2022) 1–12.
[11] Shengze Cai, et al., Physics-informed neural networks for heat transfer problems, J. Heat Transf. 143 (2021) 6.
[12] Eric Cances, Virginie Ehrlacher, Tony Lelievre, Greedy algorithms for high-dimensional non-symmetric linear problems, in: ESAIM: Proceedings, vol. 41,

EDP Sciences, 2013, pp. 95–131.
[13] Emmanuel Jean Candes, Ridgelets: Theory and Applications, Stanford University, 1998.
[14] Shuhao Cao, Choose a transformer: Fourier or Galerkin, Adv. Neural Inf. Process. Syst. 34 (2021) 24924–24940.
[15] Giuseppe Carleo, Matthias Troyer, Solving the quantum many-body problem with artificial neural networks, Science 355 (6325) (2017) 602–606.
[16] Qipin Chen, Wenrui Hao, A randomized Newton’s method for solving differential equations based on the neural network discretization, preprint,

arXiv:1912 .03196, 2019.
[17] Ziang Chen, Jianfeng Lu, Yulong Lu, On the representation of solutions to elliptic pdes in Barron spaces, Adv. Neural Inf. Process. Syst. 34 (2021).
[18] Ziang Chen, et al., A regularity theory for static Schrödinger equations on Rd in spectral Barron spaces, preprint, arXiv:2201.10072, 2022.
[19] Ingrid Daubechies, et al., Nonlinear approximation and (deep) ReLU networks, in: Constructive Approximation, 2021, pp. 1–46.
[20] Tim De Ryck, Ameya D. Jagtap, Siddhartha Mishra, Error estimates for physics informed neural networks approximating the Navier-Stokes equations,

preprint, arXiv:2203 .09346, 2022.
[21] Tim De Ryck, Siddhartha Mishra, Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs, preprint, arXiv:2106 .

14473, 2021.
[22] Anton Dereventsov, Armenak Petrosyan, Clayton Webster, Greedy shallow networks: a new approach for constructing and training neural networks,

preprint, arXiv:1905 .10409, 2019.
[23] Ronald A. DeVore, George G. Lorentz, Constructive Approximation, vol. 303, Springer Science & Business Media, 1993.
[24] Ronald A. DeVore, Vladimir N. Temlyakov, Some remarks on greedy algorithms, Adv. Comput. Math. 5 (1) (1996) 173–187.
[25] Ronald DeVore, Boris Hanin, Guergana Petrova, Neural network approximation, preprint, arXiv:2012 .14501, 2020.
[26] M.W.M.G. Dissanayake, Nhan Phan-Thien, Neural-network-based approximations for solving partial differential equations, Commun. Numer. Methods

Eng. 10 (3) (1994) 195–201.
[27] Simon S. Du, et al., Gradient descent provably optimizes over-parameterized neural networks, in: International Conference on Learning Representations,

2018.
[28] Simon Du, et al., Gradient descent finds global minima of deep neural networks, in: International Conference on Machine Learning, PMLR, 2019,

pp. 1675–1685.
[29] Chenguang Duan, et al., Convergence rate analysis for deep Ritz method, preprint, arXiv:2103 .13330, 2021.
[30] Leonardo E. Figueroa, Endre Süli, Greedy approximation of high-dimensional Ornstein–Uhlenbeck operators, Found. Comput. Math. 12 (5) (2012)

573–623.
[31] Wei Gao, Zhi-Hua Zhou, Dropout Rademacher complexity of deep neural networks, Sci. China Inf. Sci. 59 (7) (2016) 1–12.
[32] Philipp Grohs, et al., A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes

partial differential equations, preprint, arXiv:1809 .02362, 2018.
[33] Jiequn Han, Arnulf Jentzen, E. Weinan, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. 115 (34) (2018)

8505–8510.
[34] Jan Hermann, Zeno Schätzle, Frank Noé, Deep-neural-network solution of the electronic Schrödinger equation, Nat. Chem. 12 (10) (2020) 891–897.
[35] Wassily Hoeffding, Probability inequalities for sums of bounded random variables, in: The Collected Works of Wassily Hoeffding, Springer, 1994,

pp. 409–426.
25

http://refhub.elsevier.com/S0021-9991(23)00179-1/bib7E984486DE1ABD328B1CE835C7B40EBEs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib7E984486DE1ABD328B1CE835C7B40EBEs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib88727AB9B0E182999CA4DBA89D004107s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib88727AB9B0E182999CA4DBA89D004107s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibFD32086A1D83BADEA1FBD85D1CB5F579s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibFD32086A1D83BADEA1FBD85D1CB5F579s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib128D41206A568B10E62C6AA5111AB643s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib128D41206A568B10E62C6AA5111AB643s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibCDA3DA4C2DB3531AF8A1B4AF8B186612s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibE5857669CC6735A6CCBBA2B8E69BFB82s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib8476928B20235D62873E845A95CE24ADs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibAE36B161DD5A2416051784B42BB161BBs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibE121D013BB13B3E41E8019768BF0E96Ds1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibE121D013BB13B3E41E8019768BF0E96Ds1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibE121D013BB13B3E41E8019768BF0E96Ds1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibA47EDD80EEF29615157E187D0408C0ADs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibAFEF73231A98E57CF9F488602F020ADDs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib422CFA76C86EE7119685F42D2BDB7FD5s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib422CFA76C86EE7119685F42D2BDB7FD5s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib2E42EAFE4F87BA3A503616FF942D30CCs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib7A5488758A3229250797FC6A009BA8DAs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib99A6A1E5268E08FEDC083F673399B8E2s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib2EB67C22CDD73D3D9C6F2EEDC439EC94s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib2EB67C22CDD73D3D9C6F2EEDC439EC94s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib379632F517671620744206A40CE38F99s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib1A68F1E32931B0238184B51F6011EE95s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibAB4FE8F33D85D18888B2D03B348DF242s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib330343EFE9CCC05B15FC69CA0EB34511s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib330343EFE9CCC05B15FC69CA0EB34511s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibDA6159F5A451133A6D510837BA92DDC5s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibDA6159F5A451133A6D510837BA92DDC5s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibFAFAD2577A2809F799FD538F0D2BE636s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibFAFAD2577A2809F799FD538F0D2BE636s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib670FE25C073F429AFD4AAF6846DD41BCs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib05DC096BF51F54CFBF066910510F804As1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib51D55F2E3CAAC102DD1576843A8D0EC6s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib6F61703F07A2466167D962A6FB23EBEBs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib6F61703F07A2466167D962A6FB23EBEBs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib33DAB4857E0FBF8AA18A823022280DA7s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib33DAB4857E0FBF8AA18A823022280DA7s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib353BB7AD458313F52FE0AFF6F41B41B8s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib353BB7AD458313F52FE0AFF6F41B41B8s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibA3ED7034A923590200F30000213580A0s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib5C087952A6090D806A7A4B58363BE5A9s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib5C087952A6090D806A7A4B58363BE5A9s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibBC9E6B25048B1AB63521F8F8A654AE77s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibE72EA92426C6F98B85C9BCE6CA1E6BFCs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibE72EA92426C6F98B85C9BCE6CA1E6BFCs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib8CA40B5FB63ACBACC3522FE830F81DF5s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib8CA40B5FB63ACBACC3522FE830F81DF5s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib48792317621DAA04DC444517B31472BFs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibE0BF5B10D5AE8AE67C6DD8FB3C4D7F14s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibE0BF5B10D5AE8AE67C6DD8FB3C4D7F14s1

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
[36] Qingguo Hong, Jonathan W. Siegel, Jinchao Xu, A priori analysis of stable neural network solutions to numerical PDEs, preprint, arXiv:2104 .02903, 2021.
[37] Qingguo Hong, et al., On the activation function dependence of the spectral bias of neural networks, preprint, arXiv:2208 .04924, 2022.
[38] Lee K. Jones, A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network

training, Ann. Stat. 20 (1) (1992) 608–613.
[39] Sham M. Kakade, Karthik Sridharan, Ambuj Tewari, On the complexity of linear prediction: Risk bounds, margin bounds, and regularization, 2008.
[40] Yuehaw Khoo, Jianfeng Lu, Lexing Ying, Solving parametric PDE problems with artificial neural networks, Eur. J. Appl. Math. 32 (3) (2021) 421–435.
[41] Diederik P. Kingma, Jimmy Ba, Adam: a method for stochastic optimization, preprint, arXiv:1412 .6980, 2014.
[42] Jason M. Klusowski, Andrew R. Barron, Approximation by combinations of ReLU and squared ReLU ridge functions with
1 and
0 controls, IEEE Trans.

Inf. Theory 64 (12) (2018) 7649–7656.
[43] Nikola Kovachki, Samuel Lanthaler, Siddhartha Mishra, On universal approximation and error bounds for Fourier neural operators, J. Mach. Learn. Res.

22 (1) (2021) 13237–13312.
[44] Samuel Lanthaler, Siddhartha Mishra, George Em Karniadakis, Error estimates for deeponets: a deep learning framework in infinite dimensions,

preprint, arXiv:2102 .09618, 2021.
[45] Claude Le Bris, Tony Lelievre, Yvon Maday, Results and questions on a nonlinear approximation approach for solving high-dimensional partial differen-

tial equations, Constr. Approx. 30 (3) (2009) 621–651.
[46] Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson, Efficient agnostic learning of neural networks with bounded fan-in, IEEE Trans. Inf. Theory 42 (6)

(1996) 2118–2132.
[47] Zhilin Li, C.V. Pao, Zhonghua Qiao, A finite difference method and analysis for 2D nonlinear Poisson–Boltzmann equations, J. Sci. Comput. 30 (1) (2007)

61–81 (English).
[48] Zongyi Li, et al., Fourier neural operator for parametric partial differential equations, preprint, arXiv:2010 .08895, 2020.
[49] Marcello Longo, et al., Higher-order quasi-Monte Carlo training of deep neural networks, SIAM J. Sci. Comput. 43 (6) (2021) A3938–A3966.
[50] George G. Lorentz, Manfred v Golitschek, Yuly Makovoz, Constructive Approximation: Advanced Problems, vol. 304, Springer, 1996.
[51] Jianfeng Lu, et al., Deep network approximation for smooth functions, SIAM J. Math. Anal. 53 (5) (2021) 5465–5506.
[52] Lu Lu, et al., Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nat. Mach. Intell. 3 (3) (2021)

218–229.
[53] Yulong Lu, Jianfeng Lu, Min Wang, A priori generalization analysis of the deep Ritz method for solving high dimensional elliptic partial differential

equations, in: Conference on Learning Theory, PMLR, 2021, pp. 3196–3241.
[54] Tao Luo, Haizhao Yang, Two-layer neural networks for partial differential equations: optimization and generalization theory, preprint, arXiv:2006 .15733,

2020.
[55] Tao Luo, et al., Theory of the frequency principle for general deep neural networks, preprint, arXiv:1906 .09235, 2019.
[56] Chao Ma, Lei Wu, et al., The Barron space and the flow-induced function spaces for neural network models, Constr. Approx. 55 (1) (2022) 369–406.
[57] Stéphane G. Mallat, Zhifeng Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal Process. 41 (12) (1993) 3397–3415.
[58] Zhiping Mao, Ameya D. Jagtap, George Em Karniadakis, Physics-informed neural networks for high-speed flows, Comput. Methods Appl. Mech. Eng.

360 (2020) 112789.
[59] Siddhartha Mishra, Roberto Molinaro, Estimates on the generalization error of physics informed neural networks (PINNs) for approximating a class of

inverse problems for PDEs, preprint, arXiv:2007.01138, 2020.
[60] Siddhartha Mishra, Roberto Molinaro, Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse

problems for PDEs, IMA J. Numer. Anal. 42 (2) (2022) 981–1022.
[61] Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, Foundations of Machine Learning, MIT Press, 2018.
[62] Johannes Müller, Marius Zeinhofer, Error estimates for the deep Ritz method with boundary penalty, preprint, arXiv:2103 .01007, 2021.
[63] Greg Ongie, et al., A function space view of bounded norm infinite width ReLU nets: the multivariate case, in: International Conference on Learning

Representations (ICLR 2020), 2019.
[64] Guofei Pang, Lu Lu, George Em Karniadakis, fPINNs: fractional physics-informed neural networks, SIAM J. Sci. Comput. 41 (4) (2019) A2603–A2626.
[65] Rahul Parhi, Robert D. Nowak, Banach space representer theorems for neural networks and ridge splines, preprint, arXiv:2006 .05626, 2020.
[66] Rahul Parhi, Robert D. Nowak, What kinds of functions do deep neural networks learn? Insights from variational spline theory, preprint, arXiv:2105 .

03361, 2021.
[67] Yagyensh Chandra Pati, Ramin Rezaiifar, Perinkulam Sambamurthy Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with

applications to wavelet decomposition, in: Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, IEEE, 1993, pp. 40–44.
[68] Gilles Pisier, Remarques sur un résultat non publié de B. Maurey, in: Séminaire Analyse fonctionnelle (dit “Maurey-Schwartz”), 1981, pp. 1–12.
[69] Nasim Rahaman, et al., On the spectral bias of neural networks, in: International Conference on Machine Learning, PMLR, 2019, pp. 5301–5310.
[70] Maziar Raissi, Paris Perdikaris, George E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[71] Benjamin Recht, et al., Do CIFAR-10 classifiers generalize to CIFAR-10?, preprint, arXiv:1806 .00451, 2018.
[72] Francisco Sahli Costabal, et al., Physics-informed neural networks for cardiac activation mapping, Front. Phys. 8 (2020) 42.
[73] Nihar Sawant, Boris Kramer, Benjamin Peherstorfer, Physics-informed regularization and structure preservation for learning stable reduced models from

data with operator inference, preprint, arXiv:2107.02597, 2021.
[74] Shalev-Shwartz Shai, Ben-David Shai, Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press, 2014.
[75] Zuowei Shen, Haizhao Yang, Shijun Zhang, Optimal approximation rate of ReLU networks in terms of width and depth, J. Math. Pures Appl. 157 (2022)

101–135.
[76] Yeonjong Shin, Jerome Darbon, George Em Karniadakis, On the convergence of physics informed neural networks for linear second-order elliptic and

parabolic type PDEs, preprint, arXiv:2004 .01806, 2020.
[77] Yeonjong Shin, Zhongqiang Zhang, George Em Karniadakis, Error estimates of residual minimization using neural networks for linear PDEs, preprint,

arXiv:2010 .08019, 2020.
[78] Jonathan W. Siegel, Jinchao Xu, Improved approximation properties of dictionaries and applications to neural networks, preprint, arXiv:2101.12365,

2021.
[79] Jonathan W. Siegel, Jinchao Xu, Approximation rates for neural networks with general activation functions, Neural Netw. 128 (2020) 313–321.
[80] Jonathan W. Siegel, Jinchao Xu, Characterization of the variation spaces corresponding to shallow neural networks, preprint, arXiv:2106 .15002, 2021.
[81] Jonathan W. Siegel, Jinchao Xu, High-order approximation rates for neural networks with ReLUk activation functions, preprint, arXiv:2012 .07205, 2020.
[82] Jonathan W. Siegel, Jinchao Xu, Optimal convergence rates for the orthogonal greedy algorithm, IEEE Trans. Inf. Theory 68 (5) (2022) 3354–3361.
[83] Jonathan W. Siegel, Jinchao Xu, Sharp bounds on the approximation rates, metric entropy, and n-widths of shallow neural networks, preprint, arXiv:

2101.12365, 2021.
[84] Justin Sirignano, Konstantinos Spiliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018)

1339–1364.
[85] Gilbert Strang, Variational crimes in the finite element method, in: The Mathematical Foundations of the Finite Element Method with Applications to

Partial Differential Equations, Elsevier, 1972, pp. 689–710.
26

http://refhub.elsevier.com/S0021-9991(23)00179-1/bib5C5CD5D82DE1CFE0AE851F6452AE03E1s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibB0EA5FC504D77DE7CB0913CB6E3A856Cs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibBCC2E4EFEF1719B6D56247715CE0B98As1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibBCC2E4EFEF1719B6D56247715CE0B98As1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib8EF4D0EC03F870EC72F4DBE02B65C80Es1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib92251C92346A2B74A293501EC1712363s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibFE75545ECCE85F4C988FE05F9C4CAA8As1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibFE75545ECCE85F4C988FE05F9C4CAA8As1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib5E648E14569B0328D9C795CC9405BAEFs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib5E648E14569B0328D9C795CC9405BAEFs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib095CF59BA3FD14E5B526AD28DE893C1Bs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib095CF59BA3FD14E5B526AD28DE893C1Bs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibB1517F850DEA40B33F09B6D221529254s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibB1517F850DEA40B33F09B6D221529254s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib7CA89F3D6D7FF5AAC11A8AE96C40ECE0s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib7CA89F3D6D7FF5AAC11A8AE96C40ECE0s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibA8FDE572DB9554986C1D7084900D636Ds1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibA8FDE572DB9554986C1D7084900D636Ds1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibFDE60BE1F87D6EAE6208A390FE5D3BCAs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibA6FB6BD2C5A9C5086EC3891B2FCB5416s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibAF67F58D2FB2FBC372D19ADE41E182BDs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibCF9A92C27EEB34F0575C8E3246598918s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib81EAB26E706334F3E737F5ACF5A3AE3Fs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib81EAB26E706334F3E737F5ACF5A3AE3Fs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibDAEEA46974C81B3FD71AC73FB73DC1B4s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibDAEEA46974C81B3FD71AC73FB73DC1B4s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibBE6341D9EEB434D06E0C51A6FB4CF4C4s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibBE6341D9EEB434D06E0C51A6FB4CF4C4s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibF30A053704781BAB2030919A63DC06D8s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibFAFF3837EFA0CAC8330CC9F3903C5F29s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib9A0298A43827F3A879643441A1EEFF50s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibB9C5E91ADF5AE9A40614D2E0BA926475s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibB9C5E91ADF5AE9A40614D2E0BA926475s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib5A231D557711FB1A46B872A9B9CD1959s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib5A231D557711FB1A46B872A9B9CD1959s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib0DB9C1F20C1D6A2FEE7987C177C8A00Es1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib0DB9C1F20C1D6A2FEE7987C177C8A00Es1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib5E55EFCC4509D73E7042B93B99872AE0s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib7A980AE4E4FF388033CCC6C2CB036C4As1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib3AD9E6BE1C207A2EC323366A32FEC0F8s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib3AD9E6BE1C207A2EC323366A32FEC0F8s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibE733312D684714DB1C69B37C8A7D9083s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib474196B741852BBF129E96922AAAEE52s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib22D8D32D0960B20A39EEA8916E787990s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib22D8D32D0960B20A39EEA8916E787990s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib69043DBE42139EDDDEE0D56693BE94EDs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib69043DBE42139EDDDEE0D56693BE94EDs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib08463DFBB7613C30405102A4D30ABEB2s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib73B187D59BE3CE2CE2D253D6E5AD1848s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib82F6EB63F5E1297BFFDAEBFD42BEC70Fs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib07531D95F15C195EBEC2B4184AB4E720s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib90367D33CFA0CF26EFAFAD68F793EA1Fs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib90367D33CFA0CF26EFAFAD68F793EA1Fs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibACDB3458F18ECB92E5037975D277D0FBs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib671618A2D15C5355F3AFEC6B8C843630s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib671618A2D15C5355F3AFEC6B8C843630s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibE71875993B3F08DFBBE6D108951532B2s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibE71875993B3F08DFBBE6D108951532B2s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibA96DA8AD7EE963A397D2B67573955D16s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibA96DA8AD7EE963A397D2B67573955D16s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibB3EFFC8D3400A2E3518B4FCBD6D7FAAFs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibB3EFFC8D3400A2E3518B4FCBD6D7FAAFs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib7BB76C7DD5DAC6A63034FAF200DDA84Fs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibCF046E1BB934587D9AD018856C331DDDs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib2792DAA1281874D116D115F2C9CE7560s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib3CA3E3B4B99D5C60B61BE97D2AB2BD0As1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib71BB0BF450C8E2B198DB5BD525D4CDC1s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib71BB0BF450C8E2B198DB5BD525D4CDC1s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib8B90E81BB28AC40F01D08933FA24746Es1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib8B90E81BB28AC40F01D08933FA24746Es1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib63036B956169663FC7BED75BE603A4BAs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib63036B956169663FC7BED75BE603A4BAs1

J.W. Siegel, Q. Hong, X. Jin et al. Journal of Computational Physics 484 (2023) 112084
[86] Vladimir Temlyakov, Greedy Approximation, vol. 20, Cambridge University Press, 2011.
[87] Vladimir N. Temlyakov, Greedy approximation, Acta Numer. 17 (235) (2008) 409.
[88] Martin J. Wainwright, High-Dimensional Statistics: A Non-asymptotic Viewpoint, vol. 48, Cambridge University Press, 2019.
[89] E. Weinan, Bing Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (1)

(2018) 1–12.
[90] Stephan Wojtowytsch, et al., Representation formulas and pointwise properties for Barron functions, Calc. Var. Partial Differ. Equ. 61 (2) (2022) 1–37.
[91] Jinchao Xu, Finite neuron method and convergence analysis, Commun. Comput. Phys. (ISSN 1991-7120) 28 (5) (2020) 1707–1745, https://doi .org /10 .

4208 /cicp .OA-2020 -0191, http://global -sci .org /intro /article _detail /cicp /18394 .html.
[92] Dmitry Yarotsky, Error bounds for approximations with deep ReLU networks, Neural Netw. 94 (2017) 103–114.
[93] Tong Zhang, Sequential greedy approximation for certain convex optimization problems, IEEE Trans. Inf. Theory 49 (3) (2003) 682–691.
[94] Difan Zou, et al., Gradient descent optimizes over-parameterized deep ReLU networks, Mach. Learn. 109 (3) (2020) 467–492.
27

http://refhub.elsevier.com/S0021-9991(23)00179-1/bib25E26E484ABCAA8B22FE8218C8FEF070s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib71B438E1730ED88991501F9C07F775D0s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib055AA62692DC20F98296919CE4A7A6A5s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib67F4470D38CD48C122E6F9FB6BD2BE2Bs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib67F4470D38CD48C122E6F9FB6BD2BE2Bs1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib37E292319DCD2DB37020F3AA71FC28ECs1
https://doi.org/10.4208/cicp.OA-2020-0191
https://doi.org/10.4208/cicp.OA-2020-0191
http://global-sci.org/intro/article_detail/cicp/18394.html
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibC1E384A582D4A3A2CF18007C99233581s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bibFE9CDFF8690989799B2082D7D4FDCCF2s1
http://refhub.elsevier.com/S0021-9991(23)00179-1/bib840659CD525978357B1AEEC66BAB71D9s1

	Greedy training algorithms for neural networks and applications to PDEs
	1 Introduction
	2 Basic setup and the model problem
	2.1 Variational formulation
	2.2 Residual formulation

	3 Basic machine learning theory for PDEs
	3.1 General objective
	3.2 A priori bounds and statistical learning theory
	3.3 Test error bounds

	4 Shallow neural network model classes
	4.1 Barron space regularity

	5 Greedy algorithms
	5.1 Relaxed greedy algorithm
	5.2 The orthogonal greedy algorithm

	6 Solving the argmax sub-problem
	6.1 Exactly solving the argmax sub-problem
	6.2 Numerical approximation of the argmax sub-problem

	7 Uniform error bounds
	7.1 Uniform Monte Carlo error
	7.2 Rademacher bounds for neural networks
	7.3 Numerical quadrature

	8 Balancing the error terms
	9 Numerical experiments
	9.1 Linear PDEs
	9.2 Nonlinear PDEs

	10 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

