
Journal of Computational Physics 473 (2023) 111692
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Efficient long-range convolutions for point clouds

Yifan Peng a,1, Lin Lin b,c, Lexing Ying d, Leonardo Zepeda-Núñez e,∗,2

a Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
b Department of Mathematics, University of California, Berkeley, United States of America
c Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
d Department of Mathematics, Stanford University, Stanford, CA, United States of America
e Department of Mathematics, University of Wisconsin-Madison, Madison WI 53706, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 February 2021
Received in revised form 16 September
2022
Accepted 10 October 2022
Available online 26 October 2022

Keywords:
Neural network
Long-range interactions
Non-uniform fast Fourier transform
Point cloud

The efficient treatment of long-range interactions (LRIs) for point clouds is a challenging
problem in many scientific machine learning applications. To extract global information,
one usually needs a large window size, a large number of layers, and/or a large number of
channels. This can often significantly increase the computational cost. In this work, we
present a novel neural network layer that directly incorporates long-range information
for a point cloud. This layer, dubbed the long-range convolutional (LRC)-layer, leverages
the convolutional theorem coupled with the non-uniform Fourier transform. In a nutshell,
the LRC-layer mollifies the point cloud to an adequately sized regular grid, computes its
Fourier transform, multiplies the result by a set of trainable Fourier multipliers, computes
the inverse Fourier transform, and finally interpolates the result back to the point cloud.
The resulting global all-to-all convolution operation can be performed in nearly-linear time
asymptotically with respect to the number of input points. The LRC-layer is a particularly
powerful tool when combined with local convolution as together they offer efficient
and seamless treatment of both short- and long-range interactions. We showcase this
framework by introducing a neural network architecture that combines LRC-layers with
short-range convolutional layers to accurately learn the energy and force associated with
a N-body potential. We also exploit the induced two-level decomposition and propose an
efficient strategy to train the combined architecture with a reduced number of samples.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Point cloud representations provide detailed information of objects and environments. The development of novel ac-
quisition techniques, such as laser scanning, digital photogrammetry, light detection and ranging (LIDAR), 3D scanners,
structure-from-motion (SFM), among others, has increased the interest of using point cloud representation in various appli-
cations such as digital preservation, surveying, autonomous driving [8], 3D gaming, robotics [38], and virtual reality [39]. In
return, this new interest has fueled the development of machine learning frameworks that use point clouds as input. His-
torically, early methods used a preprocessing stage that extracted meticulously hand-crafted features from the point cloud,

* Corresponding author.
E-mail address: lzepedanunez@google.com (L. Zepeda-Núñez).

1 Now at University of Chicago.
2 Now at Google Research.
https://doi.org/10.1016/j.jcp.2022.111692
0021-9991/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2022.111692
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111692&domain=pdf
mailto:lzepedanunez@google.com
https://doi.org/10.1016/j.jcp.2022.111692

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
which were subsequently fed to a neural network [7,47,48,2], or they relied on voxelization of the geometry [49,52,43,36].
The PointNet architecture [41] was the first to handle raw point cloud data directly and learn features on the fly. This
work has spawned several related approaches, aiming to attenuate drawbacks from the original methodology, such as Point-
Net++ [42], or to increase the accuracy and range of application [51,61,33,35].

Even though such methods have been quite successful for machine learning problems, they rely on an assumption of
locality, which may produce large errors when the underlying task at hand exhibits long-range interactions (LRIs). To capture
such interactions using standard convolutional layers, one can use wider window sizes, deeper networks, and/or a large
number of features, which may increase the computational cost significantly. Several approaches have been proposed to
efficiently capture such interactions in tasks such as semantic segmentation, of which the ideas we briefly summarize
below. In the multi-scale type of approaches, features are progressively processed and merged. Within this family, there exist
several variants, where the underlying neural networks can be either recursive neural networks [57], convolutional layers
[53,54] or autoencoders [55,12]. Some works have proposed skip connections, following an U-net [44] type architecture [68,
42], while others have focused on using a tree structure for the clustering of the points [30,59,19], or using an reference
permutohedral lattices to compute convolutions [26] whose results are interpolated back to the point cloud [50]. Although
these methods have been shown to be successful in a range of applications, when the task at hand presents symmetries,
such as rotation, translation, and permutation invariance, there is no systematic framework to embed those symmetries
into the algorithmic pipelines. Another line of work, relies on interpreting the point cloud as a graph and use spectral
convolutions [6,11], whose cost can scale super-linearly when dealing with LRIs.

In applications of machine learning to scientific computing, several classical multilevel matrix factorizations have been
rewritten in the context of machine learning [32], which have been adapted to handle LRIs in the context of end-to-end
maps using voxelized geometries in [16,15,28,17] resulting in architectures similar to U-nets [44], which have been recently
extended to point clouds in [34]. Note that due to underlying voxelization of the geometry, it may be difficult for these
networks to generalize when the resolution of the voxelization changes.

The efficient treatment of LRI for point clouds is also a prominent problem in many physical applications such as molec-
ular modeling and molecular dynamics simulation. While long-range electrostatic interactions are omnipresent, it has been
found that effectively short-ranged models can already describe the N-body potential and the associated force field [4,64,65]
for a wide range of physical systems. There have also been a number of recent works aiming at more general systems be-
yond this regime of effective short-range interactions, such as the work of Ceriotti and co-workers [22,23,37,45], as well as
the works of [56,31,24,46,25,13,5,63]. The general strategy is to build parameterized LRIs into the kernel methods or neural
network models, so that the resulting model can characterize both short-range, as well as long-range electrostatic interac-
tions. In the neural network context, the computational cost of treating the LRIs using these methods can grow superlinearly
with the system size.

The idea of this work is more closely aligned with the approaches in the molecular modeling community, which
constructs a neural network layer to directly describe the LRI. In particular, we present a new long-range convolutional
(LRC)-layer, which performs a global convolutional operation in nearly-linear time with respect to number of units in the
layer. By leveraging the non-uniform Fourier transform (NUFFT) [14,20,3] technique, the LRC-layer implements a convolution
with a point-wise multiplication in the frequency domain with trainable weights known as Fourier multipliers. The NUFFT
is based on the regular fast Fourier transform (FFT) [10] with a fast gridding algorithms, to allow for fast convolution on
unstructured data. This new LRC-layer provides a new set of descriptors that can seamlessly satisfy relevant symmetries. For
instance, when the kernel of the LRI is rotationally invariant, such symmetry can be directly built into the parameterization
of the Fourier kernel. Such descriptors can be used in tandem with the descriptors provided by short-range convolutional
layers to improve the performance of the neural network.

Efficient training of a neural network with the LRC-layer for capturing the information of LRIs is another challenging
problem. Short-range models can often be trained with data generated with a relatively small computational box (called the
small-scale data), and they can be seamlessly deployed in large-scale systems without significantly increasing the general-
ization error. On the other hand, long-range models need to be trained directly with data generated in a large computational
box (called the large-scale data), and the generation process of such large-scale data can be very expensive. For instance, in
molecular modeling, the training data is often generated with highly accurate quantum mechanical methods, of which the
cost can scale steeply as O(Nα), where N is the system size and α ≥ 3. Therefore it is desirable to minimize the number
of samples with a large system size. In many applications, the error of the effective short-range model is already modestly
small. This motivates us to propose a two-scale training strategy as follows. We first generate many small-scale data (cheaply
and possibly in parallel), and train the network without the LRC-layer. Then we use a small number of large-scale data, and
perform training with both the short- and long-range convolutional layers.

In order to demonstrate the effectiveness of the LRC-layer and the two-scale training procedure, we apply our method to
evaluate the energy and force associated with a model N-body potential that exhibit tunable short- and long-range interac-
tions in one, two and three dimensions. The input point cloud consists of the atomic positions, and the output data include
the N-body potential, local potential, and the force (derivative of the N-body potential with respect to atomic positions).
In particular, the local potential and the force can be viewed as point clouds associated with the atomic positions. The
evaluation of the N-body potential is a foundational component in molecular modeling, and LRI plays an important role
in the description of ionic systems, macroscopically polarized interfaces, electrode surfaces, and many other problems in
nanosciences [18]. Our result verifies that the computational cost of the long-range layer can be reduced from O(N2) using
2

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
a direct implementation, to O(N + NFFT logNFFT), where NFFT is the number of points of a reference grid. The value of
NFFT depends on the separation between the particles in the point cloud. When the particles in the point cloud are approx-
imately uniformly distributed, we have NFFT =O(N). Furthermore, we demonstrate that the force, i.e. the derivatives of the
potential with respect to all inputs can be also evaluated with O(N + NFFT logNFFT) cost. In terms of sample efficiency,
we find that for the model problem under study here, the two-scale training strategy can effectively reduce the number
of large-scale samples by over an order of magnitude to reach the target accuracy. This can be particularly valuable in the
context of molecular modeling, where accurate data are often obtained from first principle electronic structure calculations.
Such calculations are often very expensive for large scale systems, and the number of large-scale samples is thus limited.

This manuscript is organized as follows: Section 2 provides the algorithmic details of the LRC-layer. Section 3 provides the
setting for the objective function that we seek to learn. Section 4 details of the architectures we benchmark, and we provide
a complexity analysis of the LRC-layer showing the complexity reduction from quadratic to nearly-linear. Finally, Section 5
presents the numerical experiments showcasing the properties followed by Section 6, which provides the conclusions.

2. Long-range convolutional layer

Convolutional layers are perhaps the most important building-block in machine learning, due to their great success in
image processing and computer vision. A convolutional layer convolves the input, usually an array, with a rectangular mask
containing the trainable parameters. When the mask can be kept small (for example while extracting localized features), the
convolution layer is highly efficient and effective. A different way for computing a convolution is to use the convolutional
theorem as follows: (1) compute the Fourier transform of the input, (2) multiply with the Fourier transform of the mask,
i.e., the Fourier multiplier, and (3) inverse Fourier transform back. In this case, the trainable parameters are the DOFs of
the Fourier multipliers and the Fourier transforms are computed using the fast Fourier transform (FFT). This alternative
approach is particularly attractive for smooth kernels with large support (i.e., smooth LRIs) because the computational cost
does not increase with the size of the mask. To the best of our knowledge, this direction has not been explored for LRIs and
below we detail now to apply this to point clouds.

Given a point cloud {xi}Ni=1 ⊂ Rd and scalar weights { f i}Ni=1, we consider the problem of computing the quantity ui :=∑N
j=1 φθ (xi − x j) f j at each xi . Here the function φθ (·) is the kernel with a generic trainable parameter θ . At first glance the

cost of this operation scales as O(N2): we need to evaluate ui for each point xi , which requires O(N) work per evaluation.
By introducing a generalized function f (y) = ∑

i f i · δ(y − xi) and defining a function u(x) = ∫
φθ (x − y) f (y)dy, one notices

that ui is the value of u(x) at x = xi . The advantage of this viewpoint is that one can now invoke the connection between
convolution and Fourier transform

û(k) = φ̂θ (k) · f̂ (k), (1)

where φ̂θ (k) is a trainable Fourier multiplier. This approach is suitable for point clouds since the trainable parameters are
decoupled from the geometry of the point cloud. To make this approach practical, one needs to address two issues: (1) the
non-uniform distribution of the point cloud and (2) how to represent the multiplier φ̂θ (k).

2.1. Non-uniform distribution of the point cloud

Equation (1) suggests that one can compute the convolution directly using the convolution theorem, which typically
relies on the FFT to obtain a low-complexity algorithm. Unfortunately, {xi}Ni=1 do not form a regular grid, thus FFT can not
be directly used. We overcome this difficulty by invoking the NUFFT [14] (see Appendix B for further details), which serves
as the corner-stone of our instance of the LRC-layer.3

The LRC-layer is summarized in Algorithm 1, where τ is chosen following [14]. The inputs of this layer are the point
cloud {xi}Ni=1 and the corresponding weights { f i}Ni=1. The outputs are ui ≡ u(xi) for i = 1, ..., N . The number of elements in
the underlying grid NFFT = LdFFT is chosen such that the kernel is adequately sampled and the complexity remains low. As
is will be shown in Section 5, one only needs a relatively small LFFT . Even though the precise number is problem-specific,
given that the goal is to approximate LRIs that are supposedly smooth, it can be captured with a relatively small number of
Fourier modes.

The LRC-layer is composed of three steps as depicted in Fig. 1: (1) It computes the Fourier transform from the point
cloud to a regular grid using the NUFFT algorithm (lines 2 − 5 in Algorithm 1 and showcased in Fig. 2). (2) It multiplies the
result by a set of trainable Fourier multipliers (line 6 in Algorithm 1). (3) It computes the inverse Fourier transform from
the regular grid back to the point cloud (lines 7 − 9 in Algorithm 1).

Within the LRC-layer in Algorithm 1, the only trainable component is the parameter θ of the Fourier multiplier φ̂θ (k).
The remaining components, including the mollifier gτ (·) and the Cartesian grid size, are taken to be fixed. One can, in

3 We point out, that one could in practice use an fast summation algorithm, such as the fast multipole method (FMM) introduced by [21], to evaluate ui .
This would results in similar complexities if the kernel is fixed. However, the algorithm contains many different branches (e.g., if-statements) that depend
on the kernel, which itself is trainable and therefore will evolve during the training stage. This would render the implementation much more cumbersome,
particularly when computing derivatives.
3

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
Algorithm 1 Long-range convolutional layer.
Input: {xi}Ni=1, { f i}Ni=1

Output: {xi}Ni=1, {ui}Ni=1, where ui = ∑N
j=1 f jφθ (xi − x j).

1: Define the generalized function: f (x) = ∑N
j=1 f jδ(x − x j)

2: Mollify the Dirac deltas: fτ (x) = ∑N
j=1 f j gτ (x − x j), where gτ is defined in Appendix B

3: Sample in a regular grid: fτ (x�) = ∑N
j=1 gτ (x� − x j) for x� in grid of size LFFT in each dim

4: Compute FFT: Fτ (k) = FFT(fτ)(k)

5: Re-scale the signal: F (k) =
√

π
τ ek

2τ Fτ (k)

6: Multiply by Fourier multipliers: v̂(k) = φ̂θ (k) · F (k)

7: Re-scale the signal: v̂−τ (k) =
√

π
τ ek

2τ v̂(k)

8: Compute IFFT: u−τ (x�) = IFFT(v̂−τ)(x) for x� on the regular grid
9: Interpolate to the point cloud: ui = u(xi) = u−τ ∗ gτ (xi)

Fig. 1. Diagram of the LRC-layer. Starting from the cloud point {xi}Ni=1 with the scalar values { f i}Ni=1, we apply the NUFFT, to obtain the Fourier transform
of f on a grid, we multiply it with the trainable Fourier multiplier, φ̂, and the use the inverse NUFFT to compute the values back to the point cloud.

Fig. 2. Diagram of the NUFFT. Starting from the cloud point {xi}Ni=1, we form the mollified function fτ , sample it in a regular grid, compute the Fourier
transform Fτ (k) of the sampled function. Finally in order to obtain F (k), we rescale the signal to undo the spatial convolution.

principle, train them as well, but it comes with a much higher cost. Among the steps of Algorithm 1, the sampling operator,
the rescaling operator, the interpolation operator, and the Fourier transforms, are all linear and non-trainable. Therefore,
derivative computations of backpropagation just go through them directly.

Algorithm 1 is presented in terms of only one single channel or feature dimension, i.e., f j ∈ R and ui ∈ R. However, it
can be easily generalized to multiple channels, for example f j ∈Rd1 and ui ∈Rd2 . In this case, the Fourier multiplier φ̂θ (k)
at each point k is a d2 × d1 matrix, and all Fourier transforms are applied component-wise.

2.2. Representation of the Fourier multiplier

A useful feature of the LRC-layer is that it is quite easy to impose symmetries on the Fourier multipliers. In fact, many
recent research efforts have sought to incorporate symmetries in the neural network representation (see e.g., [62,60,65,
58,9]). By restricting the model to satisfy these symmetries, the neural network model can often be more accurate and
4

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
require fewer training data. Symmetry-preserving neural networks have found applications in quantum chemistry [40],
image processing [47,48], molecular dynamics [66], among many other.

In the case of the LRC-layer, if the convolution kernel φθ (·) is constrained to have parity symmetry, rotational symmetry,
smoothness or decay properties, these constraints can be imposed accordingly on the coefficients of the Fourier multipliers
φ̂θ (k). When the size of the training data is limited, it is often necessary to reduce the number of trainable parameters in
order to regularize the kernel. For example, we may parameterize the Fourier multiplier as a linear combination of several
predetermined functions on the Fourier grid. This is the procedure used in molecular modeling [22,56,31], and also in our
numerical examples in equation (23). We also remark that the LRC-layer described here can be applied to point clouds a
way similar to a standard convolution layer applied to images and multiple LRC-layers can be composed on top of each
other.

3. Learning the N-body potential

To demonstrate the effectiveness of the LRC-layer, we consider the problem of learning the energy and force associated
with a model N-body potential in the context of molecular modeling. As mentioned in Section 1, the potential evaluation
often invokes expensive ab-initio calculations that one would like to bypass for efficiency reasons.

In general, the cost of evaluating the N-body potential scales quadratically with respect to the number of particles in the
system. One usual technique to reduce the complexity is to leverage the nearsightedness principle, which postulates that
the most relevant interactions tend to be localized, thus one can neglect the long-range interactions while only incurring
on a negligible loss in accuracy. In several cases, however, long range interactions are needed to obtain the bulk properties
of interest [67]. Due to the difficulty of tuning such systems, we use an analytical model which allows us to seamlessly
transition form short- to long-range interactions.

The setup of this learning problem is as follows. First, we assume access to a black-box model potential, which consists of
both short- and long-range interactions. However, we assume that the internal parameters of the potential are inaccessible to
the training architecture and algorithm. A set of training samples are generated by the model, where each sample consists
of a configuration of the points {xi} along with the potential and force. Second, we set up a deep neural network that
includes (among other components) the LRC-layer for addressing the long-range interaction. This network is then trained
with stochastic gradient type of algorithms using the collected dataset. The trained network can then be used for predicting
the potential and forces for new point cloud configurations. These first component is described below, whereas the second
component is described in detail in Section 4.

3.1. Black-box model problem

Model We suppose that 	 = [0, L]d , and we denote the point cloud by x = {xi}Ni=1 ⊂ 	 ⊂ Rd , for d = 1, 2, or 3. We define
the total energy, the local potential and the forces acting on particle j by

U =
∑

1≤i< j≤N

ψ(xi − x j), U j(x) =
∑
i �= j

ψ(xi − x), and F j = −∂xU j(x)|x=x j , (2)

respectively, where the interaction kernel ψ(r) is a smooth function, besides a possible singularity at the origin and de-
creases as ‖r‖ → ∞. In this case we use two different kernels, the exponential and screened-Coulomb kernel, which are
described in what follows.

Exponential kernel: Suppose 	 be the torus [0, L]d and that x = {xi}Ni=1 ⊂ 	 ⊂ Rd for d = 1, 2, or 3. The exponential
kernel is defined as

ψμ(x − y) = e−μ‖x−y‖, (3)

where ‖ · ‖ is the Euclidean norm over the torus. We define the total energy and the potential as

U =
N∑
i< j

e−μ‖xi−x j‖ and U j(x) =
N∑
i �= j

e−μ‖xi−x‖, (4)

respectively. The forces are given by

F j = −∂x j U j(x j) = −
N∑
i �= j

xi − x j

‖xi − x j‖μe−μ‖xi−x j‖. (5)

Due to the exponential decay in the kernel only particles that are at O(μ−1) distance will interact. For particles that are
farther away we can effectively neglect them.

Screened-Coulomb kernel: In 3D, the screened-Coulomb potential with free space boundary condition is given by

ψμ(x − y) = 1
e−μ‖x−y‖. (6)
4π‖x − y‖
5

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
Fig. 3. The force contribution to particle x100 from other particles. Results are shown for two different characteristic interaction lengths.

Over the torus [0, L]d , the kernel ψμ(x − y) is the Green’s function Gμ(x, y) defined via

�Gμ(x, y) − μ2Gμ(x, y) = −δy(x), (7)

with the periodic boundary condition. In contrast with the exponential kernel, which is smooth up to a weak singularity at
the origin, the screened-Coulomb potential exhibits an essential singularity at the origin. This type of singularities is found
in many classical potentials [27], and it increases the impact of short-range interactions, while allowing the parameter μ to
tune the LRIs. In order to compute the screened-Coulomb potential numerically, a spectral method is used: in particular,

ψμ(x − y) = Gμ(x, y) = F−1

(
eik·y

‖k‖2 + μ2
χε(k)

)
, (8)

where F−1 stands for the inverse Fourier transform and χε(k) is a smoothing factor, usually Gaussian, to numerically
avoid the Gibbs phenomenon. Similar to the exponential case, the parameter μ controls the localization of the potential. In
addition, the derivatives are taken numerically in the Fourier domain.

Visualization: To visualize the relation between μ and the characteristic interaction length in 1D, consider a given
particle, e.g., x100 and compute the force contribution from the other particles. Fig. 3 shows that force contribution is
extremely small outside a small interaction region for μ = 5.0 while the interaction region for μ = 0.5 is much larger.

Sampling We define a snapshot as one configuration of particles, x� = {x[�]
j }Nj=1, together with the global energy U [�]

and the forces F [�] , where � is the index representing the number in the training/testing set. For simplicity, we suppose
that the number of particles at each configuration is the same. We sample the configuration of particles x� randomly, with
the restriction that two particles can not be closer than a predetermined value δmin in order to avoid the singularity. After
an admissible configuration is computed we generate the energy and forces following the procedure above. This process is
repeated until obtaining Nsample snapshots.

4. Architecture

Our network architecture consists of separate descriptors for the short- interactions and long-range interactions, respec-
tively. To capture the short-range interaction, we compute a local convolution using for each point only its neighboring
points within a ball of predetermined radius. For the LRIs, we compute an all-to-all convolution using the LRC-layer in-
troduced in Section 2, whose output is distributed to each particle and then fed to a sequence of subsequent layers. In
this section we provide all relevant details corresponding to the architecture. We discuss the different building blocks, in
particular, the descriptors, and how they are used to build the different networks. In addition, we provide details of how
the derivatives can be taken in quasi-linear time in the case of the full-range network, and provide the complexity of the
different operations.

4.1. Descriptors

Short-range descriptor For a given particle xi , and an interaction radius R , we define Ii , the interaction list of xi , as the
indices j such that ‖xi − x j‖ < R where ‖ · ‖ stands for the distance over the torus [0, L]d . I.e., Ii contains the indices of
the particles that are inside a ball of radius R centered at xi . Thus for each particle xi we build the generalized coordinates
si, j = xi − x j , and the short-range descriptor

Di
sr =

∑
j∈Ii

fθ (si, j), (9)

where fθ : Rd → Rmsr is a function represented by a neural network specified in what follows, where msr is the number
of short-range features. By construction fθ (s) is smooth and it satisfies fθ (s) = 0 for ‖s‖ > R .
6

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
Fig. 4. The structure of short-range network for 1D case.

To simplify the discussion, we assume that there exists a maximal number of neighbors NmaxNeigh for each xi . We stack
the neighbors in a tensor whose dimensions are constant across different particles. This value is chosen to be sufficiently
large to cover the number of elements in the interaction list. If the cardinality of Ii is less than NmaxNeigh , we pad the
tensor with dummy values.

In the 1D case the generalized coordinates are defined as

si, j = ‖xi − x j‖, and ri, j = 1

‖xi − x j‖ (10)

for j ∈ Ii .
To characterize fθ in equation (9) we introduce two fully-connected neural networks fθ1 , fθ2 : R+ → Rmsr/2. Each net-

work consists of five layers with the number of units doubling at each layer and ranging from 2 to 32. The activation
function after each layer is tanh and the initialization follows Glorot normal distribution.

For particle xi the short-range descriptor is defined as the concatenation of

Di
1,sr =

∑
j∈Ii

fθ1(ŝi, j)r̂i, j and Di
2,sr =

∑
j∈Ii

fθ2(r̂i, j)r̂i, j, (11)

where r̂i, j, ̂si, j are the normalized copies of ri, j and si, j with mean zero and standard deviation equals to one. The mean
and standard deviation are estimated by using a small number of snapshots. We multiply the network’s output fθ by r̂i, j
(which is zero if j is a dummy particle). This procedure enforces a zero output for particles not in the interaction list. The
construction satisfies the condition fθ (s) = 0 for ‖s‖ > R .

In the short-range network, one concatenates the two descriptor above and feeds them particle-wise to the short-range
fitting network. The fitting network Fsr : Rmsr → R is a residual neural network (ResNet) with six layers, each with 32
units. The activation function and initialization strategy are the same as the ones for the short-range descriptors. Fig. 4
shows the detailed architecture of the short-range network.

UNN
sr =

N∑
i=1

F(Di
sr) =

N∑
i=1

F(Di
1,sr,Di

2,sr) (12)

In 2D and 3D, there is a slight difference in the generalized coordinates: we compute

si, j = xi − x j

‖xi − x j‖ and ri, j = 1

‖xi − x j‖ , (13)

where si, j is a vector now. The local descriptors are defined in the following forms:

Di
1,sr =

∑
j∈Ii

fθ1(si, j)r̂i, j and Di
2,sr =

∑
j∈Ii

fθ2(r̂i, j)r̂i, j (14)

Long-range descriptor We feed the LRC-layer with the raw point cloud represented by {xi}Ni=1 with weights { f i}Ni=1,
which for simplicity can be assumed to be equal to one here, i.e., f i = 1 for i = 1, ..., N . The output of the layer is a two-
dimensional tensor uk(xi) with i = 1, . . . , N and k = 1, . . . , Kchnls . Then for each xi , its corresponding slice given by the
vector [u1(xi), u2(xi), · · · , uKchnls (xi)], is fed to a function gθ : RKchnls → Rmlr , which is represented by a neural network
7

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
Fig. 5. (left) The short-range network architecture. (right) The full-range network architecture.

with non-linear activation functions. Here θ is a generic set of trainable parameters and mlr is the number of long-range
features. The descriptor for particle xi , which depends on all the other particles thanks to the LRC-layer, is defined by

Di
lr = gθ (u

1(xi),u
2(xi), · · · ,uKchnls(xi)) (15)

4.2. Networks

Short-range Network When only the short-range interaction is present, the short-range descriptor for each particle is
fed particle-wise to a fitting network Fsr : Rmsr →R. In this case Fsr(Di

sr) only depends on particle xi and its neighbors.
Finally, the contributions from each particle are accumulated so the short-range neural network (NN) energy and forces are
given by

UNN
sr =

N∑
i=1

Fsr(Di
sr) and

(
FNNsr

)
j = −∂x j U

NN
sr (16)

respectively (see Fig. 5(left)). The derivatives are computed using Tensorflow [1] directly. This network as shown by [65] is
rotation, translation, and permutation invariant [58].

We point out that this architecture can be understood as a non-linear local convolution: for each particle i one applies
the same function fθ to each of its neighbors. The result is then pooled into the descriptor Di

sr , then processed locally by
Fsr (akin to a non-linear convolution with a filter of width one), and finally pooled globally into UNN

sr .
Full-range network When both the short-range and long-range interactions are present, the long range descriptor and

the local descriptor are combined and fed particle-wise to a fitting network F : Rmsr+mlr → R to produce the overall
neural network (NN) energy and forces

UNN =
N∑

i=1

F(Di
sr,Di

lr), and
(
FNN

)
j = −∂x j U

NN (17)

respectively (see Fig. 5(right)). Following Section 2, the long-range descriptor is translation invariant by design and can be
easily made rotation invariant. Furthermore, it is well known [58] that this construction is permutation invariant. From the
structures shown in Fig. 5 (we provide more detailed schematics in Fig. 4 and Fig. 6), it is clear that we can recover the first
architecture from the second, by zeroing some entries at the fitting network, and removing the LRC-layer.

4.3. Derivatives

For the computation of the forces in equation (16) one needs to compute the derivatives of the total energy UNN with
respect to the inputs, in nearly-linear time. The main obstacle is how to compute the derivatives of the LRC-layer with
respect to the point cloud efficiently. To simplify the notation, we only discuss the one-dimensional case, i.e., d = 1, but the
argument can be seamlessly extended to higher dimensional cases, d > 1.

Recall that ui = ∑N
j=1 φθ (xi − x j) f j , then the Jacobian of the vector u with respect to the inputs is given by

(∇u)i, j := ∂ui

∂x j
=

{ − f jφ
′
θ (xi − x j), if j �= i,∑

k �=i fkφ
′
θ (xi − xk), if j = i. (18)

As it will be explained in the sequel, for the computation of the forces in equation (16) one needs to compute the application
of the Jacobian of u to a vector. For a fixed vector v ∈RN , the product (∇u) · v can be written component-wise as

((∇u) · v)i = −
∑
j �=i

v j f jφ
′
θ (xi − x j) + vi

∑
j �=i

f jφ
′
θ (xi − x j),

= −
N∑
j=1

v j f jφ
′
θ (xi − x j) + vi

N∑
j=1

f jφ
′
θ (xi − x j),
8

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
where we have added ±vi f iφ′(0) in the last equation and then distributed it within both sums. Let us define the following
two long-range convolutions

wi = −
N∑
j=1

v j f jφ
′
θ (xi − x j), and pi =

N∑
j=1

f jφ
′
θ (xi − x j), (19)

each of which can be performed in O(N + NFFT logNFFT) steps using the NUFFT algorithm combined with the convolution
theorem. In this case the derivative of φ can be computed numerically in the Fourier domain to a very high accuracy. Now
one can leverage the expression above to rewrite (∇u) · v as

((∇u) · v)i = wi + vi pi, (20)

which can then be computed in nearly-linear time. The same is also true for v · (∇u).

4.4. Complexity

It is clear that the energy can be evaluated in nearly-linear complexity. In what follows we show that the force com-
putation is also of nearly-linear. For simplicity we focus on the one-dimensional network and assume that Kchnls = 1,
O(msr) =O(mlr) =O(1) and that the depth of the neural networks is O(1). As defined in the prequel the forces are given
by FNN = −∇xUNN , which can be written component wise as

FNNj = −∂x j U
NN = −

N∑
i=1

[
∂1F(Di

sr,Di
lr)∂x jD

i
sr + ∂2F(Di

sr,Di
lr)g

′
θ (ui)∂x j ui

]
, (21)

or in a more compact fashion as

FNN = −∇UNN = − (vsr · Dsr + vlr · ∇u) . (22)

Here vsr , and vlr are vectors defined component-wise as (vsr)i = ∂1F(Di
sr, Di

lr), and (vlr)i = ∂2F(Di
sr, Di

lr)g′
θ (ui). In

addition (Dsr)i, j = ∂x jDi
sr and ∇u is defined above.

The first term in the right-hand side is easy to compute, given that Dsr is sparse: the i, j entry is non-zero only if the
particle xi is in the interaction list of x j . Given that the cardinality of the interaction list is bounded, Dsr has O(N) non-zero
entries in which each entry requires O(1) work, thus the first term in the right-hand side of equation (22) can be computed
in O(N). At first glance the complexity of second term seems to be much higher. However, as discussed above, by using
equation (20), we can apply the matrix (or its transpose) to a vector in O(N + NFFT logNFFT) time and the computation of
vector vlr requires O(1) work per entry, thus resulting in a complexity of O(N + NFFT logNFFT) for computing the second
term in equation (22). Finally, adding both contributions together results in an overall O(N + NFFT logNFFT) complexity for
the forces.

To summarize, both the computation of the energy and the forces can be performed in O(N) time provided that the
particles are not highly clustered, i.e., the pair-wise distance between particles is bounded from below by a constant. This
stems from the expression for LFFT , which depends on the separation of the particles in the point cloud [14]. In addition,
we point out that the bottleneck on the NUFFT, the spread of the Dirac deltas to the Fourier grid by mollification. For each
particle one needs to perform a search of the nearby points and then compute distances and then evaluate the mollification
kernel. This is a very memory-intensive operation, which is often order of magnitude slower than floating point operations
in modern CPUs.

5. Numerical experiments

The loss function is the mean squared error of the forces

1

Nsample

Nsample∑
�=1

N∑
i=1

∥∥FNNθ (x[�]
i) − F [�]

i

∥∥2
,

where the i-index runs on the points of each snapshot, and � runs on the test samples. We also generate 100 snapshots
of data to test the performance of network. This particular loss could lead to shift the potential energy by up to a global
constant, which can be subsequently fixed by including the error of the energy in the loss [65]. For the testing stage of we
use the relative �2 error of the forces as metric, which is defined as

εrel :=
√√√√∑

�,i ‖F [�]
i − FNNθ (x[�]

i)‖2∑ ‖F [�]‖2 .
�,i i

9

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
Fig. 6. The structure of full-range network.

The training parameters are listed below.
The experiments shown in the sequel are designed to provide a fair comparison with state-of-the-art methods for local-

ized interactions. They showcase that, by adding a single LRC-layer, one can outperform these methods significantly.
The kernels ψ used in the experiment typically exhibit two interaction lengths: ψ(·) ≡ α1ψ

μ1 (·) +α2ψ
μ2 (·), where each

of ψμ1 and ψμ2 is either a simple exponential kernel or screened-Coulomb kernel (also known as the Yukawa kernel).
For each of ψμ1 and ψμ2 , the superscripts denote the reciprocal of the interaction length, i.e., length scale ∼ μ−1

1 or
∼ μ−1

2 . Without loss of generality, μ1 > μ2, so that μ1 corresponds to the short-range scale and μ2 the long-range scale.
We also assume that 0 ≤ α2 ≤ α1 and α1 + α2 = 1, so that the effect of the long-range interaction can be smaller in
magnitude compared to that of the short-range interaction. This assumption reflects the fact that in many cases, the short-
range interactions are dominant, which in return has been used by recent ML-based methods to neglect the long-range
interactions with only a marginal loss of accuracy (see, e.g., [4,64]). In the special case of α2 = 0, the kernel exhibits only a
single scale ∼ μ−1

1 . The precise definition of the kernel depends on the spatial dimension and boundary conditions, which
are explained in Section 3.

For a fixed set of kernel parameters (μ1, μ2, α1, α2), we consider two types of data: large- and small-scale data, gener-
ated in the domains 	lr and 	sr respectively (details to be defined in each experiment).

The Fourier multiplier within the LRC-layer is parameterized as

φ̂β,λ(k) = 4πβ

|k|2 + λ2
, (23)

where β and λ are trainable parameters. This is a simple parameterization, and a more complex model can be used as well
with minimal changes to the procedure. For all experiments shown below, two kernel channels are used and as a result
there are only four trainable parameters in the LRC-layer.

The numerical results aim to show namely two properties: i) the LRC-layer is able to efficiently capture LRIs, ii) the
two-scale training strategy can reduce the amount of large-scale data significantly, and iii) the accuracy of the LRC-layer
depends weakly on the number of Fourier modes, provided that the multiplier is properly sampled. To demonstrate the
first property, we gradually increase the interaction length of the kernel. The accuracy of the short-range network with a
fixed interaction radius is supposed to decrease rapidly, while using the LRC-layer improves the accuracy significantly. To
show the second property, we generate data with two interaction lengths and train the full-range network using the one-
and two-scale strategies. To show the third property we generate data with two interactions lengths and we train similar
networks but with different values of NFFT . Finally, we also aim to demonstrate that the LRC-layer is competitive against a
direct convolution in which the all-to-all computation is performed explicitly.

For the training procedure we use the Adam optimizer [29] along with an exponential scheduler. The learning rate with
the initial learning rate taken to be 0.001 and, for every 10 epochs, it decreases by a factor of 0.95. In order to balance the
computational time and the accuracy, a multi-stage training is adopted, where at each stage we modify the batch-size and
the number of epochs. In particular, four stages are used: we start using a batch size of 8 snapshots and train the network
200 epochs and then at each stage we double both the size of the batch size and the number of epochs. In the two-scale
training strategy, the same training parameters defined above are used for each stage.
10

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
Table 1
Relative testing error for trained screened-Coulomb type 1D models with α1 = 1, α2 = 0, and
varying μ1. Notice that μ2 can be arbitrary here given that α2 = 0.

μ1 0.5 1.0 2.0 5.0 10.0

short-range network 0.05119 0.02919 0.00597 0.00079 0.00032
full-range network 0.00828 0.00602 0.00336 0.00077 0.00054

Table 2
Error with respect to NFFT in the 1D case.
NFFT None 63 125 251 501

Relative testing error 0.06143 0.00536 0.00546 0.00545 0.00539

Fig. 7. (left) Testing error of the trained 1D model with respect to the number of snapshots using the one- and two-scale training strategies using data
generated with the screened-Coulomb potential and parameters μ1 = 5.0, μ2 = 0.5 (right) normalized wall-time for the LRC and the direct all-to-all
computation.

5.1. One-dimensional examples

In the first set of experiments, the domain 	 = [0, 5], N = 20 and Nsample = 1000, where Nsample is the number
of snapshots and N is the total number of points in each snapshot. For the kernel, we set α2 and vary μ1 to generate
datasets at different interaction lengths. For each dataset we train both short-range and full-range networks using the
one-scale data. The results are summarized in Table 1, where we can observe that as the characteristic interaction length
increases, the accuracy of the short-range network decreases while using the full-range network can restore the accuracy.
This experiment shows that local networks are often highly accurate when the interactions are localized, but the accuracy
quickly deteriorates as the interaction length increases (i.e. as μ1 decreases).

For the second set of experiments we used two sets of kernel parameters: one heavily biased towards a localized inter-
action length, and another in which both interaction lengths are equally weighted. For each set of kernel parameters, we
generate 10, 000 small-scale snapshots using 	sr = [0, 5] and N = 20, and a large number of large-scale snapshots using
	lr = [0, 50] and N = 200 particles. The interaction radius R = 1.5, δmin = 0.05, and NFFT is 501. We train the network
with the one- and two-scale training strategies described in the prequel. Fig. 7 (left) depicts the advantage of using the
two-scale training strategy: we obtain roughly the same accuracy at a fraction of the number of large-scale training sam-
ples. We observe that when the number of large-scale training samples is sufficiently large, the resulting test accuracy is
independent of the training strategy. We also observe that the training dynamic is stable with respect to different random
seeds.

For the third set of experiments we measure the impact of NFFT on the approximation error. We test a screened-Coulomb
type potential with parameters μ1 = 5.0, μ2 = 0.5, α1 = 0.5, α2 = 0.5, and Nsample = 1000. The domain 	 is [0, 50] and
N = 200. We run the one-scale training procedure with varying NFFT (the number of Fourier multipliers), starting from
NFFT = 63 and doubling them until NFFT = 501. Table 2 shows that the errors are relatively insensitive to the value of
NFFT . The accuracy achieved by the architecture without the LRC-layer (denoted as None in Table 2) is added in order to
demonstrate that the architecture is indeed capturing the LRIs.

We compare the LRC-layer with a direct all-to-all computation. We benchmark the wall time of both layers, with in-
creasingly number of particles. To account for implementation effects we normalize the wall times in Fig. 7 (right) and the
results corroborate the complexity claims made in Section 2.
11

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
Table 3
Relative testing error for trained screened-Coulomb type 2D models with α1 = 1, α2 = 0, and
varying μ1. Again μ2 can be arbitrary given that α2 = 0.

μ1 1.0 2.0 5.0 10.0

short-range network 0.07847 0.02332 0.00433 0.00242
full-range network 0.00785 0.00526 0.00363 0.00181

Table 4
Error with respect to NFFT in the 2D case.
NFFT None 212 312 452 632

Relative testing error 0.01872 0.00202 0.00168 0.00153 0.00177

Table 5
Values of parameters λ1 and λ2 after training with respect to NFFT .

1D case 2D case

NFFT 63 125 251 501 212 312 452 632

λ1 2.697 3.689 4.181 4.599 3.608 3.664 3.096 2.955
λ2 0.522 0.525 0.517 0.519 0.926 1.039 1.088 1.082

5.2. Two-dimensional examples

We perform the same experiments as in the one-dimensional case. We fix 	 = [0, 15]2, N = 450 and Nsample = 10000.
The results are summarized in Table 3, which shows that as μ decreases, the full-range network outperforms the short-
range one.

For the second set of experiments, R = 1.5, δmin = 0.05, and NFFT is 312. For the small-scale data, 	sr = [0, 3]2, N = 18,
and Nsample = 10, 000. For the large-scale data, 	lr = [0, 15]2, N = 450. Similarly to the 1D case, we train the networks
with both strategies using different amounts of large-scale data. The results summarized in Fig. 8 show that the two-scale
strategy efficiently captures the LRIs with only a small number of the long-range training samples. Analogously to the 1D
case, we can observe that for sufficiently large-scale training samples the resulting test accuracy is identical regardless of
the training strategy used. Also similar to Fig. 7 (left), we find that the lowest achievable test error is larger in Fig. 8 (right,
with a larger α2) than that in Fig. 8 (left, with a smaller α2). Nonetheless, we observe that the test error of the two-scale
training strategy becomes less sensitive with respect to the number of training samples when α2 becomes larger, i.e. the
LRI becomes more prominent.

For the third set of tests, we use a screened-Coulomb type potential is tested with μ1 = 10.0, μ2 = 1.0, α1 = 0.9,
α2 = 0.1. Here 	 = [0, 5]2, N = 50 and Nsample = 1000. Starting with NFFT = 212, we steadily increase its value and repeat
the same training procedure. The results are summarized in Table 4 where one observes the same trend as in the one-
dimensional case.

We recall that the Fourier multipliers are parametrized following

φ̂β,λ(k) = 4πβ

‖k‖2 + λ2
, (24)

where β and λ are two trainable parameters with λ providing a measure of the decay in space. Therefore, NFFT only
determines the number of Fourier modes and not the parameters of the ansatz. As long as the Fourier kernel is properly
sampled, the method is able to compute the correct characteristic interaction length.

One can observe this phenomenon in the experiment above, in which we extract the terminal value after training of the
parameters λ1 and λ2 that correspond to the two channels in the LRC-layer, as summarized in Table 5. We observe that the
value of λ2 is very close to that of μ2 (that is equal to 0.5 for 1D and 2.0 for 2D), which is responsible for the LRIs even for
small values of NFFT . This proves that we can accurately capture the LRIs, in particular, the learned kernel is able to match
the representation of ψμ in Fourier domain, which is given in equation (8).

5.3. Three-dimensional examples

The domain 	 is [0, 3]3 with 2 points in each of the 27 unit cells. The other parameters are the interaction radius
R = 1.0, δmin = 0.1, and Nsample = 1000. The Fourier domain used is of size NFFT = 253. The results in Table 6 demonstrate
that full-range network is capable of maintaining good accuracy for a wide range of characteristic interactions lengths.
12

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
Fig. 8. Testing error of the trained 2D model with respect to the number of snapshots using the one- and two-scale training strategies using both screened-
Coulomb and exponential potentials with μ1 = 10, μ2 = 1 : (left) α1 = 0.9, and α2 = 0.1; and (right) α1 = 0.5, and α2 = 0.5.

Table 6
Relative testing error for trained exponential type 3D models with α1 = 1, α2 = 0, and varying
μ1. Again μ2 can be arbitrary given that α2 = 0.

μ1 5 7.5 10

short-range network 0.06249 0.01125 0.00175
full-range network 0.00971 0.00411 0.00151

6. Conclusion

We have presented an efficient long-range convolutional (LRC) layer, which leverages the non-uniform fast Fourier trans-
form (NUFFT) to reduce the cost from quadratic to nearly-linear with respect to the number of degrees of freedom. We
have also introduced a two-scale training strategy to effectively reduce the number of large-scale samples. This can be par-
ticularly important when the generation of these large-scale samples dominates the computational cost. While this paper
demonstrates the effectiveness of the LRC-layer for computing the energy and force associated with a model N-body poten-
tial, we expect the LRC-layer to become a useful component in designing neural networks for modeling real chemical and
materials systems, where the LRI cannot be accurately captured using short ranged models.

CRediT authorship contribution statement

Yifan Peng: Investigation, Methodology, Software, Writing, Reviewing and Editing. Lin Lin: Conceptualization, Investi-
gation, Methodology, Writing, Reviewing and Editing Lexing Ying: Conceptualization, Investigation, Methodology, Writing,
Reviewing and Editing. Leonardo Zepeda-Nunez: Conceptualization, Investigation, Methodology, Software, Writing, Review-
ing and Editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The work of L.L. is partially supported by the Department of Energy under Grant No. DE-SC0017867 and the CAMERA
program, and by the National Science Foundation under Grant No. DMS-1652330. The work of L.Y. is partially supported
by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery
through Advanced Computing (SciDAC) program and also by the National Science Foundation under award DMS-1818449.
The work of L.Z.-N. is partially supported by the National Science Foundation under the grant DMS-2012292, and by NSF
TRIPODS award 1740707.

Appendix A. Notation

A table of notations is summarized in Table A.7.
13

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
Table A.7
Symbols introduced in the current paper with their corresponding meaning.

Notation

Symbol Meaning

Data

d Spatial dimension of the problem
	 = [0, L]d ⊂Rd Computational Domain
{xi}Ni=1 ⊂ 	 Point cloud
N Number of points in the point cloud
Nsample Number of snapshots for training
ψμ Interaction kernel
μ Inverse characteristic interaction length
U Potential
F j Forces exerted over the j-th particle

Networks

Di Descriptor associated to xi
F Fitting Network
θ Generic trainable parameters
fθ Trainable function inside the descriptor
gθ Trainable function inside the fitting network
R Interaction radius

LRC-layer

gτ Mollifier of the Dirac deltas defined in equation (B.2)
τ Broadening factor in the mollifier
FFT, IFFT Fast Fourier transform and its inverse
φθ Kernel with trainable parameters θ

φ̂θ Fourier transform of the kernel
LFFT Number of Fourier modes per dimension
NFFT = LdFFT . Total number of Fourier modes

Appendix B. NUFFT

In this section we provide further details for the NUFFT implementation. Suppose that the input of the NUFFT is given
by {xi}Ni=1 ⊂ Rd , where each point has a given associated weight f i . The first step is to construct the weighted train of Dirac
deltas as

f (x) =
N∑
j=1

f jδ
(
x− x j

)
. (B.1)

We point out that in some of the experiments f j simply equals to 1. One then defines a periodic Gaussian convolution
kernel

gτ (x) =
∑
�∈Zd

e−‖x−�L‖2/4τ , (B.2)

where L is the length of the interval and τ determines the size of mollification. In practice a good choice is τ = 12(L
2π LFFT

)2

[14], where LFFT is the number of points in each dimension and NFFT = LdFFT . We define

fτ (x) = f ∗ gτ (x) =
∫

[0,L]d
f (y)gτ (x − y)dy =

N∑
j=1

f j gτ (x− x j). (B.3)

With the Fourier transform defined as

Fτ (k) = 1

Ld

∫
[0,L]d

fτ (x)e−i2πk·x/Ldx (B.4)

for k ∈Zd , we compute its discrete counterpart

Fτ (k) ≈ 1

NFFT

∑
d

fτ (Lm/LFFT) e
−i2πk·m/LFFT (B.5)
m∈[0,LFFT−1]

14

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
≈ 1

NFFT

∑
m∈[0,LFFT−1]d

N∑
j=1

f j gτ

(
Lm/LFFT − x j

)
e−i2πk·m/LFFT (B.6)

This operation can be done in O(NFFT log(NFFT)) steps, independently of the number of inputs. Once this is computed, one
can compute the Fourier transform of f at each frequency point by

F (k) =
(π

τ

)d/2
e‖k‖2τ Fτ (k) (B.7)

Once the Fourier transform of the Dirac delta train is ready, we multiply it by the Fourier multiplier φ̂(k), which is the
Fourier transform of φ:

v̂(k) = φ̂(k)F (k) (B.8)

In the next sage, one needs to compute the inverse transform, and evaluate into the target points {xi }. First we decon-
volve the signal

v̂−τ (k) =
(π

τ

)d/2
e‖k‖2τ v̂(k) (B.9)

and compute the inverse Fourier transform

u−τ (x) =
∑

k∈[0,NFFT−1]d
v̂−τ (k)eik·x. (B.10)

Next, we interpolate to the point cloud

u
(
x j

) = u−τ ∗ gτ

(
x j

) = 1

Ld

∫
[0,L]d

u−τ (x)gτ

(
x j − x

)
dx (B.11)

≈ 1

NFFT

∑
m∈[0,LFFT−1]d

u−τ (Lm/LFFT) gτ

(
x j − Lm/LFFT

)
(B.12)

Even though in the current implementation all the parameters of the NUFFT are fixed, they can in principle be trained along
with the rest of the networks. This training, if done naively increases significantly the computational cost. How to perform
this operation efficiently is a direction of future research.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I.
Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015.

[2] M. Aubry, U. Schlickewei, D. Cremers, The wave kernel signature: a quantum mechanical approach to shape analysis, in: 2011 IEEE International
Conference on Computer Vision Workshops (ICCV), 2011, pp. 1626–1633.

[3] A.H. Barnett, J. Magland, L. af Klinteberg, A parallel nonuniform fast Fourier transform library based on an “exponential of semicircle” kernel, SIAM J.
Sci. Comput. 41 (5) (2019) C479–C504.

[4] J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Phys. Rev. Lett. 98 (2007) 146401.
[5] T. Bereau, R.A. DiStasio, A. Tkatchenko, O.A. von Lilienfeld, Non-covalent interactions across organic and biological subsets of chemical space: physics-

based potentials parametrized from machine learning, J. Chem. Phys. 148 (24) (2018) 241706.
[6] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, arXiv:1312 .6203.
[7] D. Chen, X. Tian, Y. Shen, O. Ming, On visual similarity based 3D model retrieval, Comput. Graph. Forum 22 (3) (2003) 223–232.
[8] X. Chen, H. Ma, J. Wan, B. Li, T. Xia, Multi-view 3D object detection network for autonomous driving, in: 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017, pp. 6526–6534.
[9] Taco Cohen, Max Welling, Group equivariant convolutional networks, in: Maria Florina Balcan, Kilian Q. Weinberger (Eds.), Proceedings of the 33rd

International Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 48, New York, New York, USA, 20–22 Jun 2016,
PMLR, 2016, pp. 2990–2999.

[10] J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comput. 19 (90) (1965) 297–301.
[11] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, in: Advances in Neural

Information Processing Systems 29, 2016, pp. 3844–3852.
[12] H. Deng, T. Birdal, S. Ilic, PPF-FoldNet: unsupervised learning of rotation invariant 3D local descriptors, in: Proceedings of the European Conference on

Computer Vision (ECCV), September 2018.
[13] Z. Deng, C. Chen, X.G. Li, S.P. Ong, An electrostatic spectral neighbor analysis potential for lithium nitride, NPJ Comput. Mater. 5 (2019).
[14] A. Dutt, V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM J. Sci. Comput. 14 (6) (1993) 1368–1393.
[15] Y. Fan, J. Feliu-Fabà, L. Lin, L. Ying, L. Zepeda-Núñez, A multiscale neural network based on hierarchical nested bases, Res. Math. Sci. 6 (2) (Mar 2019)

21.
[16] Y. Fan, L. Lin, L. Ying, L. Zepeda-Núñez, A multiscale neural network based on hierarchical matrices, Multiscale Model. Simul. 17 (4) (2019) 1189–1213.
[17] Y. Fan, L. Ying, Solving optical tomography with deep learning, arXiv:1910 .04756, 2019.
15

http://refhub.elsevier.com/S0021-9991(22)00755-0/bibD047CF0DB0E4F24F7C5DC17ACF6D6287s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibD047CF0DB0E4F24F7C5DC17ACF6D6287s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibD047CF0DB0E4F24F7C5DC17ACF6D6287s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibD047CF0DB0E4F24F7C5DC17ACF6D6287s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib368066DC8E59CF80A15E0235516E1BE0s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib368066DC8E59CF80A15E0235516E1BE0s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib6043D7E05912ED57EA737CF244CB5A59s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib6043D7E05912ED57EA737CF244CB5A59s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibB5B28A3716DD088904F3052B31088244s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibAB76C54CD22D18630BCB8C4DB80D4891s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibAB76C54CD22D18630BCB8C4DB80D4891s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib15C75E11CB5A89C0682F30C7F147B291s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib8C544FB6945CFDC5DE108A09731B8B6Fs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib7971E366D3461AC7529D91EDD6BF56DFs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib7971E366D3461AC7529D91EDD6BF56DFs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib549ED89C3B45473C504D4AE1FFF61CD9s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib549ED89C3B45473C504D4AE1FFF61CD9s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib549ED89C3B45473C504D4AE1FFF61CD9s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib8A50E76796DE24FFC48F94C0DB07EA21s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib2A01709EFA72540252CF482978C7947Bs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib2A01709EFA72540252CF482978C7947Bs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib5E334263357BCF96B556455D70C66952s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib5E334263357BCF96B556455D70C66952s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib36A6601B2581D7F076279A806024F9CCs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibCFAD02AD780C7D72EC0559416B24002Fs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib0B1666B13262BB85C3EC7D78E570C910s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib0B1666B13262BB85C3EC7D78E570C910s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib936607FDB2C4D60D8EEBC702E7F870CAs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib8950A6C41C068FF46D5E5CDB7628091As1

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
[18] Roger H. French, V. Adrian Parsegian, Rudolf Podgornik, Rick F. Rajter, Anand Jagota, Jian Luo, Dilip Asthagiri, Manoj K. Chaudhury, Yet Ming Chiang,
Steve Granick, Sergei Kalinin, Mehran Kardar, Roland Kjellander, David C. Langreth, Jennifer Lewis, Steve Lustig, David Wesolowski, John S. Wettlaufer
Wai Yim Ching, Mike Finnis, Frank Houlihan, O. Anatole Von Lilienfeld, Carel Jan Van Oss, Thomas Zemb, Long range interactions in nanoscale science,
Rev. Mod. Phys. 82 (2) (2010) 1887–1944.

[19] M. Gadelha, R. Wang, S. Maji, Multiresolution tree networks for 3d point cloud processing, in: Proceedings of the European Conference on Computer
Vision (ECCV), September 2018.

[20] L. Greengard, J. Lee, Accelerating the nonuniform fast Fourier transform, SIAM Rev. 46 (3) (2004) 443–454.
[21] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987) 325–348.
[22] A. Grisafi, M. Ceriotti, Incorporating long-range physics in atomic-scale machine learning, J. Chem. Phys. 151 (20) (2019) 204105.
[23] A. Grisafi, J. Nigam, M. Ceriotti, Multi-scale approach for the prediction of atomic scale properties, arXiv:2008 .12122.
[24] M. Hirn, S. Mallat, N. Poilvert, Wavelet scattering regression of quantum chemical energies, Multiscale Model. Simul. 15 (2) (2017) 827–863.
[25] H. Huo, M. Rupp, Unified representation of molecules and crystals for machine learning, arXiv:1704 .06439.
[26] V. Jampani, M. Kiefel, P.V. Gehler, Learning sparse high dimensional filters: image filtering, dense CRFs and bilateral neural networks, in: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
[27] John Edward Jones, On the determination of molecular fields, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences, vol. 106, The Royal Society, 1924, pp. 463–477.
[28] Y. Khoo, L. Ying, SwitchNet: a neural network model for forward and inverse scattering problems, SIAM J. Sci. Comput. 41 (5) (2019) A3182–A3201.
[29] D. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Proceedings of the International Conference on Learning Representations (ICLR), May

2015.
[30] R. Klokov, V. Lempitsky, Escape from cells: deep Kd-networks for the recognition of 3D point cloud models, in: 2017 IEEE International Conference on

Computer Vision (ICCV), 2017, pp. 863–872.
[31] T.W. Ko, J.A. Finkler, S. Goedecker, J. Behler, A fourth-generation high-dimensional neural network potential with accurate electrostatics including

non-local charge transfer, arXiv:2009 .06484, 2009.
[32] R. Kondor, N. Teneva, V. Garg, Multiresolution matrix factorization, in: Proceedings of Machine Learning Research, vol. 32, 2014, pp. 1620–1628.
[33] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, B. Chen, PointCNN: convolution on x-transformed points, Adv. Neural Inf. Process. Syst. 31 (2018) 820–830.
[34] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Multipole graph neural operator for parametric partial differ-

ential equations, arXiv:2006 .09535, 2020.
[35] Y. Liu, B. Fan, S. Xiang, C. Pan, Relation-shape convolutional neural network for point cloud analysis, in: 2019 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2019, pp. 8887–8896.
[36] D. Maturana, S. Scherer, Voxnet: a 3D convolutional neural network for real-time object recognition, in: 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2015, pp. 922–928.
[37] J. Nigam, S. Pozdnyakov, M. Ceriotti, Recursive evaluation and iterative contraction of N-body equivariant features, J. Chem. Phys. 153 (12) (2020)

121101.
[38] Y.J. Oh, Y. Watanabe, Development of small robot for home floor cleaning, in: Proceedings of the 41st SICE Annual Conference, vol. 5, 2002,

pp. 3222–3223.
[39] Y. Park, V. Lepetit, W. Woo, Multiple 3D object tracking for augmented reality, in: Proceedings of the 7th IEEE/ACM International Symposium on Mixed

and Augmented Reality, 2008, pp. 117–120.
[40] David Pfau, James S. Spencer, Alexander G.D.G. Matthews, W.M.C. Foulkes, Ab initio solution of the many-electron Schrödinger equation with deep

neural networks, Phys. Rev. Res. 2 (Sep 2020) 033429.
[41] C.R. Qi, H. Su, K. Mo, L.J. Guibas, Pointnet: Deep learning on point sets for 3D classification and segmentation, in: 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017, pp. 77–85.
[42] C.R. Qi, L. Yi, H. Su, L.J. Guibas, Pointnet++: deep hierarchical feature learning on point sets in a metric space, Adv. Neural Inf. Process. Syst. 30 (2017)

5099–5108.
[43] G. Riegler, A.O. Ulusoy, A. Geiger, Octnet: learning deep 3D representations at high resolutions, in: 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017, pp. 6620–6629.
[44] O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation, in: Medical Image Computing and Computer-

Assisted Intervention – MICCAI 2015, Springer International Publishing, Cham, 2015, pp. 234–241.
[45] K. Rossi, V. Jurásková, R. Wischert, L. Garel, C. Corminboeuf, M. Ceriotti, Simulating solvation and acidity in complex mixtures with first-principles

accuracy: the case of CH3 SO 3H and H2O 2 in phenol, J. Chem. Theory Comput. 16 (8) (2020) 5139–5149.
[46] M. Rupp, A. Tkatchenko, K. Müller, O.A. Von Lilienfeld, Fast and accurate modeling of molecular atomization energies with machine learning, Phys. Rev.

Lett. 108 (5) (2012) 058301.
[47] R.B. Rusu, N. Blodow, Z.C. Marton, M. Beetz, Aligning point cloud views using persistent feature histograms, in: 2008 IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2008, pp. 3384–3391.
[48] R.B. Rusu, N. Blodow, M. Beetz, Fast point feature histograms (FPFH) for 3D registration, in: Proceedings of the 2009 IEEE International Conference on

Robotics and Automation, 2009, pp. 1848–1853.
[49] M. Savva, F. Yu, H. Su, A. Kanezaki, T. Furuya, R. Ohbuchi, Z. Zhou, R. Yu, S. Bai, X. Bai, M. Aono, A. Tatsuma, S. Thermos, A. Axenopoulos, G.Th.

Papadopoulos, P. Daras, X. Deng, Z. Lian, B. Li, H. Johan, Y. Lu, S. Mk, Large-scale 3D shape retrieval from shapenet core55, in: Eurographics Workshop
on 3D Object Retrieval, 2016.

[50] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M. Yang, J. Kautz, SPLATNet: Sparse lattice networks for point cloud processing, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 2530–2539.

[51] L. Wang, Y. Huang, Y. Hou, S. Zhang, J. Shan, Graph attention convolution for point cloud semantic segmentation, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[52] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, J. Xiao, 3D shapenets: a deep representation for volumetric shapes, in: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1912–1920.

[53] M. Xu, W. Dai, Y. Shen, H. Xiong, MSGCNN: multi-scale graph convolutional neural network for point cloud segmentation, in: 2019 IEEE Fifth Interna-
tional Conference on Multimedia Big Data (BigMM), 2019, pp. 118–127.

[54] Y. Xu, T. Fan, M. Xu, L. Zeng, Y. Qiao, SpideCNN: deep learning on point sets with parameterized convolutional filters, in: Proceedings of the European
Conference on Computer Vision (ECCV), September 2018.

[55] Y. Yang, C. Feng, Y. Shen, D. Tian, FoldingNet: point cloud auto-encoder via deep grid deformation, in: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2018, pp. 206–215.

[56] K. Yao, J.E. Herr, D.W. Toth, R. Mckintyre, J. Parkhill, The tensorMol-0.1 model chemistry: a neural network augmented with long-range physics, Chem.
Sci. 9 (2018) 2261–2269.

[57] X. Ye, J. Li, H. Huang, L. Du, X. Zhang, 3D recurrent neural networks with context fusion for point cloud semantic segmentation, in: Proceedings of the
European Conference on Computer Vision (ECCV), September 2018.
16

http://refhub.elsevier.com/S0021-9991(22)00755-0/bib6D822A278CFD558EA02287C27A6B6AFEs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib6D822A278CFD558EA02287C27A6B6AFEs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib6D822A278CFD558EA02287C27A6B6AFEs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib6D822A278CFD558EA02287C27A6B6AFEs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib3F4AC76A504DEA9E8BBC3F9DC2C65ACFs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib3F4AC76A504DEA9E8BBC3F9DC2C65ACFs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibBC8E998EEF9D9E2FADDF5764940EF085s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib714F8DC76607B32D5BA2294EE04A96E6s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib2AE37452CB589DFA82604D97A11DD0ABs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib15061D928BE1AABD42B1928CE038390Ds1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib2D378AA6401D096B1E899C7BE60F2963s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib21FF07DE27314BE2D9243119F1AAF454s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib4FB60F9F4FF94F58310EF14D42D268E6s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib4FB60F9F4FF94F58310EF14D42D268E6s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib8B6912DAA809E6604C93F11B4C6C7DE1s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib8B6912DAA809E6604C93F11B4C6C7DE1s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibC8F8E4F4FC4CE4362AD82DED10D8145Fs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib566630EB6CDD84DFD3D3DDBC9663FCF2s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib566630EB6CDD84DFD3D3DDBC9663FCF2s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibB0A8E679293AB4D8C21FC798ADA6DEEAs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibB0A8E679293AB4D8C21FC798ADA6DEEAs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib2412AF12878DC4B37A30A6F46B0EA62Es1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib2412AF12878DC4B37A30A6F46B0EA62Es1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib19296C5DE20A576545E0216C244DD77Fs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib0B3358E5239A8E82D40B85FB5A97BCBBs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibAC1FB9C608EF10C28F7C77E182BAE7FEs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibAC1FB9C608EF10C28F7C77E182BAE7FEs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib6AE4F8092DE98298FCF50EE47FBEC0E8s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib6AE4F8092DE98298FCF50EE47FBEC0E8s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib4B0FCE173B68A068CECF24B62169104Es1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib4B0FCE173B68A068CECF24B62169104Es1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib02E51C1872BBCDA26D305A12B3FF3824s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib02E51C1872BBCDA26D305A12B3FF3824s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib6C23524039F7E610A7363446F25A186Ds1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib6C23524039F7E610A7363446F25A186Ds1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib3565BEDB0672BD5EADAA3A5E7176692As1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib3565BEDB0672BD5EADAA3A5E7176692As1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib663D5217D344BC761DC4148694F38CC0s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib663D5217D344BC761DC4148694F38CC0s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibCE1E7D582548E5C6738FB9D9F14E2E01s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibCE1E7D582548E5C6738FB9D9F14E2E01s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib6EBB4C920258CDC21CAA655A68F9CC77s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib6EBB4C920258CDC21CAA655A68F9CC77s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib2E54667E7306D52D6EA0A13E3F25A31Fs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib2E54667E7306D52D6EA0A13E3F25A31Fs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib78D155CEBEC8B6BFB90B944BE4BD17C0s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib78D155CEBEC8B6BFB90B944BE4BD17C0s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib7BD16211F6505BBCB61A3E45560E51AEs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib7BD16211F6505BBCB61A3E45560E51AEs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib861AF7F218F493E1C739FF576D33CDF4s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib861AF7F218F493E1C739FF576D33CDF4s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib985708375ACBD6BF56ADCB968345FE2Ds1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib985708375ACBD6BF56ADCB968345FE2Ds1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib90C1A197EF4BF5123B92A1DB75A8AEF0s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib90C1A197EF4BF5123B92A1DB75A8AEF0s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibD7489B46DC4A302DE4D306FCCD2232C2s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibD7489B46DC4A302DE4D306FCCD2232C2s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibD7489B46DC4A302DE4D306FCCD2232C2s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibA9D513EF3E04882E619C365D793EF463s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibA9D513EF3E04882E619C365D793EF463s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib9C7EBD4C81E5DB24BE84E9268EFCFA9Cs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib9C7EBD4C81E5DB24BE84E9268EFCFA9Cs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib069C008D3A3C7E8EC385CD5DC17B4E81s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib069C008D3A3C7E8EC385CD5DC17B4E81s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib025180B25EFDB7066FC9717B4F5940B7s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib025180B25EFDB7066FC9717B4F5940B7s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib58BC80553007AAC86BD3443F8FD55E35s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib58BC80553007AAC86BD3443F8FD55E35s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib0142B354C6B912ECA9C43C7AB1C29AEFs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib0142B354C6B912ECA9C43C7AB1C29AEFs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib0891C42AEB8E549862ABDD05A76A9575s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib0891C42AEB8E549862ABDD05A76A9575s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib01CED67A37B45AAB66D867C932A38F5As1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib01CED67A37B45AAB66D867C932A38F5As1

Y. Peng, L. Lin, L. Ying et al. Journal of Computational Physics 473 (2023) 111692
[58] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R.R. Salakhutdinov, A.J. Smola, Deep sets, Adv. Neural Inf. Process. Syst. (2017) 3391–3401.
[59] W. Zeng, T. Gevers, 3DContextNet: K-d tree guided hierarchical learning of point clouds using local and global contextual cues, in: Proceedings of the

European Conference on Computer Vision (ECCV) Workshops, September 2018.
[60] L. Zepeda-Núñez, Y. Chen, J. Zhang, W. Jia, L. Zhang, L. Lin, Deep density: circumventing the Kohn-Sham equations via symmetry preserving neural

networks, https://www.math .wisc .edu /~lzepeda /Deep -Density.pdf, 2019.
[61] Z. Zhai, X. Zhang, L. Yao, Multi-scale dynamic graph convolution network for point clouds classification, IEEE Access 8 (2020) 65591–65598.
[62] Jiefu Zhang, Leonardo Zepeda-Núñez, Yuan Yao, Lin Lin, Learning the mapping x �→

d∑
i=1

x2i : the cost of finding the needle in a haystack, Commun. Appl.
Math. Comput. Sci. (2020).

[63] L. Zhang, M. Chen, X. Wu, H. Wang, W. E, R. Car, Deep neural network for the dielectric response of insulators, arXiv:1906 .11434, 2019.
[64] L. Zhang, J. Han, H. Wang, R. Car, W. E., Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics, Phys. Rev. Lett.

120 (Apr 2018) 143001.
[65] L. Zhang, J. Han, Ha. Wang, W. Saidi, R. Car, W. E., End-to-end symmetry preserving inter-atomic potential energy model for finite and extended

systems, Adv. Neural Inf. Process. Syst. 31 (2018) 4441–4451.
[66] Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, Weinan E., Deepcg: Constructing coarse-grained models via deep neural networks, J. Chem. Phys.

149 (3) (2018) 034101.
[67] Linfeng Zhang, Han Wang, Maria Carolina Muniz, Athanassios Z. Panagiotopoulos, Roberto Car, E. Weinan, A deep potential model with long-range

electrostatic interactions, J. Chem. Phys. 156 (12) (2022) 124107.
[68] Y. Zhou, O. Tuzel, Voxelnet: End-to-end learning for point cloud based 3D object detection, in: 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2018, pp. 4490–4499.
17

http://refhub.elsevier.com/S0021-9991(22)00755-0/bib05BEB80B65B6005A276035AF4ED7E515s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib6D6A1288CFFDD7DAB73F2FD94801AD87s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib6D6A1288CFFDD7DAB73F2FD94801AD87s1
https://www.math.wisc.edu/~lzepeda/Deep-Density.pdf
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibF4A9D30F53A419A63EBEA4E5F58BF8FDs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibE06F9EE2F6FD4B11828615856ADC9AE7s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibE06F9EE2F6FD4B11828615856ADC9AE7s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib618FBB91B45E9390A931E73EC484EA3Ds1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib72D03A0C1CDA53FAC501B24AB6116C3As1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib72D03A0C1CDA53FAC501B24AB6116C3As1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibFFCDF7AED6CA554A2A3698DCC343E0E4s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibFFCDF7AED6CA554A2A3698DCC343E0E4s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib8D5A234D0FA673EED448F7CDBAD0E46Fs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib8D5A234D0FA673EED448F7CDBAD0E46Fs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib216949D049223FE7E79F2314A9893105s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bib216949D049223FE7E79F2314A9893105s1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibD19482F78E80631603B4C64C9A183E4Cs1
http://refhub.elsevier.com/S0021-9991(22)00755-0/bibD19482F78E80631603B4C64C9A183E4Cs1

	Efficient long-range convolutions for point clouds
	1 Introduction
	2 Long-range convolutional layer
	2.1 Non-uniform distribution of the point cloud
	2.2 Representation of the Fourier multiplier

	3 Learning the N-body potential
	3.1 Black-box model problem

	4 Architecture
	4.1 Descriptors
	4.2 Networks
	4.3 Derivatives
	4.4 Complexity

	5 Numerical experiments
	5.1 One-dimensional examples
	5.2 Two-dimensional examples
	5.3 Three-dimensional examples

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Notation
	Appendix B NUFFT
	References

