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Abstract

We study the variation space corresponding to a dictionary of functions in L2(£2) for
a bounded domain  C R¥. Specifically, we compare the variation space, which is
defined in terms of a convex hull with related notions based on integral representations.
This allows us to show that three important notions relating to the approximation theory
of shallow neural networks, the Barron space, the spectral Barron space, and the Radon
BV space, are actually variation spaces with respect to certain natural dictionaries.
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1 Introduction

In this work we consider the variation space with respect to a dictionary D C H in a
separable Hilbert space H. This notion arises in the study of non-linear approximation
by an expansion of dictionary elements [2, 3]. Suppose that sup,p ||d||z = Kp < oo,
and consider the variation norm [16, 17] of D defined by

||f||D=inf{c>0: f/ceconv(:I:ID))}. (1.1)
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This is the gauge, or Minkowski functional of the closed symmetric convex hull of D,

n
conv(£D) = Zal j:neN, hjeD, Z|ai|§1
i=1

The variation space . (D) is then given by
A (D) :={fe€eH: |Iflp< oo}

The varation norm and variation space have been introduced in different forms in the
literature and play an important role in the approximation theory of neural networks
[1, 14,22, 23, 35], the convergence theory of greedy algorithms [2, 4, 21, 36-38] and
in non-linear approximation [3, 16, 17].

In this work, we begin by developing the basic properties of the variation space
and variation norm. Specifically, we show that the set J# (D) is a Banach space with
the || - ||p-norm. Next, we study the variation space % (D) for the following two
dictionaries which arise in the study of shallow neural networks and compare them
with related notions in the approximation theory of shallow neural networks.

The first type of dictionary arises when studying neural networks with ReLU*
activation function [35]

o1 (x) = ReLU*(x) := [max (0, x)]*.

Here when k£ = 0, we interpret oy (x) to be the Heaviside function. Let 2 C R? be a
compact domain and consider the dictionary

Pr={or(@-x+b): we S belc, e} C LAQ), (1.2)

where $¢71 = {w € R? : |w| = 1} is the unit sphere and ¢ and ¢, are chosen to
satisfy

1 <inf{x-a):xeQ,weSd_l}<sup{x-w:xe§2,a)eSd_l}<cz.

The important point is that oy (w - x + b) for all planes w - x + b = 0 which intersect
2 must be strictly contained in Px. Note that we are suppressing the dependence on
the domain €2 and dimension d for notational convenience. We explain in more detail
where this definition comes from in Sect. 3.

Recently, neural networks with ReLU activation function have shown remarkable
empirical success on problems in computer vision and natural language processing
[18]. A shallow neural network of width n with ReLLU activation function is a function
of the form

fo0) =) aioi (i - x +by),

i=1
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for some parameters a;, b; € Rand w; € R4, where o1 (x) = max(0, x) is the rectified
linear unit [25]. A natural measure of complexity on the parameters a;, b;, w; is the
squared £%-norm

C(fn) = Clai, bi, wi}}_)) = Y _a} + i3,

i=1

which corresponds to the regularizer induced by the common practice of weight decay
[15]. In [26], a semi-norm is defined by taking the complexity required to uniformly
approximate f on compact subsets as the width n — o0. Specifically, they define the
semi-norm

R(f) = lim inf {C(m .t | fu(x) — f(x)| <€, for x| < e—l} :

Functions for which R( f) is finite can be approximated arbitrarily closely by shallow
ReLU neural networks with bounded complexity. It is shown in [26] that this semi-
norm is given by

R(f)zmin{nanl, s.t. f(x):/

[o1(w - x + b)—01(b)]da(w, b)—i—c} ,
Sd-1xR

where the infemum is taken over all signed Borel measures « and constants ¢, and
||l denotes the total variation norm of «. Further, they provide a characterization of
the semi-norm R in terms of the Radon transform, showing that (roughly speaking,
see [26], Theorem 2)

R(f) = vallB(AT f)]l1 + |V f(00)], (1.3)

where Z is the Radon transform, y,; is a dimension dependent constant, and the
gradient at oo is defined by V f(oc0) = lim,_, W f\x|:r V f(x)dx. Note that
one part of this equality, namely that the left hand side is less than or equal to the
right, was also proved in [29]. When d is even, the fractional power of the Laplacian
appearing in (1.3) must be defined in terms of the ramp filter in the Radon domain
(see [26, 27] for details).

This notion is extended the higher powers of the ReL.U, i.e. to oy = [max(0, Pk
for k > 2 in [27, 28] (the case k = 0 was treated in [13]). They propose a family of
seminorms, called the Radon BV semi-norms, denoted by | f|), indexed by k and
defined via the Radon transform % (again, roughly speaking, see [27] for details) as

d+2k—1

| flomy = valZ(A 27 )l
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Further, they prove a representer theorem for this semi-norm, i.e. they show that
minimizers to the regularized problem

N
argm}nZﬁ(f(xi)a i) + v flm)s

i=1

where (x1, y1), ..., (Xn, yn) is a finite data sample are shallow neural networks with
ReLUF activation function and finite width (depending on N).

A closely related notion introduced recently concerning approximation by shallow
ReLU neural networks is the Barron norm [7, 40], defined by

l.fll2 = min {Ep(lal(lwll +16D): f(x) = /R aoy(w-x +b)p(da, do, db)} ;

xR9 xR

where the infemum is over all probability measures p on R x R? x R. The properties
of this norm have also been studied in [8], for instance.

Our contribution is to show that on a bounded domain €2, the notion of Barron
norm coincides with the variation norm of the dictionary P. Specifically, we show
the equivalence

~ = inf B.
I fle, = I fllz.q fe|sz=f”fe”“9

Here the constant in the above bound sclaes with the square root of the dimension and
is due to the fact that the Barron norm measures the norm of w in £! while we measure
itin £2.

In addition, we show that up to a polynomial kernel, the Radon BV semi-norm
coincides with the variation norm of P; on a bounded domain 2. Specifically, we
have for k > 0

inf IS+ Ple = = inf : 1.4
peP, If p”Pk |f|(k+1),Q oL, |fe|(k+1) (1.4)

where & is the space of polynomials of degree at most k£ and the infimum is taken
over all extensions f, of f to the whole of R?.

By equivalence of the R semi-norm and Radon BV semi-norm noted in [27] this
also implies that

inf + =~ inf R(f). 1.5
pegzk”f ple, ot (fe) (1.5)

Je .

The constants implicit in the equivalences (1.4) and (1.5) do not depend upon the
dimension. We also prove the equivalences

Ifllee = [fla+n.e + 12y 1fle = fllgf:f RO+ If N2
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However, for these the implied constant does depend upon the dimension.
Finally, we also give a complete characterization of the variation space correspond-
ing to Px in one dimension. In particular, we prove that

k—1

L le, = Y 1F LD+ 1Pl

j=0

The second type of dictionary related to shallow neural networks which we consider
is the spectral dictionary of order s > 0, given by

Fy = {(1 + o))~ ¥ . » e RY} C L2(R).

Our contribution is to show that the variation space of Fy can be completely
characterized in terms of the Fourier transform. In particular, in Sect.5 we prove
that

I fllg, = inf / (1 + 1D £ (6)1dE. (1.6)
fe‘Q:f R4

where the infimum is taken over all extensions f, € L' (Rd). (Note that we have here
equality, not just equivalence.)
The norm in (1.6) was first introduced by Barron [1], who showed that functions in

the space % (F1) could be approximated with rate O(n_%) using shallow networks
with sigmoidal activation function. These results have been extended to networks with
ReLUF activation functions in [14, 41]. The spectral Barron norm (1.6) has also been
important in understanding the approximation properties of shallow neural networks
with more general activation functions [11, 33]. Our contribution is to show that the
spectral Barron norm (1.6) is equivalent to the variation norm with respect to a suitable
dictionary of decaying Fourier modes.

The paper is organized as follows. In Sect.2 we discuss the basic properties of the
variation spaces. In particular, show that they are Banach spaces. In Sect. 3, we analyze
the spaces % (IP;). We show that when k = 1, the space is equivalent to the Barron
space studied in [7] and also compare them with the Radon BV spaces. In Sect.4,
we give a characterization of £ (P;) when d = 1 in terms of the space of bounded
variation. Then, in Sect. 5, we give a characterization of ¢ (IF?) in terms of the Fourier
transform, showing that it is equivalent to the spectral Barron norm. Finally, we give
some concluding remarks and further research directions.

2 Basic Properties of 77 (D)

Let us first develop the elementary properties of the variation space 2 (D). The key
result is that .Z (D) is a Banach space with the variation norm || - ||p.

Lemma 1 Suppose that sup,cp |ld||p = Kp < oo. Then the || - ||p norm satisfies the
following properties.
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o coov(xD)={f € H:|flp =<1}

o |Ifllg < Kpllflp
e #(D):={f e€H: |fllp < oo}isaBanach space with the || - ||p norm

Proof The first two statements are well-known and can be found for instance in [16].
For the third statement we must show that the set J# (D) is complete with respect to
the || - ||p norm.

Let { f4}5,2, be a Cauchy sequence with respect to the || - |p norm. From the second
statement, we have || f, — fullg < Kpllfu — fmllD, so that the sequence is Cauchy
with respect the the H-norm as well. Thus, there exists an f € H such that f;, — f
in H,i.e.suchthat || f;, — fllg — O.

We will show that also || f, — fllp — O, i.e. that we have convergence in the
variation norm as well (note that this automatically implies that || f|jp < 00).

To this end, let € > 0 and choose N such that || f;, — fullp < €/2 forn,m > N
({ f} is Cauchy, so this is possible). In particular, this means that || fy — fillp < €/2
for all m > N.Now the first statement implies that f,, — fv € (¢/2)conv(£D), or in
other words that f;, € fy + (€/2)conv(£D). Since f,;, — f in H, and conv(£D) is
closed in H by definition, we get f € fn 4+ (e/2)conv(£D). Hence || f — fnllp < €/2
and the triangle inequality finally implies that || f — f,;,|lp < € for all m > N. Thus
fn — f in the variation norm and % (D) is complete. O

Let us remark that for some dictionaries D the # (D) space can be substantially
smaller than H. In fact, if the dictionary DD is contained in a closed subspace of H,
then we have the following elementary result.

Lemma2 Let K C H be a closed subspace of H. Then D C K iff #(D) C K.

Proof We have D C # (D) so that the reverse implication is trivial. For the forward
implication, since D C K and K is closed, it follows that conv(+D) C K. Then, from
the definition (1.1), it follows that

H (D) = U r -conv(xD) C K.

r>0

]

A simple example when this occurs is when considering a shallow neural network with
activation function o which is a polynomial of degree k. In this case the space % (D)
is contained in the finite-dimensional space of polynomials of degree k, and the || - ||p
norm is infinite on non-polynomial functions. This is related to the well-known result
that neural network functions are dense iff the activation function is not a polynomial
[19].

Proposition 1 Let Q@ C R? be a bounded domain and D = {o(w - x + b) : (w,b) €
R? x R} C L3(2), where the activation function o € Ly (R), ie. |[o]Lek) < 00
for any compact set K C R. Suppose further that the set of discontinuities of o has

Lebesgue measure 0. Then J¢ (D) is finite dimensional iff o is a polynomial (a.e.).
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Proof If o is a polynomial, D is contained in the space of polynomials of degree at
most deg(o), which is finite dimensional. This implies the result by Lemma 2. For
the reverse implication, we use Theorem 1 of [19], which states that if o is not a
polynomial, then

amc{Xpmwrx+m}

i=1

where the closure is taken in L°°(£2) (note that this cumbersome statement is necessary
since o0 may not be continuous). This immediately implies that JZ (D) is dense in
L?(2) (since C() is dense in L?(2)), and thus obviously not finite dimensional.

O

While in this example the variation norm is finite dimensional, this is typically not
the case for most dictionaries of interest. Specifically for the dictionaries [Py and FF;
which we study, this space is infinite dimensional but still much smaller than H. The
size of the variation space has been precisely quantified for [P in terms of the metric
entropy in [35] and these spaces have been used as trial spaces for solving PDEs in
[10]. However, it remains an interesting open question what the practical utility of
J (Py) and # (F;) really are.

The significance of the variation norm is that functions f € £ (D) can be efficiently
approximated by convex combinations of small numbers of dictionary elements. In
particular, we have the following result of Maurey [1, 12, 30]. Denote

n n
Sam@) =Y ajhj: hjeD, Y lai| <M
j=1 i=1

Then we have the following result.

Theorem 1 (Lemma 1 in [1]) Suppose that f € Z (D). Then for M = || f |p we have

inf — <K ——
el IS = falln < Kol flle )

We note the following simple converse to Maurey’s approximation rate. In particu-
lar, if a function can be approximated by elements from X, 3/ (ID) with fixed M, then
it must be in the space J# (D).

Proposition 2 Let H be a Hilbert space and f € H. Suppose that f,, — f in H with
fn € 2. m(D) for a fixed M < oco. Then f € & (D) and

Ifllp =M.

Proof 1t is clear that we must only prove this for M = 1. From the definitions we
have 2, 1 (D) C conv(£D) for every n. Thus f,, € conv(£D) and since conv(£D) is
closed, we get f € conv(£D), so that || f|lp < 1, as desired. O
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Next, we wish to connect the space 7 (D) defined via the closed symmetric convex
hull of D to integral representations, which have recently become a popular concept
in the approximation theory of shallow neural networks [8, 26, 27, 39]. An integral
representation of a function f over the dictionary D is given by

f= / i i, @1
D

Here the dictionary D inherits the subspace topology from the Hilbert space H, du is
a (signed) Borel measure with finite variation on D, i.e.

lull = sup /gdu < 00,
g: D—[-1,11J/D
g measurable

and the integral is the Bochner integral of the inclusion map ip_, i : D — H. Note that
since H is separable, the inclusion map is pu-measurable by the Pettis measurability
theorem. Further, if D is bounded, i.e. if |D| = sup,p lld||z < oo, then since p has
finite variation the inclusion map ip_, i is absolutely integrable and so the Bochner
integral exists (see [5], Chapter 4).

We prove that if the dictionary D is compact, then membership in % (D) is
equivalent to the existence of an integral representation.

Lemma 3 Suppose that D C H is compact. Then f € J# (D) iff there exists a Borel
measure |t on D

fZ/i]D)%HdI'L‘
D

Moreover,
(Walin) =inf{||,u|| D f= / i]D)aHd:u“}~
D

Proof From the definition of the variation norm (1.1) we must show that
conv(£D) = M(D) := {f in—gdp |l = 1}.
D

We first show that M (D) C conv(£D). The idea of the proof is to approximate the
inclusion map ip_, g by a simple function. The only technical issue is that we must
be able to restrict the range of this simple function to lie in D. We proceed as in the
proof of Bochner’s theorem (see [5], Chapter IV) with minor modification.

Let i be a Borel measure on D with variation ||| < 1. Since H is separable,
the Pettis measurability theorem implies that the inclusion ip_, i is w-measurable.

@ Springer



Constructive Approximation (2023) 57:1109-1132 117

So for each n we can choose a countably valued p-measurable function f;, such that
I fn —ip>mllg < 1/2n p-almost everywhere. Thus we can write

o]

fn = Z an,kXEn,k

k=1

forelements a, x € H and p-measurable sets E, ; which satisfy E,, ;N E,, ; = ) when
i # j.The condition || f, — ip—mllg < 1/2n means that foreveryd € E,y C D
we have ||a, x — d||lg < 1/2n. Using the triangle inequality this means that for any
d,d € E,x, wehave ||d —d'||g < 1/n. Now for each E,  we choose d, x € Ey
and set

00
fn = Z dn,kXE,,ﬁk-
k=1

Then we have || f, — ip—#llg < 1/n u-almost everywhere and the range of ﬂ, lies
in H. Finally, for each n we choose p; such that

= 1
/ I fallpdp < —.
(Ulc(m:pn+lE"~k)

Since D is compact and thus bounded and p satisfies ||| < 1, the function || f,, | 18
in L' (du) so that such a p,, can always be chosen. We now set

N

Pn
8n = Z dn,kXE,,’k .
k=1

Then g, is a simple function satisfying fD lipsH — gnllHdu < % This means that

2
‘/l]D)eHdl/v Zdn ki (En k) <—.

By design, dj, x € D and since ||| < 1, we get Z,f"zl [(Ep k)| < 1. Thus

Pn

3" dykt(En) € conv(ED)
k=1

for every n. Letting n — 0o, we see that
f ip—gdu € conv(£D).
D

Since p was an arbitrary measure we get M (D) C conv(£D).
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Next we prove the reverse inclusion. Given any convex combination

N
f= Zaidi,
i—1

with d; € D and vazl la;l < 1, we can choose u = Y 2, a;84 to be a linear
combination of Dirac deltas to see that f € M (D). To complete the proof we must
show that M (D) is closed. We will prove this using Prokhorov’s theorem [31] (see
also [6], Theorem 11.5.4, for instance). Let f, — f with f, € M(D) and let u, be
the corresponding sequence of Borel measures on D such that

S Z/i]D)ﬁHdMn
D

and ||u,|l < 1. By the compactness of D and Prokhorov’s theorem, by taking a
subsequence if necessary we may assume that the u, — u weakly, i.e. that the
integrals against continuous functions on I converges. Set f = fD ip— gdu, which
is Bochner integrable by the comments prior to the lemma. Choose a countable dense
sequence {A;}{°, € H. The weak convergence implies that

lim (A, fu)y =

n—0o0 <

Ao f )H .
for every i. The strong convergence f, — f implies the same with f replacing f.

Thus (i, f)g = (A, f)g foralli. Hence f = f € M (D), as desired. O

Finally, we note that the compactness in the preceding theorem was necessary. Indeed,
we have the following simple example.

Proposition 3 Suppose that 2 C R? is bounded and o is a smooth sigmoidal function.
Let H = L*(R2) and Dy, defined by

D, ={o(w-x +b), € RY, beR}.

Then conv(£Dy) 2 M (D, ), where M (Dy) is defined as in the proof of the previous
lemma.

Proof Let o( be the Heaviside activation function. Then we have
lim |oo(x1) —o(rx)) g =0,
r—00

since o is sogmoidal. Thus op(x1) € conv(£D,). However, since o is smooth, the
discontinuous function o (x1) cannot have an integral representation of the form (2.1),
so that op(x1) ¢ M(Dy). O
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3 Properties of %(}P’z) and Relationship with the Barron and Badon
BV Spaces

In this section we study the space # (P;) in more detail. We begin by explaining the
precise definition (1.2), i.e. how we define an appropriate dictionary corresponding to
the ReLUF activation function. The problem with letting oy (x) = [max(O0, x)]k and
setting

D={or(w-x+b): weR? beR},

is that unless k = 0 the dictionary elements are not bounded in L?(£2), since oy is not
bounded and we can shift b arbitrarily. This manifests itself in the fact that || - || »; )
is a semi-norm which contains the set of polynomials of degree at most k — 1 in its
kernel (this occurs since the arbirtrarily large elements in D are polynomials on the
domain £2).

We rectify this issue by considering the dictionary

Py ={ox(@-x+b): e S beler, el
where ¢ and ¢; are chosen to satisfy
ci <inf{x -w:x eQ,a)eSdfl} <supf{x-w:x EQ,a)eSdfl} < ).

This has the effect of ensuring that the dictionary Py is bounded and the constants c;
and ¢, are chosen so that oy (@ - x + b) € P, whenever the hyperplane {w - x + b = 0}
intersects 2. Further, when ¢; < b < inf{x -w : x € Q,w € $9 1} or sup{x - w :
x € Q,we S9!} < b < ¢, we recover all polynomials of degree at most k on € as
well.

Next, we consider the relationship between # (IP|) and the Barron norm introduced
in [7], which is given by

Ifll = inf {Ep(|a|(|w|l +16D): f)= aoi(w - x+b)p(da, do, db)} ;

RxRI xR

where we recall that oy is the rectified linear unit and the infimum is taken over all
integral representations of f. Here p is a probability distribution on R x R x R, and
the expectation is taken with respect to p. We show that the .# (IP|) space is equivalent
to the Barron space when restricted to bounded domains £2.

Proposition 4 For any bounded domain 2, we have

Jd ~ inf ,
I flle, fem:f”fe”%?

where the infemum is taken over all extensions of f to the whole of R%. Here the

implied constant depends only upon the constants c1 and c; taken in the definition of
P;.
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Proof Consider the dictionary
B={(lwl; + b)) 'o1(w-x+b): v R beR}C L*RQ).

From Lemma 3, it follows that || f|lg = || f|l%. Indeed, by making the change of
variables u = |a|(Jw|1 + |b|)p, we get

| fllz = inf {llMll D f= /EiJBeLZ(Q)dM}-

Thus, it suffices to show that ]P"li c CVd- conv(xB) and B C C - conv(x+P;) for
a constant C(cq, ¢3).

Solet g € IP"{ This means that g(x) = o1(w - x + b) for some w € S¢~! and
b € [—cy, c3]. Thus

(loh + 1b]) < (Vd + max(cy, ¢2)) < C(e1, e2)Vd

and since (|w|; + |b]) " lo1(w - x + b) € B, we see that g € C/d - conv(£B).

Now, let g € B. Then g(x) = (|1 + |6]) 'o1(w - x + b) for some w € R? and
beR.

Consider first the case when w # 0. Note that by the positive homogeneity of o]
we can assume that |w| = 1, i.e. that w € S?~!. Further, we have that (|o|; + b))~ <
(1 + |b)~". Thus, we must show that

gx) =1+ b)) o1(@w- x +b) € C-conv(£P)

forw € S4 1 and b € R. For b € [cy, c3] this clearly holds with C = 1 since
(1+ |b|)_1 < 1 and for such values of b, we have o1 (w - x + b) € P‘f. If b < ¢y, then
g(x) = 0, so we trivially have g € conv(xP). Finally, if b > ¢, then w - x + b is
positive on €2, so that

) =0+b) Nw-x+b) =1+ b)) 'w-x+ b1+ 6D

Noww:-x € 2-conv(xPj)and 1 = [o1(w-x +2) —o1(w-x+1)] € 2-conv(£Py).
Combined with the above and the fact that (1 + |6])~L, |b|(1 + |b])~! < 1, we get
g € 4-conv(xPy).

Finally, if @ = 0, then g(x) = 1 and by the above paragraph we clearly also have
g € 2 - conv(xP;). This completes the proof. O

Note that it follows from this result that the Barron space & is a Banach space,
which was first proven in [8].

Next, we compare the spaces % (Px) and their variation norms to the Radon BV
semi-norms introduced in [26, 27]. Specifically, these norms coincide with the P-
variation norms on a bounded domain €2 up to a kernel consisting of polynomials.
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Theorem 2 For any bounded domain 2, we have

1
inf + = — inf
s If =+ ple, %ot [ felk+1)

where | - | (k1) is the Radon BV seminorm introduced in [27], f. is an extension of f
to the whole of RY, and ;. is the space of polynomial of degree at most k.

Note that by the remarks in [27], when k = 1 this theorem also applies to the semi-norm
introduced in [26], which is equivalent to the Radon BV semi-norm.

Proof Theorem 22 in [27] implies that | f|x+1) < 1 is equivalent to an integral
representation of the form

fx) = L / [ox(@ - x +b) — (@ x + ) du(@, b) + px), 3.1
k! Sd—1 xR

where 1 is a Borel measure on S~ x R, p(x) is a polynomial of degree at most k
and p satisfies ||| = 1.

Further, Lemma 3 means that || f||p, < 1is equivalent to the existence of an integral
representation

fx) = / or(w-x + b)du(w, b) (3.2)
S4=Ix[cy.c2]

on €2, where p is a Borel measure on S?~! x [c1, c] and ||| < 1. This follows since
PPy is a compact subset of LZ(£2) (it is continuously parameterized by the compact set
S % [e1, ea)).

Soif || fllp, < 1 we use the integral representation and set (3.2) and set

1

felx) = k! [k!

/ [ok(@ - x +b) — (- x + b} [du(w, b) +p<x>]
S4=1x[cy,c2]
where

1
px) = —/ (- x + b)kdu(w, b).
Kt Jsa-1xier.e1

Since S9! x [c1, 2] € S%7! x R we see that |f,|x+1 < k!. This implies that
inf £, 10— ¢ | felk+1) < k![| fllp,. Since & is the kernel of the | - |x41) (see Lemma 19
in [27]), we can take an infemum over Z to get

inf < k! inf + .
ot [ fele+1) < s If + plip

For the converse, suppose that f satisfies inf 7,jo= ¢ | fel(k+1) < 1 and let f, be an
extension of f such that

[ felk+1) < 1 +€.
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We now apply integral representation (3.1) and note that if b ¢ [c], 2], then oy (w -
x+b) —(w-x+bkisa polynomial on the domain 2. So we can write

fe@) = f(x) = f'(x) +qx)

for x € 2, where || f|lp, < 1/k! and g(x) is a polynomial of degree at most k. This
implies that

inf || f+ pllp, < I1f'llp, = 1.
peEPy

Hence inf ye 7, | f + plip, < (1/k)inf 1, 10— 1 | felget1) as desired. O

As a corollary of this result, we have the following equivalence when we strengthen
the Radon BV semi-norm to a norm.

Corollary 1 For any bounded domain 2, we have

I flle, = ;

e

o _
|lg=f [felk+1) + 1/ 20

Note that by the remarks in [27], when k = 1 this corollary also applies to the
semi-norm introduced in [26].

Proof By Theorem 2 we have

inf = k! inf + < k! _
fe|Q=f|fe|(k+l) 8 If + ple, < K fllp

Further, by Lemma 1 we have || f|,2(q) S Il fllp, since the dictionary PPy is bounded
in L2(Q). Putting these together, we get

inf + 5 S )
felsz=f|fe|("“> 12y S 11 lle

To prove the other direction, let p* € & be such that

If—p*lp, = inf | f+ ple,.
pePy

Such a p* can always be found since &7 is a finite dimensional space and the function
lf + pllp, — oo as p — oo. Then, using Theorem 2, we have

1
* * _ *
1A e, = 11Lf = Polle, + 1P7 e, = fe|13f=f | felg+n) + 17 Iy -

Since JZ (IPt) contains all polynomials of degree at most k on €, || - ||p, is a finite
norm on P. As all norms on the finite dimensional space &, are equivalent we get

1P lee S 11P" 122 0)-
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Next, we notice that

IP* N2 < W fl2 + ILf = PMll 2

Further, || f — p*ll 2@y S Ifllpe S inf g, o= | felk+1) for a constant C. This follows
by Lemma 1, Theorem 2 and the fact that |p|+1) = O for any p € & (Lemma 19
in [27]). It follows that

Ip* ey S NP M2 < 12 +ILf = PRl S p Ilgf_f | felte+1y + 11 120

so we finally get

|
Iflle < 1nff|fe|(k+]) + P e S

inf .
=% plof olnf | felan + 1 Fll 2

e

4 Characterization of 7" (IP;) in One Dimension

In this section, we prove a characterization of J# (IP) in one dimension. In this case,
the space # (IPx) has a relatively simple characterization in terms of the space of
bounded variation. In the case where k = 1 an analogous characterization can be
found in [8], sect. 4. Earlier results characterizing the Barron space in one dimension
on the while of R were obtained in [20, 32]. Note that by the results of the previous
section, a higher dimensional characterization in terms of the Radon transform is given
in [26, 27].

Theorem 3 Let Q = [—1, 1]. We have
H P ={f € L*(—1,1]) : fisk-times differentiable a.e. and f® € BV ([—1, 1])}.

In particular, it holds that

k—1
1flle, = Y 1D+ 1PNy

j=0
Proof We first prove that
k—1
1flle, S D 1P DI+ 1PNy 4.1)
Jj=0

Note that the right hand side is uniformly bounded for all f = oy (+x + b) € Py,

since ak(k) is a multiple of the Heaviside function and b is bounded by max(|cy|, |c2|).
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By taking convex combinations, this means that for some constant C, we have

Za, : hj e Py, Z|a,|<1 C CBy 1
i=1

where
k—1 ‘
Bhy = f e L2(-11D): Y IfPDI+ 1/ Plsy-r1p =1
j=0

It is well-known that leav, & i compact in L'([—1, 1]) (see, for instance Theorem 4 of
Chapter 5 in [9]). This implies that B, , is closed in L*([—1, 1]), since if f, — ;2 f
with f,, € B }w, «» then there must exist a subsequence fi, — 1 feB }W’ «- Clearly
f= f and so B}?V,k is closed in L2([—1, 1]). From this it follows that conv(£P;) C
CBp,y . and we obtain (4.1).

Next, we prove the reverse inequality. So let [ € Bllgv’ &+ By Theorem 2 in Chapter
5 of [9], there exist f, € C*° N By, , such that f, — f in L'([—1, 1]). Further,
since f,, f € leav,k’ we have that || f — f |l (-1,1}) is uniformly bounded. Thus

If— ntILz([ Ly S W= Sl L f = fallLeq-1.1) = 0

andso f, — fin L2([—1, 1]) as well.
Using the Peano kernel formula, we see that

(/) (k+1)
fux) = Zf D1y + /f ®) u(x — bydb.

From the definition of the BV -norm and the fact that f;, € B zlsv > We see that

ko oG, 1| pk+D)
Zlfn ( 1)I+/ [ fn (b)|db§C1

= ! Y

for a fixed constant C;. Choose k + 1 distinct by, ..., b1 € [1, c2] (note that we
need ¢ > 1). Then by construction ox(x + b;) = (x + bk is a polynomial on
[—1, 1]. Moreover, it is well-known that the polynomials (x + b))k span the space of
polynomials of degree at most k (using for instance the determinant of Vandermonde
matrix). Combined with the coefficient bound

) 1
Z|f (=D <c.

=
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we see that
)
-1 . -
Z L) .(' )(x —a)! € Cyp - conv(£Py)

for a fixed constant C, (independent of f;,). Furthermore, since also

1 (k+1)
b
/ | fn ()|db§C1,
—1 k!

we obtain
(k+1)
f f ( ) ox(x — b)db € Cy - conv(£Py).

This implies that f, € C - conv(£Py) for C = C| + C, and since f,, — f and
conv(£Py) is closed in L2([—1, 1]), we get f € C - conv(£Py), which completes the
proof. O

5 Characterization of .7 (F9)

In this section we characterize the space % (IFy) and the variation norm corresponding
to the dictionary [Fs. In particular, we have that this variation norm is equivalent to
the spectral Barron norm which has been widely used in the approximation theory of
shallow neural networks [1, 14, 33-35].

Theorem 4 We have

I fllgs = inf /(1+|§|) | fe(§)1dE, (CRY

fela=f

where the infimum is taken over all extensions f, € L' (R?).

Note that we have equality in the above theorem, not just equivalence of the norms. We
remark that throughout this section, we use the following convention for the Fourier
transform

o= [ s,
R4
for which the inverse transform is given by
s = [ Feere
R4

To prove Theorem 4 we will need the following technical lemma concerning cutoff
functions.
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Lemma 4 Suppose that @ C RY is bounded. Let € > 0 and s > 0. Then there exists
a function ¢ € LY (R?), such that ¢ (x) = 1 for x € Q and

f (1+[ED*1P(E)|dE < 1 +e.
Rd

Proof Since 2 is bounded, it suffices to consider the case where Q = [—L, L] for a
sufficiently large L. We consider separable ¢ = ¢1(x1) - - - ¢4(x4), and note that

d d
Ad<1+|s|>5|$(5)|d§ < /Rdl"[(w 161)° 1 (€)1dE < ]‘[/ﬂ;{<1+|§|>s|¢3,~(s)|ds,
i=1 i=1

and this reduces us to the one-dimensional case where Q2 = [—L, L].
2

. . . . P .
For the one-dimensional case, consider a Gaussian gr(x) = e~ 2% . A simple calcu-

. . A R
lation shows that the Fourier transform of the Gaussian is gr(§) = %e 2. This

implies that

lim /(1 1 1ED 18R (E)IdE = 1,
R—o0 JR

and thus by choosing R large enough, we can make this arbitrarily close to 1.
Now consider g € Ck(R) for k > s 4+ 2 such that tg(x) = 1 — ggr(x) for
x € [—L, L]. Then we have

k
ltrllzocq—L,Lnys ITRlLo (=L L]ys - - ”'[I(Q)HLOO([fL,L]) -0
as R — oo. Consequently, it is possible to extend 7z to R so that
k
IRl @y Ik iy = O-

as R — oo. For instance, for x > L we can take T to be a polynomial which matches
the first k derivatives at L times a fixed smooth cutoff function which is identically 1
in some neighborhood of L (and similarly at —L).

This implies that ||Tr (§) || L= ®), IEX TR (E) lLo@®) — Oas R — oo. Together, these
imply that

lim /(1+|El)s|f1e(é)|d$ -0,
R—00 JR

sincek —2 > s.
Finally, set g = gr(x) + tr(x). Then clearly ¢g = 1 on [—L, L] and also

lim /(1+|§|)X|Q§R(E)|dé < lim /(1+|EI)SIfR(S)Id€+
R—oo JR R—oo Jr

@ Springer



Constructive Approximation (2023) 57:1109-1132 1127

fim /(1 +IED 18R (E)IdE = 1.
R—o0 Jr

Choosing R large enough, we obtain the desired result. O

Using this lemma, we now show that integral representations of the form (2.1) over
the dictionary [F are equivalent to the right hand side of (5.1).

Proposition5 Ler Q C R? be a bounded domain and s > 0. Then

inf{llulli f=f]F iFﬁLz(mdu} lnf / (1 + €D fe®)ldE.  (5.2)

Proof We first prove the inequality
inf{llullr f= f iFﬁLz@)du}s inf f (1+ 1§D fe(®)1dE.
Fy fe|Q:f Rd

If the right hand side is infinite, there is nothing to prove. So let f, € L'(R) be an
extension such that

/ (1 + ED*| fo(§)|dE < oo.
Rd

In particular, this means that f € L'(R?) as well and Fourier inversion holds almost
everywhere. So we get

F@ = [ A+1e)7 e+ ey e
for almost every x € Q2. Thus, by choosing u = (1 + |‘§|)Sf($)d%' we get
fZ/FS iF, 12 d1,

where the Bochner integral in is justified since I is uniformly bounded in L?(2) and
1]l < oo. The right hand side is then a function in L?(£2) which agrees with f almost
everywhere (hence we have equality). Thus we get

inf{llulli fZ/F im_)Lz(mdM} inf / (1 + [ED*| fo(®)]dE.

fela=f

Now let us prove the reverse inequality. Let A be a regular Borel measure such that
the integral on the right hand side of (5.2) is finite (note this must mean that A has
finite mass) and

f&) :/ Ip,—12()d 2 =/ (1+ [ED 5T dA(E)
IFs R4
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for x € Q. Let u = (1 + |£]) ™A, so that we have
r = [ e
R4
and
/ (I + vD)'dlul) = [IA]l.
R4
Choose € > 0. By Lemma 4 we can find a ¢ € L'(RY) such ¢|q = 1 and

/ (1+ [ED* 1P (E)|dE < 1 +e.
Rd

We now set
fo(x) = $(x) [ /ﬂ; | ezﬂi“du@)} e L'(RY),

since ¢ € L'(R?) and 1 has finite mass, so the second factor must be bounded.
Then we have that for x € €2,

J@x) = f0)ex) = fe(x),
and fe = ¢3 * [, where the function ¢3 % [ 1S given by
G % w)(E) = / $(& —v)du(),
R4
We now calculate
/ (1 + [ED I(¢ % w)(E)]dE 5/ / (1 + |ED |pE — v)Id|pl(v)dE.
R4 R¢ JRA

Finally, we use the simple inequality (1 + |£])* < (1 + [v))*(1 + |€ — v|)® combined
with a change of variables, to get

/ (1 + [ED*I(¢ % w)(E)]dE < (/ (I+ IEI)S|$(€)|d5> (/ (I+ IvI)SdIMI(V)>
Rd R4 Rd

<(+4e¢) (/Rd(l + IVI)SdIMI(V)> = (14 el
This shows that

inf / (A + 6D | fe(®)IdE < (1+6)inf{llulli f=/ iIFS—>L2(SZ)dM}~
felo=f JRrd F,
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Since € > 0 was arbitrary, we get the desired result. O

This completes the proof of Theorem 4 if s > 0 since then F is compact in L(£2)
and we can invoke Lemma 3 to obtain the equality

I fllw, =/F ip, 2@ dn

The final step is thus to prove the left equality in 5.1 when s = 0. For this, we use the
following.

Proposition 6 Let Q@ C R? be a bounded domain. Then

BAQ):{f:Q—)R: inf / |fe(§)|d$§1} (5.3)
fele=f JRd

elQ:

is closed in LZ(Q).

Proof Let f, — f in L*(S2) witAh fn € Be(R2). Choose € > 0 and consider the
corresponding sequence of i, = f; . in (5.3) which satisfy

/ h(E)dE < 14 €, fu(x) = hn(x) = / h(®)PEdE (5.4
]Rd Rd

By assumption f, — f in L?(2) so that for any g € L?(2), we have

(fns 812 = (f &) 2 (5.5)

Choose g to be any element in the dense subset C°(2) C L?() and note that in this
case we have by Plancherel’s theorem

(fns 812 = (fns 8) 2Ry = (M, &) 12(Rey-

Note that g is a Schwartz function and so is in Co(RY), the space of continuous,
decaying functions

Co®) = (¢ € C®): lim [¢(§)] =0},

with the supremum norm.
This implies that the map

hig— lm (hy, ¢)p2ga)

defines a bounded linear functional on the subspace of Co(R?) which is spanned by
{§ : g € C°(R)}. The limit above exists by (5.6) and the assumption that f,, — f.
Further, the bound has norm < 1 4 € by equation (5.4).
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By the Hahn-Banach theorem, we can extend 4 to an element u € C(’)“(Rd), such
that ||| Crrd) = 1 4+ €. By the Riesz-Markov theorem (Theorem 22 in [24]), the dual

space C; (R?) is exactly the space of Borel measures with the total variation norm.
Thus we get

el e (mery 2/ dlpl(§) <1+e.
R4

But we also have that for every g € C°(R2), (i, &) = (f, g). Taking the Fourier
transform, we see that the function

fu= / ATETdp(E)
Rd

satisfies (fy, g) = (f, g) forall g € C2°(Q). Thus f = f, in L?(2) and so by (5.2),
we have

inf / Ife(é)ldéfff Fu@®lde < 1 +e.
fe R4

elo=f JRrd
Since € was arbitrary, this completes the proof. O

To complete the proof in the case of s = 0, we simply note that by (5.2), B.(2)
contains all of the complex exponentials ¢>*!®*_ Since it is clearly convex and is
closed by Proposition 5, it must be equal to conv(£Fy). This completes the proof of
Theorem 4.

6 Conclusion

We have provided some foundational analysis of the variation spaces with respect
to dictionaries arising in the study of shallow neural networks. The precise analysis
of approximation theoretic properties such as the metric entropy and n-widths of
these spaces is a major research direction which we propose. In addition, it must
be investigated whether these variation spaces are useful for any particular practical
applications, for instance solving PDEs.
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