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Abstract

We study the variation space corresponding to a dictionary of functions in L2(�) for

a bounded domain � ⊂ Rd . Specifically, we compare the variation space, which is

defined in terms of a convex hull with related notions based on integral representations.

This allows us to show that three important notions relating to the approximation theory

of shallow neural networks, the Barron space, the spectral Barron space, and the Radon

BV space, are actually variation spaces with respect to certain natural dictionaries.

Keywords Function space · Neural networks · Approximation

Mathematics Subject Classification 68T05 · 46B99

1 Introduction

In this work we consider the variation space with respect to a dictionary D ⊂ H in a

separable Hilbert space H . This notion arises in the study of non-linear approximation

by an expansion of dictionary elements [2, 3]. Suppose that supd∈D ‖d‖H = KD < ∞,

and consider the variation norm [16, 17] of D defined by

‖ f ‖D = inf
{

c > 0 : f /c ∈ conv(±D)
}

. (1.1)
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This is the gauge, or Minkowski functional of the closed symmetric convex hull of D,

conv(±D) =

⎧

⎨

⎩

n
∑

j=1

a j h j : n ∈ N, h j ∈ D,

n
∑

i=1

|ai | ≤ 1

⎫

⎬

⎭

.

The variation space K (D) is then given by

K (D) := { f ∈ H : ‖ f ‖D < ∞}.

The varation norm and variation space have been introduced in different forms in the

literature and play an important role in the approximation theory of neural networks

[1, 14, 22, 23, 35], the convergence theory of greedy algorithms [2, 4, 21, 36–38] and

in non-linear approximation [3, 16, 17].

In this work, we begin by developing the basic properties of the variation space

and variation norm. Specifically, we show that the set K (D) is a Banach space with

the ‖ · ‖D-norm. Next, we study the variation space K (D) for the following two

dictionaries which arise in the study of shallow neural networks and compare them

with related notions in the approximation theory of shallow neural networks.

The first type of dictionary arises when studying neural networks with ReLUk

activation function [35]

σk(x) = ReLUk(x) := [max(0, x)]k .

Here when k = 0, we interpret σk(x) to be the Heaviside function. Let � ⊂ Rd be a

compact domain and consider the dictionary

Pk = {σk(ω · x + b) : ω ∈ Sd−1, b ∈ [c1, c2]} ⊂ L2(�), (1.2)

where Sd−1 = {ω ∈ Rd : |ω| = 1} is the unit sphere and c1 and c2 are chosen to

satisfy

c1 < inf{x · ω : x ∈ �,ω ∈ Sd−1} < sup{x · ω : x ∈ �,ω ∈ Sd−1} < c2.

The important point is that σk(ω · x + b) for all planes ω · x + b = 0 which intersect

� must be strictly contained in Pk . Note that we are suppressing the dependence on

the domain � and dimension d for notational convenience. We explain in more detail

where this definition comes from in Sect. 3.

Recently, neural networks with ReLU activation function have shown remarkable

empirical success on problems in computer vision and natural language processing

[18]. A shallow neural network of width n with ReLU activation function is a function

of the form

fn(x) =
n

∑

i=1

aiσ1(ωi · x + bi ),
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for some parameters ai , bi ∈ R and ωi ∈ Rd , where σ1(x) = max(0, x) is the rectified

linear unit [25]. A natural measure of complexity on the parameters ai , bi , ωi is the

squared ℓ2-norm

C( fn) := C({ai , bi , ωi }n
i=1) :=

n
∑

i=1

a2
i + ‖ωi‖2

2,

which corresponds to the regularizer induced by the common practice of weight decay

[15]. In [26], a semi-norm is defined by taking the complexity required to uniformly

approximate f on compact subsets as the width n → ∞. Specifically, they define the

semi-norm

R̄( f ) = lim
ǫ→0

inf
{

C( fn) s.t. | fn(x) − f (x)| ≤ ǫ, for |x | ≤ ǫ−1
}

.

Functions for which R̄( f ) is finite can be approximated arbitrarily closely by shallow

ReLU neural networks with bounded complexity. It is shown in [26] that this semi-

norm is given by

R̄( f )=min

{

‖α‖1, s.t. f (x)=
∫

Sd−1×R

[σ1(ω · x + b)−σ1(b)]dα(ω, b)+c

}

,

where the infemum is taken over all signed Borel measures α and constants c, and

‖α‖1 denotes the total variation norm of α. Further, they provide a characterization of

the semi-norm R̄ in terms of the Radon transform, showing that (roughly speaking,

see [26], Theorem 2)

R̄( f ) = γd‖R(	
d+1

2 f )‖1 + |∇ f (∞)|, (1.3)

where R is the Radon transform, γd is a dimension dependent constant, and the

gradient at ∞ is defined by ∇ f (∞) = limr→∞ 1
rd−1|Sd−1|

∫

|x |=r
∇ f (x)dx . Note that

one part of this equality, namely that the left hand side is less than or equal to the

right, was also proved in [29]. When d is even, the fractional power of the Laplacian

appearing in (1.3) must be defined in terms of the ramp filter in the Radon domain

(see [26, 27] for details).

This notion is extended the higher powers of the ReLU, i.e. to σk = [max(0, x)]k

for k ≥ 2 in [27, 28] (the case k = 0 was treated in [13]). They propose a family of

seminorms, called the Radon BV semi-norms, denoted by | f |(k), indexed by k and

defined via the Radon transform R (again, roughly speaking, see [27] for details) as

| f |(m) = γd‖R(	
d+2k−1

2 f )‖1.
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Further, they prove a representer theorem for this semi-norm, i.e. they show that

minimizers to the regularized problem

arg min
f

N
∑

i=1

ℓ( f (xi ), yi ) + γ | f |(m),

where (x1, y1), ..., (xN , yN ) is a finite data sample are shallow neural networks with

ReLUk activation function and finite width (depending on N ).

A closely related notion introduced recently concerning approximation by shallow

ReLU neural networks is the Barron norm [7, 40], defined by

‖ f ‖B = min

{

Eρ(|a|(|ω|1 + |b|)) : f (x) =
∫

R×Rd×R

aσ1(ω · x + b)ρ(da, dω, db)

}

,

where the infemum is over all probability measures ρ on R × Rd × R. The properties

of this norm have also been studied in [8], for instance.

Our contribution is to show that on a bounded domain �, the notion of Barron

norm coincides with the variation norm of the dictionary P1. Specifically, we show

the equivalence

‖ f ‖P1
� ‖ f ‖B,� := inf

fe|�= f
‖ fe‖B.

Here the constant in the above bound sclaes with the square root of the dimension and

is due to the fact that the Barron norm measures the norm of ω in ℓ1 while we measure

it in ℓ2.

In addition, we show that up to a polynomial kernel, the Radon BV semi-norm

coincides with the variation norm of Pk on a bounded domain �. Specifically, we

have for k ≥ 0

inf
p∈Pk

‖ f + p‖Pk
� | f |(k+1),� := inf

fe|�= f
| fe|(k+1), (1.4)

where Pk is the space of polynomials of degree at most k and the infimum is taken

over all extensions fe of f to the whole of Rd .

By equivalence of the R̄ semi-norm and Radon BV semi-norm noted in [27] this

also implies that

inf
p∈Pk

‖ f + p‖P1
� inf

fe|�= f
R̄( fe). (1.5)

The constants implicit in the equivalences (1.4) and (1.5) do not depend upon the

dimension. We also prove the equivalences

‖ f ‖Pk
� | f |(k+1),� + ‖ f ‖L2(�), ‖ f ‖P1

� inf
fe|�= f

R̄( f ) + ‖ f ‖L2(�).
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However, for these the implied constant does depend upon the dimension.

Finally, we also give a complete characterization of the variation space correspond-

ing to Pk in one dimension. In particular, we prove that

‖ f ‖Pk
�

k−1
∑

j=0

| f ( j)(−1)| + ‖ f (k)‖BV ([−1,1]).

The second type of dictionary related to shallow neural networks which we consider

is the spectral dictionary of order s ≥ 0, given by

Fs = {(1 + |ω|)−se2π iω·x : ω ∈ Rd} ⊂ L2(�).

Our contribution is to show that the variation space of Fs can be completely

characterized in terms of the Fourier transform. In particular, in Sect. 5 we prove

that

‖ f ‖Fs
= inf

fe|�= f

∫

Rd

(1 + |ξ |)s | f̂e(ξ)|dξ, (1.6)

where the infimum is taken over all extensions fe ∈ L1(Rd). (Note that we have here

equality, not just equivalence.)

The norm in (1.6) was first introduced by Barron [1], who showed that functions in

the space K (F1) could be approximated with rate O(n− 1
2 ) using shallow networks

with sigmoidal activation function. These results have been extended to networks with

ReLUk activation functions in [14, 41]. The spectral Barron norm (1.6) has also been

important in understanding the approximation properties of shallow neural networks

with more general activation functions [11, 33]. Our contribution is to show that the

spectral Barron norm (1.6) is equivalent to the variation norm with respect to a suitable

dictionary of decaying Fourier modes.

The paper is organized as follows. In Sect. 2 we discuss the basic properties of the

variation spaces. In particular, show that they are Banach spaces. In Sect. 3, we analyze

the spaces K (Pk). We show that when k = 1, the space is equivalent to the Barron

space studied in [7] and also compare them with the Radon BV spaces. In Sect. 4,

we give a characterization of K (Pk) when d = 1 in terms of the space of bounded

variation. Then, in Sect. 5, we give a characterization of K (Fd
s ) in terms of the Fourier

transform, showing that it is equivalent to the spectral Barron norm. Finally, we give

some concluding remarks and further research directions.

2 Basic Properties ofK1(D)

Let us first develop the elementary properties of the variation space K (D). The key

result is that K (D) is a Banach space with the variation norm ‖ · ‖D.

Lemma 1 Suppose that supd∈D ‖d‖H = KD < ∞. Then the ‖ · ‖D norm satisfies the

following properties.
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• conv(±D) = { f ∈ H : ‖ f ‖D ≤ 1}
• ‖ f ‖H ≤ KD‖ f ‖D

• K (D) := { f ∈ H : ‖ f ‖D < ∞} is a Banach space with the ‖ · ‖D norm

Proof The first two statements are well-known and can be found for instance in [16].

For the third statement we must show that the set K (D) is complete with respect to

the ‖ · ‖D norm.

Let { fn}∞n=1 be a Cauchy sequence with respect to the ‖ ·‖D norm. From the second

statement, we have ‖ fn − fm‖H ≤ KD‖ fn − fm‖D, so that the sequence is Cauchy

with respect the the H -norm as well. Thus, there exists an f ∈ H such that fn → f

in H , i.e. such that ‖ fn − f ‖H → 0.

We will show that also ‖ fn − f ‖D → 0, i.e. that we have convergence in the

variation norm as well (note that this automatically implies that ‖ f ‖D < ∞).

To this end, let ǫ > 0 and choose N such that ‖ fn − fm‖D < ǫ/2 for n, m ≥ N

({ fn} is Cauchy, so this is possible). In particular, this means that ‖ fN − fm‖D ≤ ǫ/2

for all m > N . Now the first statement implies that fm − fN ∈ (ǫ/2)conv(±D), or in

other words that fm ∈ fN + (ǫ/2)conv(±D). Since fm → f in H , and conv(±D) is

closed in H by definition, we get f ∈ fN +(ǫ/2)conv(±D). Hence ‖ f − fN ‖D ≤ ǫ/2

and the triangle inequality finally implies that ‖ f − fm‖D ≤ ǫ for all m ≥ N . Thus

fn → f in the variation norm and K (D) is complete. ⊓⊔

Let us remark that for some dictionaries D the K (D) space can be substantially

smaller than H . In fact, if the dictionary D is contained in a closed subspace of H ,

then we have the following elementary result.

Lemma 2 Let K ⊂ H be a closed subspace of H. Then D ⊂ K iff K1(D) ⊂ K .

Proof We have D ⊂ K (D) so that the reverse implication is trivial. For the forward

implication, since D ⊂ K and K is closed, it follows that conv(±D) ⊂ K . Then, from

the definition (1.1), it follows that

K (D) =
⋃

r>0

r · conv(±D) ⊂ K .

⊓⊔

A simple example when this occurs is when considering a shallow neural network with

activation function σ which is a polynomial of degree k. In this case the space K (D)

is contained in the finite-dimensional space of polynomials of degree k, and the ‖ · ‖D

norm is infinite on non-polynomial functions. This is related to the well-known result

that neural network functions are dense iff the activation function is not a polynomial

[19].

Proposition 1 Let � ⊂ Rd be a bounded domain and D = {σ(ω · x + b) : (ω, b) ∈
Rd × R} ⊂ L2(�), where the activation function σ ∈ L∞

loc(R), i.e. ‖σ‖L∞(K ) < ∞
for any compact set K ⊂ R. Suppose further that the set of discontinuities of σ has

Lebesgue measure 0. Then K (D) is finite dimensional iff σ is a polynomial (a.e.).
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Proof If σ is a polynomial, D is contained in the space of polynomials of degree at

most deg(σ ), which is finite dimensional. This implies the result by Lemma 2. For

the reverse implication, we use Theorem 1 of [19], which states that if σ is not a

polynomial, then

C(�) ⊂
{

n
∑

i=1

aiσ(ωi · x + bi )

}

,

where the closure is taken in L∞(�) (note that this cumbersome statement is necessary

since σ may not be continuous). This immediately implies that K (D) is dense in

L2(�) (since C(�) is dense in L2(�)), and thus obviously not finite dimensional.

⊓⊔

While in this example the variation norm is finite dimensional, this is typically not

the case for most dictionaries of interest. Specifically for the dictionaries Pk and Fs

which we study, this space is infinite dimensional but still much smaller than H . The

size of the variation space has been precisely quantified for Pk in terms of the metric

entropy in [35] and these spaces have been used as trial spaces for solving PDEs in

[10]. However, it remains an interesting open question what the practical utility of

K (Pk) and K (Fs) really are.

The significance of the variation norm is that functions f ∈ K (D) can be efficiently

approximated by convex combinations of small numbers of dictionary elements. In

particular, we have the following result of Maurey [1, 12, 30]. Denote


n,M (D) =

⎧

⎨

⎩

n
∑

j=1

a j h j : h j ∈ D,

n
∑

i=1

|ai | ≤ M

⎫

⎬

⎭

.

Then we have the following result.

Theorem 1 (Lemma 1 in [1]) Suppose that f ∈ K (D). Then for M = ‖ f ‖D we have

inf
fn∈
n,M (D)

‖ f − fn‖H ≤ KD‖ f ‖K (D)n
− 1

2 ,

We note the following simple converse to Maurey’s approximation rate. In particu-

lar, if a function can be approximated by elements from 
n,M (D) with fixed M , then

it must be in the space K (D).

Proposition 2 Let H be a Hilbert space and f ∈ H. Suppose that fn → f in H with

fn ∈ 
n,M (D) for a fixed M < ∞. Then f ∈ K (D) and

‖ f ‖D ≤ M .

Proof It is clear that we must only prove this for M = 1. From the definitions we

have 
n,1(D) ⊂ conv(±D) for every n. Thus fn ∈ conv(±D) and since conv(±D) is

closed, we get f ∈ conv(±D), so that ‖ f ‖D ≤ 1, as desired. ⊓⊔
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Next, we wish to connect the space K (D) defined via the closed symmetric convex

hull of D to integral representations, which have recently become a popular concept

in the approximation theory of shallow neural networks [8, 26, 27, 39]. An integral

representation of a function f over the dictionary D is given by

f =
∫

D

iD→H dμ. (2.1)

Here the dictionary D inherits the subspace topology from the Hilbert space H , dμ is

a (signed) Borel measure with finite variation on D, i.e.

‖μ‖ = sup
g: D→[−1,1]
g measurable

∫

D

gdμ < ∞,

and the integral is the Bochner integral of the inclusion map iD→H : D → H . Note that

since H is separable, the inclusion map is μ-measurable by the Pettis measurability

theorem. Further, if D is bounded, i.e. if |D| = supd∈D ‖d‖H < ∞, then since μ has

finite variation the inclusion map iD→H is absolutely integrable and so the Bochner

integral exists (see [5], Chapter 4).

We prove that if the dictionary D is compact, then membership in K (D) is

equivalent to the existence of an integral representation.

Lemma 3 Suppose that D ⊂ H is compact. Then f ∈ K (D) iff there exists a Borel

measure μ on D

f =
∫

D

iD→H dμ.

Moreover,

‖ f ‖D = inf

{

‖μ‖ : f =
∫

D

iD→H dμ

}

.

Proof From the definition of the variation norm (1.1) we must show that

conv(±D) = M(D) :=
{∫

D

iD→H dμ : ‖μ‖ ≤ 1

}

.

We first show that M(D) ⊂ conv(±D). The idea of the proof is to approximate the

inclusion map iD→H by a simple function. The only technical issue is that we must

be able to restrict the range of this simple function to lie in D. We proceed as in the

proof of Bochner’s theorem (see [5], Chapter IV) with minor modification.

Let μ be a Borel measure on D with variation ‖μ‖ ≤ 1. Since H is separable,

the Pettis measurability theorem implies that the inclusion iD→H is μ-measurable.
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So for each n we can choose a countably valued μ-measurable function fn such that

‖ fn − iD→H ‖H ≤ 1/2n μ-almost everywhere. Thus we can write

fn =
∞
∑

k=1

an,kχEn,k

for elements an,k ∈ H and μ-measurable sets En,k which satisfy En,i ∩En, j = ∅ when

i �= j . The condition ‖ fn − iD→H ‖H ≤ 1/2n means that for every d ∈ En,k ⊂ D

we have ‖an,k − d‖H ≤ 1/2n. Using the triangle inequality this means that for any

d, d ′ ∈ En,k , we have ‖d − d ′‖H ≤ 1/n. Now for each En,k we choose dn,k ∈ En,k

and set

f̃n =
∞
∑

k=1

dn,kχEn,k
.

Then we have ‖ f̃n − iD→H ‖H ≤ 1/n μ-almost everywhere and the range of f̃n lies

in H . Finally, for each n we choose pn such that

∫

(

∪∞
k=pn+1 En,k

)
‖ f̃n‖H dμ ≤ 1

n
.

Since D is compact and thus bounded and μ satisfies ‖μ‖ ≤ 1, the function ‖ f̃n‖H is

in L1(dμ) so that such a pn can always be chosen. We now set

gn =
pn

∑

k=1

dn,kχEn,k
.

Then gn is a simple function satisfying
∫

D
‖iD→H − gn‖H dμ ≤ 2

n
. This means that

∣

∣

∣

∣

∣

∫

D

iD→H dμ −
pn

∑

k=1

dn,kμ(En,k)

∣

∣

∣

∣

∣

≤ 2

n
.

By design, dn,k ∈ D and since ‖μ‖ ≤ 1, we get
∑pn

k=1 |μ(En,k)| ≤ 1. Thus

pn
∑

k=1

dn,kμ(En,k) ∈ conv(±D)

for every n. Letting n → ∞, we see that

∫

D

iD→H dμ ∈ conv(±D).

Since μ was an arbitrary measure we get M(D) ⊂ conv(±D).
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Next we prove the reverse inclusion. Given any convex combination

f =
N

∑

i=1

ai di ,

with di ∈ D and
∑N

i=1 |ai | ≤ 1, we can choose μ =
∑∞

i=1 aiδdi
to be a linear

combination of Dirac deltas to see that f ∈ M(D). To complete the proof we must

show that M(D) is closed. We will prove this using Prokhorov’s theorem [31] (see

also [6], Theorem 11.5.4, for instance). Let fn → f with fn ∈ M(D) and let μn be

the corresponding sequence of Borel measures on D such that

fn =
∫

D

iD→H dμn

and ‖μn‖ ≤ 1. By the compactness of D and Prokhorov’s theorem, by taking a

subsequence if necessary we may assume that the μn → μ weakly, i.e. that the

integrals against continuous functions on D converges. Set f̃ =
∫

D
iD→H dμ, which

is Bochner integrable by the comments prior to the lemma. Choose a countable dense

sequence {λi }∞i=1 ∈ H . The weak convergence implies that

lim
n→∞

〈λi , fn〉H =
〈

λi , f̃
〉

H
.

for every i . The strong convergence fn → f implies the same with f replacing f̃ .

Thus 〈λi , f 〉H = 〈λi , f̃ 〉H for all i . Hence f = f̃ ∈ M(D), as desired. ⊓⊔

Finally, we note that the compactness in the preceding theorem was necessary. Indeed,

we have the following simple example.

Proposition 3 Suppose that � ⊂ Rd is bounded and σ is a smooth sigmoidal function.

Let H = L2(�) and Dσ defined by

Dσ = {σ(ω · x + b), ω ∈ Rd , b ∈ R}.

Then conv(±Dσ ) � M(Dσ ), where M(Dσ ) is defined as in the proof of the previous

lemma.

Proof Let σ0 be the Heaviside activation function. Then we have

lim
r→∞

‖σ0(x1) − σ(r x1)‖H = 0,

since σ is sogmoidal. Thus σ0(x1) ∈ conv(±Dσ ). However, since σ is smooth, the

discontinuous function σ0(x1) cannot have an integral representation of the form (2.1),

so that σ0(x1) /∈ M(Dσ ). ⊓⊔
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3 Properties ofK (Pd

k
) and Relationship with the Barron and Badon

BV Spaces

In this section we study the space K (Pk) in more detail. We begin by explaining the

precise definition (1.2), i.e. how we define an appropriate dictionary corresponding to

the ReLUk activation function. The problem with letting σk(x) = [max(0, x)]k and

setting

D = {σk(ω · x + b) : ω ∈ Rd , b ∈ R},

is that unless k = 0 the dictionary elements are not bounded in L2(�), since σk is not

bounded and we can shift b arbitrarily. This manifests itself in the fact that ‖ · ‖K1(D)

is a semi-norm which contains the set of polynomials of degree at most k − 1 in its

kernel (this occurs since the arbirtrarily large elements in D are polynomials on the

domain �).

We rectify this issue by considering the dictionary

Pk = {σk(ω · x + b) : ω ∈ Sd−1, b ∈ [c1, c2]},

where c1 and c2 are chosen to satisfy

c1 < inf{x · ω : x ∈ �,ω ∈ Sd−1} < sup{x · ω : x ∈ �,ω ∈ Sd−1} < c2.

This has the effect of ensuring that the dictionary Pk is bounded and the constants c1

and c2 are chosen so that σk(ω · x + b) ∈ Pk whenever the hyperplane {ω · x + b = 0}
intersects �. Further, when c1 < b < inf{x · ω : x ∈ �,ω ∈ Sd−1} or sup{x · ω :
x ∈ �,ω ∈ Sd−1} < b < c2, we recover all polynomials of degree at most k on � as

well.

Next, we consider the relationship between K (P1) and the Barron norm introduced

in [7], which is given by

‖ f ‖B = inf

{

Eρ(|a|(|ω|1 + |b|)) : f (x)=
∫

R×Rd×R

aσ1(ω · x+b)ρ(da, dω, db)

}

,

where we recall that σ1 is the rectified linear unit and the infimum is taken over all

integral representations of f . Here ρ is a probability distribution on R × Rd × R, and

the expectation is taken with respect to ρ. We show that the K (P1) space is equivalent

to the Barron space when restricted to bounded domains �.

Proposition 4 For any bounded domain �, we have

√
d‖ f ‖P1

� inf
fe|�= f

‖ fe‖B,

where the infemum is taken over all extensions of f to the whole of Rd . Here the

implied constant depends only upon the constants c1 and c2 taken in the definition of

P1.
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Proof Consider the dictionary

B = {(|ω|1 + |b|)−1σ1(ω · x + b) : ω ∈ Rd , b ∈ R} ⊂ L2(�).

From Lemma 3, it follows that ‖ f ‖B = ‖ f ‖B . Indeed, by making the change of

variables μ = |a|(|ω|1 + |b|)ρ, we get

‖ f ‖B = inf

{

‖μ‖ : f =
∫

B

iB→L2(�)dμ

}

.

Thus, it suffices to show that Pd
1 ⊂ C

√
d · conv(±B) and B ⊂ C · conv(±P1) for

a constant C(c1, c2).

So let g ∈ Pd
1 . This means that g(x) = σ1(ω · x + b) for some ω ∈ Sd−1 and

b ∈ [−c1, c2]. Thus

(|ω|1 + |b|) ≤ (
√

d + max(c1, c2)) ≤ C(c1, c2)
√

d

and since (|ω|1 + |b|)−1σ1(ω · x + b) ∈ B, we see that g ∈ C
√

d · conv(±B).

Now, let g ∈ B. Then g(x) = (|ω|1 + |b|)−1σ1(ω · x + b) for some ω ∈ Rd and

b ∈ R.

Consider first the case when ω �= 0. Note that by the positive homogeneity of σ1

we can assume that |ω| = 1, i.e. that ω ∈ Sd−1. Further, we have that (|ω|1 +|b|)−1 ≤
(1 + |b|)−1. Thus, we must show that

g̃(x) := (1 + |b|)−1σ1(ω · x + b) ∈ C · conv(±P1)

for ω ∈ Sd−1 and b ∈ R. For b ∈ [c1, c2] this clearly holds with C = 1 since

(1 + |b|)−1 ≤ 1 and for such values of b, we have σ1(ω · x + b) ∈ Pd
1 . If b < c1, then

g̃(x) = 0, so we trivially have g̃ ∈ conv(±P1). Finally, if b > c2, then ω · x + b is

positive on �, so that

g̃(x) = (1 + |b|)−1(ω · x + b) = (1 + |b|)−1ω · x + b(1 + |b|)−1.

Now ω · x ∈ 2 · conv(±P1) and 1 = [σ1(ω · x + 2) − σ1(ω · x + 1)] ∈ 2 · conv(±P1).

Combined with the above and the fact that (1 + |b|)−1, |b|(1 + |b|)−1 ≤ 1, we get

g̃ ∈ 4 · conv(±P1).

Finally, if ω = 0, then g(x) = 1 and by the above paragraph we clearly also have

g ∈ 2 · conv(±P1). This completes the proof. ⊓⊔

Note that it follows from this result that the Barron space B is a Banach space,

which was first proven in [8].

Next, we compare the spaces K (Pk) and their variation norms to the Radon BV

semi-norms introduced in [26, 27]. Specifically, these norms coincide with the Pk-

variation norms on a bounded domain � up to a kernel consisting of polynomials.
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Theorem 2 For any bounded domain �, we have

inf
p∈Pk

‖ f + p‖Pk
= 1

k! inf
fe|�= f

| fe|(k+1)

where | · |(k+1) is the Radon BV seminorm introduced in [27], fe is an extension of f

to the whole of Rd , and Pk is the space of polynomial of degree at most k.

Note that by the remarks in [27], when k = 1 this theorem also applies to the semi-norm

introduced in [26], which is equivalent to the Radon BV semi-norm.

Proof Theorem 22 in [27] implies that | f |(k+1) ≤ 1 is equivalent to an integral

representation of the form

f (x) = 1

k!

∫

Sd−1×R

[σk(ω · x + b) − (ω · x + b)k]dμ(ω, b) + p(x), (3.1)

where μ is a Borel measure on Sd−1 × R, p(x) is a polynomial of degree at most k

and μ satisfies ‖μ‖ = 1.

Further, Lemma 3 means that ‖ f ‖Pk
≤ 1 is equivalent to the existence of an integral

representation

f (x) =
∫

Sd−1×[c1,c2]
σk(ω · x + b)dμ(ω, b) (3.2)

on �, where μ is a Borel measure on Sd−1 ×[c1, c2] and ‖μ‖ ≤ 1. This follows since

Pk is a compact subset of L2(�) (it is continuously parameterized by the compact set

Sd−1 × [c1, c2]).
So if ‖ f ‖Pk

≤ 1 we use the integral representation and set (3.2) and set

fe(x) = k!
[

1

k!

∫

Sd−1×[c1,c2]
[σk(ω · x + b) − (ω · x + b)k]dμ(ω, b) + p(x)

]

,

where

p(x) = 1

k!

∫

Sd−1×[c1,c2]
(ω · x + b)kdμ(ω, b).

Since Sd−1 × [c1, c2] ⊂ Sd−1 × R we see that | fe|k+1 ≤ k!. This implies that

inf fe|�= f | fe|(k+1) ≤ k!‖ f ‖Pk
. Since Pk is the kernel of the | · |(k+1) (see Lemma 19

in [27]), we can take an infemum over Pk to get

inf
fe|�= f

| fe|(k+1) ≤ k! inf
p∈Pk

‖ f + p‖Pk
.

For the converse, suppose that f satisfies inf fe|�= f | fe|(k+1) ≤ 1 and let fe be an

extension of f such that

| fe|(k+1) ≤ 1 + ǫ.
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We now apply integral representation (3.1) and note that if b /∈ [c1, c2], then σk(ω ·
x + b) − (ω · x + b)k is a polynomial on the domain �. So we can write

fe(x) = f (x) = f ′(x) + q(x)

for x ∈ �, where ‖ f ‖Pk
≤ 1/k! and q(x) is a polynomial of degree at most k. This

implies that

inf
p∈Pk

‖ f + p‖Pk
≤ ‖ f ′‖Pk

= 1.

Hence inf p∈Pk
‖ f + p‖Pk

≤ (1/k!) inf fe|�= f | fe|(k+1) as desired. ⊓⊔

As a corollary of this result, we have the following equivalence when we strengthen

the Radon BV semi-norm to a norm.

Corollary 1 For any bounded domain �, we have

‖ f ‖Pk
� inf

fe|�= f
| fe|(k+1) + ‖ f ‖L2(�).

Note that by the remarks in [27], when k = 1 this corollary also applies to the

semi-norm introduced in [26].

Proof By Theorem 2 we have

inf
fe|�= f

| fe|(k+1) = k! inf
p∈Pk

‖ f + p‖Pk
≤ k!‖ f ‖Pk

.

Further, by Lemma 1 we have ‖ f ‖L2(�) � ‖ f ‖Pk
since the dictionary Pk is bounded

in L2(�). Putting these together, we get

inf
fe|�= f

| fe|(k+1) + ‖ f ‖L2(�) � ‖ f ‖Pk
.

To prove the other direction, let p∗ ∈ Pk be such that

‖ f − p∗‖Pk
= inf

p∈Pk

‖ f + p‖Pk
.

Such a p∗ can always be found since Pk is a finite dimensional space and the function

‖ f + p‖Pk
→ ∞ as p → ∞. Then, using Theorem 2, we have

‖ f ‖Pk
≤ ‖ f − p∗‖Pk

+ ‖p∗‖Pk
= 1

k! inf
fe|�= f

| fe|(k+1) + ‖p∗‖Pk
.

Since K (Pk) contains all polynomials of degree at most k on �, ‖ · ‖Pk
is a finite

norm on Pk . As all norms on the finite dimensional space Pk are equivalent we get

‖p∗‖Pk
� ‖p∗‖L2(�).
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Next, we notice that

‖p∗‖L2(�) ≤ ‖ f ‖L2(�) + ‖ f − p∗‖L2(�).

Further, ‖ f − p∗‖L2(�) � ‖ f ‖Pk
� inf fe|�= f | fe|(k+1) for a constant C . This follows

by Lemma 1, Theorem 2 and the fact that |p|(k+1) = 0 for any p ∈ Pk (Lemma 19

in [27]). It follows that

‖p∗‖Pk
� ‖p∗‖L2(�) ≤ ‖ f ‖L2(�) + ‖ f − p∗‖L2(�) � inf

fe|�= f
| fe|(k+1) + ‖ f ‖L2(�),

so we finally get

‖ f ‖Pk
≤ 1

k! inf
fe|�= f

| fe|(k+1) + ‖p∗‖Pk
� inf

fe|�= f
| fe|(k+1) + ‖ f ‖L2(�).

⊓⊔

4 Characterization ofK (Pk) in One Dimension

In this section, we prove a characterization of K (Pk) in one dimension. In this case,

the space K (Pk) has a relatively simple characterization in terms of the space of

bounded variation. In the case where k = 1 an analogous characterization can be

found in [8], sect. 4. Earlier results characterizing the Barron space in one dimension

on the while of R were obtained in [20, 32]. Note that by the results of the previous

section, a higher dimensional characterization in terms of the Radon transform is given

in [26, 27].

Theorem 3 Let � = [−1, 1]. We have

K (Pk)={ f ∈ L2([−1, 1]) : f is k-times differentiable a.e. and f (k) ∈ BV ([−1, 1])}.

In particular, it holds that

‖ f ‖Pk
�

k−1
∑

j=0

| f ( j)(−1)| + ‖ f (k)‖BV ([−1,1]).

Proof We first prove that

‖ f ‖Pk
�

k−1
∑

j=0

| f ( j)(−1)| + ‖ f (k)‖BV ([−1,1]). (4.1)

Note that the right hand side is uniformly bounded for all f = σk(±x + b) ∈ Pk ,

since σ
(k)
k is a multiple of the Heaviside function and b is bounded by max(|c1|, |c2|).
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By taking convex combinations, this means that for some constant C , we have

⎧

⎨

⎩

n
∑

j=1

a j h j : h j ∈ P1
k,

n
∑

i=1

|ai | ≤ 1

⎫

⎬

⎭

⊂ C B1
BV ,k,

where

B1
BV ,k :=

⎧

⎨

⎩

f ∈ L2([−1, 1]) :
k−1
∑

j=0

| f ( j)(−1)| + ‖ f (k)‖BV ([−1,1]) ≤ 1

⎫

⎬

⎭

.

It is well-known that B1
BV ,k is compact in L1([−1, 1]) (see, for instance Theorem 4 of

Chapter 5 in [9]). This implies that B1
BV ,k is closed in L2([−1, 1]), since if fn →L2 f

with fn ∈ B1
BV ,k , then there must exist a subsequence fkn →L1 f̃ ∈ B1

BV ,k . Clearly

f = f̃ and so B1
BV ,k is closed in L2([−1, 1]). From this it follows that conv(±Pk) ⊂

C B1
BV ,k and we obtain (4.1).

Next, we prove the reverse inequality. So let f ∈ B1
BV ,k . By Theorem 2 in Chapter

5 of [9], there exist fn ∈ C∞ ∩ B1
BV ,k such that fn → f in L1([−1, 1]). Further,

since fn, f ∈ B1
BV ,k , we have that ‖ f − fn‖L∞([−1,1]) is uniformly bounded. Thus

‖ f − fn‖2
L2([−1,1]) ≤ ‖ f − fn‖L1([−1,1])‖ f − fn‖L∞([−1,1]) → 0

and so fn → f in L2([−1, 1]) as well.

Using the Peano kernel formula, we see that

fn(x) =
k

∑

j=0

f
( j)
n (−1)

j ! (x + 1) j +
∫ 1

−1

f
(k+1)
n (b)

k! σk(x − b)db.

From the definition of the BV -norm and the fact that fn ∈ B1
BV ,k , we see that

k
∑

j=0

| f
( j)
n (−1)|

j ! +
∫ 1

−1

| f
(k+1)
n (b)|

k! db ≤ C1

for a fixed constant C1. Choose k + 1 distinct b1, ..., bk+1 ∈ [1, c2] (note that we

need c2 > 1). Then by construction σk(x + bi ) = (x + bi )
k is a polynomial on

[−1, 1]. Moreover, it is well-known that the polynomials (x + bi )
k span the space of

polynomials of degree at most k (using for instance the determinant of Vandermonde

matrix). Combined with the coefficient bound

k
∑

j=0

| f
( j)
n (−1)|

j ! ≤ C1,
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we see that

k
∑

j=0

f
( j)
n (−1)

j ! (x − a) j ∈ C2 · conv(±Pk)

for a fixed constant C2 (independent of fn). Furthermore, since also

∫ 1

−1

| f
(k+1)
n (b)|

k! db ≤ C1,

we obtain

∫ 1

−1

f
(k+1)
n (b)

k! σk(x − b)db ∈ C1 · conv(±Pk).

This implies that fn ∈ C · conv(±Pk) for C = C1 + C2 and since fn → f and

conv(±Pk) is closed in L2([−1, 1]), we get f ∈ C · conv(±Pk), which completes the

proof. ⊓⊔

5 Characterization ofK (Fd
s )

In this section we characterize the space K (Fs) and the variation norm corresponding

to the dictionary Fs . In particular, we have that this variation norm is equivalent to

the spectral Barron norm which has been widely used in the approximation theory of

shallow neural networks [1, 14, 33–35].

Theorem 4 We have

‖ f ‖Fd
s

= inf
fe|�= f

∫

Rd

(1 + |ξ |)s | f̂e(ξ)|dξ, (5.1)

where the infimum is taken over all extensions fe ∈ L1(Rd).

Note that we have equality in the above theorem, not just equivalence of the norms. We

remark that throughout this section, we use the following convention for the Fourier

transform

f̂ (ξ) =
∫

Rd

f (x)e−2π iξ ·x dx,

for which the inverse transform is given by

f (x) =
∫

Rd

f̂ (ξ)e2π iξ ·x dξ.

To prove Theorem 4 we will need the following technical lemma concerning cutoff

functions.
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Lemma 4 Suppose that � ⊂ Rd is bounded. Let ǫ > 0 and s ≥ 0. Then there exists

a function φ ∈ L1(Rd), such that φ(x) = 1 for x ∈ � and

∫

Rd

(1 + |ξ |)s |φ̂(ξ)|dξ ≤ 1 + ǫ.

Proof Since � is bounded, it suffices to consider the case where � = [−L, L]d for a

sufficiently large L . We consider separable φ = φ1(x1) · · · φd(xd), and note that

∫

Rd

(1 + |ξ |)s |φ̂(ξ)|dξ ≤
∫

Rd

d
∏

i=1

(1 + |ξi |)s |φ̂i (ξi )|dξ ≤
d

∏

i=1

∫

R

(1 + |ξ |)s |φ̂i (ξ)|dξ,

and this reduces us to the one-dimensional case where � = [−L, L].
For the one-dimensional case, consider a Gaussian gR(x) = e− x2

2R . A simple calcu-

lation shows that the Fourier transform of the Gaussian is ĝR(ξ) =
√

R
2π

e− Rξ2

2 . This

implies that

lim
R→∞

∫

R

(1 + |ξ |)s |ĝR(ξ)|dξ = 1,

and thus by choosing R large enough, we can make this arbitrarily close to 1.

Now consider τR ∈ Ck(R) for k > s + 2 such that τR(x) = 1 − gR(x) for

x ∈ [−L, L]. Then we have

‖τR‖L∞([−L,L]), ‖τ ′
R‖L∞([−L,L]), · · · , ‖τ (k)

R ‖L∞([−L,L]) → 0

as R → ∞. Consequently, it is possible to extend τR to R so that

‖τR‖L1(R), ‖τ
(k)
R ‖L1(R) → 0.

as R → ∞. For instance, for x > L we can take τR to be a polynomial which matches

the first k derivatives at L times a fixed smooth cutoff function which is identically 1

in some neighborhood of L (and similarly at −L).

This implies that ‖τ̂R(ξ)‖L∞(R), ‖ξ k τ̂R(ξ)‖L∞(R) → 0 as R → ∞. Together, these

imply that

lim
R→∞

∫

R

(1 + |ξ |)s |τ̂R(ξ)|dξ → 0,

since k − 2 > s.

Finally, set φR = gR(x) + τR(x). Then clearly φR = 1 on [−L, L] and also

lim
R→∞

∫

R

(1 + |ξ |)s |φ̂R(ξ)|dξ ≤ lim
R→∞

∫

R

(1 + |ξ |)s |τ̂R(ξ)|dξ +
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lim
R→∞

∫

R

(1 + |ξ |)s |ĝR(ξ)|dξ = 1.

Choosing R large enough, we obtain the desired result. ⊓⊔

Using this lemma, we now show that integral representations of the form (2.1) over

the dictionary Fs are equivalent to the right hand side of (5.1).

Proposition 5 Let � ⊂ Rd be a bounded domain and s ≥ 0. Then

inf

{

‖μ‖ : f =
∫

Fs

iFs→L2(�)dμ

}

= inf
fe|�= f

∫

Rd

(1 + |ξ |)s | f̂e(ξ)|dξ. (5.2)

Proof We first prove the inequality

inf

{

‖μ‖ : f =
∫

Fs

iFs→L2(�)dμ

}

≤ inf
fe|�= f

∫

Rd

(1 + |ξ |)s | f̂e(ξ)|dξ.

If the right hand side is infinite, there is nothing to prove. So let fe ∈ L1(Rd) be an

extension such that

∫

Rd

(1 + |ξ |)s | f̂e(ξ)|dξ < ∞.

In particular, this means that f̂ ∈ L1(Rd) as well and Fourier inversion holds almost

everywhere. So we get

f (x) =
∫

Rd

(1 + |ξ |)−se2π iξ ·x (1 + |ξ |)s f̂ (ξ)dξ

for almost every x ∈ �. Thus, by choosing μ = (1 + |ξ |)s f̂ (ξ)dξ we get

f =
∫

Fs

iFs→L2(�)dμ,

where the Bochner integral in is justified since Fs is uniformly bounded in L2(�) and

‖μ‖ < ∞. The right hand side is then a function in L2(�) which agrees with f almost

everywhere (hence we have equality). Thus we get

inf

{

‖μ‖ : f =
∫

Fs

iFs→L2(�)dμ

}

≤ inf
fe|�= f

∫

Rd

(1 + |ξ |)s | f̂e(ξ)|dξ.

Now let us prove the reverse inequality. Let λ be a regular Borel measure such that

the integral on the right hand side of (5.2) is finite (note this must mean that λ has

finite mass) and

f (x) =
∫

Fs

iFs→L2(�)dλ =
∫

Rd

(1 + |ξ |)−se2π iξ ·x dλ(ξ)
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for x ∈ �. Let μ = (1 + |ξ |)−sλ, so that we have

f (x) =
∫

Rd

e2π iξ ·x dμ(ξ)

and

∫

Rd

(1 + |ν|)sd|μ|(ν) = ‖λ‖.

Choose ǫ > 0. By Lemma 4 we can find a φ ∈ L1(Rd) such φ|� = 1 and

∫

Rd

(1 + |ξ |)s |φ̂(ξ)|dξ ≤ 1 + ǫ.

We now set

fe(x) = φ(x)

[∫

Rd

e2π iξ ·x dμ(ξ)

]

∈ L1(Rd),

since φ ∈ L1(Rd) and μ has finite mass, so the second factor must be bounded.

Then we have that for x ∈ �,

f (x) = f (x)φ(x) = fe(x),

and f̂e = φ̂ ∗ μ, where the function φ̂ ∗ μ is given by

(φ̂ ∗ μ)(ξ) =
∫

Rd

φ̂(ξ − ν)dμ(ν).

We now calculate

∫

Rd

(1 + |ξ |)s |(φ̂ ∗ μ)(ξ)|dξ ≤
∫

Rd

∫

Rd

(1 + |ξ |)s |φ̂(ξ − ν)|d|μ|(ν)dξ.

Finally, we use the simple inequality (1 + |ξ |)s ≤ (1 + |ν|)s(1 + |ξ − ν|)s combined

with a change of variables, to get

∫

Rd

(1 + |ξ |)s |(φ̂ ∗ μ)(ξ)|dξ ≤
(∫

Rd

(1 + |ξ |)s |φ̂(ξ)|dξ

)(∫

Rd

(1 + |ν|)sd|μ|(ν)

)

≤ (1 + ǫ)

(∫

Rd

(1 + |ν|)sd|μ|(ν)

)

= (1 + ǫ)‖λ‖.

This shows that

inf
fe|�= f

∫

Rd

(1 + |ξ |)s | f̂e(ξ)|dξ ≤ (1 + ǫ) inf

{

‖μ‖ : f =
∫

Fs

iFs→L2(�)dμ

}

.
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Since ǫ > 0 was arbitrary, we get the desired result. ⊓⊔

This completes the proof of Theorem 4 if s > 0 since then Fs is compact in L2(�)

and we can invoke Lemma 3 to obtain the equality

‖ f ‖Fs
=

∫

Fs

iFs→L2(�)dμ

The final step is thus to prove the left equality in 5.1 when s = 0. For this, we use the

following.

Proposition 6 Let � ⊂ Rd be a bounded domain. Then

Be(�) =
{

f : � → R : inf
fe|�= f

∫

Rd

| f̂e(ξ)|dξ ≤ 1

}

(5.3)

is closed in L2(�).

Proof Let fn → f in L2(�) with fn ∈ Be(�). Choose ǫ > 0 and consider the

corresponding sequence of hn = f̂n,e in (5.3) which satisfy

∫

Rd

|hn(ξ)|dξ ≤ 1 + ǫ, fn(x) = ĥn(x) =
∫

Rd

hn(ξ)e2π iξ ·x dξ. (5.4)

By assumption fn → f in L2(�) so that for any g ∈ L2(�), we have

〈 fn, g〉L2(�) → 〈 f , g〉L2(�). (5.5)

Choose g to be any element in the dense subset C∞
c (�) ⊂ L2(�) and note that in this

case we have by Plancherel’s theorem

〈 fn, g〉L2(�) = 〈 fn, g〉L2(Rd ) = 〈hn, ĝ〉L2(Rd ).

Note that ĝ is a Schwartz function and so is in C0(R
d), the space of continuous,

decaying functions

C0(R
d) = {φ ∈ C(R) : lim

ξ→∞
|φ(ξ)| = 0},

with the supremum norm.

This implies that the map

h : φ → lim
n→∞

〈hn, φ〉L2(Rd )

defines a bounded linear functional on the subspace of C0(R
d) which is spanned by

{ĝ : g ∈ C∞
c (�)}. The limit above exists by (5.6) and the assumption that fn → f .

Further, the bound has norm ≤ 1 + ǫ by equation (5.4).
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By the Hahn-Banach theorem, we can extend h to an element μ ∈ C∗
0 (Rd), such

that ‖μ‖C∗
0 (Rd ) ≤ 1+ ǫ. By the Riesz-Markov theorem (Theorem 22 in [24]), the dual

space C∗
0 (Rd) is exactly the space of Borel measures with the total variation norm.

Thus we get

‖μ‖C∗
0 (Rd ) =

∫

Rd

d|μ|(ξ) ≤ 1 + ǫ.

But we also have that for every g ∈ C∞
c (�), 〈μ, ĝ〉 = 〈 f , g〉. Taking the Fourier

transform, we see that the function

fμ =
∫

Rd

e2π iξ ·x dμ(ξ)

satisfies 〈 fμ, g〉 = 〈 f , g〉 for all g ∈ C∞
c (�). Thus f = fμ in L2(�) and so by (5.2),

we have

inf
fe|�= f

∫

Rd

| f̂e(ξ)|dξ ≤
∫

Rd

| f̂μ(ξ)|dξ ≤ 1 + ǫ.

Since ǫ was arbitrary, this completes the proof. ⊓⊔

To complete the proof in the case of s = 0, we simply note that by (5.2), Be(�)

contains all of the complex exponentials e2π iω·x . Since it is clearly convex and is

closed by Proposition 5, it must be equal to conv(±F0). This completes the proof of

Theorem 4.

6 Conclusion

We have provided some foundational analysis of the variation spaces with respect

to dictionaries arising in the study of shallow neural networks. The precise analysis

of approximation theoretic properties such as the metric entropy and n-widths of

these spaces is a major research direction which we propose. In addition, it must

be investigated whether these variation spaces are useful for any particular practical

applications, for instance solving PDEs.
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