Downloaded 07/17/23 to 128.104.46.206 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

MULTISCALE MODEL. SIMUL. © 2022 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 1191-1227

WIDE-BAND BUTTERFLY NETWORK: STABLE AND EFFICIENT
INVERSION VIA MULTI-FREQUENCY NEURAL NETWORKS*

MATTHEW LIT, LAURENT DEMANET%, AND LEONARDO ZEPEDA-NUNEZ$

Abstract. We introduce an end-to-end deep learning architecture called the wide-band butter-
fly network (WIDEBNET) for approximating the inverse scattering map from wide-band scattering
data. This architecture incorporates tools from computational harmonic analysis, such as the but-
terfly factorization, and traditional multi-scale methods, such as the Cooley—Tukey FFT algorithm,
to drastically reduce the number of trainable parameters to match the inherent complexity of the
problem. As a result, WIDEBNET is efficient: it requires fewer training points than off-the-shelf
architectures and has stable training dynamics which are compatible with standard weight initializa-
tion strategies. The architecture automatically adapts to the dimensions of the data with only a few
hyper-parameters that the user must specify. WIDEBNET is able to produce images that are com-
petitive with optimization-based approaches, but at a fraction of the cost, and we also demonstrate
numerically that it learns to super-resolve scatterers with a full aperture configuration.
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1. Introduction. There is nowadays extensive documentation on the remark-
able ability of neural networks to approximate high-dimensional, nonlinear maps
provided that enough data are available [56]. In many applications the process of
discovering such approximations simply involves enriching the network models, i.e.,
making them wider and/or deeper, until favorable stationary points arise in the empir-
ical loss landscape. This practice can be partially justified by the asymptotic capacity
of neural networks to approximate functions to within arbitrary accuracy, assuming
only mild regularity conditions [22, 46, 66]. Oftentimes, however, this strategy results
in models that are vastly overparametrized, even when compared to the already mas-
sive datasets that are necessary for training. For reasons that we outline below, these
approximation-theoretic results also obscure many preasymptotic complications that
are particularly acute when neural networks are applied to scientific applications. In
these instances the neural architectures often require specific tailoring to the task at
hand in order to satisfy the stricter requirements of scientific computing.

In this paper we focus on the problem of high-resolution imaging of scatter-
ers arising from wave-based inverse problems. This task naturally arises in many
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scientific applications, e.g., biomedical imaging [79], synthetic aperture radar [20],
nondestructive testing [72], and geophysics [76]. This problem also prototypically ex-
hibits two challenges that are commonly encountered in scientific machine learning.
First, obtaining the training data in this setting, whether synthetically or experimen-
tally, comes at considerable expense, which bottlenecks the size of the models that can
be reliably trained to satisfy the stringent accuracy requirements. This necessitates
the use of unconventional architectures that are bespoke to each problem. Second,
wave scattering involves nonsmooth data that are recordings of highly oscillatory,
broadband, scattered waveforms. These highly oscillatory (i.e., high-frequency) sig-
nals are known to impede the training dynamics of many machine learning algorithms
[88] and thus require new strategies to mitigate their effect.

Existing methods for scientific machine learning address the issue of data scarcity
by “incorporating underlying physics” into the design of neural architectures. In
instances where the problem data are smooth, this demonstrably reduces the total
number of trainable weights, which in turn reduces the number of training data re-
quired. Broadly categorized, these designs manifest as either (i) explicitly enforcing
physical symmetries into the network [92, 95, 96], (ii) exploiting signal invariances and
equivariances when processing the data [12], (iii) directly embedding the governing
differential equations into the objective function [48, 75], or (iv) imposing information
flow (i.e., connectivity) within the architecture according to multi-scale interactions
inherent to the physics of the data generating process [34, 51]. Surprisingly, in addi-
tion to lowering data requirements, these strategies are also observed to improve on
the testing accuracy of comparable conventional models which are trained on a larger
set of training points [44, 66, 94].

In comparison, not much is known about designing architectures for process-
ing nonsmooth data such as high-frequency waves. Here the same challenge that
confounds the original inverse problem—namely, the processing of highly oscillatory
signals—similarly obstructs direct application of machine learning methods. This idea
is formalized by the “F-principle” conjecture [88], which documents the relation be-
tween machine learning methods and Fourier analysis. Specifically, it is empirically
observed that models with fully connected and convolutional architectures preferen-
tially capture the low-frequency features of the target function. On the other hand,
considerable expense (with respect to model size and/or data) is needed to learn
high-frequency features [64]. Some examples even demonstrate that training can
completely fail when the target function lacks low-frequency content even if highly
expressive models are used [15, 87]. The F-principle thus demonstrates that although
neural networks are universal approximators in an asymptotic sense, new strategies
are needed to account for the issue with high frequencies if tractably computable
models are to be obtained.

We note that in our application the forward and inverse maps are intrinsically
oscillatory on account of the physics of wave propagation. This can be seen as an
immediate consequence of the dispersion relation in homogeneous media,

(1.1) A =¢

which describes the inverse scaling of the frequency f of propagating waves to their
spatial wavelength A by a factor of the local wave-speed c. This dispersion relation,
in conjunction with rudimentary signal processing, effectively suggests that images
generated by back-propagating the recorded waves into the medium are constrained
to a wavelength dependent resolution limit, i.e., the classical diffraction limit [39].
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High-resolution imaging of scatterers thus seemingly necessitates the use of high-
frequency waves to probe the media.

1.1. Our contributions. We introduce a custom architecture for the inverse
wave scattering problem which we call WIDEBNET. We demonstrate that our archi-
tecture overcomes the major deficiencies outlined above for traditional architectures.
Specifically, WIDEBNET relies on ideas from the butterfly factorization [59] to cap-
ture the Fourier Integral Operators (FIOs) underlying the physics of wave-scattering;
as a result, fewer training datapoints are needed. Moreover, it addresses the high-
frequency limitations identified by the F-principle by mimicking the Cooley—Tukey
algorithm [27] to process multi-frequency data only at localized length scales; this
effectively renders each frequency slice as locally low-frequency information. These
design choices afford WIDEBNET the following benefits compared to off-the-shelf deep
learning models.

Training efficiency. The architecture builds upon the butterfly factorization
and thus systematically adapts to the input size of the data, i.e., the number of pixels
in the image. As a result, the degrees of freedom in the model scale near-linearly with
the input size, and the depth of the network scales logarithmically with the input size.!
This makes training our network data-efficient as there are relatively fewer degrees of
freedom.

Training stability. WIDEBNET avoids empirically observed shortcomings with
other network architectures that rely on the butterfly factorization. For example, in
[58] the authors prove that butterfly-networks are capable of efficiently approximating
generic FI1Os, but report that learning such operators requires an accurate initializa-
tion to avoid local minima; this is typically not easily obtainable for most FIOs,
including our application. Similarly, [51] introduces a butterfly-network for single fre-
quency inversion but requires increasing the width of their network (so that the degrees
of freedom no longer scale linearly) to overcome local minima. In contrast, empirically
we observe that WIDEBNET does not require specialized initialization strategies, it
does not routinely get stuck in local minima, and it does not exhibit exploding or
vanishing gradients. We speculate that the training stability of WIDEBNET can be
attributed to its use of multi-frequency data that are banded to appropriate length
scales to avoid the F-principle limitations.

Imaging super-resolution. In our numerical results we demonstrate that
our network super-resolves scatterers, i.e., produces sharp images of sub-wavelength
features? such as diffraction corners, in addition to producing competitive images
when compared against classical optimization-based inversion methods in the tradi-
tional super-diffraction regime.

Hyper-parameter efficiency. It is efficient to tune the hyper-parameters of
WIDEBNET as there are only a few which are used to describe the architecture. We

IWhen compared to other machine learning based approaches, we note that a comparable im-
plementation using fully connected networks results in models with degrees of freedom that scale
cubically with the size of the input, i.e., the number of pixels in the image, and are thus prohibitively
expensive to train. Conversely, a purely convolutional neural network implementation for the task
requires far deeper networks (or far wider filters) to properly capture the long-range interactions
governed by the underlying wave physics. Such deep networks are known to exhibit issues with
exploding/vanishing gradients leading to unstable training dynamics [7]. While we do not discount
the possibility of other hybridized (fully connected + convolutional) architectures which achieve the
same task, we emphasize that these architectures would not be immediately transferable for different
image and data resolution requirements.

2We plan to further investigate and document this super-resolution phenomenon in forthcoming
work.
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note that in numerical examples we observe strong robustness to variations in these
hyper-parameters. This indicates that relatively little effort is needed on the user’s
part to optimally tune our architecture.

A detailed discussion of the WIDEBNET architecture, as well as implementation
notes, can be found in section 3. Meanwhile, we briefly sketch the intuition behind
the design choice here. The idea to embed the butterfly factorization into the archi-
tecture is to effectively furnish our network with a strong prior on the physics of wave
scattering. Indeed, we provide numerical evidence that it is necessary to manually
encode the long range “nonlocal” interactions between scatterers and sources that are
inherent to the wave kernel. Mathematically these interactions are known to be de-
scribed as the action of a Fourier integral operator (FIO) [45], which can be discretely
represented in a complexity-optimal manner by means of the butterfly factorization
[59] and the butterfly algorithm [16, 70, 11].

However, we stress that the marriage of the butterfly factorization with network
architectures is not the original contribution of this work; butterfly-like architectures
have been previously proposed by other authors, albeit with different goals [58, 51],
and we review these contributions below in section 1.2. Instead, our contribution is
the combination of this network architecture with multi-frequency data. This data
assimilation strategy takes cues from the Cooley—Tukey algorithm and is done, in
part, to address the F-principle. For reference, one notable strategy for avoiding
the F-principle involves partitioning the model into disjoint Fourier segments and
frequency down-shifting accordingly [14], but this introduces costly convolutions in
data-space and requires a dense data sampling strategy that scales unfavorably with
dimensionality. Our network improves on this approach by exploiting the duality
between frequency f and wavelength A, as described by the dispersion relation in (1.1),
to introduce data only at their local length scales. This effectively performs frequency
downshifting by spatial downsampling. This strategy is easily accommodated by the
butterfly architecture as these multi-scale interactions are already implicitly present
in its formulation.

Outline. The remainder of this document is structured as follows. We close this
section with relevant background material on existing algorithms for inverse scattering
and relevant machine learning based approaches for general inverse problems in section
1.2. Section 2 describes the technical details of the underlying physical model and
provides background on the problem to solve and the algorithmic ideas behind the
network. In section 3 we present in detail the network architecture. Finally, in section
4 we present and discuss the numerical results.

1.2. Related literature.

1.2.1. Classical approaches. One of the earliest modalities in imaging is travel-
time tomography [69, 43, 5], in which the travel time of a wave passing between two
points is used to reconstruct the medium wave-speed [80]. Travel-time tomography is
a rather mature technique, which can even be easily and cost effectively implemented
in portable ultrasound devices [23]. However, its resolution deteriorates greatly when
dealing with highly heterogeneous media and in the presence of multiple scatterings.

In response to these drawbacks, several techniques were developed such as reverse
time migration [6], the linear sampling method [24], and decomposition methods [54]
among many others. See [26] and [85] for excellent historical reviews.

Finally, a high-resolution technique, called full-waveform inversion (FWTI) [82] was
developed in the late 1980s; it has been shown to be empirically capable of handling
multiple scatterings. FWI solves a constrained optimization problem in which the
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misfit between the real data and synthetic data coming from the numerical solution
of the PDE is minimized. This technique, coupled with large computing power, has
been successful at recovering the properties of the subsurface [74]. Nowadays, it is
considered the gold standard in geophysical exploration [84].

Despite its enormous success, FWI still suffers from three significant challenges:
prohibitive computational cost, cycle-skipping, and limited resolution. The prohib-
itive computational cost is linked to the cost of computing the gradient within the
optimization loop, which requires a large number of wave solves. The resulting com-
plexity of each iteration is quadratic® [10] with respect to number of unknowns to
recover. Progress in this direction has focused on developing fast PDE solvers [93,
33], which are necessary to compute the gradient. In addition, numerous iterations
are usually required for convergence. This prohibitive computational cost has ham-
pered the application of this vastly superior technique to domains where images are
required on-the-fly, such as biomedical imaging.

Cycle-skipping refers to the undesirable convergence to spurious local minima by
the FWI algorithm. This effect is especially pronounced when low-frequency data
are scarce as these determine the kinematically relevant, low-wavenumber compo-
nents of the material properties. Unfortunately, acquiring low-frequency data from
practical field applications is a challenging and expensive task. As such, research in
this area has focused on regularizing the optimization objective to handle the lack of
low-frequency data [81, 83], using a smooth initial guess from travel-time tomography
[3], or extrapolating the low-frequency component from higher-frequency data [61].
Lastly, quantifying the resolution limits of FWI remains an open problem [38], i.e.,
understanding the finest details available by the algorithm and its scaling with respect
to the shortest wavelength at which data are available. This is important for applica-
tions requiring accurate images of discontinuities [4, 13, 30, 29], such as those arising
in natural geophysical formations, for properly detecting cracks and dislocations in
materials, or for detecting and interpreting anomalies in biomedical imaging.

1.3. Machine learning approaches. Besides the classical, PDE-constrained
optimization approaches, several recent methodologies based on machine learning for
more general inverse problems have been proposed lately.

In [19] the authors used the recently introduced paradigm of physics informed
neural networks (PINN) to solve for inverse problems in optics. Aggarwal, Mani,
and Jacob introduce a model-based image reconstruction framework [2] for MRI
reconstruction. The formulation contains a novel data-consistency step that per-
forms conjugate gradient iterations inside the unrolled algorithm. Gilton, Ongie, and
Willett proposed in [40] a novel network based on Neumann series coupled with a
hand-crafted preconditioner for linear inverse problems, which recast an unrolled al-
gorithm as elements of a Neumann series. In [65] Mao, Shen, and Yang use a deep
encoder-decoder network reminiscent of U-nets [78] for image denoising, using sym-
metric skip connections.

In [35] the authors propose a rotationally equivariant network for inverse scat-
tering that is only valid for homogeneous media; the same type of idea is applied to
travel-time tomography [37] and optical tomography [36].

Among the more general field of computational harmonic analysis, to which the
butterfly algorithm is connected, we mention several other applications. Networks

3Using state-of-the-art sparse direct solvers, we can further reduce it to O(N3/2) using a state-
of-the-art pre-conditioner, but with substantially larger constants.
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based on the short-time Fourier transform [90, 89] have been used for hierarchically
decomposing signals in a nonlinear fashion. Networks based on the scattering trans-
form have been proposed [12] to take into account translation invariance in images. In
[91], the authors introduced another framework based on frames for inverse problems,
which was applied to computer tomography denoising [50].

In addition, machine learning recently has been used for super-resolution in the
signal processing context [18] and image processing. Recently newly developed frame-
works such as generative adversarial networks (GANs) [41, 42] and variational autoen-
coders (VAEs) [53, 77] have been used for super-resolution in the context of image
processing [49, 57, 67]. These techniques provide an end-to-end map that relies on
the statistical properties of the images to super-resolve them.

Another related approach is the recently introduced Fourier neural operators
method [62], which aims to learn the Fourier multipliers in a context akin to pseudo-
differential operators using an aggressive filtering, which is compensated by the
nonlinear activation functions. Although this approach captures long-range inter-
actions, it is unclear whether the highly oscillatory behavior of wave data can be
captured efficiently.

The method introduced in this manuscript follows ideas similar to those in
[34, 28], where the authors introduce tools from numerical analysis into deep learning.
They build on the sparse matrix factorizations that result from exploiting low-rank
interactions arising from the underlying physics of the problem. These factoriza-
tions are translated into the machine learning context: each matrix factor becomes
a layer in the network wherein the sparsity pattern informs the connectivity between
layers, and the matrix entries themselves are viewed as learnable weights. In par-
ticular, the authors translate hierarchical matrices (H-matrices), which are factoriza-
tions of operators into low-rank and permutations matrices, into individual layers in
neural network architectures. Although these networks are well suited for smooth
data with compressible long range interactions, which is the underlying motivation
for the H-matrices, they are not well suited for wave-scattering problems where the
data are highly oscillatory, and where the long-range interactions are not typically
compressible.

Instead, the correct idea for capturing wave propagation is the choice of the
butterfly factorization, as motivated by their use for representing FIOs. In fact, ar-
chitectures based on butterfly algorithm have been previously proposed, albeit with
goals different from that considered in this paper. In [28] the authors recover the
butterfly structure of certain linear operators from permutation operations. In [51]
the authors use a one-level butterfly network with applications to inverse scattering,
though critically they require a super-linear scaling in their number of parameters.
In [58] the authors propose a monochromatic butterfly network similar to the archi-
tecture used in this case, which was later simplified in [86]. In [28], the authors use
the backbone of the butterfly structure to learn fast matrix approximations, with a
clever variational relaxation strategy for learning the permutation factors. However,
as mentioned in the prequel, none of these works address the use of butterfly fac-
torizations for super-resolution in wave-based imaging, which requires stable training
over a wideband dataset.

2. Background. In this section we briefly review concepts from classical imag-
ing (see [25] for further details) and their connection with fast numerical methods. We
also provide a succinct description of the butterfly factorization and the Cooley—Tukey
FFT algorithm to motivate the discussion of our architecture in section 3.
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F1c. 1. Diagram of the inverse scattering problem. We probe the medium with a plane-wave
with direction s, and we sample the scattered field on the disk D.

2.1. Underlying physical model. We consider the time-harmonic wave equa-
tion with constant-density acoustic physics, also called the Helmholtz equation, with
frequency w and squared slowness m, given by

(2.1) (A + w?m(x))u(x) = 0
with radiating boundary conditions. We further suppose the slowness squared admits
a scale separation into

m(x) = mo(x) +n(x),

where mg corresponds to the smooth background slowness, assumed to be known,
and 7 the rough perturbation that we wish to recover. If the background slowness is
constant and normalized* so that

m(x) =1+ n(x),
then solutions to (2.1) can be expressed in the form
(2.2) u(x) = %) 4 u(x),

where e™(%) ig the incoming plane wave, with propagating direction s, that we use to
“probe” the perturbation, and u*¢(x) is the scattered field produced by the interaction
of the perturbation with the impinging wave. The scattered field satisfies

(A + w?(1 4 n(x)) u*t(x) = —w?n(x)e > for x € R?,

(2:3) — —iw | v (x) =0,

following the configuration depicted in Figure 1.

We select the detector manifold D to be a circle of radius R that encloses the
domain of interest Q. For each incoming direction s € S!, as defined in (2.3), the data
are given by sampling the scattered field with receiver elements that are located on

4This assumption is only made to make the presentation more transparent.
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D and indexed by r € S'. We assemble the data for each frequency w into a matrix
A¥ whose (s, r)th entry corresponds to

(2.4) Asr = u*“(Rr;s),

where we omit the dependence on w on the right-hand side. We call F“[n] the forward
map relating the perturbation n to the data matrix A“.?

Accordingly, we can cast the inverse problem for recovering the rough perturbation
as

(2.5) 0" = argmin, | F*u] — A3

Linearizing the forward operator F“ is instructive as it sheds light on the essential
difficulties of this problem. Using the classical Born approximation in (2.3), we obtain
that

(2.6) (%) = w? / 3 (x, y)n(y) =) dy,
RZ

where ®“ is the Green’s function of the two-dimensional Helmholtz equation in ho-
mogeneous media, i.e., P satisfies

(A + w2) PY(x,y) = —d6(x,y) for x € R?,
(2.7) . 1/2 i . w _
|xl|lgloo x| Al iw | ¥ (x,y) = 0.

Furthermore, we can use the classical far-field asymptotics of the Green’s function to
express
ein

VR Jre

Thus, up to a rescaling and a phase change, the far-field pattern defined in (2.4) can
be approximately written as a Fourier transform of the perturbation, viz.,

(2.8) u*(Rr) = —w? n(y)e™ Y dy + O(R™3/?).

esz

2.9 Agr(w) = F¥n = —w
( ) SJ‘( ) n \/R R2
In this notation F'“ is the linearized forward operator acting on the perturbation.

Solving the inverse problem (2.5) using the linearized operator in (2.9) and
Tikhonov regularization with regularization parameter e results in the explicit
solution

ST Y (y)dy.

(2.10) nt = ((F) F2 4 el) ' (F¥)" A“.

This formula is also referred to as filtered back-projection [25], is optimal with respect
to the L?-objective, and, concomitantly, tends to yield low-pass filtered estimates,
particularly with large e. In practice € is chosen to be sufficient large so as to remedy
the ill-conditioning of the normal operator (F«)* F*.

Performing the inversion numerically requires discretizing the wavespeed and the
sampling geometry. We discretize 2 using N = n, X n, degrees of freedom following

5We point out that the data is not linearized; we solve (2.3), which depends nonlinearly on 7,
to obtain the scattered wavefield, u*¢, for each incoming direction. One can easily recover the full
wavefield using (2.2).
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the Nyquist sampling rate of n, ~ n, ~ w. The scattered data A¥ are discretized
into an ngre X Npepy Matrix.

After discretization and a change of variables, (F“)* in (2.10) is a Fourier trans-
form (which itself is an FIO), and F*F is a pseudodifferential operator, which, when
the background medium is constant, is translation invariant; thus (F*F + el )71 can
be reduced to a convolution-type operator. In more general situations of smooth back-
ground media the operator (F*F + el )_1 can be approximated by networks specifi-
cally tailored for pseudodifferential operators, such as the multiscale neural network
[34].

Remark. Thus far we have assumed that we probe the perturbation n using
only a monochromatic time-harmonic wave with fixed frequency w. As mentioned in
the introduction, this is known to be ill-posed, and data at additional frequencies are
required to stabilize the reconstruction [47]. In particular, a time-domain formulation
known as the imaging condition yields a more stable reconstruction using the full
frequency bandwidth; this formula can be formally stated as

(2.11) . :/R((F“’)*Fw+d)_1(F“)*A“da(w),

where doa(w) is a density related to the frequency content of the probing wavelet.
When the density is well approximated by a discrete measure,

Nfreqs
(2.12) ma Y ((F9) F tel) " (F9)" A a(w;)
i=1
over a discrete set of frequencies {wz}f\gfq We note that the selection of these

frequencies, in addition to the optimal ordering in which the summation is computed
under an iterative regime, remains an open question and an area of active research
[10].

2.2. Butterfly factorization and Fourier integral operator. When the
scattered field is given by (2.9), one could apply the fast Fourier transform [27] to
compute the estimate (2.12) in quasi-linear time. However, with a heterogeneous back-
ground the linearized forward map is instead given by a more general representation
usually known as a Fourier integral operator (FIO), which has the form

(213) (P = [ auloey)e= = ty)iy.

Here ¢(x,y) is referred to as the phase (or travel-time) function, while a,, is typically a
very smooth function that encodes the amplitude.® The work of [16, 73, 70] recognized
that even in this more generalized instance the application of F'“ and its adjoint can be
computed in optimal complexity by means of the butterfly algorithm. The butterfly
algorithm is a multi-scale algorithm which takes advantage of the complementary low-
rank property of the discretized operator depicted in Figure 2. In its original form the
algorithm relies on explicit knowledge of the phase function; later, in [59], the authors
introduced the butterfly factorization, which approximates the discretized operator
(2.13) by the multiplication of sparse matrices with a specific sparsity pattern” as
shown in Figure 3.

6The principal symbol a,, depends asymptotically on w as O(w~1) [68].

"This pattern is for the one-dimensional butterfly factorization, which already captures the key
algorithmic ideas while keeping the presentation clean of ordering issues that arise in higher dimen-
sions.
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Fia. 2. Sketch of a matriz exhibiting a complementary low-rank property. Each of the blocks
induced by the different partitions has the same e-rank.

Fic. 3. Sketch of the butterfly factorization, where the matrix at the left is factorized in sequence
of very sparse matrices with a distinct sparsity pattern, induced by Figure 2.

In a nutshell, the butterfly factorization approximately factorizes a matrix A that
satisfies the complementary low-rank property in L + 3 sparse matrices following

(2.14) A= Apyprersiy = URGET1 . GEI2GE2 (HL/Z)* o (HEY (VR

where UL and V¥ are block diagonal matrices, ST/ is a weighted permutation matrix,
usually called a switch matriz, and L is the number of levels in the factorization, which
is usually a power of two.

We can interpret the factors in (2.14) following the original butterfly algorithm.
VL extracts a local representation of the vector, and then each factor HY compresses
two neighboring local representations, i.e., decimates by a factor of two the number
of local representations, while increasing the amount of information in each presenta-
tion. The switch matrix S*/2 quickly redistributes the information contained in each
local representation. The factors Gf decompress the information contained in each
representation at each stage, i.e., the local representations are split in two by each
factor, increasing the spatial resolution, and finally the factor U” transforms the local
representations into the sampling points.

For the sake of completeness we provide a formal argument to show that the FIO
in (2.13) satisfies the complementary rank property (see [16] for a more comprehen-
sive argument). In a nutshell, the complementary rank property for a matrix is the
property in which each block of the partition in Figure 2 has e-ranks bounded by the
same constant. Equivalently, any block in which the multiplication of its sides is equal
to O(N) has a bounded e-rank.

Suppose that we have two points xg and y( in the evaluation and integration
region, respectively. We define two neighborhoods around each point, such that |x —
Xo| < dy and |y — yo| < dy. In this case, d, and d, are the sides of the blocks, in
physical space, shown in Figure 2. We then seek to find the largest values of d, and
d, such that we can efficiently approximate

(2.15) / a(x, y)eP Y g (y)dy,
ly—yol<dy
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using a separable function. The principal symbol, a(x,y) is supposed to be smooth
and independent of w (or weakly dependent), so we can focus our discussion to the
oscillatory term (),

Using a Taylor expansion, we have that

P(x,y) = ¢(x0,¥0) + Ixd(X0,y0) - (X — X0) + Iy (X0, ¥0) - (¥ — ¥o)
+ (x —x0)" - 03¢(x0,¥0) - (x —%0) + (y —¥0)" - 956(¥0,¥0) - (¥ — ¥o0)
+2(x = x0)" - 05 y6(%0,¥0) - (¥ = ¥o) + Odady).

Clearly the first five terms provide separable expressions, and the sixth term can be
easily bounded producing

(2.16) ewt@y) — wv (@)W (1 4 O(wd,d,));

thus, as long as d,d, < w™!, then e™®@:v) can be locally approximated by a sepa-
rable function. In the discrete case this property is translated to the fact that the
multiplication of the height and the width of each block has a constant e-rank, which
is exactly the complementary low-rank property showcased in Figure 2.

Remark. We point out that there exist three different types of butterfly fac-
torizations: the left one-sided, the right one-sided, and the two-sided (see [63] for
a review). In this work we focus on the two-sided version, which provides the best
complexity. It is possible to “neuralize” the other two types of factorizations, which
yields a specific type of CNN network with sparse channel connections as shown in
[86].

2.3. Cooley—Tukey algorithm. The Cooley-Tukey FFT algorithm [27] is one

of the most important algorithms in the 20th century [21]. It aims to compute the
discrete Fourier transform (DFT) of a signal {x, }Y=! given by

N—-1
(2.17) (k) =Y mpe FE
k=0

in Nlog N time. The algorithm leverages the algebraic structure of the Nth complex
roots of the unit to recursively split the computation. The simplest version of the
algorithm is called the radix-2 decimation-in-time FFT, which computes the DFT of
both even-indexed and odd-indexed inputs, which are then merged to produce the
final result. In particular, for the first level the DFT is rearranged as

N/2—1 N/2—1
N 4 _ 27 e _2mip / _2mi g
I(k) = Z Tome N2V e N Z Tom41€ N2
m=0 m=0

= do(k) + e N Fao(k),
where Z.(k) and Z,(k) stand for the even and odd downsampled DFTs, respectively.
However, given that we are using decimated DFTs, this expression is only valid for
k =0,...N/2 — 1. Thus, in order to obtain the full length DFT, one can use the
periodicity of the complex exponential, and we have that

(2.18) 2(k) = 2o(k) + e~ T2, (k),

27

(2.19) &k + NJ/2) = 2o(k) — e N Fi, (k).
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2.4. Wide-band butterfly algorithm. For the sake of simplicity we motivate
the idea behind this paper, which is the multi-scale decomposition of the butterfly
factorization, by using the Cooley—Tukey FFT algorithm. We point out that the same
argument can be obtained from a rather involved analysis of the original butterfly
algorithm. In particular, one can follow the description of the algorithm in [31] to
show that if we build a compressed FIO, such as the one in (2.13), at frequency w
using the butterfly algorithm, then most of the computation can be reused to build
the same FIO, but at frequency w/2.

The cornerstone of the approach is to leverage the recursive nature of the FFT
algorithm to reuse most of the algorithm pipeline when computing the FFT of dec-
imated signals, or in the case of (2.13) at lower frequencies. We focus our attention
on two operations: computing the DFT of a decimated signal using the FFT for a
nondecimated signal, and computing the same DFT using a decimated algorithm, but
keeping a nondecimated resolution. These two operations will be key when designing
our network.

From (2.18) and (2.19) we clearly see that we can compute the DFT of a decimated
signal using the regular FFT algorithm. One only needs to interweave the original
signal with zeros, then apply the FFT for the longer signal, and then truncate half of
the resulting vector. This means that after a modification of the input we can reuse
the algorithmic pipeline from a nondecimated FFT.

Furthermore, if we compute the DFT of a decimated signal, but want to keep
the full frequency resolution of the nondecimated one, then (2.18) and (2.19) provide
an answer to that: one needs to repeat the result from the decimated signal. This
upscaling operation will be key when designing the network in section 3.

These operations follow the same principle behind the wide-band butterfly net-
work. If we want to implement (2.12), we would need to build a network to process
the data at each frequency independently. However, using the argument above one
can use the recursive decomposition to process the frequencies jointly. In particular,
if we want to process data, say at half frequency, i.e., w/2, then the complementary
low-rank condition states that d,d, < 2w™'. If we suppose, in addition, that the eval-
uation grid remains constant® then d, can be twice as large, thus inducing a different
factorization. However, as mentioned above, each of the H’ factors in the butterfly
factorization (see (2.14)) downsamples the local representation in y, while increasing
the resolution in z. This means, that after a small modification at the beginning,
followed by an upscaling operation similar to the one in (2.18) and (2.19),when the
odd signal is zero, one can reuse the rest of the network, which is the idea behind
merging the networks to treat the different frequencies jointly at the appropriate
scale.

3. WideBNet architecture. We provide a self-contained overview of the net-
work architecture in this section. This material is tailored towards a machine-learning
audience with no prior exposure to the butterfly factorization. Indeed, beyond the
salient aspects which we summarize below, implementing WIDEBNET becomes essen-
tially algorithmic since the network structure and connectivity are determined once
the dimensions, i.e., grid size, of the data are specified. Our discussion and numeri-
cal results consider only two-dimensional scattering. In principle the implementation
of our architecture in higher dimensions is straightforward as it is essentially pre-
scribed by the corresponding higher-dimensional butterfly factorization. However, we

8This assumption is a direct consequence of (2.12), where the resolution of the perturbation to
be reconstructed is fixed.
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def wbnn(AL, ..., AL/?): 1
y = viah
for ¢ in range(L -1, L/2—-1, —1):
y = H'(y, V(D)
y = SwitchResnet (y) 5
for ¢ in range(L/2, L, +1): 6
y=G'W 7
y = U@y 8
y = CNN(y) 5
return y 10

N

ALGORITHM 1. Pseudocode for the WideBNet, where each module is explained in detail in
sections 3.4, 3.3, and 3.5.

leave the exploration of WIDEBNET to three-dimensional inverse scattering, and its
attendant complications, to future work.

We separate the discussion as follows. In section 3.1 we define the sampling
and formatting of the input data. Section 3.2 provides the overarching ideas of the
architecture and the layers which comprise it. Details about these layers are further
elaborated in their respective sections 3.3, 3.4, and 3.5. Lastly, in section 3.6 we
discuss the number of parameters (i.e., trainable weights) present in the network.
The pseudocode for WIDEBNET is provided in Algorithm 1, whereas the pseudocodes
for the specialized layers V¢, H’ G* and U are located in their corresponding
subsections.? Additionally a depiction of the WIDEBNET architecture for L = 4
levels is shown in Figure 4.

3.1. Input formatting. We assume the scatterers (discretized over an n, X
n, grid) and the scattered data (an nge X myey matrix for each frequency w) are
represented using complete quad-trees with L levels'® with leaf size s. In other words,
we require a discretization into n = 2%s points for each matrix dimension. The choices
of L and s are informed by the inherent wavelengths and sampling frequencies of the
inverse problem, and are chosen so that each s x s voxel of the data matrix A% is
nonoscillatory, i.e., contains at most a few oscillations.

Following the Tensorflow convention of [height, width, channels] we reshape
these quad-trees into three-tensors of size [2F, 2%, s%] as shown in Figure 5. The first
two dimensions of the tensor index the geometrical location of the voxels, and the
last dimension corresponds to their local vectorial representation. In fact, the data
describing the local representation inside each voxel correspond to channels. We refer
to slices along the height and width dimensions, i.e., the geometrical dimensions,
as patches. For example, a 1 x 1 patch of data describes slices of the three-tensor
with dimension [1, 1, s%]. As we will discuss shortly, at the finest spatial resolution
WIDEBNET operates on 1x 1 patches, and at the coarsest spatial resolution it operates
on 28/2 x 28/2 patches. Tt is convenient to introduce levels ¢ € [L/2, L] to index the

9We use the notation LC1D[a,b,c] =LocallyConnected1D(filters=a,kernel_size=b,strides
=c) throughout.

10We require that L be divisible by 2. This is a minor restriction and can be accommodated by,
e.g., zero padding of the data or by interpolating the data. While the total depth of both quad-trees
must be the same, it is not necessary for them to have the same leaf size. However, for ease of
presentation, our discussion focuses exclusively on this case.
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Wideband Scattered Data

4
[2F 2F, Z M, 7]
=2 E}{E ResNet

Switch

Fic. 4. Diagram of WideBNet for data with L = 4 levels, leaf size s, and rank r.

resolution, or, equivalently, the size of the contiguous 21~%s x 25 submatrices in
the data matrix that will be processed.

For the purpose of describing our network using linear algebraic operations it is
convenient to characterize these three-tensors as equivalently reshaped two-tensors of
size [47, s2]. This flattening proceeds according to a natural ordering of quad-trees
known as “Morton-ordering” or “Z-ordering,” which is depicted in Figure 5. We refer
the reader to [60] for more details.

As we discussed in the introduction, it is beneficial for the stability of the in-
verse problem for the input data A“ € C"se*"rev to be collected from a wide band
of frequencies w € Q = [Wiow, Whigh]. The bandwidth wiow and whigh is determined
from the experimental configuration. For our data assimilation strategy we index this
bandwidth with a dyadic partition containing L/2 + 1 intervals: for L/2 < ¢ < L we
label the intervals Q¢ = (Wiow + L= 1AW, wiow + 2L_£Aw] where Aw = 2_L(whigh —
Wiow). We assume that within each interval Q¢ we probe the medium with n’, fre-
quencies, not necessarily equispaced, and with slight abuse of notation denote the
resulting dataset as A¢ € Crsre X Txey X1, Following the quad-tree structure, we re-
shape each data tensor A’ into a three-tensor of size [2¢, 2¢, n’ s?] by concatenating
all the multi-frequency data collected from bandwidth Q¢ along the channel dimen-
sion. The input to WIDEBNET thus consists of the collection of scattering data

{A}rjacest
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5{|\| 1

—
S

FIG. 5. Transformation from the image of dimensions [2¢s, 2¢s] to the tensorized form of size
[227 2t s2], and then to the flattened tensor using Morton ordering, resulting in a tensor of dimen-
sions [4L, s?].

3.2. Architecture overview. We aim to incorporate the physics of wave prop-
agation into the design of our network by translating analytic properties of the discrete
imaging condition (2.12) into neural modules. Since the imaging condition is derived
by linearization of the partial differential operators in the wave equation, this process
should, at minimum, ensure that our network is able to capture the physics of single
wave scattering. To that end, for a set of given frequencies {wg}eLz L2 We seek an
architecture that can emulate the functionality of the imaging algorithm

L
(3.1) (A e S alwe) (B F2 4 el) ™ (F<)" AL,
¢=L/2

We emphasize, however, that we are ultimately interested in applications of WIDEB-
NET to data beyond the Born single scattering regime associated with the imaging
condition.

We leverage the following analytic properties of the imaging condition. First, as
originally elucidated in [51], we recognize that for each frequency w the regularized
normal operator ((F*)" F* + el )_1 corresponds to a translation invariant operator.
Second, we also recognize that the operator F“ describes a generalized Fourier op-
erator which is amenable to a butterfly factorization. In other words, after suitable
discretization the operator F* admits a matrix decomposition, viz.,

(3.2) v —pytgl-1. . qt/2gt/2gL/2  gL-1yL,

In the traditional linear settingLof the discrete imaging condition with Morton-flattened
data we have UL e C4"*x4"r YL ¢ ¢4"mx4"s* and all other remaining matrix
factors of dimension 4”7 x 4r. Most importantly, each matrix factor in the but-
terfly decomposition has a sparsity pattern that is informed by analytic considera-
tions of the wave kernel. These sparsity patterns in the matrix become equivalent
to a block diagonal operator after specific permutation of either the columns or the
rOwsS.

WIDEBNET uses these two insights to replace the functionality of ((F*)" F“+
el )_1 and F* by analogous neural modules. We translate the butterfly decomposition
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for the generalized Fourier operator F' by replacing each matrix factor (e.g., U%, V¥,
...) by neural network layers.'! In this setting the permutation and sparsity structure
of the butterfly matrix factors inform the interlayer network connectivity (i.e., the
network topology), and the matrix entries themselves become trainable weights in
the network. The information processed by these layers is ultimately sent data into a
CNN module, which are well adapted to capture translation invariant operators, and
thus mimic the effects of the regularized pseudoinverse in sharpening the estimate
coming from the imaging condition.

If only monochromatic data are considered, e.g., using solely scattering data
AL € C¥mxng obtained by probing the medium at only an nZ = 1 frequency, then
the network just described is equivalent to other butterfly-based networks such as
ButterflyNet [58] and SwWITCHNET [51]. However, rather than replacing each w-
dependent operator in the imaging condition (3.1) with individual butterfly-based
networks, WIDEBNET instead aims to more efficiently assimilate multi-frequency data
with the following modifications:

(i) We exploit the connection between spatial resolution and frequency in wave-
scattering problems by processing data only at their relevant length scales.
We note that each H' layer, analogous to their butterfly factorization name-
sakes, processes data over voxel patches of size 24 x 2L i.e., the effective
length scales at this layer are of order 2. As a result, the dispersion relation
in wave-scattering suggests that data from bandwidth Q¢ are most informa-
tive at this length scale,'? and thus we feed in data accordingly. This strategy
of dyadically partitioning the bandwidth to localize spatial information is also
employed by the Cooley—Tukey FFT algorithm to achieve quasi-linear time
complexity [27]; in our setting this strategy affords us significant reductions
in the number of trainable weights in the network.

(ii) In addition to the switch permutation layer, we also introduce nonlineari-
ties into the network using a residual network which we call the SWITCH-
RESNET layer. Information from the entire bandwidth of data is thus pro-
cessed at this layer. These nonlinearities, in theory, extend the functionality
of WIDEBNET beyond the limitation of the discretized imaging condition,
namely, the implicit assumption of Born single scattering. Furthermore, non-
linear combinations of wideband data are known to be a strict requirement
of super-resolution imaging [32], therefore potentially enabling WIDEBNET
image estimates to achieve resolutions below the Nyquist limit.

In the following sections we elaborate on the specific details of each specialized

butterfly-network layer in Algorithm 1.

3.3. UL and V* layers. In the traditional numerical analysis setting, the but-
terfly matrix factor V¢ in (3.2) represents a block diagonal matrix with block size
r x s2. This operator takes input data (viewed as a complete quad-tree) and com-
presses leaf nodes at level L, each with s x s degrees of freedom, into 1 x 1 patches with
VT % /T degrees of freedom; this process is depicted in Figure 6. Similarly, the U*
matrix factor in (3.2) is also block diagonal but instead with block sizes of s% x r. This
operator thus “samples” the local representation of dimension r back to its nominal

HFor ease of comparison we retain the transpose -* in the naming convention of our network but

note that transposition is no longer meaningfully defined in our new nonlinear setting.

12The {G*} layers have a similar multiresolution property. This suggests that data from band-
width Q¢ should also be fed into G¢ similarly to the U-Net [78] architecture; however, numerical
results demonstrate that this additional complexity is unnecessary.
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7=

F1G. 6. Sketch of the compression carried in the VL layer, from the points contained in a leaf
of size s X s (see Figure 5) to a local representation of rank r. The grey polygon represents the
connections between the two layers.

def VA(X):
# input: [?7, 2, 4¢, 4"7[:"271”]
# output: [7, 2, 4, ™M, ]
Yre, Yim = X[:,0,:,:1, X[:,1,:,:]

Zre = LC1D[rny,,1,1]1 (yre) + LCID[TNw,,1,1] (Yim) 6
Zim = LC1D[rny,,1,1]1 (yre) + LCID[rnw,,1,1] (Yim) 7

return tf.stack([Zre, Tim], axis=1) 9

ALGORITHM 2. Pseudocode for the VY module for Morton-flattened data.

dimensions of s x . In both instances the compression/decompression is essentially
lossless provided the number of levels L is properly adapted to the probe frequency
w. We emphasize again that this follows as a consequence of the dispersion relation
in wave-scattering: provided these parameters are chosen correctly, then over s x s
length scales the data are nonoscillatory (i.e., sub-wavelength) and therefore admit a
low-rank representation with rank r.

WIDEBNET also exploits this relation between spatial resolution and frequency.
However, a key point of departure from the butterfly factorization is that here the
input data are wideband and thus contain multiple length scales (wavelengths). This
motivates the introduction of auxiliary layers V¢ for L/2 < ¢ < L whose inputs are
assumed to be sampled from bandwidth Qf. Each V¢ layer compresses the input data
at level ¢ such that nodes with 2¢7¢s x 2E~%s degrees of freedom are mapped into
1 x 1 patches with /7 x /r degrees of freedom; this also has the interpretation of
spatial downsampling. Note that the dyadic scaling in the definition of Q¢ is critical
in maintaining the balance between spatial resolution and frequency.

When the input data A’ from bandwidth Q° are represented as a three-tensor of
dimension [2¢, 2¢, n’], each V* layer can be implemented as a LocallyConnected2D
layer in Tensorflow with 7n!, channels and both the kernel size and stride as 2-~¢ x
2L=f The U" layer can also be implemented as LocallyConnected2D layer with
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def UM(X):
# input: [?, 2, 4%, .]
# output: [7, 2, 4, $%]
Yres Yim = X[:,0,:,:1, X[:,1,:,:]

Tre = LCID[s%,1,1]1 (yre) + LCID[s?,1,1] (yim) 6
Tim = LC1D [52:1’1] (yre) + LC]-D[SZ:]-,]-] (yim) 7

return tf.stack([Zre, Tim], axis=1) 9

ALGORITHM 3. Pseudocode for the UL module for Morton-flattened data.

rank s? and 1 x 1 kernel size and stride; the input to this layer is assumed to be
of dimension [2¢, 2¢, ¢] with ¢ input channels. For completeness, we provide the
implementation of these layers in Algorithms 2 and 3 for input data that is Morton-
flattened. Furthermore, note that the pseudocode also details the processing when
input data contain both real and imaginary components.

Remark. A major application of the butterfly factorization is for applying FIOs
in linear-time complexity; the rank r then depends on the error tolerance but generally
requires that r < s2. This represents a significant philosophical difference in how r
is determined in our machine learning setting; it does not matter if » > s? as long as
the learned model achieves its intended task. Nevertheless, our numerical results in
section 4.1.4 demonstrate that (i) it suffices to choose r < s* and, moreover, that (ii)
generalization is largely insensitive to the choice of r.

3.4. H* and G* layers. The H* and G’ factors in (3.2) continue the theme of
multi-scale processing. When viewed as matrices, both H® and G are block diagonal
with block size 4 ~fr x 4L=%r. Equivalently, when the input is formatted as a complete
quad-tree, this implies both are local operators which process the nodes on the tree at
length scale I to map each 2X~¢s x 2L=%s patches. Within each block there is further
structure to the operators, as Figure 7 demonstrates. For each H* each sub-block has
the interpretation of aggregating information, whereas each G* achieves the dual task
of spreading information. We stress, however, that the action of this is entirely local
within each patch. In either case, the key observation is that by permuting each node
following a set pattern each operator becomes block-diagonal with block size 4¢ for all
L/2 < ¢ < L. The specific permutation pattern m, enabling this matrix partitioning
is discussed in Appendix A.

In our WIDEBNET adaptation, each G* layer directly mimics the behavior of their
counterparts and can be implemented using the LOCALLYCONNECTED2D layer with
4 x 4 kernel sizes and stride 4. The number of channels is chosen to be Zf:é 1 TN,
for symmetry.

However, note that our H layers require modification on account of our data
assimilation strategy to inject information at their correct length scales. As such,
these layers process two inputs: one is the output of the V* layer of dimension
[2L¢ 2= rn,,], and the other is the output from the previous layer of dimension
[2¢,2¢ ¢] for some channel size c. To process the dimensions of both we first upscale
each patch with redundant information to convert the data into [2¢,2¢,n,,]. This is
then concatenated with the other input to form a tensor of size [2¢,2¢, ¢+ rn,,,]. Note
that the ordering of the concatenation along the channel dimension does not matter
as long as it is performed consistently.
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FIG. 7. Sketch of the application of the H® layer. The layer decimates by a factor of four the
number of neurons in the spatial dimension, while increasing four times the number of channels.
From Figure 5 we can observe that the decimation is equivalent to decimate by a factor two in each

of the first two dimensions, which follows from the Z-ordering.

def H(X, W):
# input X: [?7, 2, 4%, .1 from V[(A[)
# input W: [?, 2, 4%, -] from previous layer
# output: [7, 2, 4, 7‘Zf:£ N,

X = UpSampling2D(X)

X = tf.stack([X, )Z'] , axis=-1)

Yres Yim = X[:,0,:,:1, X[:,1,:,:]

# permute patches according to my before
# applying block diagonal transformations
Yre = yrc[: >7rl;:]

Yim = Yim L[:,7e, 1]

Tre = LCID[4r 3°1 , nuy, 4,41 (yre) + LCID[47 307, 1, 14,41 (Yim)
Tim = LCID[4r "5, nw, ,4,4] (yee) + LCID[4r 3, 1, 14,41 (Yim)

return tf.stack([Ze, Timl], axis=1)

ALGORITHM 4. Pseudocode for the HY module for Morton-flattened data.

Algorithm 4 provides a pseudo-code implementation of the H layer when using

Morton-flattened inputs.

3.5. Switch-Resnet layer. We retain the permutation pattern of the switch
layer as this is responsible for capturing the inherent nonlocality of wave scattering
(e.g., a point scatterer generates a diffraction pattern that is measured by all receivers
in our geometry). We illustrate this pattern in Figure 8, and the specific description

of the permutation indexing mewitch can be found in Appendix A.

The input to this level serves as a condensed representation of the measured data.
It is at this level that we nonlinearly process the multi-frequency dataset; we speculate
that this also essential in facilitating the model to produce super-resolved images.
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Fic. 8. Visualization of the transformation by the switch permutation layer for an example
with » = 1 and L = 4. For this configuration the input and output are both tensors of dimension
[2L/2, 2L/2,T‘4L/2] = [4,4,16]. The local information contained at each geometric position (equiva-
lently, the channel information) is distributed globally according to the switch permutation pattern

T switch -

In Distribution Out-of-Dist (Blob) Out-of-Dist (Gauss) Out-of-Dist (Tri) Out-of-Dist (Shepp)

Exact

WideBNet

FI1G. 9. Out of distribution performance of a WideBNet model trained on a square 3/5/10
dataset (example datapoint shown in leftmost column). The second to fifth columns depict examples
of out-of-distribution datapoints. All color scales are mormalized with respect to the exact solutions
shown in the first row.

We achieve this using a residual network to refine each channel locally following each
resnet unit. The pseudocode is provided in Alg. 5.

3.6. WideBNet parameter count. An estimate of how the number of param-
eters (i.e., trainable weights or degrees of freedom (d.o.f.)) scales is

2

4 14 14
d.of (WIDEBNET) & 4592 [ D" n2, + > (D .,
1=L/2 1=L/2 \i=l

When only a single frequency is sampled in each sub-band, i.e., n,, =1 for all [, this
total becomes O (N(log N +log® N)) Note that this is essentially linear in the total
degrees of freedom in the data (IN) up to polylogarithmic factors. Furthermore, note if
naively L separate single channel WIDEBNET networks were used to compute (2.12),
this would correspond to complexity O (N log N 2); the multi-frequency assimilation
only exceeds this with mild oversampling by a logarithmic factor.

Lastly, we note the effect of the partitioning of the frequencies. If all the frequen-
cies were ingested at length scale L, then the scaling becomes O (N(log N? 4 log N3)).
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Exact WideBNet far-field LS
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Fic. 10. From left to right, columns indicate exact perturbation, prediction by WideBNet, re-
construction by FWI using data at {2.5Hz,5.0H2,10.0Hz}, least-squares using the finite difference
modeling and data at {2.5Hz,5.0Hz,10.0Hz}, and least-square using far-field approximation and data
at {10.0Hz}.

def SwitchResnet(X): 1
# apply switch local-to-global permutation 2
Yy = XI[: s + » Mswitch » 1]

# non-linear synthesis
# apply switch permutation 6
for k in range(Niesnet) : 7

y = LC1D[r,1,1] (ReLu(LC1D[r,1,1]1(y)) + y 8
if k < Nresnet: 9
y = ReLu(y) 10

ALGORITHM 5. Pseudocode for the Switch-Resnet module for Morton-flattened data.
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While to leading order this presents the same asymptotic scaling, in terms of practi-
cal considerations this presents as a substantial increase in the number of trainable
parameters.

4. Numerical results. Synthetic data were generated using numerical finite
differencing for (2.3) over the computational domain [—0.5,0.5]¥2. The domain was
discretized with an equispaced mesh of n, = 80 by n, = 80 points, which corresponds
to a quad-tree partitioning into L = 4 levels with leaf size s = 5. Training data
were generated using a second-order finite difference scheme, while testing data were
computed with fourth-order finite differences. The use of higher quality simulations
for testing serves to validate that WIDEBNET predictions do not depend on computa-
tional artifacts such as, e.g., numerical dispersion. The radiating boundary conditions
for (2.3) were implemented using perfectly matched layers (PML) with a quadratic
profile with intensity 80 [8]. The width of the PML was chosen to span at least one
wavelength at the lowest frequency.

Unless specified otherwise, the dataset consisted of ny = 3 source frequencies at
2.5, 5, and 10 Hz. In a homogeneous background with velocity ¢y = 1 this corresponds
to 8 points-per-wavelength (PPW) at the highest frequency. Receivers were located
at equiangular intervals around a circle of radius r = 0.5 with the recorded data com-
puted by linearly interpolating the scattered field. We used N,., = 80 receivers and
sources for all experiments. For a homogeneous background the direct wave is given
analytically (see (2.3)). In these instances the directions of arrival s € S! were aligned
with the receiver geometry, i.e., incident from 80 equiangular directions. However,
for inhomogeneous media the direct waves had to be computed numerically. This
was achieved by using numerical Dirac deltas as source functions. These sources were
localized on a circle of radius » = 1 at 80 equiangular intervals, and the computational
domain was extended to [—1, 1]%? using the same grid spacing Az and Az as before.
The resulting scattered field was computed by differencing the solutions to (2.3) with
and without scatterers. The acquisition geometry was fixed for all frequencies.

Scatterers were selected from a dictionary of simple, convex, geometric objects
such as squares, triangles, and Gaussian bumps. The characteristic lengths of the
square and triangular scatterers were measured with respect to their base, rather
than the diameter of the smallest enclosing ball, whereas the characteristic length of
the Gaussian was taken to be its standard deviation. In each data point the number
of scatterers was determined by uniformly sampling from {2, 3,4} objects, and their
locations were uniformly distributed inside a circle of radius r = 0.35. No restrictions
were enforced against overlapping scatterers. In all experiments the amplitude of each
scatterer was fixed to 0.2; we leave to future work discussing how the training data
can be augmented to account for variations in amplitudes.

WIDEBNET was implemented in Tensorflow [1] and trained with the pixelwise
sample loss function

(4.1) > H(Khigh % 1)(x) — WIDEBNET [AF, ..., AL/2](.T)H2 7
z=pixel in image

where 7 denotes the sample realization of the scatterer wavefield and {Aﬁﬂ,} L/2<I<L
the partitioned multi-frequency data. This objective function was chosen to promote
the recovery of an image that is smoother than the true numerical solution by a
factor of a two-dimensional convolution with high-pass filter Kyjep. Critically we still
remain in the super-resolution regime when the support of filter Ky;gp is significantly
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F1G. 11. Sensitivity to hyper-parameters: Number of training points and the rank r. (a) Per-
formance of WideBNet with increasing number of training points. Note the same testing dataset,
consisting of 3,000 points, was used for all experiments. Observe that the generalization gap (the dis-
tance between the dashed and solid lines) remains asymptotically as both training and testing errors
saturate. This exhibits that we are saturating the model capacity. (b) Performance of WideBNet
with increasing rank r. The testing dataset was fized for all experiments. Note that for leaf size
s = 5 the maximum rank of the linearized model is T'maz = 25. Although the training error decreases
with tncreasing rank, we observe that the testing error begins to plateau beyond r = 3.

smaller than the Nyquist limit of Apip/ 213 as the smoothed image still contains sub-
wavelength features. This strategy was inspired by the work of [17], who relied on
this insight for theoretical proofs on recoverability limits in super-resolution. In our
experiments we selected Kpijgn to be a Gaussian kernel with characteristic width of
0.75 grid points (compare this with the diffraction limit in our bandwidth of 4 pixels).
This smoothing was observed to be integral in promoting stable training dynamics.
We also report the imagewise relative error

2

HKhigh *n — WIDEBNET [AL7 R AL/Q}H
2

(4.2) :
(| Kigh * 77||2

Note that we do not normalize the norms in either (4.1) or (4.2) by the grid lengths
Az and Az.

The dataset was split into 21000 training points and 4000 testing points,'# respec-
tively, with batch size 32. Note, in comparison, that an instance of WIDEBNET with
Nenn = 3 convolutional layers and Ngnyn = 3 residual layers contains 200000 train-
able parameters, meaning our models are still in the massively over-parameterized
regime. Unless specified otherwise the testing set follows the same distribution (e.g.,
scatterer types) as the training set. The initial learning rate (i.e., step size) was uni-
versally set to 5e-3 across all experiments. The learning schedule was set according
to Tensorflow’s [1] implementation of ExponentialDecay with a decay rate of 0.95
after every 2000 plateau steps with staircasing. We chose the Adam optimizer [52]
and terminated training after 150 epochs. No special initialization strategy was re-
quired, and the network weights were randomly initialized with glorot_uniform; we
did not observe the training instabilities with random initialization that were thor-
oughly documented in [86] for general butterfly networks. All computations were
done with float32 half-precision. Note that no effort was made to optimize these
hyper-parameters using an external validation set.

13The ratio of these two quantities is the so-called super-resolution factor.
14 A single “data point” has dimension ng; X n, X ng.
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Exact Predicted Error

— A min

Fic. 12. Visualization of WideBNet predictions on a testing set. The first column is the ezact
solution, the second column is the output of WideBNet, and the third column is the pointwise error.
The color scales in each row are normalized with respect to the first column. (a) with A(3,5,10). (b)
Same as above but with the Gaussian dataset. (c) Heterogeneous squares but with a lower bandwidth
(1.25, 2, and 5Hz) so the effective wavelength is 16 PPW. (d) Rotated dictionary. (e) Gaussian
scatterers with characteristic length 1.

4.1. Homogeneous background. In this section we present numerical results
for WIDEBNET models trained with scattered data that propagated through a known
homogeneous background medium of wavespeed ¢y = 1. Each row of Figure 12 depicts
WIDEBNET predictions on testing data across a variety of scatterer configurations.
Except for Figure 12c the data were sampled from the bandwidth of 2.5, 5 and 10 Hz,
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TABLE 1
Effect of frequency partition.

Pixelwise squared loss Imagewise relative loss
DOF Train Test Train Test
AllFreq 2746368 2.92E-06 4.81E-06 1.26E-05 1.72E-05

MultiFreq 1913856 4.06E-06 6.40E-06 1.72E-05 2.27E-05

which implies a limiting wavelength of 8 points per wavelength (PPW). Figures 12a
and 12b involve a multi-scale dictionary of scatterers with characteristic lengths rang-
ing from 3, 5, and 10 pixels; these correspond to the sub-wavelength, wavelength, and
super-wavelength regimes, respectively. We observe that WIDEBNET correctly local-
izes each scatterer in addition to resolving sub-wavelength features such as, e.g., the
corners of the triangles. Figure 12d similarly depicts a heterogeneous dictionary but
with rotated triangles of fixed side-length 5 pixels. In Figure 12c¢ the same experiment
was repeated but with a bandwidth that was shifted to 1.25, 2.5, and 5 Hz so that
the limiting wavelength increases to 16 PPW; in this regime all scatterers are sub-
wavelength. Nevertheless, WIDEBNET still produces images that are qualitatively
comparable to the higher bandwidth experiments. This suggests that our algorithm
has a high super-resolution factor. For completeness, we include results in Figure 12e
for point scatterers that were originally proposed for super-resolution by Donoho [32].

Table 2 summarizes the training and testing loss for various scatterer configura-
tions. Each row corresponds to a separate experiment with triangular (A), square
(O), or Gaussian () scatterers. The numbers in the parentheses correspond to the
characteristic length, in pixels, with multiple numbers indicating a multi-scale dataset.

Several trends can be observed from this table. In all configurations there is
no evidence of overfitting; indeed, the generalization gap, defined to be the difference
between the testing and training errors, is on average less than an order of magnitude.
Furthermore, both qualitatively and quantitatively there is no significant difference
between datasets with a fixed characteristic length versus the multi-scale datasets.
This demonstrates robustness to the choice of the scatterer dictionary. However, we
observe that Gaussian scatterers outperform other shapes across all metrics, perhaps
owing to their smoothness. Overall, the pixelwise error in testing tends to decrease
with decreasing length scale; we conjecture the exact scaling may depend on the
perimeter to area ratio of the polygons.

4.1.1. Effect of switch layer. In section 3 we emphasized the importance of
the SWITCH permutation pattern in representing the local-to-global physics of wave
scattering. Figure 14 corroborates this claim by comparing the predictive ability of
WIDEBNET models trained with and without the inclusion of the SWITCH permuta-
tion layer. Both models contain the same number of trainable weights, and all other
configurations were held equal.

Figure 14 demonstrates that the predictions without the permutation layer are of
noticeably poorer quality. However, the switchless configuration manages to localize
scatterers and even reproduces sub-wavelength features to an extent, particularly
when the scatterers are well separated as in Figure 14(b). However, Figures 14(c)
and (d) expose the deficiencies of this model in the presence of overlapping scatterers,
i.e., in the super-resolution regime where scatterers are separated by sub-wavelength
distances. We observe that these complications appear to be remedied by the inclusion
of the switch permutation layer.
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TABLE 2
Training and testing errors for various datasets. Each experiment consisted of 21,000 training
points and WideBNet was evaluated against an independent testing dataset with 3,000 points. The
data were generated using a homogeneous background wavefield co = 1 and data were sampled at 2.5,
5, and 10 Hz (i.e., the effective wavelength was 8 PPW). Each row denotes a separate experiment
with the scatterers consisting of triangles (A ), squares (O), and Gaussians (). The numbers in
the parentheses indicate the characteristic lengths of each scatterer; multiple numbers indicate a
heterogeneous dataset of scatterer sizes, while (rot,5) indicates a dataset with rotated scatterers. In
general, we observe that WideBNet does not overfit the data. Surprisingly, on average the testing

pizelwise error decreases with decreasing length-scale.

Pixelwise squared loss Imagewise relative loss
Scatterer Train Test Train Test
A (3,5,10) 4.06E-06 6.40E-06 5.38E-04 7.12E-04
O (3,5,10) 7.12E-04 1.13E-05 4.63E-04 6.24E-04
O (3,5,10) 1.24E-06 2.01E-06 1.89E-05 2.71E-05
A (rot,5) 3.03E-06 4.09E-06 5.52E-04 7.32E-04
A (10) 2.47E-06 2.51E-05 9.26E-05 8.17E-04
A (5) 1.14E-06 7.19E-06 2.11E-04 1.24E-03
A (3) 4.35E-06 4.23E-06 2.62E-03 2.62E-03
O (10) 2.63E-06 7.92E-05 4.90E-05 1.24E-03
O (5) 1.24E-06 2.09E-05 1.13E-04 1.75E-03
0 (3) 1.19E-05 1.19E-05 3.77TE-03 3.80E-03
O3 9.89E-08 2.61E-06 5.97E-06 1.30E-04
O (©2) 3.19E-07 4.84E-07 4.35E-05 6.28E-05
O @) 5.86E-07 7.52E-07 4.71E-04 5.87E-04

Fixed Grad Layered Dipping

Exact

Pred

Fic. 13. Visualization of WideBNet predictions on a testing set with inhomogeneous back-
grounds. The color scales of each row are normalized to the first column. The background medium
is assumed known. (a) With a linearly increasing gradient in the background. (b) A layered medium
increasing velocity with depth. (c) A layered medium with dipping reflectors. Note that the last
configuration is not translation invariant.
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Exact With Switch Without Switch

. <
-
-

Fic. 14. Visualization the effect of removing the switch permutation layer. The color scale
of each row is normalized to the first column. We observe that while WideBNet-without-switch
manages to localize the scatterers, it is unable to fully resolve all subwavelength features.

Although the switchless configuration manages to produce reasonable images, we
conjecture that this is because the model is “reasonably deep” at this length scale.
We suspect the predictive abilities will quickly deteriorate as L — oo since the depth
of the network only scales linearly as ©(L).

4.1.2. Out-of-distribution generalization. We consider the performance of
WIDEBNET on scatterers that are out-of-distribution and distinct from the within-
distribution scatterers of the training set. The result of this experiment is shown
in Figure 9 for a WIDEBNET model that is trained with randomly located squares
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Fi1G. 15. Sensitivity to hyper-parameters: Number of residual layers and number of convolution
postprocessing layers. The testing set of 3,000 points was fized across all experiments. (a) The
training error decreases with increasing residual layers, but the testing error increases. Note, how-
ever, that the variation is negligible. (These experiments all had three convolution layers.) (b)
WideBNet exhibits nearly complete insensitivity to the number of CN N postprocessing layers. (This
ezperiment was with three residual layers.)

of sidelengths 3, 5, and 10 pixels. An example datapoint from this training class is
presented in the leftmost column. This trained network is applied to four different
scattering configurations: a nonconvex shaped “blob,”’” shown in the top row of the
second column; Gaussians with characteristic length of 2 pixels, shown in the third
column; triangles with sidelengths of 3 and 10 pixels, shown in the fourth column; and
a Shepp—Logan phantom, shown in the last column. All color scales are normalized
with respect to the first row, which corresponds to the exact solution.

The second row of the figure depicts the output of WIDEBNET from noiseless,
wideband, recordings of the respective scattered wavefields. We observe that our
network generalizes to two distinct, forward scattering, regimes. First, WIDEBNET
is able to localize both the Gaussian and the triangular scatterers, in addition to
resolving their shapes and sub-wavelength features. This suggests that our network
learns an inverse scattering map applicable to general configurations that are domi-
nated by Born single scattering, with seemingly no limitations on resolution. Second,
we note WIDEBNET is also capable of generalizing to data involving strong multiple
scattering, as indicated by its performance on the multiple wavelength spanning and
non-convex blob. As Figure 9 demonstrates, WIDEBNET infills the shape, although
with noticeable errors along the support of the scatterer. Since during training it is
only provided with data with at most three square scatterers, this infilling property
suggests that our model captures some generalized properties of inverse wave scat-
tering. We note, however, there are limits to its extrapolative ability, as suggested
by the results involving the Shepp—Logan phantom. Characterizing a priori which
configurations are amenable to extrapolation remains an open problem.

Remarkably, other examples of neural networks extrapolating beyond the scatter-
ing configurations of their training sets have been reported in the literature. In [71] the
authors apply an LSTM network, designed to explicitly incorporate the Lippmann—
Schwinger kernel, to learn the physical model which generates the wavefield from
scatterers. They report the ability of their network to simulate wavefields from scat-
tering shapes unseen in training. In a similar vein, [55] considers the inverse scattering
problem, with a network architecture called FIONet, which also leverages principles
from Fourier integral operators and successfully images out-of-distribution scatterers.
We leave an investigation into this commonly observed extrapolation phenomenon to
future work.
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4.1.3. Partitioning of frequencies. Table 1 reports on the difference between
two competing frequency partitioning strategies: “AllFreq,” in which the data from
the entire bandwidth are fed into WIDEBNET at level L, versus “MultiFreq,” wherein
the data are only processed at the appropriate length scale ¢. Qualitatively both
strategies produce comparable images that are sharp and resolve the sub-wavelength
features. In fact, quantitatively the “AllFreq” strategy produces marginally lower
losses (though within the same order of magnitude). However, as noted in Table 1
the degrees of freedom of “AllFreq” far exceed that of “MultiFreq;” although both
strategies have the same asymptotic storage complexity of O(N log®(N)) (see section
3.6), practically speaking the constant differs by a substantial amount in favor of
“MultiFreq.”

We report that we were unable to successfully train a model by mimicking (2.12)
directly, i.e., training single channel WIDEBNET models for each frequency indepen-
dently, then merging their predictions via a CNN module. This is perhaps unsurpris-
ing since it is known that super-resolution algorithms require nonlinear synthesis of
multi-frequency data to succeed. Whereas in both “MultiFreq” and “AllFreq” this is
achieved by the switch-resnet module, in this naive strategy the synthesis is performed
only at the end by the CNN layers. In comparison to the optimal storage complexity
of O(N log? N) in this naive strategy, note that mildly overparametrizing by a small
logarithmic factor provides significant training stability to the inverse problem.

4.1.4. Training curves & hyper-parameter sensitivity.

Training curves. Figure 11(a) reports the training errors for models trained on
datasets containing 5000, 10000, 15000, and 21000 datapoints. The trained models
were evaluated on a fized testing set of 3000 points (i.e., the same testing set is to
compare all experiments). All remaining hyperparameters such as the learning rate
and number of epochs were held the same as discussed in the beginning of section 4.
Note that in all cases we remain in the overparametrized regime since the number
of datapoints is far fewer than the number of degrees of freedom. Nevertheless, with
only a few samples WIDEBNET stably achieves a pixelwise loss on the order of 1075,

We observe in Figure 11 that both training and testing errors decrease with in-
creasing training points, as expected. However, these training/testing curves quickly
saturate, and the differences fall less than an order of magnitude. Furthermore, the
empirical generalization gap, taken to be the difference between the testing curve
(dashed lines) and the training curve (solid line), remains within the same order of
magnitude as the number of points is increased. These points demonstrate that our
model (i) generalizes with relatively scant training points, and (ii) saturates its model
capacity quickly, which is an indication that the architecture is well adapted to the
task.

Sensitivity to the rank r. While the data essentially specify the architecture
through requirements on the level L and leaf size s, it remains up to the user to
select the rank r. We reiterate that this choice serves as a significant departure
from the numerical analysis perspective of the Butterfly factorization; whereas in
the original context it is essential to have the scaling r < s for the purpose of
fast matrix-vector multiplication,'® in the current machine learning context there is
no restriction against choosing r > s2. Nevertheless, as Figure 11(b) demonstrates, a
large overparameterization with respect to r is unnecessary. Indeed, while the training
metrics monotonically decrease as the model capacity increases with rank, we observe

15Typically the rank is determined by computations of SVDs so that € is close to machine zero.
Analytical relations between € and r are kernel dependent and are known explicitly only in few cases.
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that testing errors remain relatively saturated. This suggests that performance of
WIDEBNET is largely insensitive to the rank, and the network topology plays a more
significant role.

Moreover, these results indicate that allowing for a nonuniform rank for each
patch may not be a fruitful exercise. Or, conversely, if the intent is to compress the
model further to, e.g., fit on mobile devices [9], this also suggests that tenable strategy
may be to prune a trained model by adaptive patchwise rank reduction. We leave
this to future work.

Effect of CNN and ResNet layers. Beyond the selection of the rank r the
only remaining hyper-parameters that determine the WIDEBNET architecture are
the number of CNN layers Nony and the number of residual layers Ngynn in the
switch module. Figure 15 reports on the sensitivity of the WIDEBNET model to these
parameters. Evidently from Figure 15(b) we conclude that the predictive performance
is unaffected by the number of postprocessing CNN layers. A similar conclusion can
be drawn about the number of residual layers from Figure 15(a); note the fluctuations
in the training and testing curves are negligible in magnitude.

4.2. Heterogeneous background. In this section we present numerical results
with scattering data from a known inhomogeneous background medium. The varia-
tions in the background wavespeed introduce significant complications to the inverse
problem. For instance, homogeneous backgrounds afford symmetries such as rota-
tional equivariance which can be exploited for efficient network design; see, e.g., [37];
in an inhomogeneous background this assumption is no longer valid. The physics
of wave propagation through inhomogeneous media also complicates the signal pro-
cessing problem as it gives rise to multi-pathing as well as multiple arrivals due to
interior scattering. While the architecture and data formatting remain unchanged, the
complexity of the inverse problem for localizing scatterers, let alone super-resolution,
increases in this setting.

We tested the algorithm for two heterogeneous backgrounds: (i) a smooth linearly
increasing background medium with wavespeed ¢ = 0.5 at the top and ¢ = 1.5 at the
bottom, and (ii) layered background medium with wavespeeds ¢ =1, ¢ = 2, and ¢ = 4.
The results of trained WIDEBNET models on testing data are shown in Figure 13.
We observe in Figure 13(b) that WIDEBNET manages to process the multiple arrivals
to image the triangular scatterers. However, surprisingly, it does significantly poorer
for the smoothly varying background. Explaining this discrepancy remains an open
problem.

Remark. The notion of resolution becomes ambiguous for inhomogeneous media
as the wavelength changes with background medium ¢(z, z) following the dispersion
relation in (1.1). Nevertheless, across the range of background velocities the scatterers
still contain sub-wavelength features such as, e.g., the corners.

4.2.1. Comparison versus FWI. We compare WIDEBNET against FWI, im-
plemented in MATLAB, inverting for the same perturbation. The descent path
is initialized with the known homogeneous background, and the gradient is com-
puted using standard adjoint state methods. We selected as the optimization method
L-BFGS implemented using the fminunc routine.

Following standard practices in the geophysical community, we use a frequency
sweep to regularize against the nonconvexity of the objective function. We tested
a dozen frequency combinations, and we selected the one which produced the best
images. In the sweep, the data at different frequencies are fed to the optimization loop
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at three stages. At each stage we process data only at a certain frequency, without
combining them, but we use the estimate at the end of one stage to initialize the
subsequent stage one: in the first stage we process the lowest frequency data, we save
the final answer, which will be used as an initial guess for the next stage, which will
process data in the immediately higher frequency-band, and we repeat until data at
all frequencies are processed.

We ran the optimization until either the residual stagnated around 1075, or the
norm of the gradient fell below 107, In order to avoid the inverse crime we use a
fourth order finite different stencil in the FWI formulation, in contrast to the data
which was generated using a five-point second order stencil. For completeness, we also
computed the regularized least-squares (LS) estimate using the far-field asymptotics
in (2.9), using only the highest frequency data, and the least squares (LS) estimate
using the finite difference discretization of the problem (with 9-point stencil) with
wide-band data. After a laborious search for the best reconstruction we found that
regularization parameter € = 1 for LS produced the best localization while simultane-
ously minimizing oscillatory artifacts. The linear system was solved using gmres with
a tolerance of 1073. In Figure 10 we can observe that for this specific class of scatterers
WIDEBNET outperforms all the other methods and provides a sharper image of the
perturbation with the correct amplitude (the far-field LS was rescaled in this case).

We can observe that the reflectors are properly placed, but the result from our
neural network provides a better localization, sharper corners, with far fewer oscil-
latory artifacts. We point out that procuring these images for FWI was labor- and
time-intensive. It took roughly a day to test all the different frequency sweeps and
the full computation. The full computation took roughly one minute and a half on
average for FWI, around two minutes for LS, and half a minute for far-field LS. The
experiments were carried out on a 16-core workstation with an AMD 2950X CPU
and 128 GB of RAM. In contrast, the training stage for WIDEBNET took in total
12 hours, and the inference takes a fraction of a second, running on a Nvidia GTX
1080Ti graphics card.

5. Conclusion and future work. In this manuscript we have designed an
end-to-end architecture that is specifically tailored for solving the inverse scattering
problem. We have shown that by assimilating multi-frequency data and coupling
them through nonlinearities we can produce images that solve the inverse scattering
problem. Our tool produces results which are competitive with optimization-based
approaches, but at a fraction of the cost. More critically, we have demonstrated that
our architecture design and data assimilation strategy avoids three known shortcom-
ings with conventional architectures and also other butterfly-based networks: (i) by
incorporating tools from computational harmonic analysis, such as the butterfly fac-
torization, and multi-scale methods, such as the Cooley-Tukey FFT algorithm, we
are able to drastically reduce the number of trainable parameters to match the in-
herent complexity of the problem and lower the training data requirements; (ii) our
network has stable training dynamics and does not encounter issues such as poorly
conditioned gradients or poor local minima; and (iii) our network can be initialized
using standard off-the-shelf technologies.

In addition, we have shown that our network recovers features below the diffrac-
tion limit of general, albeit fixed, class of scatterers. Even though there is an under-
lying assumption on the distribution of the scatterers, we do not explicitly exploit it.
Thus, one future research direction is to use the current architecture within a VAE
or GAN framework to fully capture the underlying distribution, and to further study
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def permutation_indices(L, /#): 1
# indices inside each 4% x 477* block
A = 4L—(—l

w0

# [0,A,2A,3A,0,A,2A,3A,4A,...]
n* = np.file(np.arange(4)*A, A) 6

# + [0,0,0,0,1,1,1,1,...,A, A,A,A] 8

7° += np.repeat (np.arange(A), 4) 9

# indices for entire block diagonal matrix 11
7t = np.tile(x?, 49 12

7* += np.repeat (np.arange (4°) x4 =¢, 4L %) 13

return ﬂ'e 15

ALGORITHM 6. Pseudocode for permutation pattern my used in layers Gt and HY when processing
Morton-flattened inputs.

def switch_indices(L): |
Tewiteh = np.arange (25)*(21) N

Tswitch = np'tile (ﬂ-switch, 2L) 1
Tswitch += np.repeat(np.arange(QL), 25y

return Tgswitch 7

ALGORITHM 7. Pseudocode for switch permutation indices for processing Morton-flattened inputs.

the limits of the current architecture to image sub-wavelength features. Following the
same approach, one can seek to extend the applicability of the current architecture to
the cases where there is noise in signal, or uncertainty on the background medium.

Appendix A. Permutation and switch indices. The permutation indexing
that enables the G* and H* layers to be described as block-diagonal matrices can be
derived from an involved analysis of the two-dimensional butterfly factorization. For
convenience, we provide a generic pseudocode in Algorithm 6, which automates this
construction for all choices of L. We note that this permutation assumes the input
vector is Morton-flattened. Similarly, Algorithm 7 yields pseudocode for generating
the specific switch permutation indices of the Butterfly algorithm.
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