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A B S T R A C T   

Human activities can have substantial impacts on watersheds, yet a major but understudied impact on many 
urban watersheds is the inflow and infiltration (I&I) of water into sewage infrastructure. I&I is important, 
because it is a major cause of sewer overflows, increases wastewater treatment plant costs, and reduces base 
flows of urban streams. Unfortunately, I&I information is deficient at the watershed scale. Therefore, this study 
uses a water-budget approach to quantify the magnitude of I&I for 90 watersheds in the Atlanta, Georgia USA 
region during 2013–2020. I&I for each watershed is calculated by subtracting outflows (i.e., stream discharge, 
water withdrawn by public water systems, and actual evapotranspiration (AET)) from inflows (i.e., precipitation, 
water-supply pipe leakage, and non-I&I effluent from wastewater treatment plants). Included in the AET esti
mates is irrigation water from public water systems and water withdrawals for agriculture. Results show that I&I 
is a major contributor to the total outflow in urban watersheds. The mean annual I&I total for the 15 most 
urbanized watersheds is 138 mm, constituting 25% of stream discharge. The mean annual I&I total from the 
watersheds with the five highest totals is 216 mm, which is 40% of stream discharge. These annual I&I totals 
align well with totals calculated for urban catchments in Europe, where most of the previous research has been 
conducted. Regression analyses show that the density of older housing, which is a proxy for deteriorating sewage 
infrastructure, is the most important predictor of I&I across the Atlanta region. Despite the uncertainties in 
estimating annual totals for all components, especially AET for urban watersheds, of the water budget, we 
conclude that estimating I&I using the water-budget approach is a useful initial approach to estimating I&I 
throughout a region.   

1. Introduction 

Human activities can have substantial impacts on water budgets. The 
budget for reference watersheds (i.e., watersheds with minimal 
anthropogenic modifications) over a robust number of years (i.e., 
enough years to minimize the change in water storage) that have 
negligible net groundwater exchange has three components: precipita
tion as an inflow, and actual evapotranspiration (AET) and stream 
discharge as outflows (Healy et al., 2007). Human alterations of the 
landscape can alter precipitation (Shepherd, 2005), AET (Grimmond 
and Oke, 1999), and stream discharge (Booth and Jackson, 1997) in 
urban watersheds. Anthropogenic water inputs to watersheds include 
inter-basin transfers of water in the form of leaking water-supply pipes, 
irrigation water, and effluent from wastewater treatment plants 
(WWTPs) (Townsend-Small et al., 2013). Anthropogenic outputs include 

the withdrawal of surface water and groundwater (Kampf et al., 2020). 
One important anthropogenic outflow that has largely been over

looked in watershed analyses is inflow and infiltration (I&I). Inflow is 
rainwater and surface water that enters a sewer system from above 
ground through direct connections (e.g., downspouts, yard drains, sump 
pumps, manhole covers, etc.) (Cahoon and Hanke, 2017; Pawlowski 
et al., 2014), while infiltration is groundwater seeping into the sewers, 
typically through defective pipes, pipe joints, connections, or manholes 
(Kracht et al., 2007; U.S. EPA, 2014). Infiltration is the dominant process 
in humid regions (Karpf and Krebs, 2011; Pangle et al., 2022; Staufer 
et al., 2012; Zhang and Parolari, 2022). Sewer systems deteriorate over 
time (Malek Mohammadi et al., 2020); therefore, older systems have 
been shown to have more I&I than newer systems (Prigiobbe and Giu
lianelli, 2009). 

I&I is important because it is a major cause of sewer overflows, 
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increases WWTP costs, and impacts water budgets. In previous I&I 
studies (Bareš et al., 2012; Diem et al., 2021; Dirckx et al., 2019; Kracht 
et al., 2007; Pangle et al., 2022; Prigiobbe and Giulianelli, 2009; Rödel 
et al., 2017; Shehab and Moselhi, 2005; Weiβ et al., 2002), the per
centage of sewage water that is I&I ranges from 14% to 70%. I&I in
creases during precipitation events (Cahoon and Hanke, 2017) and it 
can overload sewage systems, thereby causing combined-sewer over
flows (CSOs) and sanitary-sewer overflows (SSOs) and subsequent 
pathogen contamination (Arnone and Perdek Walling, 2007). In the 
United States for example, there are tens of thousands of SSOs each year, 
discharging pathogens into waterways (U.S. EPA, 2022). I&I increases 
pumping costs at the treatment plant and collection system and likely 
reduces treatment efficiency (Dirckx et al., 2016). Finally, I&I can be a 
major outflow in urban watersheds (Bhaskar and Welty, 2012), thereby 
making it a major contributor to reduced baseflows in urban streams 
(Bhaskar et al., 2016; Diem et al., 2021). 

Despite the importance of I&I, especially its environmental impacts, 
few studies have provided sufficient I&I information to determine the 
magnitude of I&I with respect to the water budget. Much I&I informa
tion pertains to infiltration rates into sewer pipes (e.g., Karpf and Krebs, 
2013; Schulz et al., 2005) and the aforementioned percentage of 
wastewater flow that is I&I. What is known regarding I&I as a water- 
budget component is shown below for multiple studies, and all studies 
examined either wastewater flow within individual pipes or effluent 
from WWTPs. Using variations in pollutant load and continuous water 
quality and quantity monitoring, Bareš et al. (2009, 2012) quantifies I&I 
for six catchments in Prague, Czech Republic over a variety of months- 
long periods during multiple years, and the annual-equivalent I&I total 
is approximately 204 mm. Staufer et al. (2012) uses hydrograph sepa
ration to estimate I&I at two catchments in western Germany over 103 
weeks, and the annual mean I&I total is approximately 232 mm. Bhaskar 
and Welty (2012) uses results from wastewater-flow analyses for a 10- 
year period to estimate 530 mm as the mean annual I&I for the two 
heavily urbanized watersheds in Baltimore, MD USA. A similar value is 
found when solving for I&I using the water-budget approach (Bhaskar 
and Welty, 2012). Diem et al. (2021) uses monthly WWTP effluent totals 
over seven years to estimate a mean annual I&I of 37 mm for three 
suburban watersheds near Atlanta, GA USA. For the three watersheds in 
Diem et al. (2021) and an additional nearby watershed, Pangle et al 
(2022) uses precipitation and sewer-flow data for one year to estimate a 
mean annual I&I of 41 mm. 

From the small number of studies that have examined multiple 
catchments in a region, it is known that older or unrehabilitated sewer 
systems have increased I&I totals. In Rome, Italy, it has been shown that 
a catchment with a 14-yr old sewer system has negligible infiltration, 
while a catchment with a 40-year-old system has 50% infiltration (Pri
giobbe and Giulianelli, 2009). A rehabilitated sewer system in a catch
ment in Germany has 24% less groundwater infiltration than a system in 
a catchment with similar pipe density and land cover to the rehabilitated 
catchment (Staufer et al., 2012). 

Based on the information in the preceding paragraphs, there is a 
strong need for an examination of I&I in a region across many catch
ments/watersheds with varying sewer-infrastructure and land-cover 
characteristics. Although most previous studies have quantified I&I 
using measured flows within pipes or entering or leaving WWTPs, these 
measurements are not widely available and therefore cannot support a 
broad-scale comparative analysis of many different watersheds. An 
alternative approach that may be more widely applicable is to infer 
magnitudes of I&I based on water-budget calculations, where I&I is the 
residual unknown term in the water-budget equation. While the water- 
budget approach has disadvantages due to uncertainties in the terms 
(Kampf et al., 2020), if the magnitude of I&I is as large as previous 
studies show, then using the water-budget approach to estimate I&I is a 
worthwhile endeavor. 

Our overarching research question is as follows: How do the mag
nitudes of watershed-level I&I vary across a metropolitan area? The 

major objectives are to: (1) estimate all inflows and non-I&I outflows for 
a wide variety of watersheds; (2) determine the degree to which land- 
cover, population-density, and housing-density variables impact I&I; 
and (3) explore how uncertainties in water-budget terms impact I&I 
estimates. 

2. Material and methods 

The methods involved producing estimates for all components of the 
water budget except for I&I that is exported out of the watershed (i.e., 
the unknown outflow term), and then estimating and analyzing I&I. 
Since eight years of data are used in this study, it is assumed that changes 
in water storage over time are negligible. Performing the analyses with 
only a few years might violate the assumption (Aulenbach and Peters, 
2018). The equation below, which is based on the water-budget equa
tion in Bhaskar and Welty (2012), was used to estimate I&I: 

I&I = P + L + QE + IP − W − QT − AETT , (1)  

where P is precipitation, L is water-supply pipe leakage, QE is non-I&I 
effluent (i.e., treated potable water) discharged by WWTPs, IP is irriga
tion water from public water systems, W is water withdrawn by public 
water systems and transported out of the watershed, QT is stream 
discharge, and AETT is total actual evapotranspiration. In this paper, 
AETT is calculated as follows: 

AETT = AETB + E + AETI , (2)  

where AETB is biome AET, E is evaporation from impervious surfaces, 
and AETI is additional AET from irrigation water. AETB is calculated 
using models in Fang et al. (2016). AETI is calculated as follows: 

AETI = IP + IA (3)  

where IP, which was presented earlier as an inflow, is irrigation from 
public water systems, and IA is irrigation water withdrawn from the 
watershed for agriculture, which includes golf courses and farms. It was 
assumed that all irrigation water went towards AET. This assumption is 
supported by the lack of excessive irrigation by households in the 
Atlanta region (DeOreo et al., 2016). 

2.1. Study region 

The chosen study region, the Atlanta–Sandy Springs–Gainesville 
combined statistical area in the southeastern United States, was an ideal 
locale for using water budgets to examine I&I (Fig. 1). The Atlanta re
gion had 90 suitable gaged watersheds with data for 2013–2020. Of the 
90 watersheds used in Diem et al. (2021), 89 were used in this study. 
Among the 90 watersheds were three reference watersheds (R1, R3, and 
R4) (Fig. 1). One more reference watershed (R2) was added for the AET 
component of this study. All watersheds had a humid-subtropical 
climate (Cfa), which is characterized by hot, humid summers and no 
seasonal differences in precipitation (Trewartha and Horn, 1980). 
Typical annual precipitation and potential evapotranspiration totals in 
the Atlanta region are approximately 1248 mm and 1183 mm, respec
tively (Aulenbach and Peters, 2018). In addition, all watersheds existed 
entirely within the Piedmont physiographic province, which is charac
terized by rolling hills underlain by metamorphic and igneous rocks 
(Miller, 1990). The Atlanta region is served almost entirely by sanitary 
sewers (i.e., separate pipes for sewage and stormwater), with combined- 
sewer pipes (i.e., pipes that transport both sewage and stormwater) 
existing only in the City of Atlanta and those pipes representing only 4% 
of the city’s sewage-system piping (City of Atlanta, 2011). I&I has been 
recognized as a serious environmental problem in the region: the water 
diverted by I&I has contributed to both SSOs and combined sewer 
overflows in the City of Atlanta and SSOs in DeKalb County that have 
ultimately led to federal consent decrees aimed at improving sewage 
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infrastructure in those municipalities (U.S. District Court, 1998, 1999, 
2011). Finally, as is shown in the next section, there was an abundance 
of data in the Atlanta region for estimating water-budget components. 

2.2. Land cover 

Land cover and associated variables were essential for the estimation 
of most water-budget terms. High-resolution, gridded land-cover, 
imperviousness, and tree-canopy data were obtained from the Na
tional Land Cover Database of the Multi-Resolution Land Characteristics 
Consortium. All three datasets had a spatial resolution of 30 m. The land- 
cover product had 15 classes for the Atlanta region (Fig. 1), the imper
viousness product had for each grid cell the percentage of developed 
surface that was impervious surfaces, and the tree-canopy product had 
for each grid cell the percentage that was tree canopy. Over the 
2013–2020 period of this study, land-cover and imperviousness data 
existed for 2013, 2016, and 2019, while tree-canopy data only existed 
for 2016. Land-cover proportions for each watershed (i.e., the propor
tional coverage of each land-cover class) for 2014, 2015, 2017, 2018, 
and 2020 were estimated using a weighted interpolation of land-cover 
proportions from 2013, 2016, and 2019. All three 2016 datasets were 

combined to determine the percent imperviousness and percent tree 
canopy for all land-cover classes. Forest was assumed to be the tree 
canopy for all classes but shrub/scrub and woody wetlands: shrub was 
the canopy cover for shrub/scrub, and a mixture of forest and shrub was 
the canopy cover for woody wetlands. The following assumptions were 
made for the land-cover classes regarding the remaining portion of grid 
cells that were not impervious or forest: (1) water for open water, woody 
wetlands, and emergent herbaceous woodlands; (2) grass for the 
developed classes, barren, grassland, herbaceous, and pasture/hay; and 
(3) crops for cultivated crops. In addition, mixed forest was assumed to 
be the forest cover for all land-cover classes that were not deciduous 
forest or evergreen forest. 

2.3. Population and housing 

Population data were used to estimate values for some of the water- 
budget terms, and both population and housing data were used in the 
analyses of estimated I&I totals. Both population and housing data at the 
block-group level were obtained from the U.S. Census Bureau’s Amer
ican Community Survey 5-year estimates for 2010–2014 and 
2015–2019. While only total population was used in this analysis, the 

Fig. 1. Locations of the 91 gauged watersheds used in this study. All watersheds are within and proximate to the Atlanta metropolitan statistical area (MSA). The four 
reference watersheds are identified as are the three watersheds examined in both Diem et al. (2021) and Pangle et al. (2022). Shown within the watersheds are land 
cover and locations of wastewater treatment plants and water withdrawals for public water systems, golf courses, and farms. The inset map shows the location of the 
Atlanta MSA within the Cfa climate type, which covers most of the southeastern United States. 

J.E. Diem et al.                                                                                                                                                                                                                                  



Journal of Hydrology 614 (2022) 128629

4

following categories of housing totals (i.e., number of units), which 
denote when a structure was built, were used: ≥2014, 2010–2013, 
2000–2009, 1990–1999, 1980–1989, 1970–1979, 1960–1969, 
1950–1959, 1940–1949, and ≤ 1939. Population and housing totals 
were converted to density values, and weighted means (based on area of 
a block group within a watershed) were used to estimate population and 
housing densities within the watersheds. The density estimates from the 
2010–2014 data were used for 2013 and 2014, while the density esti
mates from the 2015–2019 data were used for the subsequent years. 

2.4. Precipitation (P) 

Gridded daily precipitation data from 2013 to 2020 were obtained 
from the PRISM (Parameter-elevation Regressions on Independent 
Slopes Model) Climate Group. PRISM calculates a climate-elevation 
regression for each grid cell of a digital elevation model, and precipi
tation gauges entering the regressions are assigned weights based pri
marily on the physiographic similarity of the gauge to the grid cell (Daly 
et al., 2008). Radar data also are used to improve the estimates (Daly 
et al., 2021). These serially-complete data had a 4-km spatial resolution. 
Precipitation totals for the watersheds were weighted means of grid-cell 
values, with the weights derived from the areas of the grid cells within 
the watersheds. PRISM precipitation totals have been shown to be 
3.25% higher than those measured at U.S. climate-monitoring stations 
(Buban et al., 2020); therefore, all monthly totals for the 90 watersheds 
were divided by 1.0325. 

2.5. Pipe leakage (L) 

Estimating water inflows via pipe leakage relied on annual water-loss 
audits from 65 public water systems serving populations within the 90 
watersheds. Those audits include estimates of water supplied, popula
tion served, and real losses (i.e., pipe leakage) (Georgia Environmental 
Protection Division, 2022). Water-supply rates for each water system for 
each of the eight years were calculated by dividing water supplied by the 
population served. Pipe-leakage rates for each water system for each of 
the eight years were calculated by dividing real losses by water supplied. 
Mean pipe-leakage and water-supply rates over the eight-year period 
were calculated for each system. If multiple water systems existed in a 
watershed, the water-supply and pipe-leakage rates used for the 
watershed were a weighted average of all the rates applicable to the 
watershed. The weighting factor was the area of the water-supplying 
municipality within each watershed. Water use was calculated by 
multiplying the per capita water use by the population total, and then 
the total pipe leakage was water use multiplied by the pipe-leakage rate. 
Frequency distributions of per-capita water use and leakage rates for the 
65 public water systems are shown in Fig. S1. 

2.6. WWTP effluent (QE) 

Monthly effluent data from 2013 to 2020 were acquired for 32 
WWTPs that discharged effluent into one or more of the 90 watersheds. 
These data were extracted from the U.S. Environmental Protection 
Agency’s ICIS-NPDES Permit Limit and Discharge Monitoring Report 
Data Sets. From previous studies (Bareš et al., 2012; Diem et al., 2021; 
Dirckx et al., 2019; Kracht et al., 2007; Pangle et al., 2022; Prigiobbe and 
Giulianelli, 2009; Rödel et al., 2017; Shehab and Moselhi, 2005; Weiβ 
et al., 2002), the mean percentage of sewage water that that is not 
precipitation or groundwater is approximately 30%; therefore, to 
approximate the portion of WWTP effluent totals that is an inflow of 
water from public water systems, effluent totals in this study were 
multiplied by 0.70. 

2.7. Landscape water from public water systems (IP) 

Monthly water-use data from the City of Atlanta and DeKalb County 

were the main data used to estimate water inflows via irrigation with 
municipal water (Fig. 2). Those two municipalities are in the center of 
the study region and intersect with 30 of the 90 watersheds. It was 
assumed that the intra-annual variability of water use in those munici
palities was representative of the intra-annual variability in the 
remaining watersheds. The City of Atlanta provided monthly water-use 
data for customers within the city limits. DeKalb County provided daily 
outflow data from its filtration plant, and those values were multiplied 
by the proportion of water not lost through pipe leakage (i.e., one minus 
the leakage rate) to yield estimates of water use by customers. Mean 
daily water-use values for both the City of Atlanta and DeKalb County 
were calculated for each month and the mean daily values from the two 
water systems were summed. 

Irrigation water (IP) was calculated by applying outdoor water use to 
grass in developed areas. The following major assumptions were made: 
(1) all outdoor water was used for irrigation; and (2) there was negli
gible groundwater recharge from irrigation water. Using mean daily 
water-use data per month, the average of the three lowest-use months 
was assumed to represent indoor use and all differences in water use 
between the other months and the mean value from the lowest-use 
months was considered to be outdoor use (Gleick et al., 2003). The 
daily differences were converted to monthly totals, and the monthly 
totals were summed to yield an annual irrigation total. The irrigation 
rate (i.e., amount of water applied annually to grass) was calculated as 
follows: 

RI = 1000*
(

TI

AG

)

, (4)  

where RI is the irrigation rate in mm yr−1, TI is total irrigation water in 
m3, and AG is the area (in m2) of grass in low-intensity, medium-in
tensity, and high-intensity developed areas in the City of Atlanta and 
DeKalb County. The annual irrigation rate was then multiplied by the 
proportion of developed-land grass (i.e., the proportion of watershed 
that was grass in low-intensity, medium-intensity, and high-intensity 
developed areas) in each watershed to yield watershed-specific esti
mates of annual irrigation totals. 

2.8. Stream discharge (QT) 

Daily mean streamflow from 2013 to 2020 was acquired from the 
United States Geological Survey (USGS) for 91 gauges. The entire 
streamflow dataset for the 91 gauges was missing only 0.01% of daily 
values. Only 15 of the gauges were missing values, and the percentage of 
missing values for those gauges ranged from 0.03% to 0.21%. Predicted 
values from linear regression equations were used to replace missing 
values. The independent variables were daily values from a gauge with a 
time series that had the strongest correlation with the time series of the 
gauge having the missing values. The serially complete daily streamflow 
values were normalized by watershed area to produce discharge values 
in millimeters. 

2.9. Public water system withdrawals (W) 

Estimates of surface-water withdrawal within the 90 watersheds by 
public water systems were made using lists of non-agricultural permits 
along with water-supplied data from the aforementioned annual water 
audits. There were 25 intake locations within the 90 watersheds (Fig. 1), 
and these intakes were identified from an analysis of a geospatial 
database provided by the Southern Environmental Law Center (South
ern Environmental Law Center, 2014). Water-withdrawal totals for each 
intake were estimated by multiplying total water supplied by the water 
system of the intake by the ratio of the permitted total for the intake to 
the permitted total for the water system. 
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2.10. Agricultural water withdrawals (IA) 

Estimates of water withdrawal for agricultural use were made using 
lists of permits along with irrigation-prediction information from the 
Environmental Protection Division of the Georgia Department of Natu
ral Resources. Relevant information for each permit included the permit 
holder, county of the permitted location, and area of land to be irrigated. 
The locations of all permitted locations that had information for permit 
holders that were not individuals were determined. Those permits 
typically had names of golf courses or farms as permit holders. There 
were at least 44 golf courses and 11 farms with water-withdrawal per
mits within the 90 watersheds (Fig. 1). The only geographic information 
for permits that only had individuals as permit holders were counties, 
and all irrigated land from those permits was summed for each county. 
Using the Environmental Protections Division’s golf course prediction 
and estimation worksheet (Georgia Environmental Protection Division, 
2014) along with monthly reference ET from the TerraClimate dataset 
(Abatzoglou et al., 2018) and precipitation totals from PRISM, irrigation 
rates for the April-November period were calculated separately for golf 
courses and farms. Golf courses were assumed to be 54% rough, 43% 
fairways, and 3% greens (Golf Course Superintendents Association of 
America, 2007), which have separate water requirements. Farms were 
assumed to have vegetative cover similar to golf-course rough. Irrigation 
rates were multiplied by areas to yield total annual water withdrawals, 
and those withdrawals were assigned to the watershed within which the 
permitted golf course or farm was located. For the remaining permits for 
which only county location was known, total annual water withdrawals 
were calculated at the county level (i.e., irrigation rate multiplied by 
irrigated area) and the proportion of each watershed within a county 
was multiplied by the county total to obtain an additional annual water 
withdrawal value for that watershed. Therefore, a watershed could have 
irrigation totals from specific golf courses, specific farms, and estimated 
totals from farms that were not geo-located. 

2.11. AET 

Mean monthly AETB totals (i.e., AET that did not include impervious 
surfaces or account for irrigation) for shrubland, cropland, deciduous 
forest, evergreen forest, and mixed forest were estimated for the 91 
watersheds (i.e., the 90 watersheds and the additional reference 
watershed) over the 2013–2020 period using regression models in Fang 
et al. (2016), which uses precipitation, potential evapotranspiration 
(PET), and leaf area index (LAI) to predict AET totals derived from eddy- 
covariance measurements (Table S1). Water was not a land cover in that 
study; therefore, for this study, monthly AET for water was assumed to 
be equal to PET. Monthly AETB totals for a watershed were a weighted 
mean of the land-cover AET values, with the weight for a land cover 
being the proportion of the watershed that was that specific land cover. 
The precipitation data used in the AET regression models were the 

aforementioned PRISM data. Monthly PET was calculated using the 
Hamon method (Hamon, 1963), which is what Fang et al. (2016) used 
when developing the regression equations. This PET-estimation method 
also is recommended for the southeastern United States (Lu et al., 2005). 
The Hamon equation predicts daily PET and is as follows: 

PET = k*0.165*216.7*N*
( es

T + 273.3

)
, (5)  

where k is the calibration coefficient (unitless), N is the daytime length 
in multiples of 12 h, es is the saturation vapor pressure (hPa), and T is 
mean monthly temperature (◦C). Fang et al. (2016) uses a calibration 
coefficient of 1.0 (i.e., no calibration); therefore, the same coefficient 
was used in this study. Monthly temperature and dew-point temperature 
from PRISM and daily sunlight duration were used to calculate PET. LAI 
data, which were 8-day composites at 500-m resolution, were extracted 
from the MODIS MCD15A2H Leaf Area Index product (Myneni et al. 
2015) for large (≥1 km2), homogeneous areas of deciduous forest, 
evergreen forest, shrubland, and combined herbaceous and pasture/hay 
areas in the Atlanta region. The last group was used for grassland and 
crops. 

Annual AETB estimates (i.e., the sum of the 12 monthly values) were 
adjusted based on comparisons between observed and estimated AET 
totals at the four reference watersheds. The reference watersheds were 
located in or near the northern, eastern, southern, and western portions 
of the Atlanta MSA (Fig. 1). Observed AET was calculated using the 
water-budget approach: discharge was subtracted from precipitation. 
An adjustment factor was calculated for each reference watershed, and 
these factors were the ratio of observed AETB to estimated AETB. These 
factors were used to adjust AETB totals at all 90 watersheds, with the 
factor used at a specific watershed being a weighted mean of the 
adjustment factors at the four reference watersheds. It was assumed that 
there was strong positive spatial autocorrelation in AETB; therefore, 
inverse-distance weighting was used to produce the adjustment factors 
specific to the 90 watersheds, with the distance being the distance from a 
watershed centroid to the centroids of the four reference watersheds. 

Annual impervious evaporation (E) was estimated using evaporation 
rates found in the literature (Table S2). For this study, it was initially 
assumed that 20% of precipitation that fell on impervious surfaces was 
evaporated. This value was the mean evaporation rate from five studies 
(Cohard et al., 2018; Ragab et al., 2003a; Ragab et al., 2003b; Ramier 
et al., 2004; Ramier et al., 2011) that measured evaporation rates for 
paved surfaces, plates, and roofs in temperate oceanic climates. Since 
the rates had a relatively large range of 10% to 38%, evaporation rates of 
10% and 30% also were used to calculate evaporation totals from 
impervious surfaces. 

AETT was the sum of biome AET (AETB), irrigation AET (AETI), and 
evaporation from impervious surfaces (E). AETB (i.e., Fang et al. (2016) 
models) and E are discussed in the preceding paragraphs. As shown in 
Eq. (3), AETI was the sum of landscape water from public water systems 

Fig. 2. (a) Location of the City of Atlanta and DeKalb County with respect to the 90 watersheds and (b) daily water use per month for both municipalities during 
2013–2020. January, February, and March had the three lowest mean daily water-use values. 
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and agricultural water withdrawn from the watershed. It was assumed 
that all irrigation water went towards AET (i.e., a negligible amount of 
irrigation water went towards groundwater recharge). This assumption 
is verified by the lack of excessive irrigation by households in the Atlanta 
region (DeOreo et al., 2016). Finally, unless noted otherwise, all AETT 
values presented in the paper are based on the 20% evaporation rate 
from impervious surfaces. 

2.12. Watershed groups 

To better elucidate differences in inflow and outflow terms for 
various types of watersheds, the 90 watersheds were divided into six 
groups of 15 watersheds based on the degree of urbanization. An ur
banization score was developed for each watershed by using principal 
component analysis (PCA) to produce a component score from the 
following multi-collinear variables: percent developed land, percent 
imperviousness, population density, and housing density. General 
watershed characteristics (i.e., land cover, population density, and 
housing density) as well as values of inflow terms, outflow terms, and 
urbanization variables were determined for each group. 

2.13. Modeling of I&I 

PCA also was used to screen 13 land-cover, population, and housing 
variables that were potential predictor variables in regression models 
predicting I&I and I&I%Q (I&I as a percentage of stream discharge). The 
screening was performed to ensure that the regression models did not 
have multicollinearity (Kachigan, 1991). The land-cover variables were 
percent imperviousness, percent all developed land, percent low- 
intensity to high-intensity developed land, and percent medium- 
intensity and high-intensity developed land. The population and hous
ing variables were population density, total housing-unit density, and 
density of housing units built prior to the following years: 2000, 1990, 
1980, 1970, 1960, 1950, and 1940. Each of the 13 variables was asso
ciated with the component on which it loaded the highest. 

Multiple-linear regression models were developed using all combi
nations of variables, with only variables that loaded highly on different 
components being included in a combination. Jackknife cross-validation 
was used to produce a Nash-Sutcliffe E value (hereafter shown as NSE) 
for each model. NSE values range from -∞ to 1, with higher values 
indicating better agreement between observations and estimates (Nash 
and Sutcliffe, 1970). An NSE ≥ 0.5 was used as the criterion for satis
factorily accurate model (Moriasi et al., 2007), and only those models 
were retained. 

Residuals from the models were examined to ensure that the models 
were stable and to better understand controls of I&I. Observed vs pre
dicted scatter plots provided insights into the severity of overpredictions 
and underpredictions. Spatial-autocorrelation analyses of residuals via 
Moran’s I tests were used to determine if important spatial variables 
were missing in the regression models. 

2.14. Analysis of impacts of uncertainties of water-budget terms on I&I 
totals 

All water-budget terms have uncertainties, and those uncertainties 
contribute to the uncertainty of I&I estimates; therefore, the impacts on 
I&I totals from uncertainties in the terms were calculated. For each 
watershed group, each water-budget term was adjusted by 10% and new 
I&I totals were generated. The absolute difference between the new I&I 
total and the original I&I total represented the impact of the water- 
budget term on I&I. 

3. Results 

3.1. Composition of land-cover classes 

Most land-cover types were comprised of a mixture of forest and 
grass, while impervious surfaces had substantial coverage in the devel
oped classes (Fig. S2). Forest was the majority vegetative cover in most 
of the non-developed classes, except for herbaceous and pasture/hay. 
Among the developed classes, open-space developed land and low- 
intensity developed land had substantial vegetative cover. Open-space 
developed land was only 8% impervious surfaces. Low-intensity devel
oped had more grass than forest, compared to open-space developed 
land, and was 33% impervious surfaces. Impervious surfaces accounted 
for 63% and 91% of medium-intensity developed land and high- 
intensity developed land, respectively. For both those classes, grass 
was more prevalent than forest. 

The six groups of watersheds ranged from strongly rural to strongly 
urban (Fig. 3). The least urbanized watersheds (i.e., Group A) were 
located on the periphery of the study region. Developed land and 
impervious surfaces constituted approximately 9% and 2%, respec
tively, of those watersheds. Population and housing densities also were 
very low, with mean values of 40 persons km−2 and 16 units km−2, 
respectively. The most urbanized watersheds (i.e., Group F) were 
located in the center of the study region. Developed land and impervious 
surfaces constituted approximately 85% and 39%, respectively, of those 
watersheds. Forest cover declined with increasing urbanization: forest 
was 62% of the least urbanized group and 32% of the most urbanized 
group. Grass remained relatively constant with increasing urbanization. 
Finally, there was negligible coverage by shrub, water, and crops (not 
shown in Fig. 3) of any watershed group. 

3.2. Precipitation 

Precipitation not only was the largest inflow variable but also the 
largest water-budget variable for all watersheds (Fig. 4a). Annual pre
cipitation totals ranged from 1,257 mm to 1,609 mm; thus, precipitation 
was immensely larger than all the anthropogenic inflows combined. For 
example, even for the watershed with the largest total of anthropogenic 
inflows, the precipitation total was ten times larger. There was little 
difference among the watershed groups with respect to precipitation 
totals. The least urbanized group and the most urbanized group had the 
largest and smallest variability, respectively, due to, as noted earlier, the 
least urbanized watersheds located farthest from each other on the pe
riphery of the study region and the most urbanized watersheds clustered 
in the center of the region (Fig. 3). 

3.3. Anthropogenic inflows (L, IP, and QE) 

Pipe leakage (L) was reported by all 65 public water systems 
(Fig. S1), but the magnitude of water added to watersheds via leaking 
pipes was extremely small compared to precipitation (Fig. 4b). Annual 
totals of leaking-pipe water ranged from 0 mm to 53 mm. The mean 
values for the two most urbanized watershed groups were 20 mm and 
32 mm, respectively. There was considerable variability for the most 
urbanized group, since water inflow from pipe leakage depended on 
leakage rates, per-capita consumption, and population density, and was 
less strongly linked to imperviousness and developed land. 

Similar to pipe leakage, inflows via irrigation from public water (IP) 
was relatively small compared to precipitation (Fig. 4c). The annual 
irrigation rate applied to grass in low-intensity, medium-intensity, and 
high-intensity developed lands was 106 mm. The irrigation rate for 
lawns in Clayton County, which is in the south-central portion of the 
Atlanta region, is 94 mm (DeOreo et al. 2016); therefore, the rate of 106 
mm is probably appropriate for most of the watersheds. Annual totals of 
public-water irrigation for the 90 watersheds ranged from 0 mm to 20 
mm. There was a steady increase with increased urbanization of the 
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watersheds, with the mean values for the three most urbanized groups 
approximately 16 mm. 

Only 33 of the 90 watersheds received WWTP effluent (QE), and this 
low number of receiving watersheds caused the over-all magnitude of 
effluent for the 90 watersheds to be small (Fig. 4d). WWTP effluent did 
not exist for the most urbanized watersheds, since treated wastewater 
from many urbanized watersheds is released into the Chattahoochee 
River (Fig. 1). The two largest annual totals of effluent among the 90 
watersheds were 70 mm and 110 mm. Therefore, for those watersheds, 
effluent was a substantial inflow, especially when compared to pipe 
leakage and irrigation using public water. 

3.4. AET 

AETB estimates from the Fang et al. (2016) models were upwardly 
adjusted, and those totals for the watersheds decreased with increasing 
urbanization (Fig. 4e). Adjustment factors that were applied to each of 
the 90 watersheds were weighted means of the adjustment factors at the 
reference watersheds, and those factors ranged from 1.089 to 1.201 
(Table 1). 

Evaporation totals from impervious surfaces (E) were negligible for 
the least urbanized watersheds and substantial for the most urbanized 
watersheds (Fig. 4f). Annual totals of evaporation from impervious 
surfaces ranged from 1 mm to 180 mm. The mean annual evaporation 
total for Group F, which as noted earlier had a mean imperviousness of 
39%, was 115 mm. 

The remaining AET term, AETI, was considerably smaller than AETB 
for all watersheds and smaller than E for the more urbanized watersheds 
(Fig. 4g). AETI was the sum of water from public-water systems (Fig. 4c) 
and irrigation water withdrawn from the watershed for agriculture, 
which includes golf courses. Annual totals of AETI ranged from 0 mm to 
36 mm. 

While AETT decreased with increasing urbanization of the water
sheds, it was still the largest outflow variable for nearly all watersheds 
(Fig. 4 and S3). AETT among the 90 watersheds ranged from 584 mm to 
992 mm. Group F watersheds had approximately 37% less AETT than 
Group A watersheds. When increasing evaporation rates to 30%, there 
was minimal change in AETT for Group A watersheds, while AETT for 
Group F watersheds increased from 741 mm to 796 mm (Fig. S3b,c). 
Evaporation rates of 10% led to AETT of 686 mm for Group F watersheds 
(Fig. S3a). 

3.5. Water withdrawal (W) 

The mean values of water withdrawals by public water systems were 
low for the watershed groups, since only 14 of the 90 watersheds had 
withdrawals (Fig. 4h). The maximum value for a watershed was 52 mm. 
Similar to WTTP effluent, water withdrawals did not exist in the most 
urbanized watersheds. 

3.6. Stream discharge (QT) 

Annual stream discharge (QT) generally increased with urbanization 
(Fig. 4i). Values for the 90 watersheds ranged from 259 mm to 863 mm. 
For the least urbanized watersheds as whole (i.e., Group A), QT was less 
than half of AETT. Conversely, four of the most urbanized watersheds (i. 
e., Group F) had QT larger than AETT. 

3.7. I&I 

I&I, which as noted in Section 2 was calculated by subtracting the 
sum of the other outflow totals from the sum of the inflow totals, was a 
major contributor to outflow in urbanized watersheds (Fig. 4j and 5a,c). 
Group A and Group F watersheds had mean I&I totals of −2 mm and 138 
mm, respectively. The histogram of I&I totals for the 90 watersheds was 
slightly positively skewed, with a majority of the watersheds having 
values within 40 mm of zero (Fig. 5c). All watersheds with I&I totals 
exceeding 100 mm were urbanized watersheds located in the center of 
the study region (Fig. 5a). More specifically, those watersheds encom
passed parts of the City of Atlanta and central and western DeKalb 
County. This is not unexpected, since, as noted in Section 1, both the City 
of Atlanta and DeKalb County have been under consent decrees to 
reduce sewer overflows. The evaporation rate used for impervious sur
faces had a large effect on I&I totals of the most urbanized watersheds: 
the I&I total for Group F watersheds increased from 138 mm to 194 mm 
when the 10% evaporation rate was used and decreased from 138 mm to 
83 mm when the 30% evaporation rate was used (Fig. S3d,e,f). 

The spatial pattern and frequency distribution of I&I%Q (i.e., I&I as a 

Fig. 3. Locations, land-cover, and population and housing-unit densities of the 
six groups of 15 watersheds. 
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percentage of stream discharge) closely matched those for I&I totals 
(Fig. 5b,d). The values for the 90 watersheds ranged from −21% to 44%. 
Urbanized watersheds in the center of the region had large I&I%Q values: 
four watersheds there had values larger than 40%. 

Two components were produced from the PCA of the 13 potential 

predictor variables for regression modeling, and all variables were 
strongly and significantly (α = 0.01; one-tailed) correlated with both I&I 
variables (Table S3). The first component represented urbanization in 
general, and the correlations ranged from 0.57 to 0.71 for I&I and from 
0.52 to 0.70 for I&I%Q Total housing-unit density had the largest cor
relations. The second component represented density of older housing, 
which was a proxy for infrastructure age, and the correlations ranged 
from 0.58 to 0.77 for I&I and from 0.56 to 0.76 for I&I%Q. Density of 
housing units built prior to either 1980 or 1970 had the largest 
correlations. 

Out of the 40 models developed to predict I&I, there were 33 satis
factorily accurate models (i.e., NSE ≥ 0.50) and those models had the 
anticipated overprediction of small I&I totals and underprediction of 
large I&I totals (Fig. 6). There were 27 satisfactorily accurate I&I%Q 
models, and the scatterplot and residuals map for those models were 
nearly identical to those for I&I and thus are not shown. The largest 

Fig. 4. Box-and-whisker plots for the six groups of 15 watersheds for (a) precipitation (P), (b) pipe leakage (L), (c) irrigation with public water (IP), (d) effluent rom 
wastewater treatment plants (QE), (e) biome AET (AETB), (f) evaporation from impervious surfaces (E), (g) additional AET from irrigation (AETI), (h) water 
withdrawal by public systems (W), (i) stream discharge (QT), and (j) inflow and infiltration (I&I). Mean values are provided on the x-axes. All units are in mm. 

Table 1 
Observed AET (AETO) and predicted AET (AETP) at the four reference water
sheds and resulting adjustment factors. ID is the USGS identification number for 
the stream gauge. Refer to Fig. 1 for the locations of the reference watersheds.  

Watershed ID AETO AETP Adj. Factor 

R1 02381600 912 759  1.201 
R2 02193340 1028 891  1.153 
R3 02212600 988 907  1.089 
R4 02338523 935 838  1.115  
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absolute residual occurred at Rottenwood Creek (USGS 02335910) in 
Cobb County, and this watershed was in the most urban group. Rot
tenwood Creek had the largest overprediction for all models. An 
important spatial variable was not excluded from the models, since there 
was no significant spatial autocorrrelation among the residuals (Fig. 6b). 

Infrastructure-age variables produced the most accurate models for 
I&I (Table 2). The top three models in terms of NSE values had NSE 
values of either 0.59 or 0.60 and r2 values of either 0.61 or 0.62. The 
predictor variables were HD70 (i.e., density of housing units built prior 
to 1970) along with either population density, density of all housing 
units, or percent imperviousness. Based on the standardized slope co
efficients, HD70 was the more impactful predictor in all models. 

The most accurate models for I&I%Q were similar to the models for 
I&I (Table 2). NSE values for the three models were either 0.57 or 0.58 
and r2 values were either 0.59 or 0.60. The predictor variables were 
nearly the same as those in the I&I models, and HD70 was again the more 
impactful predictor. 

3.8. Impacts of uncertainties of water-budget terms on I&I totals 

There was considerable variation among the water-budget terms 
with respect to impacts of uncertainties on I&I totals (Table S4). P was 
the largest term in the water budget, and, if P were not connected to 
AETB, a 10% change in precipitation could produce extremely large 
changes (±140 mm) in I&I. However, this is a greatly exaggerated 
impact on I&I: P was used to estimate values of two outflow terms, AETB 
and E; therefore, the impacts of a systematic overestimation or under
estimation of P were buffered by corresponding changes to AETB and E. 
In addition, P uncertainty was more likely 5% rather than 10% 
(McMillan et al., 2012). The two other large terms, besides P, were AETB 
and QT, and, similar to P, small changes in those terms would have large 
impacts on I&I. Those two terms most likely had uncertainties of at least 

10% (Baffaut et al., 2020; McMillan et al., 2012). E definitely had an 
uncertainty larger than 10% due to uncertainties in evaporation rates 
from impervious surfaces; thus, the impact of E on I&I totals was much 
larger than what is shown in Table S4. The remaining terms (L, IP, QE, IA, 
and W) had either no impacts or minimal impacts on I&I for a watershed 
group. 

4. Discussion 

4.1. Urban-watershed I&I totals in this study are realistic 

Annual I&I totals for urban watersheds in this study are similar to I&I 
totals found for urban catchments in Europe, where much of the existing 
I&I analyses have been conducted. The comparisons with results from 
European studies are few, since – as noted in Section 1 – most studies do 
not provide enough information for calculating area-normalized depths 
of I&I. The mean I&I total from the watersheds in this study with the five 
largest totals (i.e., top 6%) is 216 mm, which is 40% of stream discharge. 
These I&I totals are comparable to what has been found for monitored 
urban catchments in Prague, Czech Republic and western Germany, 
where annual I&I totals are between 200 mm and 250 mm (Bareš et al., 
2009; Bareš et al., 2012; Staufer et al., 2012). These are the only known 
published European studies that provide all the information needed to 
calculate I&I as an area-normalized depth. I&I in the six catchments in 
Bareš et al. (2009, 2012) are only measured for several months at a time 
over several years, and after upscaling each of the six sub-annual I&I 
totals to an annual total, the mean total for those catchments is 206 mm. 
The mean I&I total for the two catchments in western Germany, 
measured over 73 months prior to the rehabilitation of one of the sewer 
networks, is 246 mm (Staufer et al., 2012). 

Differences in population and housing density seem to explain why 
I&I totals for urban watersheds in the Atlanta region are substantially 

Fig. 5. (a) I&I and (b) I&I as a percentage of stream discharge at the 90 watersheds in the Atlanta region. Histograms of values for the 90 watersheds for (c) I&I and 
(d) I&I as a percentage of stream discharge. 

J.E. Diem et al.                                                                                                                                                                                                                                  



Journal of Hydrology 614 (2022) 128629

10

less than totals for two urban watersheds in Baltimore. Baltimore is a 
good comparison with Atlanta, because both locales have Cfa climates 
and are located wholly or partially in the Piedmont physiographic 
province of the eastern United States. The urban watersheds in Bhaskar 
and Welty (2012) have a mean annual I&I total of 565 mm, which is 
120% of stream discharge. The Baltimore I&I total, which is the largest 
value in the literature, is 2.4 times larger than the largest I&I total in this 
study. That total was at Peachtree Creek (USGS 02336300). The dif
ference in I&I magnitude might be explained by the much higher degree 
of urbanization – and thus increased sewer-pipe density – in the Balti
more watersheds: the mean population and housing densities of the 
Baltimore watersheds were twice that of Peachtree Creek. 

A comparison of results with previous I&I studies involving the same 
watersheds in the Atlanta region indicates that this study might over
estimate I&I in suburban watersheds. The same three watersheds are 
examined in Diem et al. (2021), Pangle et al. (2022), and in this study, 
and those watersheds exist within the South River Watershed (Fig. 1). 
The mean I&I totals for those watersheds from those three studies are 37 
mm, 45 mm, and 121 mm, respectively. It is possible that Diem et al. 
(2021) has a conservative estimate of I&I totals, because it relies on 
monthly WWTP-effluent data and the method used has the assumption 
that the month with the lowest effluent total has no I&I. It also is 
possible that I&I estimates reported by Pangle et al. (2022) may be lower 
than average considering the results are reported for a calendar year that 
was relatively dry: the precipitation total for the year was greater than 
100 mm less than the climatological mean (Aulenbach and Peters, 2018; 
Diem et al., 2018). Pangle et al. (2022) also included an underlying 
assumption that groundwater infiltration becomes negligibly small 
during the driest time of the year. 

The modeling results in this study support previous findings that 
aging infrastructure is a major control of I&I. The most accurate 
regression models all have density of housing units built prior to 1970 as 
the most important predictor of I&I among the 90 watersheds. This 
variable, which is a proxy for sewage-infrastructure age, has a stan
dardized slope coefficient that is larger than the coefficient for the other 
variable in the models. The other variable is either imperviousness, 
percent all developed land, population density, or total housing density. 
Sewage infrastructure that is 40 years old has been shown to have much 
higher groundwater infiltration than infrastructure that is several de
cades newer (Prigiobbe and Giulianelli, 2009). 

The regression modeling may have discovered significant sewage- 
system repair in an urban watershed. Rottenwood Creek in eastern 
Cobb County appears to have negligible I&I and thus has the largest I&I 
overprediction of all the watersheds. Sewer replacement is a likely 
reason for the negligible I&I: approximately 1.7 km of interceptor-sewer 
pipe that was constructed over 60 years ago was replaced and relocated 
(Gilman, 2019). 

Fig. 6. (a) Scatterplot of observed I&I totals vs predicted I&I totals for the 90 
watersheds and (b) map of residuals. Mean predicted I&I totals from the 33 
satisfactorily accurate models were used. “R” (Rottenwood Creek) is the largest 
overprediction (i.e., most negative residual). 

Table 2 
The three most accurate multiple linear regression models used to predict I&I 
and I&I%Q (i.e., I&I as a percentage of stream discharge). Provided to the right of 
the equations are coefficients of determination (r2) and the Nash-Sutcliffe E 
(NSE). The variables in the models are described below. DA is percent all 
developed land. HD70 is density of housing units built prior to 1970. HDT is 
density of all housing units. I is percent imperviousness. PD is population den
sity. Housing density is units km−2. Population density is persons km−2.  

Variable Equation NSE r2 

I&I −10.140 + 0.365 * HD70 + 1.052 * PD  0.60  0.62  
(0.501)  (0.354)   

I&I −8.274 + 0.315 * HD70 + 0.137 * HDT  0.60  0.62  
(0.432)  (0.405)   

I&I −8.486 + 0.440 * HD70 + 1.44 * I  0.59  0.61  
(0.604)  (0.274)   

I&I%Q −1.548 + 0.072 * HD70 + 0.009 * PD  0.58  0.60  
(0.525)  (0.312)   

I&I%Q −1.170 + 0.064 * HD70 + 0.022 * HDT  0.57  0.60  
(0.469)  (0.350)   

I&I%Q −2.831 + 0.082 * HD70 + 0.119 * DA  0.57  0.59  
(0.598)  (0.245)   
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4.2. Uncertainties in water-budget terms are in issue for both rural and 
urban watersheds 

Except for large imbalances in the water budget that occurred for 
several watersheds, the water budgets for rural watersheds in general 
are almost fully closed. There was strong agreement between inflow 
totals and outflow totals, since the mean I&I totals for the most rural 
watersheds is approximately zero, which is the expected I&I total. This 
agreement is enabled by the adjustment of AETB totals based on AETB 
totals at reference watersheds that are derived from precipitation and 
stream discharge. However, even with the adjustment of AETB, there are 
large negative I&I totals (i.e., <−40 mm) – which are unrealistic – at 
several watersheds. It is likely that those large negative totals are caused 
by one or more of the following: underestimated precipitation, over
estimated stream discharge, and overestimated AET. For example, 5% 
adjustments in any combination of terms at those watersheds would 
increase I&I totals to close to zero. 

While considerable effort is involved in estimating anthropogenic 
flows such as pipe leakage rates and irrigation water use in urban wa
tersheds, those terms have minor impacts on I&I in the Atlanta region; 
rather, AET probably has the largest magnitude of uncertainty – and thus 
the largest impact on I&I totals in urban watersheds – among all water- 
budget components. The accuracy of the urban AET estimates in this 
study are unknown: no previous studies have estimated urban AET totals 
in the southeastern United States and there is a large range (350 mm to 
613 mm) in published AET estimates for urban areas in general (Bhaskar 
and Welty, 2012; Claessens et al., 2006; Fang et al., 2020; Grimmond 
and Oke, 1986; Jia et al., 2001; Kokkonen et al., 2018; Litvak et al., 
2017; Mitchell et al., 2003; Sloto and Buxton, 2005). Urban AET totals in 
this study, which are initially estimated using a 20% evaporation rate for 
impervious surfaces, are higher than the totals above: the minimum AET 
total in this study is 584 mm and the mean value for the most urbanized 
group of watersheds (i.e., Group F) is 741 mm. AET totals should be 
relatively high in this study for the following reasons: (1) the south
eastern United States has high annual totals of both precipitation (Hij
mans et al., 2005) and potential evapotranspiration (Weiß and Menzel, 
2008); (2) many urban watersheds in the Atlanta region have substantial 
vegetative cover (see Section 3.1); and (3) this study accounted for 
evaporation from impervious surfaces. In the Atlanta region and other 
places with wet climates, the choice of evaporation rate can change AET 
greatly and in turn I&I. If a 30% evaporation rate is used instead of a 
10% evaporation rate, AET for the Group F watersheds increases from 
686 mm to 796 mm and I&I totals thus decrease from 194 mm to 84 mm 
(i.e., a 57% decrease). 

4.3. I&I can be a major anthropogenic flow in humid climates 

I&I is among the largest anthropogenic flows occurring in urban 
watersheds in the Atlanta region and probably most other urban wa
tersheds in the eastern United States. In the Atlanta region, annual I&I 
totals in urban watersheds (i.e., Group F in this study) are four and eight 
times larger than water-system pipe leakage and irrigation with 
municipal water, respectively. I&I also is much larger than both pipe 
leakage and irrigation in urban watersheds in Baltimore (Bhaskar and 
Welty, 2012). The two other relevant piped flows, WWTP effluent and 
water withdrawal by water systems, do not occur in urban watersheds in 
the Atlanta region. Water use, which increases with irrigation and is a 
control of pipe leakage, is relatively low in the Atlanta region: the mean 
per capita rate for 65 water systems in this study is 160 m3 y−1, while the 
mean rate for the United States as a whole is 190 m3 y−1 (Dieter et al., 
2018). The Atlanta region has an irrigation rate of approximately 100 
mm per lawn, while urban areas with arid, semi-arid, and Mediterranean 
climates in the western United States and Canada can have annual 
irrigation rates approaching 2000 mm (DeOreo et al., 2016). 

5. Conclusions 

Through the calculation of water budgets for 90 watersheds in the 
Atlanta region, this study has shown that I&I is an important outflow 
component for urban watersheds. The magnitude of I&I in the water
sheds is comparable to findings for urbanized catchments in Germany 
and the Czech Republic. As should be expected, the largest I&I totals in 
the Atlanta region occur for the most part in municipalities that are 
under consent decrees to improve their sewer infrastructure. There are 
several suburban watersheds in this study that have I&I estimated in 
previous studies, and the I&I estimates in this study are substantially 
larger. This suggests that I&I totals for suburban watersheds in this study 
might be overestimates. This study shows that I&I is controlled primarily 
by the density of older housing, a proxy for older sewer infrastructure. 
I&I also is strongly correlated with imperviousness, the presence of 
developed land, population density, and housing density in general. 
Nevertheless, watersheds with similar land-cover, population densities, 
and housing densities can have widely varying I&I totals. For example, 
recently replaced sewage infrastructure in an urbanized watershed 
greatly reduces I&I. The I&I totals in this study should be treated as 
approximations, since estimating I&I using the water-budget approach 
involves uncertainties for all water-budget components. Accurate esti
mates of AET are crucial to obtaining valid estimates of I&I; however, 
obtaining accurate AET estimates for a large number of watersheds is 
difficult. One way this study attempts to minimize AET errors is by using 
results from reference watersheds to produce adjustment factors for the 
other watersheds. However, the choice of evaporation rate for imper
vious surface greatly impacts AET totals for urban watersheds. Despite 
the uncertainties involved with using the water-budget approach to 
estimate I&I, this study shows that is a suitable exploratory procedure 
for a large number of watersheds. Major drawbacks of the water-budget 
approach are the aforementioned uncertainties and the data-extensive 
nature (e.g., many geo-spatial data sets) of the procedure. Neverthe
less, annual totals for anthropogenic components (e.g., water-supply 
pipe leakage), which do require involved methods, have small impacts 
on the water budget compared to precipitation, AET, and stream 
discharge. Estimating I&I using the water-budget approach is a useful 
initial approach to estimating I&I throughout a region. 
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