2211.03216v2 [cs.LG] 1 Jul 2023

arxiv

Unlearning Graph Classifiers with Limited Data Resources

Chao Pan”
University of Illinois,
Urbana-Champaign
Urbana, Illinois, USA
chaopan2@illinois.edu

ABSTRACT

As the demand for user privacy grows, controlled data removal
(machine unlearning) is becoming an important feature of machine
learning models for data-sensitive Web applications such as social
networks and recommender systems. Nevertheless, at this point it is
still largely unknown how to perform efficient machine unlearning
of graph neural networks (GNNGs); this is especially the case when
the number of training samples is small, in which case unlearning
can seriously compromise the performance of the model. To address
this issue, we initiate the study of unlearning the Graph Scatter-
ing Transform (GST), a mathematical framework that is efficient,
provably stable under feature or graph topology perturbations, and
offers graph classification performance comparable to that of GNNs.
Our main contribution is the first known nonlinear approximate
graph unlearning method based on GSTs. Our second contribution
is a theoretical analysis of the computational complexity of the
proposed unlearning mechanism, which is hard to replicate for
deep neural networks. Our third contribution are extensive simu-
lation results which show that, compared to complete retraining
of GNNs after each removal request, the new GST-based approach
offers, on average, a 10.38x speed-up and leads to a 2.6% increase
in test accuracy during unlearning of 90 out of 100 training graphs
from the IMDB dataset (10% training ratio). Our implementation is
available online at https://doi.org/10.5281/zenodo.7613150.

CCS CONCEPTS

« Security and privacy — Human and societal aspects of se-
curity and privacy; - Computing methodologies — Machine
learning.

KEYWORDS

Graph neural networks, graph scattering transforms, graph un-
learning, machine unlearning, small data sample regime

ACM Reference Format:
Chao Pan, Eli Chien, and Olgica Milenkovic. 2023. Unlearning Graph Classi-
fiers with Limited Data Resources. In Proceedings of the ACM Web Conference

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW 23, May 1-5, 2023, Austin, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04...$15.00
https://doi.org/10.1145/3543507.3583547

Eli Chien*
University of Illinois,
Urbana-Champaign
Urbana, Illinois, USA
ichien3@illinois.edu

Olgica Milenkovic
University of Illinois,
Urbana-Champaign
Urbana, Illinois, USA

milenkov@illinois.edu

2023 (WWW °23), May 1-5, 2023, Austin, TX, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3543507.3583547

1 INTRODUCTION

Graph classification is a learning task that frequently arises in
real-world Web applications related to social network analysis [16,
31, 35, 42], recommendation system development [57, 60], medical
studies [38, 40], and drug design [13, 23]. While the availability of
large sets of user training data has contributed to the deployment
of modern deep learning models - such as Graph Neural Networks
(GNNs) - for solving graph classification problems, deep learners
mostly fail to comply with new data privacy regulations. Among
them is the right of users to remove their data from the dataset and
eliminate their contribution to all models trained on it. Such un-
learning regulations' ensure the Right to be Forgotten, and have to
be taken into consideration during the model training process. We
consider for the first time the problem of removing nodes from pos-
sibly different training graphs used in graph classification models.
Examples where such requests arise include users (nodes) withdraw-
ing from some interest groups (subgraphs) in social networks, and
users deleting their browsing histories for online shopping, which
corresponds to the removal of an entire graph from the training
set. Note that only removing user data from a dataset is insufficient
to guarantee the desired level of privacy, since the training data
can be potentially reconstructed from the trained models [19, 53].
Naively, one can always retrain the model from scratch with the re-
maining dataset to ensure complete privacy; however, this is either
computationally expensive or infeasible due to the high frequency
of data removal requests [24]. Another possible approach is to use
differential privacy based methods to accommodate data removal
during training. However, most state-of-the-art DP-GNNs focus
on node classification instead of graph classification tasks, and it
remains an open problem to design efficient GNNs for graph classi-
fication problem while preserving node-level privacy. Recently, the
data removal problem has also motivated a new line of research
on machine unlearning [5], which aims to efficiently eliminate the
influence of certain data points on a model. While various kinds of
unlearning algorithms exist, most of the existing literature, espe-
cially the one pertaining to deep neural networks, does not discuss
model training and unlearning in the limited training data regime;
still, this is a very important data regime for machine learning ar-
eas such as few-shot learning [49, 54]. Unlearning in this case may
degrade the model performance drastically, and as a result, efficient

!Existing laws on user data privacy include the European Union General Data Protec-
tion Regulation (GDPR), the California Consumer Privacy Act (CCPA), the Canadian
Consumer Privacy Protection Act (CPPA), Brazilian General Data Protection Law
(LGPD), and many others.

WWW °23, May 1-5, 2023, Austin, TX, USA

and accurate graph classification and unlearning with limited train-
ing data is still an open problem. Throughout this paper, we use
“data removal” and “unlearning” interchangeably.

Concurrently, a mathematical approach known as the Graph
Scattering Transform (GST) has been used as a nontrainable coun-
terpart of GNNSs that can be applied to any type of trainable clas-
sification. GST iteratively applies graph wavelets and nonlinear
activations on the input graph signals which may be viewed as
forward passes of GNNs without trainable parameters. It has been
shown that GSTs can not only remain stable under small pertur-
bations of graph features and topologies [21], but also compete
with many types of GNNs on solving different graph classification
problems [20, 22, 32, 45]. Furthermore, since all wavelet coefficients
in GSTs are constructed analytically, GST is computationally more
efficient and requires less training data compared to GNNs when
combined with the same trainable classifiers. As a result, GSTs are
frequently used in practice [2, 36, 41, 45], especially in the limited
training data regime. Furthermore, it also allows for deriving theo-
retical analysis on nonlinear models for graph embedding, and the
related conclusions could potentially shed some light on the design
of GNNss that are more suitable for data removals.

Our contributions. We introduce the first nonlinear graph
learning framework based on GSTs that accommodates an approxi-
mate unlearning mechanism with provable performance guarantees.
Here, “approximate” refers to the fact that unlearning is not exact
(as it would be for completely retrained models) but more akin to
the parametrized notion of differential privacy [15, 28, 50] (see Sec-
tion 3 for more details). With the adoption of GSTs, we show that
our nonlinear framework enables provable data removal (similar
results are currently only available for linear models [8, 9, 28]) and
provides theoretical unlearning complexity guarantees. These two
problems are hard to tackle for deep neural network models like
GNNs [58]. Our experimental results reveal that when trained with
only 10% samples in the dataset, our GST-based approach offers,
on average, a 10.38x speed-up and leads to a 2.6% increase in test
accuracy during unlearning of 90 out of 100 training graphs from
the IMDB dataset, compared to complete retraining of a standard
GNN baseline, Graph Isomorphism Network (GIN) [58], after each
removal request. Moreover, we also show that nonlinearities con-
sistently improve the model performance on all five tested datasets,
with an average increase of 3.5% in test accuracy, which emphasizes
the importance of analysis on nonlinear graph learning models.

2 RELATED WORKS

Machine unlearning. The concept of machine unlearning was
introduced in [5]. Two unlearning criteria have been considered in
the literature: Exact and approximate unlearning. Exact unlearning
requires eliminating all information pertaining to the removed data,
so that the unlearned model parameters have exactly the same “dis-
tribution” as the ones obtained by retraining from scratch. Examples
of exact unlearning methods include sharding-based techniques [3]
and quantization-based methods specialized for k-means clustering
problems [24, 46]. On the other hand, approximate unlearning only
requires the distribution of the unlearned model parameters to be
similar to retraining from scratch. One recent work [28] introduced
a probabilistic definition of unlearning motivated by differential

Pan et al.

privacy (DP) [15], while [50] performs a theoretical study of gener-
alizations of unlearning and [26] addresses heuristic methods for
deep learning models. Approximate unlearning offers a trade-off
between model performance and privacy, as one is allowed to re-
tain more relevant information compared to complete retraining
so as not to cause serious performance degradation. This makes it
especially desirable for limited training data regimes.

Graph unlearning and DP-GNNs. Only a handful of works
have taken the initial steps towards machine unlearning of graphs.
[7] proposes a sharding-based method for exact graph unlearning,
while [8, 9] introduces approximate graph unlearning methods
that come with theoretical (certified) guarantees. However, these
works only focus on node classification tasks and are in general
not directly applicable to graph classification. Moreover, the latter
method [9] only considers linear model while the work described
herein includes nonlinear graph transformations (i.e., GSTs). Note
that although DP-GNNs [10, 47] can also be used to achieve graph
unlearning, they not only focus on node classification, but also
require a high “privacy cost” to unlearn even one single node or
edge without causing significant performance degradation [9]. Sim-
ilar observations regarding the relationship between DP and ap-
proximate unlearning were made in the context of unstructured
unlearning [28, 50]. Only one recent line of work considered dif-
ferential privacy for graph classification [44], but the edit distance
defined therein relates to the entire training graph instead of one
or multiple nodes within the training graph. This approach hence
significantly differs from our proposed data removal approach on
graph classification tasks, and a more detailed comparative analysis
is available in Section 3.

Scattering transforms. Convolutional neural networks (CNNs)
use nonlinearities coupled with trained filter coefficients and are
well-known to be hard to analyze theoretically [1]. As an alterna-
tive, [4, 39] introduced scattering transforms, nontrainable versions
of CNNs. Under certain conditions, scattering transforms offer ex-
cellent performance for image classification tasks and more impor-
tantly, they are analytically tractable. The idea of using specialized
transforms has percolated to the graph neural network domain as
well [20, 22, 45, 61]. Specifically, the graph scattering transform
(GST) proposed in [20] iteratively performs graph filtering and ap-
plies element-wise nonlinear activation functions to input graph
signals to obtain embeddings of graphs. It is computationally effi-
cient compared to GNNs, and performs better than standard Graph
Fourier Transform (GFT) [48] due to the adoption of nonlinearities.

Few-shot learning. Few-shot learning [54] is a machine learn-
ing paradigm for tackling the problem of learning from a limited
number of samples with supervised information. It was first pro-
posed in the context of computer vision [17], and has been suc-
cessfully applied to many other areas including graph neural net-
works [49] and social network analysis [37]. At this point, it has not
been addressed under the umbrella of unlearning, as in this case
unlearning can drastically degrade the model performance. Conse-
quently, efficient and accurate graph classification and unlearning
within the few-shot learning setting remains an open problem.

3 PRELIMINARIES

We reserve bold-font capital letters such as X for matrices, bold-
font lowercase letters such as x for vectors, and calligraphic capital

Unlearning Graph Classifiers with Limited Data Resources

g%e Gy Ny G i%) Gy~ G
~ 7/ C&) ~ 7/ .%
Eme?dp‘;'ing Sll"l Szl"a - Sr!lxu S1lx1 Szlx2 S;,lx;,

GsT GsT GsT 25 GsT GsT GST
Removal .
Zy Z Zy I Zy Zz Zy
Z Z
Classification Linear Classifier Linear Classifier
w w
(a)

WWW ’23, May 1-5, 2023, Austin, TX, USA
Gy G2

OB Fom

7‘1 xz xu S‘ X, l X

GST GsT 2 GST GST GsT
Hemoval 1
2 % 7 x
Z
Llnearclasslﬂer Linear Classlfler
w w‘

Figure 1: The difference between removing one node from one training graph and completely removing one training graph, in
the context of graph classification and when the graph embedding procedure is nontrainable. Without loss of generality, we
assume that the removal requests arise in the training graph G,. (a) The embedding of G, changes from z, to z,, and is used to
train the new classifier w’. (b) The embedding of G, is no longer used for training, and the underlying unlearning problem
reduces to the one studied in [28]. Since GST is a nontrainable feature extractor, the embeddings of all other graphs z;,i # n

remain the same for both (a) and (b).

letters Gi = (V;, E;) for graphs, where the index i € [n] stands for
the i-th training graph with vertex set V; and edge set E;. Further-
more, [x]; denotes the i-th element of vector x. The norm || - || is by
default the #2 norm for vectors and the operator norm for matrices.
We consider the graph classification problem as in [58], where we
have n graphs with possibly different sizes for training (e.g., each
graph G; may represent a subgraph within the Facebook social
networks). For a graph G;, the “graph shift” operator is denoted
as S;. Graph shift operators include the graph adjacency matrix,
graph Laplacian matrix, their normalized counterparts and others.
For simplicity, this work focuses on S; being the symmetric graph
adjacency matrices. The graph node features are summarized in
X; € R9%di where gi = |Vi| denotes the number of nodes in G;
and d; the corresponding feature vector dimension. We also assume
that d; = 1 for Vi € [n] so that X; reduces to a vector x;.

For each G;, we obtain an embedding vector z; either via non-
trainable, graph-based transforms such as PageRank [25], GFT [51]
and GST [21], or geometric deep learning methods like GNNs [29,
55, 58]. For GST, the length of z; € RY is determined by the
number of nodes in the L-layer J-ary scattering tree; specifically,
d = Z]l J,L € N*. All z; are stacked vertically to form the
data matrlx Z, which is used with the labels y to form the dataset

= (Z,y) for training a linear graph classifier. The loss equals

n

Lw,D)=) (f(wTZi,) + 51w, M

i=1

where £(w7z 1) is a convex loss function that is differentiable
everywhere. We also write w* = argminL(w, D), and observe
that the optimizer is unique whenever A > 0 due to strong convexity.
For simplicity, we only consider the binary classification problem
and point out that multiclass classification can be solved using
well-known one-versus-all strategies.

Graph embedding via GST. GST is a convolutional architecture
including three basic units: 1) a bank of multiresolution wavelets
{hj }Ll (see Appendix E for a list of common choices of graph
wavelets); 2) a pointwise nonlinear activation function p (i.e., the
absolute value function); 3) A low-pass operator U (i.e., averaging

operator —1) Note that the graph wavelets used in GST should
form a frame [30, 52] such that there exist A < B and Vx, we have

J
AZlx® < > IH; o) < B, 2)
j=1

where the graph shift operator S has the eigenvalue decomposition
S = VAVT and H;(S) = VH;(A)VT = Vdiag[h;(A1),. .., hj(An)]VT
These elements are combined sequentially to generate a vector
representation ®(S,x) of the input graph signal x, as shown in
Figure 2. More specifically, the original signal x is positioned as the
root node (0-th layer), and then J wavelets are applied to each of the
nodes from the previous layer, generating J ! new nodes in the I-th
layer to which the nonlinearity p is applied. The scalar scattering
coefficient gbpj (1) (S, %) of node p;(l) is obtained by applying U to
the filtered signal Dy (1) (8,x) = Hy. (1) (S)x, where the path p; () =
(j15 - - -» j;) denotes the corresponding node in the scattering tree.
The coeflicients are concatenated to form the overall representation
of the graph @(S, x), which is then used as the embedding of the
graph z. For a scattering transform with L layers, the length of
®(S,x) isd = ZlL:_Ol J!, which is independent of the number of
nodes in the graph. For a more detailed description of GSTs, the
reader is referred to [21].

Removal requests. The unlearning problem considered is de-
picted in Figure 1(a). Without loss of generality, we assume that
the removal request arises for the g,-th node in the training graph
Gn. We consider one removal request at a time, pertaining either
to the removal of node features of one node (x, — xJ,) or to the
removal of the entire node (S, — S),,x, — x},) from one training
graph (instead of the removal of one whole graph). In this case,
the number of (training) graphs will remain the same (n), and we
need to investigate the influence of the node removal on the graph
embedding process (i.e., GST) to determine if removal significantly
changes the embeddings of the affected graphs. Note that since GST
is a nontrainable feature extractor, the embeddings of all unaffected
training graphs will remain the same. On the other hand, if we
are asked to unlearn the entire graph, the unlearning problem (see
Figure 1(b)) reduces to the one studied in [28].

WWW °23, May 1-5, 2023, Austin, TX, USA

b8 %)

U™ @)(S,%) =x

H,(S) H3(S)
b@)(S,%) Hy(S) b3 (S, %)
U o s,2) (S, %) Q5% U
© P P =1
H,(S) H3(S)
$an(Sx) b33 (S x)
Z O—O0—O—O—O—O—O—— =2
@1,1)(S,X) D(33)(S,X)

Figure 2: The embedding procedure of GST with L = J = 3.
The scalar scattering coefficients ¢, ;) (S,x) (red blocks) are
concatenated to form the vector representation z of a graph.

Certified approximate removal. Let A be a (randomized) learn-
ing algorithm that trains on D, the set of data points before removal,
and outputs a model & € H, where H represents a chosen space
of models. The data removal requests leads to a change from D to
P’. Given a pair of parameters (¢, §), an unlearning algorithm M
applied to A(D) is said to guarantee an (¢, §)-certified approximate
removal for A, where €, > 0 and X denotes the space of possible
datasets, if VI C H,D C X :

P (M(A(D), D, D) € T) < eP (A(D') € T) +5,
P(A(D') € T) < P (M(A(D), D, D) € T) +5. (3)

This definition is related to (e, §)-DP [15] except that we are now
allowed to update the model based on the updated dataset D’ un-
der the certified approximate removal criterion. An (e, §)-certified
approximate removal method guarantees that the updated model
M(A(D), D, D’) is approximately the same from a probabilistic
point of view as the model A(9D’) obtained by retraining from
scratch on 9’. Thus, any information about the removed data is
approximately (but with provable guarantees) eliminated from the
model. Note that exact removal corresponds to (0, 0)-certified ap-
proximate removal. Ideally, we would like to design M so that it
satisfies Equation (3) with a predefined (¢, §) pair and has a com-
plexity that is significantly smaller than that of complete retraining.

Nonlinearities in the graph learning framework. Previous
work [9] on analyzing approximate unlearning of linearized GNNs
focuses on node classification tasks within a single training graph.
There, the training samples are node embeddings and the embed-
dings are correlated because of the graph convolution operation.
The analysis of node classification proved to be challenging since
propagation on graphs “mixes” node features, and thus the removal
of even one feature/edge/node could lead to the change of embed-
dings for multiple nodes. The same technical difficulty exists for
GNN s tackling graph classification tasks (graph embeddings are
correlated), which limits the scope of theoretical studies of unlearn-
ing to GNNs that do not use nonlinear activations, such as SGC [56].
Meanwhile, if we use nontrainable graph feature extractors (i.e.,
GSTs) for graph classification tasks to obtain the graph embeddings,
the removal requests arising for one graph will not affect the em-
beddings of other graphs. This feature of GSTs not only makes the
analysis of approximate unlearning tractable, but also allows one to

Pan et al.

introduce nonlinearities into the graph embedding procedure (i.e.,
the nonlinear activation function used in GSTs), which significantly
improves the model performance in practice.

4 UNLEARNING GRAPH CLASSIFIERS

We now turn our attention to describing how the inherent stability
properties of GSTs, which are nonlinear graph embedding methods,
can aid in approximate unlearning without frequent retraining (a
detailed discussion regarding how to replace GST with GNNss is
available in Section 5).

Motivated by the unlearning approach described in [28] for un-
structured data, we design an unlearning mechanism M that up-
dates the trained model from w* to w’, the latter of which repre-
sents an approximation of the unique optimizer of L(w, D’). Denote
the Hessian of L(-, D) at w* as Hy+ = V2L(w*, D) and denote
the gradient difference by A = VL(w*, D) — VL(w*, D’). The up-
date rule is w’ = w* + H‘;lA, which can be intuitively understood
as follows. Our goal is to achieve VL(w’, D’) = 0 for the updated
model. Using a Taylor series expansion we have

VL(w', D) = VL(w*, D) + VZL(w*, D')(w — w*) = 0.
Therefore, we have
w —w* = [V2L(w*, D')| " [0 - VL(w*, D)]
W = w* + [VEL(w*, D)] 7 [VL(W*, D) - VL(w*, D')] . (4)

The last equality holds due to the fact that VL(w*, D) = 0. When
VL(w',D’) = 0, w is the unique optimizer of L(-, D’) due to
strong convexity. If VL(w’, D) # 0, some amount of information
about the removed data point remains. One can show that the
gradient residual norm ||VL(w’, D’)|| determines the error of w’
when used to approximate the true minimizer of L(-, D’) again via
Taylor series expansion.

We would like to point out that the update approach from [28]
originally designed for unstructured unlearning can be viewed
as a special case of Equation (4) when the graph G, needs to be
unlearned completely. In this case, we have A = VL(w*, D) —
VL(w*, D’) = Aw* + V¢((w*)Tz,, yp,), which is the same expres-
sion as the one used in [28]. However, when we only need to un-
learn part of the nodes in G, A becomes A = Vt’((w*)Tzn, Yn) —
ve((w*) Tz, y,), where z/, is obtained via GST computed on the
remaining nodes in Gy. The unlearning mechanism shown in Equa-
tion (4) can help us deal with different types of removal requests
within a unified framework, and the main analytical contribution
of our work is to establish bounds of the gradient residual norm for
the generalized approach in the context of graph classification.

As discussed above, Equation (4) is designed to minimize the
gradient residual norm ||[VL(w’, D’)||. However, the direction of
the gradient residual L(w’, D’) may leak information about the
training sample that was removed, which violates the goal of ap-
proximate unlearning. To address this issue, [28] proposed to hide
the real gradient residual by adding a linear noise term b’ w to the
training loss, a technique known as loss perturbation [6]. When tak-
ing the derivative of the noisy loss, the random noise b is supposed
to “mask” the true value of the gradient residual so that one can-
not infer information about the removed data. The corresponding

Unlearning Graph Classifiers with Limited Data Resources

approximate unlearning guarantees for the proposed unlearning
mechanism can be established by leveraging Theorem 4.1 below.

THEOREM 4.1 (THEOREM 3 FROM [28]). Denote the noisy training
loss by Ly(w, D) = X (f(szl-, yi) + %||w||2) +b"w, and let
A be the learning algorithm that returns the unique optimum of
Ly (w, D). Suppose that w’ is obtained by the unlearning procedure
M and that ||[VL(w’, D")|| < €’ for some computable bound e’ > 0. If
b~ N(0,ce’ Je)9 is normally distributed with some constant €,c > 0,
then M satisfies Equation (3) with (e, 8) for algorithm A applied to
D', where§=1.5- e=c’/2,

Hence, if we can appropriately bound the gradient residual norm
IVL(w’, D’)|| for graph classification problems, we can show that
the unlearning mechanism ensures an (e, §)-certified approximate
removal. For the analysis, we need the following assumptions on
the loss function ¢. These assumptions naturally hold for commonly
used linear classifiers such as linear regression and logistic regres-
sion (see Section 5).

AssUMPTION 4.2. There exist constants C1, Ca, y1, y2 such that for
Vi € [n] andw € R%: 1) ||Ve(wT z;,y:)|| < C1; 2) |0/ (W zi,y3)| <
Ca; 3) ¢’ is y1-Lipschitz; 4) €'’ is y2-Lipschitz; 5) it is always possible
to rescale x; for graph G; so that |[x;] ;| < 1,Vj € [g;i].

We show next that the gradient residual norm for graph classifi-
cation can be bounded for both types of removal requests.

THEOREM 4.3. Suppose that Assumptions 4.2 hold, and that the
difference between the original dataset D = (Z,y) and the updated
dataset D’ = (Z',y) is in the embedding of the n-th training graph,
which equals z,, = ®(Sp,xy) with [x}]g, = 0. Let B be the frame
constant for the graph wavelets used in GST (see Equation (2)). Then

2 2
Y2 1C1F +).C2F) }’ (5)

F? (y
VL(w',D")| < £=— min {4C?,
(IVL(w', D)]| 2 mm{ 1 Zan

where F = /ZZL;()l B2, For tight energy preserving wavelets we have
B=1,F =L

The proof of Theorem 4.3 can be found in Appendix A. The
key idea is to use the stability property of GSTs, as we can view
the change of graph signal from x, to x}, as a form of signal
perturbation. The stability property ensures that the new embed-
ding ®(Sp, x},) does not deviate significantly from the original one
®(Sp, xp), and allows us to establish the upper bound on the norm
of gradient residual. Note that the second term on the RHS in Equa-
tion (5) decreases as the size g, of the graph G, increases. This is
due to the averaging operator U used in GSTs, and thus the graph
embedding is expected to be more stable under signal perturbations
for large rather than small graphs.

Next, we consider a more common scenario where an entire
node in G, needs to be unlearned. This type of request frequently
arises in graph classification problems for social networks, where
unlearning one node corresponds to one user withdrawing from
one or multiple social groups. In this case, we have the following
bound on the gradient residual norm.

THEOREM 4.4. Suppose that Assumptions 4.2 hold, and that both
the features and all edges incident to the g,-th node in G, have to be

WWW ’23, May 1-5, 2023, Austin, TX, USA

unlearned. Then
4y, C%F3

VL(W, D) <
(IVL(w’, D")|| 1,

F= (6)

REMARK. In this case, the norm ||z}, — z,|| capturing the change in
the graph embeddings obtained via GST is proportional to the norm of
the entire graph signal ||x,,||. The second term within the min function
is independent on gy, and likely to be significantly larger than the first
term. Thus, we omit the second term in Equation (6). More details are
available in Appendix B.

Batch removal. The update rule in Equation (4) naturally sup-
ports removing multiple nodes from possibly different graphs at
the same time. We assume that the number of removal requests m
at one time instance is smaller than the minimum size of a training
graph, i.e., m < min; g;, to exclude the trivial case of unlearning an
entire graph. In this setting, we have the following upper bound on
the gradient residual norm, as described in Corollary 4.5 and 4.6.
The proofs are delegated to Appendix C.

COROLLARY 4.5. Suppose that Assumptions 4.2 hold, and that m
nodes from n graphs have requested feature removal. Then

2p3 C1F% + ACyF)?
IVL(w, D) < %min{4C%, u},)

A2y
where F = ,/ZIL:_OI B2,

COROLLARY 4.6. Suppose that Assumptions 4.2 hold, and that m
nodes from n graphs have requested entire node removal. Then

4y2m2CfF3 L1
_ 2l
o F= ZB . (8)
1=0

Data-dependent bounds. The upper bounds in Theorems 4.3
and 4.4 contain a constant factor 1/A? which may be large when
A is small and n is moderate. This issue arises due to the fact that
those bounds correspond to the worst case setting for the gradient
residual norm. Following an approach suggested in [28], we also
investigated data-dependent gradient residual norm bounds which
can be efficiently computed and are much tighter than the worst-
case bound. Note that these are the bounds we use in the online
unlearning procedure of Algorithm 2 for simulation purposes.

IVL(w', D)l <

THEOREM 4.7. Suppose that Assumptions 4.2 hold. For both single
and batch removal setting, and for both feature and node removal
requests, one has

VL (v,)| < voF 2] [Al |2 HGrall @)
where Z' is the data matrix corresponding to the updated dataset D’.

Algorithmic details. The pseudo-codes for training unlearning
models, as well as the single node removal procedure are described
below. During training, a random linear term b’ w is added to
the training loss. The choice of standard deviation a determines
the privacy budget ae/+/21og(1.5/9) that is used in Algorithm 2.
During unlearning, f tracks the accumulated gradient residual
norm. If it exceeds the budget, then (¢, §)-certified approximate
removal for M is no longer guaranteed. In this case, we completely
retrain the model using the updated dataset D’.

WWW °23, May 1-5, 2023, Austin, TX, USA

Algorithm 1 Training Procedure

1: input: Training dataset D = {z; € R%, y; ., loss ¢, parame-
ters a, A > 0.

2: Sample the noise vector b ~ N (0, az)d.
3 WX = argming cpa N1, (t’(szi, yi) + ’%HWHZ) +bTw.

4: return w*.

Algorithm 2 Unlearning Procedure

1: input: Training graphs G; with features x;, graph shift opera-
tor S; and label y;, loss ¢, removal requests Ry, = {r1,72,...},
parameters €, 6, y2, ¢, A, F > 0.

2: Compute the graph embeddings z; via GST(x;, S;). Initiate the

training set D = {z; € R, y; P

: Compute w using Algorithm 1 (D, ¢, a, 7).

: Set the accumulated gradient residual norm to = 0.

: forr € R;, do

In x, set the feature of a node to be removed to 0. Update

S;. if the entire node is to be removed.

7. Compute the new graph embedding z,. with GST(x/.,S}.).
8: Update the training set D’ and Z'.
9: Compute A = VL (w, D) — VL (w, D’),H = V2L (w, D).

10: Update the accumulated gradient residual norm as ff = f§ +

2FIIZ’ [Al Z’H AL

1. if f> ae/+/21og(1.5/6) then

o G W

12: Recompute w using Algorithm 1 (D’, ¢, a, 1), § = 0.
13: else

14: w=w+H1A.

15: endif

16: D=9

17: end for

18: return w.

5 DISCUSSION

Commonly used loss functions. For linear regression, the loss
function is £(w'z;, yi) = (wlz; - y;)?, while v2e(wTlz;, yi) = z,-zl.T,
which does not depend on w. Therefore, it is possible to have
IVL(w’, D’)|| = 0 based on the proof in Appendix A. This obser-
vation implies that our unlearning procedure M is a (0, 0)-certified
approximate removal method when linear regression is used as the
linear classifier module. Thus, the exact values of Cy, Ca, y1, y2 are
irrelevant for the performance guarantees for M.

For binary logistic regression, the loss function is defined as
t(wlzi,y;) = —log(o(y;w” z;)), where o(x) = 1/(1 + exp(—x))
denotes the sigmoid function. As shown in [28], the assumptions
(1) and (4) in 4.2 are satisfied with C; = 1 and y; = 1/4. We only
need to show that (2) and (3) of 4.2 hold as well. Observe that
t’(x,y) = o(xy) — 1. Since the sigmoid function o(-) is restricted
to lie in [0,1], |¢’| is bounded by 1, which means that our loss
satisfies (2) in 4.2 with C; = 1. Based on the Mean Value Theorem,
one can show that o(x) is maxyep |0’ (x)|-Lipschitz. With some
simple algebra, one can also prove that o’ (x) = o(x)(1 - o(x)) =
maxyeR |07 (x)| = 1/4. Thus the loss satisfies assumption (3) in 4.2
as well, with y; = 1/4. For multiclass logistic regression, one can
adapt the one-versus-all strategy which leads to the same result.

Pan et al.

Note that it is also possible to use other loss functions such as lin-
ear SVM in Equation (1) with regularization. Choosing appropriate
loss function for different applications could be another interesting
future direction of this work.

Reducing the complexity of recomputing graph embed-
dings. Assume that the removal request arises in graph G,. For the
case of feature removal, since we do not need to update the graph
shift operator S,, we can reuse the graph wavelets {H j(S”)}Ll
computed before the removal to obtain the new embedding z},,
which is with complexity O(dg?3).

For the case of complete node removal, we do need to update
the graph wavelets {Hj(S;l)}Ll based on the updated S),. In gen-

eral, the complexity of computing z/, in this case equals O(dg>),
as we need to compute the eigenvalue decomposition of S}, and
perform matrix multiplications multiple times. This computational
cost may be too high when the size g, of G, is large. There are
multiple methods to reduce this computational complexity, which
we describe next.

If the wavelet kernel function A(A) is a polynomial function, we
can avoid the computation of the eigenvalue decomposition of S, by
storing the values of all {S’,ﬁ Ik(:l in advance during initial training,
where K is the degree of h(A). For example, if (1) = A — A2, we
have H(S},) = V/(A’ = A’%)V’T =/, — S/ 2. Note that we can write
the new graph shift operator as S}, = S,, + ES,, + S,E, where E is a
diagonal matrix (i.e., if we remove the g,-th node in G, we have
E = diag[o0,...,0,—1]). In this case, S;lz can be found as
S/ % = S2 +2S,ES,, +S2E+ESZ +ES,ES,, + ES2E+S,ES,, +S,ES,,E.

Thus, if we can store the values of all {Sﬁ }le in advance dur-
ing initial training, we can reduce the complexity of computing
{S;lk }Ik(:1 to O(g2), due to the fact that whenever E is involved in
a matrix multiplication (i.e., S,ES;), the computation essentially re-
duces to matrix-vector multiplication which is of complexity O(g2).
Therefore, the complexity of computing {S;lk}f:1 is O(g2) and the
overall computational complexity of obtaining z/, is O(dg?3).

Lastly, if h(A) is an arbitrary function, and we need to recom-
pute the eigenvalue decomposition of S}, the problem is related
to a classical problem termed “downdating of the singular value
decomposition” of a perturbed matrix [27]. The overall complex-
ity of obtaining z/, then becomes O(g? (log? £ + d)), where ¢ is a
parameter related to machine precision.

It is worth pointing out that O(g3) is order-optimal with respect
to the unlearning complexity of removing nodes from a graph Gy,
since the complexity of the basic operation, graph convolution (i.e.,
Sx), is O(g%). As we will show in Section 6, the unlearning com-
plexity of using nontrainable GSTs is significantly smaller than that
of using GNNs when constructing graph embeddings in the worst
case. This is due to the fact that we may need to retrain GNNs
frequently to eliminate the effect of removed nodes on the embed-
ding procedure; on the other hand, we only need to recompute
the embeddings of affected training graphs when using GSTs. The
GSTs for different training graphs are computed independently,
which may be seen as a form of sharding with small components.
However, unlike traditional sharding-based methods [3, 7], we do
not need to carefully select the partition, and the sizes of the shards
do not affect the performance of the final model.

Unlearning Graph Classifiers with Limited Data Resources

Using differentially-private GNNs for graph embeddings.
To ensure that the gradient residual norm does not grow excessively,
we need to have control over the graph embedding procedure so that
the embedding is stable with respect to small perturbations in the
graph topology and features. The nontrainable GST is one choice,
but DP-GNNs can also be used for generating the graph embed-
dings as they may improve the overall performance of the learner.
Based on Theorem 5 from [28], the overall learning framework still
satisfies the certified approximate removal criterion, and thus can
be used as an approximate unlearning method as well. However,
most DP-GNNs focus on node classification instead of graph classi-
fication tasks, and it remains an open problem to design efficient
GNNs for graph classification problems while preserving node-level
privacy. Moreover, it has been shown in [9] that DP-GNNs often
require a high “privacy cost” (¢ > 5) (see Equation (3)) to unlearn
one node without introducing significant negative effects on model
performance. In contrast, we find that in practice, our proposed
unlearning approach based on GSTs only requires € = 1. Therefore,
using DP-GNNss for graph embedding in unlearning frameworks
may not offer any advantages compared to alternatives.

6 EXPERIMENTAL RESULTS

Settings. We test our methods on five benchmarking datasets for
graph classification, including two real social networks datasets
IMDB, COLLAB [43], and three other standard graph classification
benchmarking datasets MNIST, CIFAR10, PROTEINS [11, 12, 14, 34,
59]. As we focus on the limited training data regime, we use 10 ran-
dom splits for all experiments with the training/validation/testing
ratio 0.1/0.1/0.8. Following [28], we use LBFGS as the optimizer
for all non-GNN methods due to its high efficiency on strongly
convex problems. We adopt the Adam [33] optimizer for GNNs
following the implementation of Pytorch Geometric library bench-
marking examples [18]. We compare our unlearning approach (Fig-
ure 1 (a)) with a naive application of [28] (Figure 1 (b)) as well as
complete retraining. The tested backbone graph learning models
include GST, GFT, linear-GST (i.e., GST without nonlinear activa-
tions) and GIN [58]. For all approximate unlearning methods we
use (&, 8) = (1,107%) and noise = 0.1 as the default parameters
unless specified otherwise. The shaded area in all plots indicates
one standard deviation. Additional details are in Appendix F.

Performance of the backbone models. We first test the per-
formance of all backbone graph learning models on the standard
graph classification problem. The results are presented in Tables 1
and 2. We observe that GST has consistently smaller running times
compared to GIN while offering matching or better accuracy. This
validates the findings of [22] and confirms that GST is indeed effi-
cient and effective in the limited training data regime. Compared
to linear-GSTs, we find that the nonlinearity of GST is important
to achieve better accuracy, with an average increase of 3.5% in test
accuracy over five datasets. In general, GST also significantly out-
performs GFT with respect to accuracy with a significantly smaller
running time. This is due to the fact that GST (with polynomial
wavelet kernel functions as in [22]) does not require an eigenvalue
decomposition as GFT does, which is computationally expensive
to perform for large datasets.

Performance of different unlearning methods. Next, we
test various unlearning schemes combined with GST. In this set of

WWW ’23, May 1-5, 2023, Austin, TX, USA

Table 1: Test accuracy (%) of the backbone graph learning
methods for standard graph classification in the limited train-
ing data regime. The results report the mean accuracy and
standard deviation. Bold numbers indicate the best results.

IMDB PROTEINS COLLAB MNIST CIFAR10
GST 68.56 + 3.52 68.26 + 2.28 74.42 + 0.81 47.59 £ 0.25 33.12 £ 0.40
linear-GST 68.30 + 3.67 62.79 + 4.67 73.84 £ 0.70 38.52 +0.26 31.07 £ 0.21
GFT 50.81 + 1.32 49.67 = 1.45 34.58 £ 0.79 10.13 £ 0.22 10.00 + 0.15
GIN 66.63 + 4.29 65.12 + 1.55 73.11 £ 1.43 48.17 £ 0.45 30.05 £+ 0.59

Table 2: Running time (s) of the backbone graph learning
methods for standard graph classification in the limited train-
ing data regime. The results report the mean accuracy and
standard deviation. Bold numbers indicate the best results.

IMDB PROTEINS COLLAB MNIST CIFAR10
GST 647 £0.89 7.57 179 10.89 £ 1.08 82.94 £ 5.75 75.36 = 1.17
linear-GST ~ 6.92+1.50 7.59 + 1.25 10.94 £+ 1.40 82.23 £ 0.83 74.98 = 1.07
GFT 443 +1.04 9.00 = 0.96 137.69 £ 1.29 1307.43 £ 1.10 4240.62 £ 2.56

GIN 2313 £ 132 21.94£0.92 949.06 £ 63.68 1279.26 £30.92 1239.03 + 33.06

experiments, we sequentially unlearn one node from each of the
selected 10% training graphs. We compare our Algorithm 2 with
the unstructured unlearning method [28] and complete retraining
(Retrain). Note that in order to apply unstructured unlearning to the
graph classification problem, we have to remove the entire training
graph whenever we want to unlearn even one single node from it.
The results are depicted in Figure 3. We can see that our unlearning
scheme with GSTs has accuracy comparable to that of complete
retraining but much lower time complexity. Also, note that a naive
application of [28] (indexed “UU” for unstructured unlearning)
results in complete retraining in almost all the cases (see Table 3).
In addition, the method requires removing the entire training graph
instead of just one node as requested, thus the accuracy can drop
significantly when unlearning many requests (Figure 4).

Table 3: Number of retraining from scratch during sequential
unlearning one node from 10% of training graphs.

IMDB PROTEINS COLLAB MNIST CIFAR10

GST 3.3 7.2 7.7 65.9 113.0
GSTUU 10.0 11.0 50.0 550.0 450.0
GST Retrain 10 11 50 550 450
linear-GST 3.0 6.8 6.3 54.1 91.6
linear-GST UU 10.0 11.0 49.6 532.5 450.0

We further examine the performance of these unlearning ap-
proaches in the “extreme” graph unlearning setting: Now we un-
learn one node from each of the 90% training graphs sequentially.
Due to the high time complexity of baseline methods, we conduct
this experiment only on one small dataset, IMDB, and one medium
dataset, COLLAB. We also compare completely retraining GIN on
IMDB. The results are shown in Figure 4. We observe that retraining
GIN is indeed prohibitively complex in practice. A naive applica-
tion of [28] (indexed “UU”) leads to a huge degradation in accuracy
despite the high running complexity. This is due to the fact that one
has to remove the entire training graph for each node unlearning
request, which is obviously wasteful. Overall, our proposed strategy

WWW ’23, May 1-5, 2023, Austin, TX, USA

IMDB PROTEINS

75 775
S s o—— %

— jGSLUnlear 60 =
+— GST Unleam WU j 675
= GSTRetrain

~— linear-GST Unlear 55 65.0
linear-GST Unlearm UU

~
N}

S
=]

Accuracy (%)
8 8

3
g

@
3

200

150

100

Accumulate
removal time (sec)
P
5

N

2 4 6 8 10 2 4 6 8 10 0 10
removal request # removal request

75.0
7 ey Wi e Baew a

removal request

Pan et al.

COLLAB MNIST CIFAR10

30 30

25 . S -
Wwvwﬁﬂvmﬂﬂuvuuwﬁh‘wﬁ“'

30000
20000

10000

0 /

30 40 50 0 200 400 0 100 200 300 400
removal request # removal request

Figure 3: Sequential unlearning results. We unlearn one node in each of the 10% of the selected training graphs. The shaded
area indicates one standard deviation. All approximate unlearning methods satisfy (1,10™%)-certified approximate removal.

combined with GST gives the best results regarding time complexity
and offers comparable test accuracy and affordable privacy costs.

IMDB COLLAB
75

~
I=}

70

o
a

65

o
=

60

Accuracy (%)

—— GST Unleam
~—— GST Unlearn UU —— GST Unlearn
—— GSTRetrain —— GST Unleam UU
—— GIN Retrain 5Q — GSTReuain

55

o
a

2500 4000

3000
2000
% o
0
0 20 40 60 80 0 100 200 300 400
removal request # removal request

BN
a 9o @ 9
S 98 9 g
s &6 & o

Accumulate
removal time (sec)

o

Figure 4: Unlearning results for the extreme setting. We un-
learn one node in each of the 90% training graphs.

Performance of the proposed method with abundant train-
ing data. Next, we use the IMDB dataset as an example to demon-
strate the performance of our unlearning method compared to
complete retraining; the training/validation/testing ratio is set to
0.6/0.2/0.2, and out of 600 training graphs, we unlearn 500 samples
in terms of each removing a single node. The results (see Figure 5)
show that our approach still offers roughly a 10-fold decrease in
unlearning time complexity compared to retraining GIN, with com-
parable test accuracy. Note that due to the high complexity of re-
training GIN in this setting, we only performed complete retraining
for the number of removal requests indicated using green marks in
Figure 5. The green lines correspond to the interpolated results.

Bounds on the gradient residual norm. We also examine the
worst-case bounds (Theorem 4.4) and the data-dependent bounds
(Theorem 4.7) of Algorithm 2 computed during the unlearning
process, along with the true value of the gradient residual norm
(True norm) to validate our theoretical findings from Section 4. For

IMDB IMDB
80 GST Unle

— GSTUnleam

s+~ GINRerain 5 15000
~78 2
S o~
< o
376 < g 10000
g £3
S 74 38
8 e 3 5000
<7 £

o I S
0 200 400 0 200 400
removal request # removal request

~
S}

Figure 5: Unlearning results when training data is abundant.
We unlearn one node in each of the 83% training graphs.

simplicity, we set = 0 during training. Figure 6 confirms that the
worst-case bounds are looser than the data-dependent bounds.

IMDB COLLAB
107
/_/_,_,_// 107 K/_’—’_,
104 —— True norm
—— Worst-case bound (Theorem 4.4) 104

—— Data-dependent bound (Theorem 4.7)
10* 1

f"_'—_d—— 10 (__f_’——
1072 = 1072 r_—__’——-

0 20 40 60 80 0 100 200 300 400
removal request # removal request

Gradient residual norm

Figure 6: Comparison of the worst-case and data-dependent
bounds on the gradient residual norm, and the true value of
the gradient residual norm.

7 CONCLUSION

We studied the first nonlinear graph learning framework based on
GSTs that accommodates an approximate unlearning mechanism
with provable performance guarantees on computational complex-
ity. With the adoption of the mathematically designed transform
GSTs, we successfully extended the theoretical analysis on linear
models to nonlinear graph learning models. Our experimental re-
sults validated the remarkable unlearning efficiency improvements
compared to complete retraining.

ACKNOWLEDGMENTS
This work was funded by NSF grants 1816913 and 1956384.

Unlearning Graph Classifiers with Limited Data Resources

REFERENCES

(1]
(2]

(3]

(4]

(5]

[6

(71

T
)

[14]

[16]

[17]

[18

[19]

[20

[21]

[22

[23]

[24]

[25

[26]

[27

Martin Anthony and Peter L Bartlett. 2009. Neural network learning: Theoretical
foundations. cambridge university press.

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. 2021.
Graph neural networks with convolutional arma filters. IEEE Transactions on
Pattern Analysis and Machine Intelligence (2021).

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-
grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.
Machine unlearning. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
141-159.

Joan Bruna and Stéphane Mallat. 2013. Invariant scattering convolution networks.
IEEE transactions on pattern analysis and machine intelligence 35, 8 (2013), 1872—
1886.

Yinzhi Cao and Junfeng Yang. 2015. Towards making systems forget with machine
unlearning. In 2015 IEEE Symposium on Security and Privacy. IEEE, 463-480.
Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. 2011. Differen-
tially private empirical risk minimization. Journal of Machine Learning Research
12, 3 (2011).

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. 2022. Graph unlearning. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. 499-513.

Eli Chien, Chao Pan, and Olgica Milenkovic. 2022. Certified Graph Unlearning.
In NeurIPS 2022 Workshop: New Frontiers in Graph Learning.

Eli Chien, Chao Pan, and Olgica Milenkovic. 2023. Efficient Model Updates for
Approximate Unlearning of Graph-Structured Data. In International Conference
on Learning Representations.

Ameya Daigavane, Gagan Madan, Aditya Sinha, Abhradeep Guha Thakurta,
Gaurav Aggarwal, and Prateek Jain. 2021. Node-Level Differentially Private
Graph Neural Networks. arXiv preprint arXiv:2111.15521 (2021).

Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141-142.

Paul D Dobson and Andrew J Doig. 2003. Distinguishing enzyme structures from
non-enzymes without alignments. Journal of molecular biology 330, 4 (2003),
771-783.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional
networks on graphs for learning molecular fingerprints. Advances in neural
information processing systems 28 (2015).

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. 2020. Benchmarking graph neural networks. arXiv preprint
arXiv:2003.00982 (2020).

Cynthia Dwork. 2011. Differential privacy. Encyclopedia of cryptography and
security.

Wengqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The world wide web
conference. 417-426.

Li Fei-Fei, Robert Fergus, and Pietro Perona. 2006. One-shot learning of object
categories. IEEE transactions on pattern analysis and machine intelligence 28, 4
(2006), 594-611

Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion
attacks that exploit confidence information and basic countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC conference on computer and communications
security. 1322-1333.

Fernando Gama, Alejandro Ribeiro, and Joan Bruna. 2019. Diffusion Scattering
Transforms on Graphs. In International Conference on Learning Representations.
Fernando Gama, Alejandro Ribeiro, and Joan Bruna. 2019. Stability of graph
scattering transforms. Advances in Neural Information Processing Systems 32
(2019).

Feng Gao, Guy Wolf, and Matthew Hirn. 2019. Geometric scattering for graph
data analysis. In International Conference on Machine Learning. 2122-2131.
Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep,
Gertrude Liu, Jeremy BR Hayter, Richard Vickers, Charles Roberts, Jian Tang, et al.
2021. Utilizing graph machine learning within drug discovery and development.
Briefings in bioinformatics 22, 6 (2021), bbab159.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. 2019. Making
ai forget you: Data deletion in machine learning. Advances in Neural Information
Processing Systems 32 (2019).

David F Gleich. 2015. PageRank beyond the Web. siam REVIEW 57, 3 (2015),
321-363.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. 2020. Eternal sunshine
of the spotless net: Selective forgetting in deep networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9304-9312.
Ming Gu and Stanley C Eisenstat. 1995. Downdating the singular value decom-
position. SIAM J. Matrix Anal. Appl. 16, 3 (1995), 793-810.

(28]

[29

[30

(31]

[32

[33

[34

[35

[36

@
=

(38

[39

[40

[41

[43

[44

[45

[46

[47

[48

[49

[50

[51

o
S

[53

WWW ’23, May 1-5, 2023, Austin, TX, USA

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. 2020.
Certified Data Removal from Machine Learning Models. In International Confer-
ence on Machine Learning. PMLR, 3832-3842.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. 2011. Wavelets
on graphs via spectral graph theory. Applied and Computational Harmonic
Analysis 30, 2 (2011), 129-150.

Chao Huang, Huance Xu, Yong Xu, Peng Dai, Lianghao Xia, Mengyin Lu, Liefeng
Bo, Hao Xing, Xiaoping Lai, and Yanfang Ye. 2021. Knowledge-aware coupled
graph neural network for social recommendation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 35. 4115-4122.

Vassilis N Ioannidis, Siheng Chen, and Georgios B Giannakis. 2020. Pruned graph
scattering transforms. In International Conference on Learning Representations.
Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, and Junzhou Huang.
2019. Semi-supervised graph classification: A hierarchical graph perspective. In
The World Wide Web Conference. 972-982.

Maosen Li, Siheng Chen, Zihui Liu, Zijing Zhang, Lingxi Xie, Qi Tian, and Ya
Zhang. 2021. Skeleton graph scattering networks for 3d skeleton-based human
motion prediction. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 854-864.

Ruirui Li, Xian Wu, Xian Wu, and Wei Wang. 2020. Few-shot learning for new
user recommendation in location-based social networks. In Proceedings of The
Web Conference 2020. 2472-2478.

Xiaoxiao Li, Nicha C Dvornek, Yuan Zhou, Juntang Zhuang, Pamela Ventola, and
James S Duncan. 2019. Graph neural network for interpreting task-fmri biomark-
ers. In International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 485-493.

Stéphane Mallat. 2012. Group invariant scattering. Communications on Pure and
Applied Mathematics 65, 10 (2012), 1331-1398.

Chengsheng Mao, Liang Yao, and Yuan Luo. 2019. Medgcen: Graph convolutional
networks for multiple medical tasks. arXiv preprint arXiv:1904.00326 (2019).
Yimeng Min, Frederik Wenkel, and Guy Wolf. 2020. Scattering gen: Overcoming
oversmoothness in graph convolutional networks. Advances in Neural Information
Processing Systems 33 (2020), 14498-14508.

Mohammadreza Mohammadrezaei, Mohammad Ebrahim Shiri, and Amir Masoud
Rahmani. 2018. Identifying fake accounts on social networks based on graph
analysis and classification algorithms. Security and Communication Networks
2018 (2018).

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
and Marion Neumann. 2020. Tudataset: A collection of benchmark datasets for
learning with graphs. arXiv preprint arXiv:2007.08663 (2020).

Tamara T Mueller, Johannes C Paetzold, Chinmay Prabhakar, Dmitrii Usynin,
Daniel Rueckert, and Georgios Kaissis. 2022. Differentially Private Graph Classi-
fication with GNNs. arXiv preprint arXiv:2202.02575 (2022).

Chao Pan, Siheng Chen, and Antonio Ortega. 2021. Spatio-Temporal Graph
Scattering Transform. In International Conference on Learning Representations.
Chao Pan, Jin Sima, Saurav Prakash, Vishal Rana, and Olgica Milenkovic. 2023.
Machine Unlearning of Federated Clusters. In International Conference on Learn-
ing Representations.

Sina Sajadmanesh, Ali Shahin Shamsabadi, Aurélien Bellet, and Daniel Gatica-
Perez. 2022. GAP: Differentially Private Graph Neural Networks with Aggregation
Perturbation. arXiv preprint arXiv:2203.00949 (2022).

Aliaksei Sandryhaila and José MF Moura. 2013. Discrete signal processing on
graphs: Graph Fourier transform. In 2013 IEEE International Conference on Acous-
tics, Speech and Signal Processing. IEEE, 6167-6170.

Victor Garcia Satorras and Joan Bruna Estrach. 2018. Few-shot learning with
graph neural networks. In International conference on learning representations.
Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh.
2021. Remember what you want to forget: Algorithms for machine unlearning.
Advances in Neural Information Processing Systems 34 (2021).

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. 2013. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular domains.
IEEE signal processing magazine 30, 3 (2013), 83-98.

David I Shuman, Christoph Wiesmeyr, Nicki Holighaus, and Pierre Van-
dergheynst. 2015. Spectrum-adapted tight graph wavelet and vertex-frequency
frames. IEEE Transactions on Signal Processing 63, 16 (2015), 4223-4235.
Michael Veale, Reuben Binns, and Lilian Edwards. 2018. Algorithms that remem-
ber: model inversion attacks and data protection law. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, 2133
(2018), 20180083

WWW ’23, May 1-5, 2023, Austin, TX, USA

(54

[55

[56]

[57

[58]

[59

[60

[61]

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing
from a few examples: A survey on few-shot learning. ACM computing surveys
(csur) 53, 3 (2020), 1-34.

Max Welling and Thomas N Kipf. 2017. Semi-supervised classification with graph
convolutional networks. In International Conference on Learning Representations.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861-6871.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2020. Graph neural
networks in recommender systems: a survey. ACM Computing Surveys (CSUR)
(2020).

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings
of the 21th ACM SIGKDD international conference on knowledge discovery and
data mining. 1365-1374.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974-983.

Dongmian Zou and Gilad Lerman. 2020. Graph convolutional neural networks via
scattering. Applied and Computational Harmonic Analysis 49, 3 (2020), 1046-1074.

Pan et al.

Unlearning Graph Classifiers with Limited Data Resources

A PROOF OF THEOREM 4.3

Our proof is a generalization of the proof in [28]. Due to space
limitations, we show proof sketches here and delegate the details
to a full version of this paper. Let G(w) = VL(w, D’) denote the
gradient of the empirical risk on the updated dataset D’ at w. By
Taylor’s expansion theorem, there exists some 1 € [0, 1] such that

G(w') =G(W* +H_LA) = G(W*) + VG(w* + pH_L A)H_L A
= (Hy, — Hy«)H, A, (10)

where Hy, = VG(W* + rva_vl* A), which is the Hessian at wy, £

w* + r]H‘;l* A. By the Cauchy-Schwartz inequality, we have
IG(W)II < IHy, — Hy[IIH L Al (11)

Note that since ¢’/ is yp-Lipschitz, for Vi € [n] we have
T —
”vz (z,,yl) v2e ((w*) zi, yl-)H <pFH LAl (2

where F = IZIL:_OI B2l The upper bound comes from the frame
property of graph wavelets. More specifically, the sum of energy for
the I-th layer in the scattering tree is upper bounded by B ||x;||?,
where x; is the input graph signal at the 0-th layer and ||x;||? is
the corresponding energy. Suppose that we are using the low-pass
averaging operator for U; in GST (i.e., U; = élT, ||| = ‘/l—gj) Then

Z BZIIIXIIIZ =

Z B, (13)

< g; based on Assumption 4.2. Therefore, we have

lzil* = > ¢ 1) (Sixi) <

pi(D)

since ||x;||?

3/2
Izl < (Zh' B%)
tion (12) over the updated dataset D’, we conclude that

= F3. Summing the expression in Equa-

[Hyw, — Hyx || < yonF? [H LA
Replacing the above equality into Equation (11), we arrive at
3 g1 All%
IGOW) | < yanF® [H LA

Next, we bound ||H‘;£ Al|. Since L(-, D’) is (An)-strongly convex,

we have |[HZ1| < AL For A, by definition,
w n

A=V¢ ((W*)Tzn, yn) - Ve ((W*)Tz;l,yn) .

There are two ways to bound ||Al|. First, based on Assumption 4.2,

1Al < [[9e (%) 2)| + Ve ((5) 20w < 261
Second, we can also bound ||A|| by
1Al < [e ((w*)" 20 9m) = € ((5%) 233012

+

¢ ()" 25 un)

<y1llzn = zp W™ lllznll + C2llzn — zpl.

llzn =z, I

For ||w*]|, we have

0= VL(W*, D) = Zn:w ((w

i=1

*)T Zi, yi) + Anw™,

WWW ’23, May 1-5, 2023, Austin, TX, USA

which leads to
S Ve () zw) I o

* < < =
Il < — <2
From Theorem 1 of [45], by setting T = 1, we have
-1 p2l
1= B F

lIlxn = x|l <

9n \/g_n

Combining the above results we obtain

)/1C1F2 + ACQF

llzn = zp|| <

All <
1Al o
Therefore,
1 C1F? + ACoF
IHZLALl < — -min {20y, P51 222220 (g
An ANGn

Replacing Equation (14) into the bound on ||G(w’)||, we arrive at

F? C1F? + ACyF)?
161 < 225 i facg, (NOTHACEE
A*n A%gn

which completes the proof.

B PROOF OF THEOREM 4.4

Following the same proof approach as described in Appendix A,
for the case of single node removal we have

IG(w)II < ynF? [[H LA

The main difference between feature removal and node removal
proof is that the norm of the change in the graph embeddings
||z}, — zn|| obtained by GST with respect to structural perturbation
is proportional to the norm of the entire graph signal ||x,||. More
specifically, when the magnitude of the structural perturbation is
controlled and the wavelet kernel functions satisfy certain mild
conditions, from Theorem 2 of [45] we have that (for T = 1)

llzn = znll = ”CI)(S;I,X;I) - cI)(Smxn)”
= [|@(S},, X)) = ©(S}, Xn) + ©(S), Xn) — ©(Sn, xn) |
L-172(g27)!
F XS, BB
< — + 0|\ T Il
Von Bzgn "
L-1
12(B27)!
< F .o Xy P(B2))

< + —_——
V9n B

< \gnand F =, /Z{‘:_ol B2l In this case, the second

term in the upper bound of ||z}, — z,|| does not decrease when g,

increases, and ||A|| < 2C; is very likely a tighter upper bound than

. 4y,C2F? .
the other option. Therefore, we have ||G(w’)|| < yazrll , which

completes the proof.

where ||x,||

C PROOF OF COROLLARIES 4.5 AND 4.6

The proof of Corollaries 4.5 and 4.6 follows along similar lines as
that in Appendix A and B. With the same argument, we can show

that |G(w')|| < y2nF3 HH‘;*
the fact that there could be now at most 2m terms in A instead of

2
. The only difference arises from

WWW °23, May 1-5, 2023, Austin, TX, USA

just 2 terms, and the worst case arises when each of these m nodes
that requested removal comes from a different graph. In this case,
IIAll € 2mCy. Therefore, for batch feature removal we have

213 2 2
’ ’ Yam F . 2 ()/1C1F +/1C2F)
||VL(W ,.Z))” < Wﬂlln {4C1, T R

while for batch node removal, we have
4y- mZCfF 3

A%n
Note that we require m < min; g; not to unlearn the entire graph,
otherwise the number of training samples in Equation (1) would
be less than n and tighter bounds on gradient residual norm can
be derived. Nevertheless, if we indeed need to unlearn multiple
graphs completely, we can always unlearn them first based on the
batch removal procedure in [28], and then perform our unlearning
procedure based on Equation (4) for the remaining graphs.

IVL(w', D)l <

D PROOF OF THEOREM 4.7

Based on the loss function defined in Equation (1), the Hessian

of L(-, D’) at w takes the form Hy, = (/)T DywZ’ + Anly, where

7’ € R™4 js the data matrix corresponding to D’ and Dy, denotes

the diagonal matrix with diagonal values (Dy);; = ¢/ "(wlz, yi)-
From the proof of Theorem 4.4 we know that

“VL (W/’ Z)’)” < H(HW" - Hw*) H;VI*A

- H(z’)T (Dw, — Dy+)Z'HLA

|

< |1Z'IDw, — Dy~ lIZ’HG AL (15)

where wy = w* + r]H;viA for some 17 € [0, 1]. Since Dy, — Dy is
a diagonal matrix, its operator norm corresponds to the maximum
absolute value of the diagonal elements. In the proof of Theorem 4.4
we showed that for Vi € [n],

¢ (whai i) = €7 ((w) 2003 | < yallwy = w* i
< reF gt

Thus we have that ||Dy, — Dy+|| < y2F ”H‘;},AH Combining this
result with Equation (15) completes the proof. Note that this analysis
holds for both single-removal and batch-removal, as well as both
feature and node removal requests, since it does not require an
explicit upper bound on the norm of gradient change ||A||.

E CHOICES OF GRAPH WAVELETS

There are many off-the-shelf graph wavelets we can choose from.
They are mainly used for extracting features from multiple fre-
quency bands of the input signal spectrum. Some are listed below.

Monic Cubic wavelets. Monic Cubic wavelets [30] use a kernel
function h(A) of the form

A for A<1;
h(A) =4-5+111—-612+213 for 1<A<2;
2/A for A>2.

Different scalings of the filters are implemented by scaling and
translating the above kernel function.

Pan et al.

Itersine wavelets. Itersine wavelets define the kernel function
at scale j as
1 . ;
hj(A) = sin zcoszjr/l—]— ']Il—ls)tsi.

2 2 2 2

Itersine wavelets form tight and energy-preserving frames.
Diffusion scattering wavelets. A diffusion scattering wavelet
filter bank [20] contains a set of filters based on a lazy diffusion
matrix S = %(I +D~1/2AD~1/2) where A is the adjacency matrix
and D is the corresponding degree matrix. The filters are defined as

1-s, j=0,
H](S) = {ngl _ ng

Note that for diffusion scattering the low-pass operator U is defined
as d/||d||1, where d is the diagonal of D.

Geometric scattering wavelets. The definition of geometric
scattering [22] is similar as diffusion scattering, except that the
lazy random walk matrix used in geometric scattering is defined as
S= %(I+AD_1). And geometric scattering will also record different

, Jj>0.

moments of filtered signals H? (x),Yq € [Q] as features.
Note that one is also allowed to customize the graph wavelets,
as long as they satisfy the constraint

J
A|x|? < 3 [Hyx|* < B2IIxII%, 14K (A)] < const VA,
7=
where A, B are scalar constants and h(+) is the kernel function.

F ADDITIONAL EXPERIMENTAL DETAILS

Hyperparameters. We follow the PyG benchmarking code to
preprocess the datasets. For datasets without node features, we
generate synthetic node features based on node degrees. For all
methods, we perform training with 500 epochs. For GIN, we tune
the hyperparameters on the small dataset IMDB and subsequently
use them on all other datasets. We use 2 layers, 64 hidden dimen-
sions and a learning rate 10™% in the Adam optimizer. We find
that this setting works well in general. For GST, we use geometric
scattering wavelets in the graph embedding procedure and fix the
learning rate of the LBFGS optimizer to 0.5 for training the classifier.
Other hyperparameters used for GST are described in Table 4. Here
J represents the number of scales for graph wavelets {h; }§=1’ L
represents the number of layers in the scattering tree (with the
root node at layer 0), and Q represents the number of moments
computed for geometric scattering wavelets (see Appendix E).

Table 4: The hyperparameters of GST for all experiments.

Standard graph Unlearning graph
classification classification
J OL A |J O L A a

IMDB 5 4 3 1044 3 3 1003 107!
PROTEINS 5 4 3 1074|5 4 3 107* 107!
COLLAB 3 3 2 107%|3 3 2 107% 107!
MNIST 5 4 3 0 |5 4 3 107 107!
CIFARIO 5 4 3 0 |5 4 3 107 107!

	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Unlearning Graph Classifiers
	5 Discussion
	6 Experimental Results
	7 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 4.3
	B Proof of Theorem 4.4
	C Proof of Corollaries 4.5 and 4.6
	D Proof of Theorem 4.7
	E Choices of Graph Wavelets
	F Additional Experimental Details

