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ABSTRACT: A hybrid experimental−computational method to determine conformational equilibria of molecules in solution has
been developed based on the use of redundant nuclear magnetic resonance (NMR) spin−spin coupling constants (spin-couplings; J-
couplings), density functional theory (DFT) calculations, and circular statistics. The mathematics that underpins the method, known
as MA’AT analysis, is presented, and key components of a computer program that applies this algorithm are discussed. The method
was tested using single-state and multi-state models to identify the factors required to obtain reliable results, to establish the
limitations of the method, and to highlight techniques to evaluate the uniqueness of solution.

■ INTRODUCTION

Molecular structures are determined routinely in crystalline
solids1,2 and more recently in the gas phase.3,4 However,
determinations of molecular structures in solution remain
challenging. While computational methods have improved
significantly, experiment-based structure determinations of
molecules in solution have not advanced appreciably over
the past few decades, especially for more dynamic structures.
Many molecules are structurally flexible in solution, which
complicates the interpretation of experimental parameters. The
structure of a molecule in solution may differ from that
observed in a crystalline state or when complexed to a
receptor. To identify how biomolecular structure dictates
function in vivo, quantitative relationships between covalent
structure and solution conformation and dynamics are needed.
This need can only be met by an experimental technique that
provides information on all biomolecular conformations in
solution over time.

Nuclear magnetic resonance (NMR) spectroscopy is an
experimental method that provides information to construct
detailed structural models of molecules in solution. The work
described here involves the measurement and analysis of
multiple, redundant NMR spin-coupling constants, which are
highly abundant in many molecules and average linearly in the
presence of conformational exchange (i.e., the observed J-value
is determined by the weighted average of the individual J-
values for each conformer in solution in the rapid-exchange
limit). Ensembles of J-couplings that display distinctly different
dependencies on the same conformational element (i.e., a
molecular torsion angle) are extremely useful in structural
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determinations of conformationally flexible molecules such as
saccharides and intrinsically disordered proteins.5

Spin-coupling constants can be used to characterize
conformational equilibria in solution when quantitative
relationships between their magnitudes and signs with one or
more molecular parameters are known. Karplus reported the
first such relationship in which three-bond (vicinal) 3JHCCH
spin-coupling constants were found through computational
studies to obey a cos2(θ) function, where θ corresponds to the
H−C−C−H torsion angle.6 Karplus-like relationships have
subsequently been developed for geminal and vicinal
homonuclear and heteronuclear J-couplings involving heavy
atoms as coupled spins.7,8 Prior work has shown that many of
these relationships are not generalizable but depend on the
identities of internal and external substituents along the
coupling pathway and on their relative orientations.9 Thus, J-
couplings have limited utility unless quantitative relationships
between their magnitudes/signs and molecular structure are
either available or can be readily obtained. Density functional
theory (DFT) has been used to obtain relationships between
individual J-couplings and one or more molecular proper-
ties.5,7,10,11

Current DFT calculations, molecular dynamics (MD)
simulations, and other computational methods12,13 are able
to treat molecules that exist as conformational populations in
solution. Conversely, determining conformational populations
(equilibria) in solution from experimental data is not
straightforward. This situation has led to a heavy reliance on
MD simulations and other theoretical methods to interpret
experimental data14,15 despite the fact that experimental
validations of MD simulation results are largely lacking. MD
force fields are currently evaluated using available structural
data to model conformational behavior in solution, and these
data are commonly provided by X-ray crystallography,
especially for saccharides. Consequently, the models obtained
by MD simulations can be biased toward structures observed
in the crystalline state and may not faithfully recapitulate those
that are found in solution. This report describes a new
experimental method,MA’AT analysis, to determine conforma-
tional populations in solution that promises to circumvent this
problem and enable more rigorous validation of the results
obtained from MD and other computational methods.

■ MATHEMATICS UNDERLYING MA’AT ANALYSIS
The dependencies of NMR J-couplings on molecular torsion
angles are well understood,6,16 making it possible to obtain
functions of J(θ) that describe the dependencies of molecular
torsion angles on J-couplings. Experimental J-couplings are
time-averaged values over the entire population in solution.
Therefore, an experimental J-coupling (Jexp) can be described
mathematically by eq 1, where J(θ) equals the J-coupling at
torsion angle θ, and p(θ) is the population density.

∫ θ θ θ=
π

J J p d( ) ( )exp 0

2

(1)

Parametrized equations can be obtained experimentally or
from DFT5,7,10,11 or other calculations for an ensemble of J-
couplings that are sensitive to a specific torsion angle, θ. The
challenge becomes how to use this information to determine
p(θ). Several computational methods have been developed to
solve this problem. The simplest method assumes that p(θ) is
nonzero for a few discrete values of θ and zero for all remaining
values. While the simplicity of this method is appealing, there

are several drawbacks. Assuming that θ only adopts a few
discrete values introduces bias in the treatment. Furthermore,
this model of θ has no physical basis since it is highly likely that
the molecule experiences some degree of libration about the
optimal value or values of θ and/or that θ values in addition to
the optimal value and values contribute to the experimental J-
couplings.
Continuous models have been proposed to overcome these

problems. These models structure p(θ) as a sum of basis
functions to better approximate the true distribution. An
example of this approach is the CUPID method (ContinUous
ProbabIlity Distribution of rotamers) in which a Fourier series
is used to represent p(θ).17 Fourier series are well understood
functions, and with techniques like fast Fourier transformation
(FFT), computations are possible even on limited hardware.
However, this approach suffers from several drawbacks.
Trigonometric functions are unattractive when describing a
probability distribution because they can produce negative
populations. More importantly, because there are often only a
few J-couplings in an ensemble, the Fourier series must be
truncated after a few terms. This truncation produces a
function that derives much of its shape from the trigonometric
basis instead of from the data.
A logical choice to represent p(θ) would be a sum of

Gaussian distributions. Gaussian-like distributions are com-
monly observed when investigating torsional behavior from
crystal databases or MD simulations and provide a
straightforward population distribution for torsion angle
modeling.18 However, Gaussian distributions are not periodic;
that is, they are defined over the entire real line, whereas an
angular probability distribution should be defined over a finite
interval (e.g., from 0 to 2π). Wrapped normal distributions are
analogous to Gaussian distributions wrapped around a circle to
eliminate the periodicity problem but are computationally
demanding to integrate when used in eq 1. Furthermore,
evaluating the integral in eq 1 numerically for many sample
points as part of a nonlinear optimization is computationally
demanding, especially as the dimension of the sample space
increases (increasing the modality introduces three additional
dimensions).
The MA’AT (named after the Egyptian goddess, MA’AT)

method to determine rotamer population distributions
evaluates eq 1 analytically, thereby eliminating the need for
computationally costly numeric integration which allows a
large number of population distributions to be sampled
efficiently. This is achieved by representing the J(θ) term as
a modified Karplus relationship19 (eq 2) in the form of a
trigonometric polynomial, where k, c, and s are constants for a
specific J-coupling, and N is the degree of the polynomial
(usually 2 or 3).

∑ ∑θ θ θ= + +
= =

J k c n s n( ) cos( ) sin( )
n

N

n
n

N

n
1 1 (2)

Initially p(θ) is modeled as a sum of wrapped normal
distributions (eq 3), where P is the number of peaks, w the
weighting parameter per peak, μ the mean position, and σ the
circular standard deviation (CSD).

∫ ∑ ∑θ
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Since p(θ) is a probability distribution, the sum of the
weighting parameters always equals 1. Substituting the
functions in eqs 2 and 3 into eq 1 and performing analytical
integration produces the MA’AT eq (eq 4) (see Supporting
Information for derivation). An ensemble of J-couplings gives
rise to a series of MA’AT equations, making it possible to solve
for optimal values of wp, μp, and σp.

∑ ∑ μ μ= + +
σ

= =

−
J w e c n s n k( cos( ) sin( ))

p

P

p
n

N n

n p n p
0 1

( )
2
p

2

(4)

■ IMPLEMENTATION OF MA’AT ANALYSIS
MA’AT analysis has been encoded into a Shiny application in
R. The application generates population distributions from
user-supplied experimental data and parametrized Karplus-like
equations. The workflow is illustrated in Scheme 1. The ability

to generate unique distribution models depends on multiple
factors that must be evaluated before running an analysis. The
primary consideration is the number of experimental J-
couplings to be used in the analysis. Since the analysis utilizes
only user-supplied data, increasing the information provided to
the application increases the precision of the results.
Importantly, all J-couplings included in the ensemble must
have a significant dependence on a single torsion angle.
The application requires the user to upload the experimental

data and parametrized J-coupling equation in a text file and
then select a population model. MA’AT supports unimodal,
bimodal, and trimodal wrapped normal or von Mises20,21

distribution models. Advanced options are also available that
allow the user to restrict some or all of the distribution model
parameters to a range of values. A Monte Carlo simulation is
performed initially to generate population models that are used
to calculate J-couplings from the user-supplied equations. A
root mean squared deviation (RMSD) is then calculated for
each model. The models with the lowest RMSDs are then
optimized using the Nelder−Mead derivative-free algo-
rithm.22,23 No further optimizations are performed when a

unimodal distribution is selected. For multimodal modeling,
individual parameters (mean, CSD, and peak populations) are
separately optimized followed by a second global optimization.
The peak population parameters are restricted in the
optimizations to ensure negative values are not produced.
The data are then sorted from lowest-to-highest RMSD and
tables and graphs (see below) are generated. If a von Mises
distribution is being modeled, the final global optimization step
is performed by evaluating the integral produced from eq 1
instead of using the MA’AT equation, which increases the run
time significantly. Standard errors of each parameter are
estimated by taking the square roots of the diagonal elements
from an inverted Hessian matrix.24

The application produces several data tables and graphs
containing information on the predicted distribution model(s),
the uniqueness of solution, and a comparison of experimental
and calculated J-values. The outputs are separated into
individual tabs, with the first tab showing the parameters for
the top fits (Figure S10A, Supporting Information). The
second tab contains a data table of the experimental and
calculated J-couplings for each model (Figure S10B, Support-
ing Information). The third tab displays a plot of the top
distributions (Figure S11, Supporting Information). The
fourth and final tab contains two plots that report on the
uniqueness of the solution (Figure S12, Supporting Informa-
tion). The first plot is a histogram of the RMSDs obtained
from the Monte Carlo simulation. If only a few models
produce small RMSDs, then the solution is likely to be unique.
However, if numerous models produce low RMSDs, then more
experimental constraints are needed to generate a unique
solution. The second plot differs for unimodal and multimodal
analyses. For unimodal analyses, the second plot is a surface
plot of the two model parameters colored by the associated
RMSD (Figure S5, Supporting Information). The uniqueness
of solution is determined by visual inspection of the parameter
space plots and through inspection of the standard errors of
each model parameter. For multimodal analyses, visualizing the
uniqueness of solution is more difficult due to the increased
number of variables. This problem is overcome by generating
numerous fits to determine whether the overall fits converge.
Histograms of mean positions, CSDs, and peak populations are
used to evaluate the uniqueness of the individual parameters of
the models (Figure S6 and S7, Supporting Information).
The Shiny application is available at https://rmeredit.

shinyapps.io/maat24/. For more details on the user interface,
refer to the MA’AT user manual, which can be downloaded
from the application.

■ RESULTS
Method Testing. The ability of MA’AT analysis to

reproduce population models from an ensemble of J-couplings
was tested by back-calculating J-couplings from a known
distribution using an ensemble of Karplus-like equations. The
back-calculated J-couplings were then used as input to the
MA’AT application to determine whether the original
distributions could be reproduced. Initial distributions to test
the application were generated in R. Random distributions
were generated for each modality being tested. Distribution
variables, mu, CSDs, and peak percentages (multimodal only)
were produced with a random number generator. CSD values
were limited to a range of 10° to 40°. For multimodal
modeling, mean positions were separated by a minimum of
20°, and wp had a minimum of 0.15 to ensure modality of the

Scheme 1. MA’AT Application Flowchart
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distributions was retained. Since the associated J-couplings
showed no significant differences when wrapped normal and
von Mises distributions were generated, only wrapped normal
distributions were considered for the input distributions.
Simulated J-couplings were computed in R by multiplying an

ensemble of equations by an input distribution. J-couplings
were then calculated by taking the Riemann sum of the
resulting line (n = 36,000). A second set of J-couplings was
generated to mimic uncertainties in the experimental J-
couplings. A random number generator added noise of ±0.8
Hz to the simulated values, and the latter were rounded to a
single decimal.
One hundred random distributions were generated for each

modality model (uni, bi, or tri). For the unimodal models, two
ensembles composed of three (ensemble 1) or two (ensemble
2) parametrized equations each were tested (Table S1,
Supporting Information). For multimodal models, a total of
10 ensembles were tested using 6−28 equations (Tables S2−
S5, Supporting Information). One hundred distributions with
the lowest RMSDs were output by the application. Output
distributions were compared to input distributions to
determine whether the application accurately reproduced the
population models. Accuracy was evaluated using a percent
similarity score calculated from the difference between the two
different distributions (Figure 1). Percent similarity is reported
as the average for an ensemble. However, this test is not
completely reliable because relatively small changes in the
model parameters can lead to large decreases in percent
similarity. Consequently, two additional metrics were applied
to assess similarity: DTS test for common distributions and a
common means test (see Supporting Information for more
details on DTS test).25,26 Common means testing was
performed by calculating an RMSD between the mean values
of the input and output distributions. If the RMSD value was
below 18° (5% of 360°), then the models share common
means. While this metric only considers the application’s
ability to reproduce mean positions, it is useful because of the
large change in percent similarity resulting from small changes
in CSDs. For example, Figure 1B shows a percent similarity
score of only 74.5%, yet the models differ in their mean
positions by only 0.3° and in their CSDs by only 5°.

Unimodal Models. Unimodal distributions were repro-
duced with an average percent similarity of greater than 97%
for ensemble 1 and greater than 80% for ensemble 2. While the
former consistently produced a single distribution, the latter
produced two to three distributions that matched the data
equally in many of the tests. When the output distributions
were filtered to the distribution that was most similar to the
input, the average percent similarity for both ensembles rose to
∼99%. When random noise was added, the average percent
similarity was reduced to ∼70% and ∼60% for the two
ensembles. After filtering the output distributions, the percent
similarity rose to ∼80% for both ensembles. Tables S1 and S2
contain the unimodal testing statistics, and violin plots of the
percent similarities are displayed in Figure S2 in the
Supporting Information.
MA’AT reproduced unimodal distributions with high

accuracy even from as little as two observables, although the
data needed to be filtered since the reduced number of
observables can result in multiple distributions with com-
parable RMSDs. When random noise was added, the accuracy
was reduced significantly even after filtering the data. The
amount of random noise correlated strongly with the method’s
ability to reproduce the data.

Multimodal Models. Multimodal analysis typically gen-
erates numerous distributions instead of a single model. The
models that were produced matched the input data equally and
typically contained only small differences in mean positions
and CSDs. To allow useful comparisons, the models with the
lowest RMSDs were averaged if their parameters did not differ
significantly. Occasionally, models with significant differences
were produced, especially when the number of simulated
experimental constraints was low. In these cases, inspection of
the distribution plots is recommended.
Bimodal models were reproduced with ∼95% similarity, and

trimodal models were reproduced with ∼90% similarity (Table
1). When the output distributions were filtered to the model
that was most similar to the input, only the trimodal ensembles
with six J-couplings showed a significant improvement in their
accuracy. When random noise was included in these tests,
these similarities dropped to ∼70% and ∼55%, respectively.
After filtering the output distributions, the percent similarity
rose to ∼75% for bimodal models and ∼65% for trimodal

Figure 1. Comparison of six input and output distributions. Blue areas are the randomly generated input distributions. Red areas are the MA’AT
output distributions. Purple areas are the regions where the distributions agree. Unimodal: 98.5% (A) and 74.5% (B). Bimodal: 98.8% (C) and
86.5% (D). Trimodal: 96.8% (E) and 84.7% (F).
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models. The reduced similarities are caused by larger variations
in the CSDs in the output models. Small changes in CSDs
when mean positions are conserved result in significant
reductions of percent similarity. Tables S3−S5 contain the
multimodal testing statistics with the inclusion of random
noise and the best output model statistics. Violin plots of the
percent similarities are displayed in Figures S3 and S4 in the
Supporting Information.
Limitations. The MA’AT method is limited primarily by

the accuracy of the input J-couplings. As random noise
increases, accuracy decreases. Therefore, it is imperative that
only high-quality experimental J-coupling data are used.
Applying a random noise of ±0.8 Hz reduced the method’s
ability to reproduce the input distributions for all modalities, as
expected. When the data were carefully analyzed as a function
of random noise, the method gave high reproducibility when
the average noise was ±0.3−0.4 Hz or less. Random noise of
±0.4−0.6 Hz lowered the reproducibility to ∼50%. Since a
random number generator was used to generate noise, it would
be expected that the number of fails would be ∼25% which is
similar to the values for testing except in the case of trimodal
modeling. Trimodal modeling was able to reproduce the input
distributions ∼70% of the time when more than 10 J-couplings
were included; however, these analyses required close
inspection of the data since numerous solutions were
produced.
The number of J-couplings used in the analysis also affects

the method’s ability to accurately reproduce the input
distributions to varying extents. The number of J-couplings
depends on the sensitivity of the J-coupling to the torsion angle
being examined. A reduced number of J-couplings does not
reduce accuracy as long as they all have a strong dependence
on the torsion angle. However, the uniqueness of solution for
these fits is likely to be reduced, resulting in numerous
distributions that reproduce the data equally. The ensembles
tested with fewer J-couplings are comprised of those values
that are most sensitive to the torsion angle being examined. If
different ensembles of 10 J-couplings were used, then
reproducibility is reduced (data not shown). Adding additional
J-couplings with reduced sensitivity is not expected to improve
the accuracy but may reduce the number of solutions produced
in any given analysis.

Multimodal modeling suffers from more limitations than
unimodal modeling due to the increased complexity of the
model. Determining the uniqueness of solution for unimodal
analyses requires inspections of parameter landscapes, but this
is not possible for multimodal analyses. Instead, the uniqueness
of solution can be determined by inspecting the models that
are the closest match to the data, a histogram of the RMSDs,
and histograms of the different model parameters (Figures S6
and S7, Supporting Information). Given the nature of the
Karplus-like equations and the population models, it is likely
that multiple models that have conserved mean values but vary
in CSDs and/or peak populations will fit the data equally.

■ CONCLUSIONS

MA’AT analysis offers significant advantages to model
molecular torsion angle populations in solution compared to
previous experimental methods. First, MA’AT analysis provides
continuous distributions and thus more physically realistic
conformational models.27−29 Continuous distributions elimi-
nate bias due to partial sampling of the conformational space
inherent to discrete distributions. Furthermore, circular
distributions avoid models with negative populations and/or
other unphysical results.17 No assumptions are made about the
CSDs, thereby providing insights into torsional dynamics.
MA’AT analysis has been used to study a wide range of
conformational properties of saccharides, including O-glyco-
sidic linkage conformations, side-chain conformations, and the
pseudorotation of five-membered rings.9,30−34 More recent
applications include the modeling of backbone conformation
in oligopeptides. In principle, the method should be applicable
to any molecule provided that the molecule contains sufficient
numbers of redundant J-couplings to interrogate the torsion
angle(s) of interest.
The MA’AT web application described in this report is user

friendly with a simple GUI that only requires a set of J-
coupling equations and experimental J-couplings as inputs.
MA’AT analysis generates continuous multimodal distributions
with speed and precision from minimal user-supplied
information. Unimodal modeling produces accurate and
precise population models from only a few experimental
measurements. Multimodal modeling has more limitations due
to the complexity of the models, but MA’AT can still generate
models with accurate mean values and CSDs in many cases.
The method is limited by the accuracy of the experimental J-
couplings, the number of available J-couplings, the sensitivity
of the J-couplings to the molecular torsion angle of interest,
and the ability to generate quantitative parametrized equations
for the J-couplings.

■ DATA SOFTWARE AND AVAILABILITY

Users can access the MA’AT application free of charge at
https://rmeredit.shinyapps.io/maat24/. R scripts can be
downloaded from the application for offline use (recom-
mended for multimodal analysis). Testing data are contained
in a zip file available as Supporting Information. The contents
of the zip file are divided into three main folders (one for each
modality tested). Each of these three folders contains either 2
(for 1_state) or 10 (for 2_state and 3_state) subfolders with
200 text files needed for testing.

Table 1. Multimodal Testing Statistics

Bimodal Trimodal

No.
of Js
in fit % Similarity

DTS
testa

Common
meansb % Similarity

DTS
testa

Common
meansb

29 96.0 5 1 91.4 2 6
20 95.8 7 2 91.1 0 5
15 95.2 6 2 90.8 2 5
10 95.2 5 2 90.4 0 6
7 94.7 8 0 89.9 2 7
6 93.9 4 3 80.0 10 29
20 95.7 7 1 90.9 2 7
15 95.2 9 2 91.0 0 5
10 95.0 9 1 90.7 0 3
6 91.9 10 6 78.5 7 39

aNumber of fits in which the DTS test rejected the null hypothesis.
bNumber of fits in which the mean positions RMSD differed
significantly from the input.
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