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Figure 2 Visual representations of layers of neural network used

3. Results and Discussion 

3.1. Preprocessing and defining a spark

Before the model can be built and trained, it is necessary to 
label the training images set whether each image is a spark or 
not. A sample size of 2000 images has been labeled for training,
and further training data is generated from data augmentation
that generate more data based on existing data. In this method
existing images, when they undergo image shifts, flip, rotation, 
and other similar transformations, become new images (new set 
of pixels) while still maintaining the same labels (“spark” or 
“no-spark”). One of the important points in this study was 
defining a spark. In some cases, as shown in Figure 3(a) and 
(b), the image clearly shows whether a spark is present or not. 
However, in most other cases, the intensity of the spark is low.
Also sparks can occur on the rear side of the tool that is not 
directly visible. In such cases, only the glow of the spark can 
be seen around the tool, as shown in Figure 3 (c). Thus, an
effort has been taken to thoroughly analyze the training images 
and label them as accurately as possible.

(i) Spark is absent

(ii) Spark at differ location affects the illuminance

Figure 3 (a) shows a case of no spark. (b) and (c) shows a case of spark. In 
(b), the spark is in front of the tool towards the camera. In (c), the spark is 

behind the tool, away from the camera; hence, it is dim.
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3.2. Results

It is necessary to have as much data as possible to train the 
model accurately. A sample size of at least around 3000 images 
is recommended to achieve an accuracy of over 90%. The 
model is trained using a total of 5285 samples after data 
augmentation and another 1321 samples were used for testing. 
The model has been trained over 12 epochs (iterations) to 
converge to the best weights and biases for the neural network. 
Figure 4 shows the training and testing accuracy of the model 
when detecting the presence and absence of the spark. As can 
be seen from the plot, the training and testing accuracies
increase over the epochs and stabilize at around 97%.

Figure 4 Training and testing accuracy over training runs (epoch).

The loss function is a unitless value representing the total 
error between prediction and the actual output value. The goal 
of training a machine learning model is to minimize the loss 
function. The decreasing trend of loss function over epochs in 
this study can be seen in Figure 5. 

Figure 5 Loss function vs. epochs.

This study uses machine learning to convert the optical feed 
to time series of digital data. If the image array data is passed 
as the same sequence in time, the output of the CNN model is 
a time series of sparks. Figure 6 shows such a plot of a 50 frame 
(0.05 second) window. The prediction rate is very close to the 
accuracy in the training, as 48 out of the 50 predictions made 
by the model for this window are accurate.

Figure 6 Time series of prediction and manual.

3.3. Validation

Tests with 5 more random sets of 200 contiguous samples 
with known output were used to verify the model further. The 
model predicted the presence or absence of spark; the output of 
the CNN model was compared to the known labels for the 
samples. Table 3 shows the results of the testing. 

Table 3 Model testing

Test
(200 samples)

Mispredictions in 200 samples 
(spark instead of no spark or 

otherwise)

Percentage 
correctness

1 11 94.5

2 5 97.5

3 2 99

4 15 92.5

5 5 97.5

It is found that the model prediction correctness is close to 
the accuracy found in training within the allowable tolerance.
The misprediction from data can come from the noise in data 
and limited computing power. However, the result shows a 
similar result accuracy predicting the testing data, which is 
close to 97%. 

To further analyze the validation results, the output of a 
random 200 sample set was observed as shown in Figure 7 and 
compared with manual labels. Four predictions of the CNN 
model were found to be mismatched with the manual labels. 
Two of them (Figure 8) had mismatched because the spark was 
very faint. The remaining two frames (Figure 9) were wrongly 
labeled while preparing the training and testing sets. These 
inaccuracies were human error due to handling large data, 
which the CNN model corrected.
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Figure 7 Analyzing set of 200 samples for misprediction

Figure 8 Examples of cases where the spark is faint leading to a 
misprediction

Figure 9 Cases of error in manual labelling but the machine still predicted 
the spark accurately

4. Conclusion

Machine learning was applied to study the image 
recognition of sparking in ECDM. The learning model is a 9-
layer CNN.  In the training and testing, a 97% accuracy is 
achieved. Furthermore, random sets of data were tested with 
the developed model resulting in a similar accuracy. The model 
also corrected the human error in manual labeling. Thus, these 
results show that the CNN model used in this study is valid in 
defining the sparks in an ECDM process. 
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