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ABSTRACT: An electrodynamic levitation thermal-gradient diffusion chamber was used to grow

268 individual, small ice particles (initial radii of 8 - 26𝜇m) from the vapor, at temperatures

ranging from -65 to -40◦C, and supersaturations up to liquid saturation. Growth limited by

attachment kinetics was frequently measured at low supersaturation, as shown in prior work. At

high supersaturation enhanced growth was measured, likely due to the development of branches

and hollowed facets.

The effects of branching and hollowing on particle growth are often treated with an effective density

𝜌𝑒 𝑓 𝑓 . We fit the measured time-series with two different models to estimate size-dependent 𝜌𝑒 𝑓 𝑓

values: The first model decreases 𝜌𝑒 𝑓 𝑓 to an asymptotic deposition density 𝜌𝑑𝑒𝑝, and the second

models 𝜌𝑒 𝑓 𝑓 by a power-law with exponent 𝑃. Both methods produce similar results, though the

fits with 𝜌𝑑𝑒𝑝 typically have lower relative errors. The fit results do not correspond well with

models of isometric or planar single-crystalline growth. While single-crystalline columnar crystals

correspond to some of the highest growth rates, a newly constructed geometric model of budding

rosette crystals produces the best match with the growth data.

The relative frequency of occurrence of 𝜌𝑑𝑒𝑝- and 𝑃- values show a clear dependence on ice

supersaturation normalized to liquid saturation. We use these relative frequencies of 𝜌𝑑𝑒𝑝 and

𝑃 to derive two supersaturation-dependent mass-size relationships suitable for cloud modeling

applications.
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1. Introduction25

The early growth of ice in clouds is a challenging problem, and little is known about the shapes26

and growth rates of small (radius ≲ 50 𝜇m) ice crystals immediately after nucleation. As a newly-27

nucleated ice particle begins to grow from the vapor, facets develop on the crystal, altering its28

growth rate. The formation and growth of facets, and thus particle shape, is controlled by gas-29

phase vapor diffusion and attachment kinetics. “Attachment kinetics” refers to the set of processes30

in which vapor molecules adsorb onto and diffuse along the ice surface, until they either desorb31

or incorporate into the ice. When the ice supersaturation (hereafter “supersaturation”, 𝑠𝑖) is high,32

facet instabilities can lead to the development of branching and hollowing on crystals. Much of33

the interior surface area of a branched or hollowed particle is “shadowed” and experiences low34

supersaturation, resulting in slow growth compared to the crystal’s extremities that extend further35

into the vapor field where 𝑠𝑖 is higher (Nelson 2001). The extremities then grow rapidly, and it36

is the resistance to vapor growth on much of the particle due to attachment kinetics that causes37

the particle to increase in size and mass faster than a solid ice sphere. This is true even for small38

particles which can become branched and hollowed (Magee et al. 2021). However, no exact method39

exists to treat such processes.40

Due to the effects of attachment kinetics, mass is not added uniformly across a growing ice41

particle, otherwise it would remain spherical. Thus, to model the growth of an ice particle, one42

must make some assumptions regarding the distribution of added mass. For example, the basic43

planar or columnar habit of a crystal may be approximated as a spheroid (Chen and Lamb 1994), or44

simply as a sphere. But in each case, any “complexity” in the crystal such as branching, hollowing,45

and non-spherical habit is treated with an “effective” density that is reduced from the bulk ice46

density (∼920 kg m−3).47

A variety of techniques have been used to estimate the effective densities of ice particles. One48

approach is to acquire in-situ estimates of cloud particle sizes and masses (Heymsfield and Iaquinta49

2000; Baker and Lawson 2006; Erfani and Mitchell 2016). While in-situ observations have the50

benefit of examining entire populations of particles, their studies typically cannot determine the51

density of small crystals. The results from Cotton et al. (2013) are an exception, suggesting that52

particles with radii less than 35 𝜇m are characterized by a constant effective density of 700 kg m−3.53

Limits on the optical resolution of airborne probes can add uncertainty to the shapes and sizes of54
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small particles, however, Erfani and Mitchell (2016) estimated effective densities of particles with55

maximum dimensions down to 20 𝜇m using a cloud particle imager. Further uncertainty arises56

from the fact that two-dimensional projections of particles can correspond to numerous particle57

orientations and three-dimensional geometries (Dunnavan and Jiang 2019; Dunnavan et al. 2019).58

Another method of estimating the effective density of ice is from ground-based observations of59

precipitating snowflakes (Muramoto et al. 1995; Brandes et al. 2007; Rees et al. 2021; Leinonen60

et al. 2021). One benefit of ground-based versus aircraft observations is that the ice particles can61

be imaged more than once and from multiple directions. For example, a Multi-Angle Snowflake62

Camera (MASC, Garrett et al. 2015) utilizes multiple camera views to reliably record a snowflake’s63

three-dimensional geometry (Dunnavan et al. 2019; Rees et al. 2021; Leinonen et al. 2021).64

However, the effective densities derived from ground-based observations of large (radius ≳ 0.5 mm)65

snowflakes are not applicable to the small crystals (radius < 100 𝜇m). Both aircraft and ground-66

based methods only have instantaneous views of particles, and thus cannot provide information on67

how effective density changes in time. Yet the time variation of particle mass and size is required68

to evaluate and improve growth models.69

Time variation of the effective ice density may be derived from laboratory measurements. Prior70

experiments have grown ice particles in cloud chambers (Fukuta 1969; Ryan et al. 1974, 1976;71

Weitzel et al. 2020) and wind tunnels (Matsuo and Fukuta 1987; Takahashi and Fukuta 1988;72

Takahashi et al. 1991). Wind tunnel experiments suspend crystals for tens of minutes and show that73

effective densities can decline substantially and rapidly, particularly in pronounced habit regimes74

(Fukuta and Takahashi 1999). However, all of the prior laboratory measurements of effective75

density known to the authors were at temperatures (𝑇) higher than -25◦C. Polycrystalline ice is76

more likely to form as 𝑇 decreases (Parungo and Weickmann 1973; Bacon et al. 2003; Bailey and77

Hallett 2004) and polycrystals can have substantially lower effective densities than single-crystals78

(Ryan et al. 1976). Unfortunately, no prior time-series measurements of the growth of small ice79

crystals exist at low temperatures and high supersaturation. Without such measurements, it is not80

possible to assess model-generated growth rates, even those derived from instantaneous in-situ81

observations.82

We address this lack of data by presenting results from experiments using small crystals grown83

in a levitation thermal diffusion chamber at 𝑇 < −40◦C. These experiments are used to estimate84

4



effective densities for vapor growth. In the following sections, we describe the experimental design85

and the crystal growth model used to fit the experimental data. In §4 and 5 we estimate effective86

densities from the data and use a newly-developed budding rosette model to interpret the data. In §6,87

two parameterizations of effective-density-size, and therefore, mass-size relationships are derived.88

These parameterizations link laboratory-determined growth rates to the effective density, therefore89

allowing the use of measured growth rates in cloud models. We end in §7 with a discussion and90

summary of our findings.91

2. Levitation diffusion chamber ice growth experiments92

Our experiments involve growing small (initial radius 𝑟0 of 8 - 26 𝜇m and equivalent-mass93

spherical radius 𝑟𝑠 < 40 𝜇m) ice particles inside the Button Electrode Levitation (BEL) thermal-94

gradient diffusion chamber. The chamber is described in detail by Harrison et al. (2016), so we95

will discuss it only briefly here. The BEL chamber consists of parallel copper plates at the top96

and bottom, which are separated by a plastic ring 1.27 cm tall and 10.2 cm in diameter. The97

aspect ratio of 8:1 is sufficiently large so that wall effects are minimized (Elliott 1971). The98

plate temperatures are controlled independently, and the bottom plate has a lower temperature for99

thermal stability. Water vapor is supplied by ice-covered filter paper that is affixed to the interior100

plate surfaces. There are holes in the filter paper on the top plate for four button electrodes and101

an opening through which droplets are introduced to the chamber. Simulations and measurements102

reveal that the supersaturation at the center of the chamber may be approximated with diffusion103

chamber theory (Pokrifka et al. 2020), where the supersaturation is controlled by the difference in104

the plate temperatures.105

Charged liquid water droplets are launched into the BEL chamber. The droplets quickly freeze106

and are levitated by an opposing direct current voltage applied to the bottom plate, and they are107

stabilized horizontally by an alternating current on the upper electrodes. The charge applied to108

the ice particles is less than that which could cause electrically enhanced growth (Bacon et al.109

2003; Davis 2010; Harrison et al. 2016). During an experiment, the ice particle grows from the110

vapor, increasing the voltage necessary for levitation. Stable levitation is maintained by software111

that automatically adjusts the bottom-plate voltage, and records the time-series thereof at 1 Hz.112

The measured voltage is then normalized by its value at the beginning of the experiment. That113
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normalization is equivalent to the mass ratio, 𝑚𝑟 = 𝑚/𝑚0, where 𝑚 is the particle’s mass and 𝑚0114

is its mass at the beginning of the experiment. We determine 𝑚0 by illuminating the particle115

with a helium-neon laser and match the resulting diffraction patterns to Mie theory, which gives116

the initial spherical radius (𝑟0). As the particle grows, the diffraction patterns gradually become117

disordered, indicating that the particle is no longer spherical. Beyond the initial time, no further118

size information is directly measured; it must instead be inferred from the mass ratio time-series.119

The water used in these experiments is either pure high-pressure liquid chromatography (HPLC)120

water for homogeneous nucleation (177 experiments) or a 0.2 g L−1 mixture of the bionucleant121

Snomax® in HPLC water (following Harrison et al. 2016) for heterogeneous nucleation (91 exper-122

iments). However, the key results of this study do not show any significant nucleation dependence123

(i.e., the presence or lack of ice nucleating particles), thus we will be presenting them in aggregate.124

Experiments were conducted at atmospheric pressure (∼ 970 hPa) with conditions that have con-125

stant temperatures ranging from -65 to -40◦C and supersaturations from ¡ 1% to liquid saturation.126

These conditions cover lower 𝑇 and higher 𝑠𝑖 than previous experiments with the BEL chamber127

(Harrison et al. 2016; Pokrifka et al. 2020), which used𝑇 between -45 and -30◦C. For the present ex-128

periments, the device has been upgraded such that the copper plates are now cooled using methanol,129

which is sealed into its housing with fluorosilicone gaskets, instead of Syltherm™ coolant sealed130

with Buna-N gaskets. This modification allows the plates to be cooled to ∼ −70◦C without coolant131

leaks, and the BEL chamber can produce 𝑠𝑖 near liquid saturation for temperatures down to -60◦.132

Since high supersaturation requires a large difference between the plate temperatures, achieving133

liquid saturation at 𝑇 < −60◦C would risk causing methanol leaks. Thus, the changes to the device134

have enabled us to explore experimental conditions where there has been a lack of ice growth data.135

Next, to interpret the growth data, we compare them to a vapor growth model, as described below.136

3. Ice vapor growth model137

We analyze the growth data using the Diffusion Surface Kinetics Ice Crystal Evolution (DiSKICE)138

model (Harrington et al. 2019). The DiSKICE model can develop the primary habits of faceted139

ice with the inclusion of attachment kinetics, and it has been used to successfully interpret prior140

laboratory growth data (Harrison et al. 2016; Harrington et al. 2019; Pokrifka et al. 2020). The141

DiSKICE model treats the far-field gas-phase diffusion to the ice particle with capacitance theory142
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and vapor attachment with the theory of faceted growth. The resulting growth equation,143

𝑑𝑚

𝑑𝑡
= 4𝜋𝐶 (𝑐, 𝑎)𝑠𝑖𝜌𝑒𝑞𝐷𝑒 𝑓 𝑓 [𝑇,𝑃,𝛼(𝑇, 𝑠𝑖)], (1)

is similar in form to the capacitance model, where𝐶 (𝑐, 𝑎) is the geometric capacitance that depends144

on the 𝑎 and 𝑐 semi-axis lengths, 𝑠𝑖 is the ice supersaturation, and 𝜌𝑒𝑞 is the ice equilibrium vapor145

density. The effective vapor and thermal diffusivity, 𝐷𝑒 𝑓 𝑓 , includes the influences of attachment146

kinetics through the deposition coefficient 𝛼, which may have different values for the 𝑎- and147

𝑐-semi-dimensions, allowing for the development of the primary habit forms (i.e. plates and148

columns).149

The deposition coefficient is parameterized by Nelson and Baker (1996) as150

𝛼 =

(
𝑠𝑠𝑢𝑟 𝑓

𝑠𝑐ℎ𝑎𝑟

)𝑀
𝑡𝑎𝑛ℎ

(
𝑠𝑐ℎ𝑎𝑟

𝑠𝑠𝑢𝑟 𝑓

)𝑀
, (2)

where 𝑠𝑠𝑢𝑟 𝑓 is the supersaturation at the particle surface, 𝑠𝑐ℎ𝑎𝑟 is a characteristic supersaturation, and151

𝑀 is a growth mechanism parameter that ranges from 1 to 30. For example, spiral dislocations are152

represented by 𝑀 = 1, while 𝑀 ≥ 10 is used for step nucleation. Outcroppings of dislocations on the153

surface likely control the growth of ice following nucleation (Nelson and Knight 1998), producing154

efficient growth (with 𝛼 ≳ 0.1). However, the development of thin crystals with pronounced aspect155

ratios requires step nucleation, which is far less efficient (Frank 1982). Consequently the growth156

mode may vary both spatially across a particle (Wood et al. 2001) and temporally (Pokrifka et al.157

2020).158

At high supersaturation, the deposition coefficients approach unity, therefore attachment kinetics159

no longer limit growth. But they remain in control of the mass distribution over a particle as160

branching and/or hollowing occur. Branching and hollowing, and other complexities, are treated161

through an effective density 𝜌𝑒 𝑓 𝑓 . The DiSKICE model incorporates a time-varying effective162

density following Chen and Lamb (1994), in which the change in volume 𝑉 of an enclosing shape163

about a particle is the change in its mass divided by the density of the deposited ice, or deposition164

density 𝜌𝑑𝑒𝑝. Their Eq. 41 can be written as165

𝑑𝑚

𝑑𝑡
=
𝑑 (𝜌𝑒 𝑓 𝑓𝑉)

𝑑𝑡
= 𝜌𝑑𝑒𝑝

𝑑𝑉

𝑑𝑡
. (3)
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The deposition density is temperature- and supersaturation-dependent, and is determined from166

measurements (Chen and Lamb 1994). If a crystal formed from a frozen water droplet with an167

initial density of 𝜌𝑖 = 920 kg m−3, integration of the above equation assuming a constant 𝜌𝑑𝑒𝑝 gives168

𝜌𝑒 𝑓 𝑓 (𝑡) = 𝜌𝑖
𝑉0

𝑉 (𝑡) + 𝜌𝑑𝑒𝑝

[
1− 𝑉0

𝑉 (𝑡)

]
, (4)

where 𝑉0 is the initial particle volume. Equation 4 clearly shows that the effective density in the169

DiSKICE model decreases in proportion to𝑉−1, or 𝑟−3 if the enclosing shape is a sphere. It should170

be noted that such a decrease can be too rapid for larger crystals (Schrom et al. 2020). However,171

this method is advantageous since the effective density will asymptotically approach 𝜌𝑑𝑒𝑝 as the172

volume increases.173

Many prior studies have instead characterized 𝜌𝑒 𝑓 𝑓 with a size-dependent power-law (Mitchell174

1996; Cotton et al. 2013) or polynomial (Erfani and Mitchell 2016). Since we cannot physically175

interpret multiple polynomial-fit parameters using a single measured quantity (mass ratio), we also176

estimate 𝜌𝑒 𝑓 𝑓 with DiSKICE using a power-law,177

𝜌𝑒 𝑓 𝑓 (𝑡) = 𝜌𝑖

[
𝑉0

𝑉 (𝑡)

]𝑃𝑉

= 𝜌𝑖

[
𝑟0

𝑟 (𝑡)

]𝑃
, (5)

where 𝑟0 is the initial radius, 𝑟 (𝑡) is the enclosing spherical radius at time 𝑡, and 𝑃 = 3𝑃𝑉 is an178

adjustable parameter determined from best fits to the data. The mass growth rate is then179

𝑑𝑚

𝑑𝑡
=
𝑑 (𝜌𝑒 𝑓 𝑓𝑉)

𝑑𝑡
= 𝜌𝑖𝑉

𝑃𝑉

0

𝑑𝑉1−𝑃𝑉

𝑑𝑡
= (1−𝑃𝑉 ) · 𝜌𝑒 𝑓 𝑓

𝑑𝑉

𝑑𝑡
. (6)

Note that the right-most equation has the same form as that of Eq. 3, except that the deposition180

density has the form (1− 𝑃𝑉 )𝜌𝑒 𝑓 𝑓 , which declines with increasing volume. This form has the181

disadvantage that 𝜌𝑒 𝑓 𝑓 is not asymptotic and may become nonphysical for large particles. However,182

the decrease of the deposition density with size leads to an initially slower, and more realistic,183

decline in 𝜌𝑒 𝑓 𝑓 than Eq. 4 (Schrom et al. 2020). Since both forms of the effective density (Eqs. 4184

and 5) are used in parameterizations, we use each to fit the laboratory measurements. Be aware185

that the 𝜌𝑒 𝑓 𝑓 -values derived from these fits are associated with vapor growth, since the particle186

geometry is unknown.187
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4. Measurement Analysis188

Ice particles in the size range of our experiments (𝑟𝑠 < 40 𝜇m) have typically been treated as189

spheres by prior laboratory measurements (Skrotzki et al. 2013; Harrison et al. 2016) and numerical190

cloud models (Reisner et al. 1998; Morrison and Milbrandt 2015). Additionally, ice crystal growth191

is not limited by attachment kinetics when the supersaturation exceeds the characteristic value192

(𝑠𝑐ℎ𝑎𝑟), which results in large (≳ 0.1) deposition coefficients (Eq. 2). For spherical growth in193

these cases, the DiSKICE model reduces to capacitance theory. Therefore, we compare our194

measurements to solid spheres grown at the capacitance rate (hereafter “solid spheres”).195

Note that preparation of the data follows the same procedures as Pokrifka et al. (2020). That is,196

we fit the raw mass growth time-series data with cubic functions, then preform any further analysis197

on those fits. However, we also use a low-pass filter on the data to illustrate the close fit of the198

cubics.199

a. Effective density fits to growth time-series200

Recall that complexity can enhance crystal growth rates. Therefore, ice particles from our201

experiments with mass growth rates greater than those of solid spheres are candidates to be202

analyzed for reduced effective densities (𝜌𝑒 𝑓 𝑓 ). While we do not have sufficient visual information203

to directly measure a particle’s morphology in our experiments, the complex habits formed in prior204

levitation diffusion chamber experiments (see Bacon et al. 2003, their Figs. 5 and 8) indicates that205

our particles may be treated with an equivalent-diameter sphere and an effective density. Using the206

DiSKICE model, we simulate the growing crystal while allowing the effective density to decline207

following either Eq. 4 or 5. We then fit the growth time-series by varying either 𝜌𝑑𝑒𝑝 (Eq. 4) or208

𝑃 (Eq. 5) until a minimum in the root-mean-square error is reached. For simplicity, we assume209

diffusion-limited growth (𝛼 = 1), which is consistent with frozen droplets initially having many210

surface dislocations and with the instabilities associated with branching and hollowing (see §3).211

This assumption may produce growth rates too large for faceted particles (Harrison et al. 2016;212

Pokrifka et al. 2020), and it is primarily valid for high supersaturations, thus our results are upper213

estimates of 𝜌𝑒 𝑓 𝑓 .214

We measured enhanced growth for numerous crystals, and it is therefore not practical to show222

the time-series for each experiment. Instead, we show characteristic examples of the measured223
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Fig. 1. Representative time-series that is well-fit by both effective density models. The top panel shows the

measured mass ratio after low-pass data filtering (black circles, not all points shown), a cubic fit through the data

(black curve), a simulated solid sphere with the same initial size (dotted blue curve), an effective density model

fit to the data where 𝜌𝑑𝑒𝑝 = 376 kg m−3 (dashed green curve), and an effective density model fit to the data where

𝑃 = 0.900 (dot-dashed magenta curve). The middle panel shows the mass ratio growth rate (𝑑 (𝑚/𝑚0)/𝑑𝑡). The

bottom panel shows the modeled effective density time-series. This experiment had 𝑟0 = 12.2𝜇m, 𝑇 = −55.9◦C,

𝑠𝑖 = 46.9%, and 𝑠𝑖,𝑟𝑎𝑡 = 0.67.
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Table 1. The following are statistics of the relative errors for the 𝜌𝑑𝑒𝑝 and 𝑃 fitting methods to the mass

ratio data. Given are the median error, the mean error, and the standard deviation, along with the maximum and

minimum error found among all cases. The percentage of growth experiments with a relative error of less than

5% is also shown.

245

246

247

248

statistic 𝜌𝑑𝑒𝑝 𝑃

median 1.55% 2.06%

mean 1.92% 2.70%

standard deviation 1.52% 2.21%

maximum 7.95% 10.8%

minimum 0.114% 0.208%

errors < 5% 94.5% 82.4%

growth time-series in Figures 1 and 2, along with model fits to the data. We chose examples that224

show both accurate fits to the data (Fig. 1), and fits with larger errors (Fig. 2). We find that growth225

data are well characterized, at a given temperature, by the ratio of the ice supersaturation (𝑠𝑖) to its226

value at liquid saturation (𝑠𝑖,𝑚𝑎𝑥 , the maximum value expected in a cloud),227

𝑠𝑖,𝑟𝑎𝑡 ≡
𝑠𝑖

𝑠𝑖,𝑚𝑎𝑥

. (7)

We refer to this quantity as the supersaturation ratio, which varies between zero and unity (i.e,228

ice- and liquid-saturation). This ratio provides a common scale for the comparison of data from229

different temperatures. Both of the presented cases were at high supersaturation ratios of 0.67230

and 0.97, respectively. Each case shows that the measured growth (black circles and curves) is231

greater than predictions using a solid sphere (blue dotted curves). This result is consistent with the232

development of complex morphology at high 𝑠𝑖.233

Most cases were similar to the time-series shown in Fig. 1, where the data are accurately modeled238

by fitting the data with 𝜌𝑑𝑒𝑝 (Eq. 4, green dashed curves) or 𝑃 (Eq. 5, magenta dot-dashed curves).239

In this case, the particle grew at -55.9◦C and 46.9% supersaturation with an initial radius of 12.2240

𝜇m, and the best-fits produce values of 𝜌𝑑𝑒𝑝 = 376 kg m−3 and 𝑃 = 0.90. The relative errors of the241

fits in Fig. 1 (1.48% and 1.35% for the fits on 𝜌𝑑𝑒𝑝 and 𝑃, respectively) are near the median for all242

the experiments (see Table 1), which indicates that both methods consistently produce accurate243

fits to the growth data.244
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Fig. 2. Representative time-series that is less accurately fit by either effective density model. The panels,

points, and linestyles are the same as in Fig. 1, except the dashed green curves are from a fit with 𝜌𝑑𝑒𝑝 = 87

kg m−3 and the dot-dashed magenta curves are from a fit with 𝑃 = 1.810. This experiment had 𝑟0 = 15.8𝜇m,

𝑇 = −60.6◦C, 𝑠𝑖 = 74.0%, and 𝑠𝑖,𝑟𝑎𝑡 = 0.97.
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On the other hand, some of the fitting results had larger errors, where the modeled mass ratios249

resemble the data, but the growth rates are divergent. A typical example is shown in Fig. 2, for a250

particle that grew at a temperature of -60.6◦C and a supersaturation of 74.0% with an initial radius251

of 15.8 𝜇m. The model fit using the deposition density model produces a low value of 𝜌𝑑𝑒𝑝 = 87252
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kg m−3 and the fit with the power-law density produced a best-fit value of 𝑃 = 1.81, but the relative253

errors are 4.00% and 5.70%, respectively. Even though the errors are higher in some cases, the254

effective density models represent the data better than growth of a solid sphere.255

Unsurprisingly, the two fitting methods produce different functional forms for the effective density256

and, therefore, mass growth rate. In Fig. 1, both methods simulate the growth rate comparably257

well, but the 𝑃-fit is noticeably worse in Fig. 2. However, it should be noted that, while the fit258

with 𝜌𝑑𝑒𝑝 typically preformed better than the fit with 𝑃 (Table 1), that was not always the case.259

Table 1 further shows that 94.5% of the cases fit with the 𝜌𝑑𝑒𝑝 model, and 82.4% of the cases fit260

with the power-law, had less than 5% errors relative to the data. The mass ratio data themselves are261

conservatively estimated to have uncertainties of ±5% (Pokrifka et al. 2020). Therefore, nearly all262

of the best-fit models reproduce the data with sufficient accuracy. In contrast, as the next section263

will show, the model of a solid sphere underestimates the growth rate with increasing magnitude264

and frequency as supersaturation increases.265

b. Normalized growth rates266

Pokrifka et al. (2020) analyzed the inhibition of ice depositional growth due to attachment kinetics267

using a normalized growth rate, and this methodology is also useful for analyzing growth that is268

enhanced due to morphological changes. In that work, we defined the normalized growth rate as269

¤𝑚𝑛𝑜𝑟𝑚 ≡
𝑑𝑚
𝑑𝑡
|𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

4𝜋𝑟𝑠𝐷𝑒 𝑓 𝑓

. (8)

The numerator is the measured growth rate 𝑑𝑚
𝑑𝑡
|𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 averaged for a 1-𝜇m increase in the270

equivalent-mass spherical radius (𝑟𝑠). This quantity is then normalized by 4𝜋𝑟𝑠𝐷𝑒 𝑓 𝑓 , which is the271

size-increment averaged growth rate of a solid sphere without the supersaturation. Thus, if the272

particle growing in the diffusion chamber is a solid sphere, then ¤𝑚𝑛𝑜𝑟𝑚 would be equal to 𝑠𝑖, and the273

growth rate data will follow the supersaturation. For growth inhibited by attachment kinetics, the274

normalized growth rates from the data are less than those of solid spheres (Pokrifka et al. 2020).275

In the current study, we focus primarily on regimes in which the growth is enhanced.276

Figure 3 shows the normalized growth rates for particles in the 𝑟𝑠 range of 14 - 15 𝜇m plotted277

against the supersaturation ratio (𝑠𝑖 scaled by 𝑠𝑖,𝑚𝑎𝑥 , Eq. 7). The normalized growth rates have278
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Fig. 3. Normalized growth rate divided by maximum supersaturation as a function of supersaturation ratio.

Black points are derived from data as the radius increases from 14 to 15 𝜇m, with error bars from uncertainty in

the initial size, temperature, and supersaturation. The red dashed line is from the capacitance growth rate of a

solid sphere.
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284

285

286

likewise been scaled by 𝑠𝑖,𝑚𝑎𝑥 to preserve the 1:1 relation for ¤𝑚𝑛𝑜𝑟𝑚 of a solid sphere. The data279

(black points) show that there are enhanced ¤𝑚𝑛𝑜𝑟𝑚 values compared to a solid sphere, particularly280

when 𝑠𝑖,𝑟𝑎𝑡 > 0.4, and with increasing frequency and magnitude as liquid saturation is approached281

(i.e. as 𝑠𝑖,𝑟𝑎𝑡 → 1).282

Pokrifka et al. (2020) showed that some of their ¤𝑚𝑛𝑜𝑟𝑚 values had a size dependence, indicating287

that the growth could not be characterized by spheres growing at the capacitance rate. Many of288

the data here, especially at high 𝑠𝑖,𝑟𝑎𝑡 , likewise have a size dependence. Figure 4 shows the mean289

change in ¤𝑚𝑛𝑜𝑟𝑚 for each particle as 𝑟𝑠 increases from 9 to 25 𝜇m in 1-𝜇m increments (𝑑 ¤𝑚𝑛𝑜𝑟𝑚/𝑑𝑟𝑠).290

For a solid sphere, this derivative is zero because ¤𝑚𝑛𝑜𝑟𝑚 depends only on 𝑠𝑖. At low 𝑠𝑖,𝑟𝑎𝑡 , there291
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Fig. 4. Change in the normalized growth rate with respect to radius divided by the maximum supersaturation

as a function of supersaturation ratio. Black points are mean values from the data, and the error bars indicate ±

one standard deviation. The red dashed line (zero) is for a solid sphere.

297

298

299

is indeed very little change to the normalized growth rate with size, indicating that these crystals292

grow near the spherical rate. However, at higher 𝑠𝑖,𝑟𝑎𝑡 , most of the data have increasing normalized293

growth rates with increasing size. Similar to Fig. 3, the enhanced growth appears mostly when294

𝑠𝑖,𝑟𝑎𝑡 > 0.4, and it increases with supersaturation ratio, maximizing at liquid saturation. This result295

is consistent with what is expected if complex habits develop.296

It is worth noting that some of the data initially have normalized growth rates less than a solid300

sphere, but the rates increase to exceed the solid sphere rate as the particles grow larger. This301

would make sense if the growth was limited by attachment kinetics, as for a faceted crystal, prior to302

the development of habit complexity. Before the facets formed, the mass growth rate would have303

been near that of a solid sphere (Nelson and Swanson 2019; Harrington and Pokrifka 2021). The304
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transition from frozen droplet to faceted crystal can cause a reduction in the deposition coefficient,305

though this transition sometimes happens too quickly to be detected in our experiments (Pokrifka306

et al. 2020). Harrington and Pokrifka (2021) showed that this transition is faster with increasing307

supersaturation, which means that we would most likely measure kinetics-limited growth rates at308

the beginning of high-𝑠𝑖 experiments.309

The above analyses of effective density fits to the mass ratio time-series and the normalized growth310

rate calculations make it clear that the growth enhancement at high supersaturation increases as a311

particle grows. Below, we investigate if the data can be represented by single- and polycrystalline312

ice growth models.313

5. Time-Averaged Effective Density and Budding Rosette Model314

The scatter in the growth data shown in Figs. 3 and 4 can be reduced if the data are examined as315

a function of the amount of growth enhancement. For this, we define the growth rate ratio ( ¤𝑚𝑟𝑎𝑡)316

as the time-average measured growth rate divided by that of a solid sphere, where the averages317

are taken over the lifetime of the particle. This ratio depends primarily on the crystal geometry,318

because the supersaturation and temperature dependencies cancel. Note that there is a dependence319

on attachment kinetics, but it is weak at high supersaturation. The top panel of Fig. 5 shows the320

time-average effective density for each particle from the fit with 𝜌𝑑𝑒𝑝 as a function of ¤𝑚𝑟𝑎𝑡 (black321

circles). The time-average effective densities derived from the power-law fitting method are similar322

(not shown). Plotting against ¤𝑚𝑟𝑎𝑡 clearly demonstrates that particles with more enhanced growth323

require smaller 𝜌𝑒 𝑓 𝑓 . The black circles in the lower panel of Fig. 5 show the exponents from the324

power-law fitting method, also as a function of the growth rate ratio. Larger values of 𝑃 correspond325

to larger ¤𝑚𝑟𝑎𝑡 , which is unsurprising since these results are a reflection of the effective density326

(Eq. 5). These results may seem intuitive, but what is most intriguing is how well the data points327

organize when plotted against ¤𝑚𝑟𝑎𝑡 for a relatively large temperature range (-65 to -40◦C). Since328

the growth rate ratio depends primarily on crystal geometry, the data organization indicates an329

underlying similarity in the crystals grown in the diffusion chamber. This organization does not330

occur if the data are plotted against temperature or supersaturation (not shown).331

To establish physical meaning in these results, and ensure that they are reasonable, it is prudent338

to compare them to modeled ice particle growth with known habits. We have already shown that339
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Fig. 5. Effective density (top) and power-law exponent (bottom) as a function of growth rate ratio. The black

circles in the top panel are mean effective densities from fits to the mass ratio time-series using the deposition

density. The black circles in the bottom panel are exponents from the best-fit to the data with the power-law

method. In both panels, the shaded regions are from particles simulated by the DiSKICE model using dislocation

growth for both plates and columns (grey) or ledge nucleation for plates (red) and columns (blue). The green

points in both panels are from a budding rosette model.
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a solid sphere underestimates the measured growth rates, however non-isometric shapes produce340

substantially enhanced growth (Takahashi et al. 1991). In the next section, we use the DiSKICE341

model to show that planar and columnar particles cannot explain the data, and that a budding342

rosette model can.343

a. Effective density of single crystalline habits344

We use DiSKICE to simulate the growth of single-crystalline particles, all of which are initially345

spherical with a radius of 10 𝜇m. The crystals are grown for 15 minutes, which is typical for346

our high-𝑠𝑖 growth experiments. To develop single-crystalline habit forms, a lesser characteristic347

supersaturation (𝑠𝑐ℎ𝑎𝑟) is required for the primary dimension of growth (i.e., the prism face for348

planar crystals, and the basal face for columnar crystals). Zhang and Harrington (2014) estimated349

that 𝑠𝑐ℎ𝑎𝑟 for the primary growing dimension is about 1/2 that of the minor dimension near -40◦C,350

and data at higher temperatures indicate that it is never less than 1/6. We use 𝑠𝑐ℎ𝑎𝑟 values taken351

from Harrington et al. (2019), however that work provides only the particle average value, therefore352

we use the two ratios (1/2 and 1/6) as upper and lower estimates of 𝑠𝑐ℎ𝑎𝑟 for the primary dimension.353

In DiSKICE, the growth mechanism must also be specified. The freezing of supercooled water354

produces numerous dislocations, and we therefore set 𝑀 = 1 in Eq. 2 (see Harrington et al. 2019).355

This selection produces high deposition coefficients and is similar to the constant values used in356

some cloud models. As crystals become larger, step nucleation can dominate the growth producing357

thin plates or columns (Frank 1982; Nelson 2001), and we therefore also conduct simulations with358

𝑀 = 10. The temperatures are set at decades from -70 to -40◦C, and supersaturation ratios (𝑠𝑖,𝑟𝑎𝑡)359

used are 0.25, 0.50, 0.75 and 1.00.360

In Fig. 5, the range of the DiSKICE model solutions with dislocation growth is shown by the361

shaded grey region. All of these particles remain compact, as is to be expected for growth by362

dislocations (Harrington et al. 2019). The compact shape and high deposition coefficients prevent363

the growth rate ratio from becoming much greater than 1. The red and blue shaded regions of364

Fig. 5 correspond to the range of solutions for plates and columns, respectively, grown with step365

nucleation. Step nucleation produces thin plates and long columns, which succeeds in producing366

growth rate ratios greater than 2, as seen in the data, but there is very little overlap in the phase367

space. Note that the power-law exponent, 𝑃, approaches 1 for solid plates and 2 for solid columns368

18



at the highest growth rate ratios, which is expected. For example, columns with the largest aspect369

ratios occur when growth on the prism faces is suppressed, producing growth that is essentially370

one-dimensional (along the 𝑐-dimension). Such crystals, therefore, should have a value of 𝑃 that371

approaches 2. The data suggest that some of the particles grown in the diffusion chamber were372

columnar, but it is unlikely that we grew dislocation-dominated crystals or single-crystalline plates.373

b. Budding rosette growth model374

Since polycrystals, especially rosette crystals, nucleate often at temperatures less than -40◦C375

(Heymsfield et al. 2002; Bacon et al. 2003; Bailey and Hallett 2009; Lawson et al. 2019), we also376

compare our results to a model of budding rosette growth. Our model is similar to that of Um and377

McFarquhar (2011), except we combine the rosette capacitance models of Westbrook et al. (2008)378

and Chiruta and Wang (2003) with a central sphere. We then obtain instantaneous growth rates for379

known particle shapes from which effective densities can be calculated.380

We begin with an ice sphere with an initial radius 𝑟0, like our experiments. As the particle384

grows, 𝑛𝑏 number of bullets protrude out of the sphere (see Fig. 6). Measurements of frozen drops385

indicate that this begins with the development of small facets on the surface that can grow outwards386

becoming the branches of a budding rosette (Parungo and Weickmann 1973, conceptual sequence387

in their Fig. 10). Each bullet is comprised of a hexagonal column 2𝑐 in length and 2𝑎 in width,388

which has a volume389

𝑉𝑐𝑜𝑙 = 3
√

3𝑎2𝑐, (9)

with the addition of a pyramidal region connecting it to the sphere. We follow Westbrook et al.390

(2008) and define the volume of the hexagonal pyramid as 𝑉ℎ𝑒𝑥𝑝 = 𝑓𝑝𝑦𝑟
√

3𝑎2𝑐, where the height391

of the pyramid (ℎ𝑝) is defined as a fraction 𝑓𝑝𝑦𝑟 of the column length such that ℎ𝑝 = 2𝑐 𝑓𝑝𝑦𝑟 . We392

subtract off the volume of the pyramidal peak𝑉𝑝𝑒𝑎𝑘 to allow for some contact area with the sphere.393

The contact region is 2𝑎0 across, where 𝑎0 is a fraction 𝑓𝑎0 of the radius of the sphere 𝑟0 (i.e.,394

𝑎0 = 𝑓𝑎0𝑟0). The height of the removed peak is therefore ℎ0 = ℎ𝑝𝑎0/𝑎, and the volume of the395

removed peak is 𝑉𝑝𝑒𝑎𝑘 = (
√

3/2)𝑎2
0
ℎ0. The total volume of the pyramidal region becomes396

𝑉𝑝𝑦𝑟 =𝑉ℎ𝑒𝑥𝑝 −𝑉𝑝𝑒𝑎𝑘 = 𝑓𝑝𝑦𝑟
√

3𝑎2𝑐

[
1−

(𝑎0

𝑎

)3
]
. (10)
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Fig. 6. Schematic of the budding rosette model. Each bullet has a length 2𝑐, a width 2𝑎, and a pyramidal “tip”

that intersects with the central sphere, which itself has a radius 𝑟0. Each pyramid has a total height ℎ𝑝, with a

portion ℎ0 long removed from the peak such that intersection with the sphere is 𝑓𝑎0𝑟0 across.
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382

383

Thus, the budding rosette volume is397

𝑉𝑟𝑜𝑠 =
4

3
𝜋𝑟3

0 +𝑛𝑏 (𝑉𝑐𝑜𝑙 +𝑉𝑝𝑦𝑟), (11)
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with effective density398

𝜌𝑒 𝑓 𝑓 =
𝜌𝑖𝑉𝑟𝑜𝑠
4
3
𝜋𝑟3

𝑒 𝑓 𝑓

, where 𝑟𝑒 𝑓 𝑓 = 𝑟0 +2𝑐

(
1+ 𝑓𝑝𝑦𝑟

𝑎

𝑎0

)
, (12)

assuming a symmetrical rosette.399

To compare this model to our data, the growth rate for a budding rosette is needed, and this400

requires the capacitance. The capacitance of a rosette depends on the maximum dimension and401

the aspect ratio (𝜙 = 𝑐/𝑎) of the branches. The branch aspect ratio is determined using the ratio of402

the a- and c-dimension deposition coefficients following Nelson and Baker (1996),403

𝑑𝑐

𝑑𝑎
=
𝛼𝑐

𝛼𝑎

≡ Γ. (13)

We calculate the capacitance of a bullet rosette with 𝑛𝑏 branches of aspect ratio 𝜙 as404

𝐶 = 0.35𝜙−0.27𝐷𝑚𝑎𝑥 if 𝑛𝑏 = 4 (Westbrook et al. 2008, their Eq. 5)

𝐶 = 0.40𝜙−0.25𝐷𝑚𝑎𝑥 if 𝑛𝑏 = 6 (Westbrook et al. 2008, their Eq. 6)

𝐶 = 0.40
(𝑛𝑏

6

)0.257

𝜙−0.25𝐷𝑚𝑎𝑥 if 𝑛𝑏 > 6 (Chiruta and Wang 2003, based on their Eq. 15),

(14)

where 𝐷𝑚𝑎𝑥 = 4𝑐(1 + 𝑓𝑝𝑦𝑟) is the maximum dimension of a rosette with four or six branches405

(Westbrook et al. 2008). To approximate the capacitance for rosettes with more branches, we406

use the capacitance from Chiruta and Wang (2003). Their parameterization is valid for rosettes407

with 2 to 16 branches, but it is independent of the branch aspect ratio. We therefore estimate408

the 𝜙-dependence using the six-branch capacitance of Westbrook et al. (2008), ensuring that the409

equations match for 𝑛𝑏 = 6. Since the exponent on 𝜙 appears to be weakly dependent on 𝑛𝑏 (see410

the first two equations in Eq. 14), this approximation is justifiable.411

The growth of a budding rosette requires the inclusion of the spherical core, an influence that412

needs to be estimated. Growth from vapor deposition depends on the surface area multiplied by413

the vapor diffusion flux. For a sphere this goes as 4𝜋𝑟2
0
× (𝐷𝑒 𝑓 𝑓 𝑠𝑖𝜌𝑒𝑞/𝑟0). For a non-spherical414

crystal, Nelson (1994, pg 52, Eq. 3.1) suggests 𝐶 is the appropriate length scale for the flux, the415

growth rate then goes as 4𝜋𝐶2 × (𝐷𝑒 𝑓 𝑓 𝑠𝑖𝜌𝑒𝑞/𝐶). As an approximation, we follow Harrington and416

Pokrifka (2021) and write the growth of a budding rosette as a weighted combination of these417
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fluxes, using the weighting factor418

𝑤 =
𝐴𝑖𝑛𝑡

𝐴𝑠𝑐𝑙

=
4𝜋𝑟2

0

4𝜋(𝑟2
0
+𝐶2)

, (15)

where 𝐴𝑖𝑛𝑡 is the surface area of the sphere and 𝐴𝑠𝑐𝑙 is a ”scaling” surface area of the sphere and419

the branches. This latter area is, in a sense, a total area for vapor diffusion. The growth rate of a420

budding rosette is therefore approximately421

𝑑𝑚

𝑑𝑡 𝑟𝑜𝑠
≃ 𝐴𝑠𝑐𝑙

(
𝑤
𝐷𝑒 𝑓 𝑓 𝑠𝑖𝜌𝑒𝑞

𝑟0
+ (1−𝑤)

𝐷𝑒 𝑓 𝑓 𝑠𝑖𝜌𝑒𝑞

𝐶

)
= 4𝜋(𝑟0 +𝐶)𝐷𝑒 𝑓 𝑓 𝑠𝑖𝜌𝑒𝑞, (16)

where the right-most form results from substitution of the total area and the weight. Note that the422

growth length scale simply becomes the initial radius plus the capacitance of the branches. Since423

the crystals begin without branches, this equation reduces to that of a sphere, as expected. To424

compare directly to the data requires the growth rate ratio averaged over the growth time-series425

which is426

¤𝑚𝑟𝑎𝑡 =

(
𝑟0 +𝐶
𝑟𝑠

)
. (17)

where 𝑟𝑠 is the solid-sphere radius.427

The evolution of a budding rosette is simulated using the geometry (Eqs. 11 and 12) with the428

growth equation (Eq. 16). Our measurements provide the ranges for the initial radius (5 - 20 𝜇m)429

and the final mass ratio (8 - 18), but 𝑓𝑝𝑦𝑟 , 𝑓𝑎0, Γ, 𝑛𝑏, must be prescribed in this model. These430

values are given reasonable ranges based on geometry and prior measurements. For example, Γ431

may be unity, producing compact branches, or it may be as large as 20 (Harrington et al. 2019,432

their Fig. 12) causing the branches to become long and thin. We set 𝑛𝑏 to 4, 6, or 10, based on433

observations that rosettes can have at least 8 branches (Heymsfield and Iaquinta 2000) and prior434

theoretical calculations providing the capacitance for 4, 6 (Westbrook et al. 2008) and up to 16435

branch rosettes (Chiruta and Wang 2003). If 𝑛𝑏 is 4 or 6, we set 𝑓𝑎0 to be within the range of 0.5436

- 0.9. Since 𝑓𝑎0 controls that amount of the internal sphere’s surface area that is covered by each437

branch, it is reduced to be 0.2 - 0.5 when 𝑛𝑏 = 10 to accommodate the larger number of branches.438

These ranges are based on estimates of the number of hexagonal facets that can reasonably tile439
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Fig. 7. Example budding rosette simulations with six branches and an initial radius of 10 𝜇m. Cyan, black,

and purple curves have Γ set to 1.5, 3.0, and 6.0, respectively. Dashed, solid, and dot-dashed curves have 𝑓𝑎0 set

to 0.5, 0.7, and 0.8, respectively. Plotted is the effective density (upper left), power-law exponent (upper right),

branch aspect ratio (lower left), and growth rate ratio (lower right) as a function of mass ratio.
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the surface of a sphere, following the model of Harrington and Pokrifka (2021). Westbrook et al.440

(2008) assumes a value of 0.5 for 𝑓𝑝𝑦𝑟 , which we expand to a range of 0.2 - 0.6.441

Figure 7 shows the simulated growth of selected, six-branched particles following Eqs. 9 - 17, all446

of which use 𝑟0 = 10𝜇m, final 𝑚𝑟 = 15 and 𝑓𝑝𝑦𝑟 = 0.5. Unsurprisingly, increasing Γ (cyan to black447

to purple solid curves) causes a larger decrease in the effective density and increase in the power-448

law exponent. That is, increasing the growth of the 𝑐-dimension with respect to the 𝑎-dimension449

causes the branches to become thinner (larger aspect ratio), lowering the effective density. The450
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resulting branch aspect ratios are quite reasonable, reaching 1.5 - 2.5 when Γ = 6. Decreasing451

𝑓𝑎0 (dot-dashed to solid to dashed purple curves) produces thinner branches, a decreased effective452

density and an increased power-law exponent. This also makes physical sense, because a smaller453

initial branch area spaces them further apart and makes them thinner. Furthermore, both increasing454

Γ and decreasing 𝑓𝑎0 produce enhanced growth rates, with growth rate ratios ranging from 1 to ¿2.455

These values of effective density, power-law exponent, and growth rate ratio are in good agreement456

with the data (Fig. 5).457

The results from Fig. 7 clearly indicate that growth rate ratio and effective density depend on the458

manner in which branches form (through surface area coverage) and the resulting aspect ratios of459

the branches (controlled by the deposition coefficient ratio Γ). The variability in the data shown460

in Fig. 5 (black circles) is therefore not surprising. To emulate the data, we ran many additional461

simulations with the budding rosette model (Eqs. 9 - 17), the results of which are shown as green462

points in Fig. 5. Each point is from one growth simulation, and the variability is from random463

selections of 𝑟0, 𝑓𝑝𝑦𝑟 , 𝑓𝑎0, 𝑛𝑏, Γ and the final mass ratio using the ranges discussed above. These464

results strongly resemble the data and imply that the particles grown in the laboratory were likely465

polycrystalline, and may well have been budding rosettes. Simulations with a polycrystalline plate466

model does not produce a match with the data, since the points scatter near 𝑃 = 1 (not shown),467

which is reasonable for planar particles.468

The match of the budding rosette model with the data also provides indirect corroboration469

of the classical geometric rosette model for cloud modeling applications. However, using this470

model requires a number of unknown parameters, including the number of branches and branch471

aspect ratio, which makes fitting the growth data with the budding rosette model unjustified.472

The measured mass ratio time-series and initial size are not enough to adequately constrain the473

unknown parameters. Thus, the parameterizations that we develop in the following section are474

derived entirely from the laboratory data, independent of the budding rosette model. The advantage475

in using the simplified effective density in a parameterization is that the unknown parameters are476

implicitly included.477

24



6. Supersaturation dependence and parameterization of the effective density478

The strong correlation between the effective density and the growth rate enhancement indicates479

that there is structural regularity to the measured data that should also appear as a function of the480

supersaturation, even though such regularity is not apparent in Figs. 3 and 4. For completeness, we481

include the data at low supersaturation, which often show evidence of attachment kinetic limitations482

(Pokrifka et al. 2020). To further investigate the supersaturation dependence to growth, we examine483

the fraction of experiments with kinetic limitations (growth rate ratio ¡ 1) as compared to those484

with enhanced growth (growth rate ratio ¿ 1). If we calculate this fraction in supersaturation ratio485

bins of 0.0 - 0.4, 0.4 - 0.6, 0.6 - 0.8, and 0.8 - 1.0 (Fig. 8), it becomes clear that kinetics-limited486

growth (dashed) is more common when the 𝑠𝑖,𝑟𝑎𝑡 is lower, whereas enhanced growth is common487

when 𝑠𝑖,𝑟𝑎𝑡 is high (solid). The increased occurrence of enhanced growth with increasing 𝑠𝑖,𝑟𝑎𝑡488

reflects the results shown in Fig. 4. Note that a similar result appears when 𝑠𝑖,𝑟𝑎𝑡 ranges of 0 - 0.2489

and 0.2 - 0.4 are used, as little growth enhancement occurred at 𝑠𝑖,𝑟𝑎𝑡 < 0.4 (Fig. 4), thus we use490

the combined range of 0 - 0.4 for clarity, and do so for the remainder of this work. This 𝑠𝑖.𝑟𝑎𝑡 range491

is well represented by solid ice, however attachment kinetics must be included to properly account492

for the mass growth rate (Pokrifka et al. 2020).493

We should expect an approximately monotonic rise in the relative frequency of enhanced growth496

cases with supersaturation ratio, but variability within a given 𝑠𝑖,𝑟𝑎𝑡 range is also to be expected,497

since crystals nucleated from frozen water droplets will vary in their morphological complexity498

(Bacon et al. 2003). Such variability is shown in Fig. 9 through a 2-dimensional (2-D) distribution499

of the relative frequency of cases as a function of the supersaturation ratio and the growth rate ratio500

for the entire dataset. This 2-D distribution confirms that increasing 𝑠𝑖,𝑟𝑎𝑡 increases the likelihood501

of particles growing at enhanced rates and that low 𝑠𝑖,𝑟𝑎𝑡 often produces kinetics-limited growth502

that can be approximated as solid ice (i.e., 𝜌𝑑𝑒𝑝 = 920 kg m−3 and 𝑃 = 0).503

It is important to note that while the 268 experiments we conducted are numerous for individual507

crystal studies, the data are too few for a detailed statistical analysis. In addition, there are508

relatively fewer data at 𝑠𝑖,𝑟𝑎𝑡 ≲ 0.2. Experiments at 𝑠𝑖,𝑟𝑎𝑡 ≲ 0.2 are challenging, since they take509

a whole day to conduct due to very small particle growth rates. This is in contrast to higher-510

𝑠𝑖,𝑟𝑎𝑡 experiments, where multiple particles can be grown within a day. However, most of the511

high-𝑠𝑖,𝑟𝑎𝑡 (≳ 0.8) experiments were conducted around the low-to-mid portion of the temperature512
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Fig. 8. Fraction of particles in the dataset that show enhanced growth (solid) or limited growth (dashed) in

supersaturation ratio bins of 0.0 - 0.4, 0.4 - 0.6, 0.6 - 0.8, and 0.8 - 1.0.

494

495

range (i.e., -63 to -53◦C). To examine the potential impact of this sample bias, we split the dataset513

into “warm” (𝑇 > −56◦C) and “cold” (𝑇 < −56◦C) subsets. We indeed find that “warm” cases514

more frequently occur at low-𝑠𝑖,𝑟𝑎𝑡 and low- ¤𝑚𝑟𝑎𝑡 , and vise versa for “cold” cases, but both subsets515

demonstrate increasing ¤𝑚𝑟𝑎𝑡 with increasing 𝑠𝑖,𝑟𝑎𝑡 (not shown). Thus, the precise value and location516

of the maximum in Fig. 9 may change with more even sampling, but the positive correlation of517

supersaturation ratio and growth rate ratio is robust for both data subsets. This result indicates that518

𝑠𝑖,𝑟𝑎𝑡 is an environmental condition that may be utilized in conjunction with our data to produce519

parameterizations of effective density. We will also demonstrate that the sample bias has minimal520

effect on these parameterizations.521

Given the systematic correlation of the growth rate ratio with the supersaturation ratio, we should525

expect the effective density to behave in a similar fashion. Figure 10 shows the relative frequency526
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Fig. 9. Two-dimensional relative frequency distribution of supersaturation ratio versus growth rate ratio.

Increasingly red contours indicate increasing occurrence. The green dashed line is where the growth rate ratio is

unity, as for a solid sphere: Above this line growth is enhanced, below it growth is limited.

504

505

506

of 𝜌𝑑𝑒𝑝 values derived from the fits (Eqs. 3 and 4) for all of the experiments in supersaturation527

ratio bins of 0 - 0.4 (cyan), 0.4 - 0.6 (blue), 0.6 - 0.8 (purple), 0.8 - 1 (black). To demonstrate528

the overall trend in each 𝑠𝑖,𝑟𝑎𝑡 bin, the 𝜌𝑑𝑒𝑝 values are separated in bins of 0 - 300, 300 - 600,529

600 - 920 kg m−3. The relative frequencies are also listed in Table 2. It is clear from Fig. 10530

that conditions with 𝑠𝑖,𝑟𝑎𝑡 < 0.6 often produce high values of 𝜌𝑑𝑒𝑝, and small 𝜌𝑑𝑒𝑝 values are rare.531
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Fig. 10. Relative frequency of cases producing deposition densities in ranges of 0 - 300, 300 - 600, and 600

- 920 kg m−3, in supersaturation ratio bins of 0.0 - 0.4 (cyan), 0.4 - 0.6 (blue), 0.6 - 0.8 (purple), and 0.8 - 1.0

(black).

522

523

524

As 𝑠𝑖,𝑟𝑎𝑡 increases, so does the frequency of smaller 𝜌𝑑𝑒𝑝 values, such that 𝜌𝑑𝑒𝑝 > 600 kg m−3 is532

the rarity when 𝑠𝑖,𝑟𝑎𝑡 > 0.6. Unsurprisingly, supersaturation near liquid saturation (𝑠𝑖,𝑟𝑎𝑡¿0.8) most533

frequently produces the smallest values of 𝜌𝑑𝑒𝑝, which are associated with the greatest degree of534

growth enhancement. The supersaturation ratio dependence of the time-averaged effective density535

(Fig. 11, solid curves) is similar to that of 𝜌𝑑𝑒𝑝, though the values of 𝜌𝑒 𝑓 𝑓 are larger. This is536

expected because 𝜌𝑒 𝑓 𝑓 approaches 𝜌𝑑𝑒𝑝 as crystal size increases.537

A 2-D relative frequency distribution of the deposition density and supersaturation ratio (Fig. 12)545

provides a more succinct visualization of the information in Fig. 10. The distribution highlights546

two local maxima of the relative frequency. One maximum appears for values of 𝑠𝑖,𝑟𝑎𝑡 < 0.4, and547

it corresponds to particles with high density (𝜌𝑑𝑒𝑝 ∼ 𝜌𝑖). As the supersaturation ratio approaches548
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Table 2. Relative frequencies of deposition density, effective density from 𝜌𝑑𝑒𝑝−fits, and power-law exponent

for experiments in supersaturation ratio bins of 0 - 0.4, 0.4 - 0.6, 0.6 - 0.8, and 0.8 - 1. The densities are in ranges

of 0 - 300, 300 - 600, and 600 - 920 kg m−3, and the power-law exponents are in ranges of 0 - 0.5, 0.5 - 1, 1 - 1.5,

and 1.5 - 2.

538

539

540

541

supersaturation ratio deposition density (kg m−3) effective density (kg m−3) power-law exponent

0 - 300 300 - 600 600 - 920 0 - 300 300 - 600 600 - 920 0 - 0.5 0.5 - 1 1 - 1.5 1.5 - 2

0 - 0.4 12.1% 15.2% 72.7% 5.0% 19.2% 75.8% 71.7% 12.1% 10.1% 6.1%

0.4 - 0.6 14.3% 25.4% 60.3% 9.5% 25.4% 65.1% 61.9% 15.9% 17.4% 4.8%

0.6 - 0.8 35.3% 64.7% 0.0% 8.8% 82.4% 8.8% 0.0% 41.2% 50.0% 8.8%

0.8 - 1 61.1% 26.4% 12.5% 32.0% 48.6% 19.4% 9.7% 11.1% 48.6% 30.6%

liquid saturation, 𝜌𝑑𝑒𝑝 falls and there is another maximum at 𝜌𝑑𝑒𝑝 ∼ 250 kg m−3. To estimate549

the most likely values of 𝜌𝑑𝑒𝑝 at some 𝑠𝑖,𝑟𝑎𝑡 , we fit a linear function between both maxima (dark550

green dashed line). At low 𝑠𝑖,𝑟𝑎𝑡 , we find the linear fit from 𝑠𝑖,𝑟𝑎𝑡 = 0 and 𝜌𝑑𝑒𝑝 = 920 kg m−3 to the551

high-density local maximum (light green dashed line). The two linear fits cover all values of 𝑠𝑖,𝑟𝑎𝑡552

from our experiments and are given by553

𝜌𝑑𝑒𝑝 (𝑠𝑖,𝑟𝑎𝑡) =



−32.332𝑠𝑖,𝑟𝑎𝑡 +920, 𝑠𝑖,𝑟𝑎𝑡 ≤ 0.267

−1027.456𝑠𝑖,𝑟𝑎𝑡 +1185.834, 𝑠𝑖,𝑟𝑎𝑡 > 0.267
, (18)

where the coefficients have units of kg m−3. A mass-size relationship can then be derived by554

substituting Eq. 18 into Eq. 4,555

𝑚(𝜌𝑑𝑒𝑝) =
4

3
𝜋𝜌𝑒 𝑓 𝑓 (𝜌𝑑𝑒𝑝)𝑟3

=
4

3
𝜋{[𝜌𝑖 − 𝜌𝑑𝑒𝑝 (𝑠𝑖,𝑟𝑎𝑡)]𝑟3

0 + 𝜌𝑑𝑒𝑝 (𝑠𝑖,𝑟𝑎𝑡)𝑟3}. (19)

Here, 𝑟 is the the radius of the sphere encompassing the particle, or the maximum semi-dimension.556

Equations 18 and 19 comprise a parameterization of the effective density as a function of 𝜌𝑑𝑒𝑝 at557

low temperatures suitable for particle property microphysical models rooted in the method of Chen558

and Lamb (1994), such as Hashino and Tripoli (2007), Chen and Tsai (2016), and Jensen et al.559

(2017). Those models currently use 𝜌𝑑𝑒𝑝 ≃ 𝜌𝑖 at temperatures below -20◦C. Note that Eq. 19 is560

strictly valid for constant 𝑠𝑖,𝑟𝑎𝑡 . We discuss below how to utilize this parameterization with variable561

temperature and supersaturation.562
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Fig. 11. Relative frequency of cases producing mean effective densities in ranges of 0 - 300, 300 - 600, and 600

- 920 kg m−3, derived from the deposition density (solid) and power-law (dashed) for the same supersaturation

ratio bins as in Fig. 10.

542

543

544

To test the potential impact that a sampling bias may have on this parameterization, we repeat the569

above linear fitting procedure with data in the range 0.2 < 𝑠𝑖,𝑟𝑎𝑡 < 0.8 (purple dot-dashed curve in570

Fig. 12). This range of supersaturation ratio eliminates the regions where most of the sampling bias571

occurred. Using only data where 0.2 < 𝑠𝑖,𝑟𝑎𝑡 < 0.8 produces the same trend as the whole dataset, but572

with a slightly larger slope (compared to the green dashed curve). This change in slope makes sense573

in comparison to Fig. 10, which shows that disregarding 𝑠𝑖,𝑟𝑎𝑡 > 0.8 would shift the most frequent574

values of 𝜌𝑑𝑒𝑝 at high 𝑠𝑖,𝑟𝑎𝑡 to be 300 - 600 kg m−3. Because the data between 0.2 < 𝑠𝑖,𝑟𝑎𝑡 < 0.8 are575

evenly sampled, we can also test for a temperature-dependence in our parameterization method.576

While using the supersaturation ratio provides a common, temperature-independent scale to analyze577

the data, temperature has other influences, such as in crystal morphology and attachment kinetics.578
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Fig. 12. Two-dimensional relative frequency distribution of supersaturation ratio versus deposition density.

Increasingly red contours indicates increasing number of occurrences. The light green dashed curve is a linear

fit from the (𝑠𝑖,𝑟𝑎𝑡 = 0, 𝜌𝑑𝑒𝑝 = 920 kg m−3) coordinate to the nearest local maximum, and the dark green dashed

curve is a linear fit between the two maxima. The purple dash-dotted curve is the same as the green dashed

curves, but using only cases with 𝑠𝑖,𝑟𝑎𝑡 between 0.2 and 0.8. The pink and indigo dotted curves are the same as

the purple dash-dotted curve, but with the temperatures restricted to above -56◦C and below -56◦C, respectively.

563

564

565

566

567

568

As before, we have split the dataset into cold and warm regions at -56◦C, and the resulting curves579

are plotted on Fig. 12. For 𝑇 > −56◦C (pink dotted curve) the slope decreases, and for 𝑇 < −56◦C580
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(indigo dotted curve) the slope increases. This small variation indicates that the temperature581

dependence of 𝜌𝑑𝑒𝑝 is second-order compared to the primary dependence on 𝑠𝑖,𝑟𝑎𝑡 , which seems582

well characterized by our data.583

Traditional microphysical schemes parameterize the effective density and the mass with power584

laws, and we therefore follow the above method to estimate the most likely value for the power-law585

exponent 𝑃 for Eqs. 5 and 6. Figure 13 shows the relative frequency of observed 𝑃 values for586

the same supersaturation ratio ranges used in Fig. 10 (see also Table 2). Here, the power-law587

exponents are binned into ranges of 0 - 0.5, 0.5 - 1, 1 - 1.5, and 1.5 - 2. Similar to Fig. 10,588

lower supersaturation ratios 𝑠𝑖,𝑟𝑎𝑡 < 0.6 (cyan and blue curves) produce little enhanced growth and,589

therefore, values of 𝑃 ∼ 0 occur frequently. Increasing 𝑠𝑖,𝑟𝑎𝑡 (to purple then black curves) increases590

the frequency of 𝑃 values associated with greater growth enhancement. Again, the largest amount591

of growth enhancement is most common near liquid saturation (black curve), but even under these592

conditions, 𝑃 is most frequently in the range of 1 - 1.5 instead of 1.5 - 2. Since 𝑃 ∼ 2 is consistent593

with columnar growth (note that hollow columns can have 𝑃 > 2), it is interesting that the fraction594

of particles grown near liquid saturation with 𝑃 ∼ 2 (30.6%) is close to the fraction of columns that595

Bailey and Hallett (2004) grew under similar conditions (Hashino and Tripoli 2008, see their Fig.596

1). Additionally, the power-law produces time-averaged 𝜌𝑒 𝑓 𝑓 relative frequencies that are similar597

to those calculated from 𝜌𝑑𝑒𝑝, but with values of 300 - 600 kg m−3 being slightly more common598

(Fig. 11, dashed curves).599

Like 𝜌𝑑𝑒𝑝, the variability in 𝑃 with supersaturation ratio can be better visualized with a 2-D606

distribution. Figure 14 shows two local maxima corresponding to those of Fig. 12. One maximum607

is at low 𝑠𝑖,𝑟𝑎𝑡 associated with high density particles (𝑃 ∼ 0) and growth limited by attachment608

kinetics. The second maximum occurs at high 𝑠𝑖,𝑟𝑎𝑡 where growth is enhanced (𝑃 ∼ 1.4). To609

estimate a most likely value of 𝑃 at high 𝑠𝑖,𝑟𝑎𝑡 we fit a line through both maxima (dark green dashed610

line). The value of 𝑃 is estimated at low-𝑠𝑖,𝑟𝑎𝑡 values with a linear fit from 𝑠𝑖,𝑟𝑎𝑡 = 0 and 𝑃 = 0 to611

the nearest local maximum (light green dashed line). The most likely value of 𝑃 for each 𝑠𝑖,𝑟𝑎𝑡 is612

thus estimated to be613

𝑃(𝑠𝑖,𝑟𝑎𝑡) =



0.082𝑠𝑖,𝑟𝑎𝑡 , 𝑠𝑖,𝑟𝑎𝑡 ≤ 0.267

2.106𝑠𝑖,𝑟𝑎𝑡 −0.541, 𝑠𝑖,𝑟𝑎𝑡 > 0.267
. (20)
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Fig. 13. Relative frequency of cases producing power-law exponents in ranges of 0 - 0.5, 0.5 - 1, 1 - 1.5, and

1.5 - 2 for the same supersaturation ratio bins as in Fig. 10

600

601

Combining Eq. 20 with Eq. 5 provides a parameterization for the effective density of small vapor614

grown crystals. This parameterization therefore produces a supersaturation-dependent power-law,615

𝑚(𝑃) = 4

3
𝜋𝜌𝑒 𝑓 𝑓 (𝑃)𝑟3

=
4

3
𝜋𝜌𝑖𝑟

𝑃(𝑠𝑖,𝑟𝑎𝑡 )
0

𝑟3−𝑃(𝑠𝑖,𝑟𝑎𝑡 ) . (21)

It should be noted that the sampling bias and temperature dependence shown for Fig. 12 is less616

pronounced for the distribution of 𝑃, and is therefore not shown. Because Eqs. 18 - 21 were617

derived from the measured growth of small particles (𝑟 ∼ 10− 100 𝜇m) at temperatures between618

-65 and -40◦C, these parameterizations may not be applicable to other conditions. Like Eq. 19,619

Eq. 21 is strictly valid for constant 𝑠𝑖,𝑟𝑎𝑡 (i.e., constant temperature and supersaturation). When the620

supersaturation ratio is variable, as in a real cloud, care must be taken in using Eq. 21. Since the621

power-law exponent changes with supersaturation ratio, one cannot simply change 𝑃 in Eq. 21, as622
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Fig. 14. Two-dimensional relative frequency distribution of supersaturation ratio versus power-law exponent.

Increasingly red contours indicates increasing number of occurrences. The light green dashed curve is a linear

fit from the (𝑠𝑖,𝑟𝑎𝑡 = 0, 𝑃 = 0) coordinate to the nearest local maximum, and the dark green dashed curve is a

linear fit between the two maxima.

602

603

604

605

this would instantaneously change the particle characteristics. Instead, the approach we advocate is623

to calculate the deposition density by taking the time-derivative of either Eq. 19 or 21 (depending624

on the chosen parameterization), which will result in either Eq. 3 or 6, respectively. The particle625
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effective density is then updated using Eq. 4. The physical interpretation is that the change in 𝑠𝑖,𝑟𝑎𝑡626

influences the effective density of the mass added to a particle during vapor growth.627

Be aware that we can not validate the approach described above. There are not any published data628

of individual ice particle growth rates with variable temperature and supersaturation at 𝑇 < −40◦C629

to compare against. Under these conditions, it is unknown if a particle’s deposition density or630

power-law exponent would change rapidly in response to a change in 𝑠𝑖,𝑟𝑎𝑡 , or if they are set upon631

nucleation and early growth. Due to this limitation, we suggest utilizing the results from our wide632

range of constant experimental conditions as an approximation.633

7. Summary and Discussion634

We grew 268 individual ice particles with equivalent-mass spherical radii less than 40 𝜇m635

inside the BEL diffusion chamber. Particle mass ratio time-series were measured at temperatures636

between -65 and -40◦C for supersaturations up to liquid saturation. Growth rates at high 𝑠𝑖 typically637

exceeded that of a solid sphere, which is consistent with complex crystal habits and can be treated638

with an effective density. We estimated 𝜌𝑒 𝑓 𝑓 with model fits to the measured mass ratio time-series639

by adjusting either a deposition density (𝜌𝑑𝑒𝑝) or a power-law exponent (𝑃). Both 𝜌𝑒 𝑓 𝑓 models640

represented the data well, and the time-averaged fit results resembled effective densities derived641

from models of budding rosettes and, at the largest growth rate ratios, columns. It is thus plausible642

that many of the particles growing at high 𝑠𝑖 developed those habits. The measured growth643

enhancement due to such complexity was well characterized by a ratio of the supersaturation to its644

value at liquid saturation (𝑠𝑖,𝑟𝑎𝑡). We have used 2-D relative frequency distributions of the 𝜌𝑑𝑒𝑝645

and 𝑃 results to estimate the most frequent values of 𝜌𝑑𝑒𝑝 and 𝑃 for any 𝑠𝑖,𝑟𝑎𝑡 , which may then be646

used to estimate a supersaturation-dependent effective density.647

It is important to heed the limitations in our study. These particles grew under constant tem-648

perature and supersaturation, which is not the case in clouds. We have assumed that the particles649

with enhanced growth had deposition coefficients of unity, but due to the attachment kinetic effects650

required to produce complex ice habits, this cannot be true for the whole particle. Similarly, we651

treated particles with growth rate ratios less than unity as kinetics-limited, but facet development652

on a frozen droplet can also have anomalously low growth rates with a high particle-averaged 𝛼653

(Pokrifka et al. 2020; Harrington and Pokrifka 2021). Furthermore, while our analysis suggests654
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that many of the crystals we grew may have been budding rosettes or columns, we cannot confirm655

the particle morphology. Our geometric model of a budding rosette, despite reproducing the vari-656

ability in the data, neglects facet hollowing, which likely occurred in our high-𝑠𝑖 experiments and657

would contribute to the effective density reduction. Caution is therefore warranted in estimating658

growth rates from the budding rosette model, especially given its numerous required, but unknown,659

parameters. The effective density parameterizations derived from the fits to the data with the de-660

position density and power-law exponent avoid these unknown parameters, but do so by avoiding661

a direct link to crystal geometry. That is, any and all complexity in particle shape is entangled in662

𝜌𝑑𝑒𝑝 and 𝑃.663

Despite these limitations, our results are consistent with prior work. As shown in Fig. 5, our664

effective density estimates range from about 100 kg m−3 to 𝜌𝑖. This is comparable to estimates665

from prior laboratory studies, but most of those were from particles growing at 𝑇 ≥ −22◦C and666

primarily near liquid saturation (high 𝑠𝑖,𝑟𝑎𝑡) (Fukuta 1969; Takahashi et al. 1991).667

Prior effective density estimates under similar temperature and supersaturation conditions as in668

our experiments have been made from in-situ observations, and they also find that 𝜌𝑒 𝑓 𝑓 can be as669

low as 100 kg m−3, but for larger particles (Mitchell 1996; Heymsfield et al. 2004, 2007). Their670

effective density relations must be limited at some minimum diameter, generally between 70 and671

100 𝜇m (Brown and Francis 1995; Heymsfield et al. 2010), otherwise nonphysical ice densities are672

produced. Smaller crystals are generally assumed to have the density of bulk ice (𝜌𝑒 𝑓 𝑓 ∼ 𝜌𝑖).673

However, other effective density estimates derived from in-situ observations that accommodate681

small particles are in good agreement with our measurements (Fig. 15). Figure 15 shows time-682

averaged effective densities as a function of growth rate ratio, much like the top panel of Fig. 5.683

Here, the circles are derived from the power-law fits to the data, with shading indicating the684

supersaturation ratio. Also plotted, in diamonds, are average effective densities following the685

mass-size parameterizations of Cotton et al. (2013), Erfani and Mitchell (2016), Fridlind et al.686

(2016), and Lawson et al. (2019). In each case, we simulate the growth of a particle with an initial687

radius of 10 𝜇m and a final mass ratio of 15 (final mass-equivalent spherical radius of ∼ 25𝜇m).688

The simulations use a temperature of -50◦C and pressure of 970 hPa, and are across a range of689

supersaturation ratios from 0 to 1, similar to the laboratory experiments. The observations of Cotton690

et al. (2013) (cyan) are consistent with our data at low 𝑠𝑖,𝑟𝑎𝑡 . Likewise, the rosette models of Fridlind691
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Fig. 15. Time-average effective density as a function of growth rate ratio. Circle are from the power-law fits to

the mass ratio data, with darker shading indicating higher supersaturation ratio. Diamonds are from calculations

using others’ mass-size relationships. Shown in red are the rosette (solid diamond), Bucky ball (curve) and

average of the Bucky ball (empty diamond) from Fridlind et al. (2016). The constant effective density from

Cotton et al. (2013) is in cyan, and the rosette model from Lawson et al. (2019) is in yellow. Shown in green

are the warm anvil (light solid), cold anvil (dark solid), warm synoptic (light empty), and cold synoptic (dark

empty) cirrus cases from Erfani and Mitchell (2016), with the full growth range as a green curve.
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et al. (2016) (solid red) and Lawson et al. (2019) (yellow) produce growth rate enhancements and692

effective density reductions that align well with the growth data. Erfani and Mitchell (2016) present693

multiple temperature-dependent mass-size relationships for synoptic (empty green) and anvil (solid694

green) cirrus. We have plotted the results from their warmest (light green) and coldest (dark green)695

cases, which produce slightly lower effective densities than our data, but they follow a similar696

functional form across our full mass range (green curve). The one outlier in this comparison is the697

Bucky ball model of Fridlind et al. (2016) (empty red). The average effective density from this698

model is significantly lower than the laboratory data. The full growth model across our mass range699
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Fig. 16. Effective density from the budding rosette model with four branches (solid) compared to the geometric

rosette model of Heymsfield et al. (2002) (dashed) as a function of mass ratio. The later model is limited to

diameter ≥ 65 𝜇m All simulations have an initial radius of 10 𝜇m, 𝑓𝑝𝑦𝑟 = 0.5, and 𝑓𝑎0 = 0.7. Cyan, black, and

purple curves have Γ set to 1.5, 3.0, and 6.0, respectively. Note the logarithmic scale 𝜌𝑒 𝑓 𝑓 .
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709

(red curve) reveals that, at small sizes, the Bucky ball model is an exceptional match to our data,700

but the effective density falls too quickly as the particle grows. Otherwise, these results indicate701

that particle growth rates produced by mass-size relationships derived from in-situ observations702

are corroborated by the growth rates of our laboratory measurements at low- to mid-𝑠𝑖,𝑟𝑎𝑡 . They do703

not, however, reach the highest growth rate ratios (and lowest effective densities) that our data and704

parameterizations produce at high-𝑠𝑖,𝑟𝑎𝑡 .705

Further agreement between our study and in-situ observations appears in comparing geometric710

models. The correspondence between our measurements and our geometric model of a budding711

rosette indicates that a rosette model provides relatively accurate growth rates at high 𝑠𝑖. Heymsfield712
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et al. (2002) present a geometric rosette model suitable for larger crystals that was successfully713

used to interpret in-situ observations. Figure 16 shows that our model of a budding rosette, using714

four branches (solid curves), produces effective densities that approach the values from the model715

by Heymsfield et al. (2002) (dashed curves, beginning at a diameter of 65 𝜇m), when the particles716

grow larger (mass ratio ≳ 10). The overlaps in 𝜌𝑒 𝑓 𝑓 between both models, and between our budding717

rosette model and data, suggest that our measurement-derived effective density functions offer a718

plausible extension to nucleation sizes that is complementary to in-situ observations.719

One advantage of our approach is that information on the time-dependence of growth is implicitly720

included in our parameterizations, since the mass-size relationships are derived from fits to the721

time-series data. Our measurement-derived parameterizations provide a method to model the722

growth of small ice particles that captures the effects of habit complexity.723
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