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ABSTRACT: An electrodynamic levitation thermal-gradient diffusion chamber was used to grow
268 individual, small ice particles (initial radii of 8 - 26um) from the vapor, at temperatures
ranging from -65 to -40°C, and supersaturations up to liquid saturation. Growth limited by
attachment kinetics was frequently measured at low supersaturation, as shown in prior work. At
high supersaturation enhanced growth was measured, likely due to the development of branches
and hollowed facets.

The effects of branching and hollowing on particle growth are often treated with an effective density
perr- We fit the measured time-series with two different models to estimate size-dependent p, 7 ¢
values: The first model decreases p. ¢ to an asymptotic deposition density pq.,, and the second
models p,rr by a power-law with exponent P. Both methods produce similar results, though the
fits with pg., typically have lower relative errors. The fit results do not correspond well with
models of isometric or planar single-crystalline growth. While single-crystalline columnar crystals
correspond to some of the highest growth rates, a newly constructed geometric model of budding
rosette crystals produces the best match with the growth data.

The relative frequency of occurrence of p4e,- and P- values show a clear dependence on ice
supersaturation normalized to liquid saturation. We use these relative frequencies of pg., and
P to derive two supersaturation-dependent mass-size relationships suitable for cloud modeling

applications.
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1. Introduction

The early growth of ice in clouds is a challenging problem, and little is known about the shapes
and growth rates of small (radius < 50 pum) ice crystals immediately after nucleation. As a newly-
nucleated ice particle begins to grow from the vapor, facets develop on the crystal, altering its
growth rate. The formation and growth of facets, and thus particle shape, is controlled by gas-
phase vapor diffusion and attachment kinetics. “Attachment kinetics” refers to the set of processes
in which vapor molecules adsorb onto and diffuse along the ice surface, until they either desorb
or incorporate into the ice. When the ice supersaturation (hereafter “supersaturation”, s;) is high,
facet instabilities can lead to the development of branching and hollowing on crystals. Much of
the interior surface area of a branched or hollowed particle is “shadowed” and experiences low
supersaturation, resulting in slow growth compared to the crystal’s extremities that extend further
into the vapor field where s; is higher (Nelson 2001). The extremities then grow rapidly, and it
is the resistance to vapor growth on much of the particle due to attachment kinetics that causes
the particle to increase in size and mass faster than a solid ice sphere. This is true even for small
particles which can become branched and hollowed (Magee et al. 2021). However, no exact method
exists to treat such processes.

Due to the effects of attachment kinetics, mass is not added uniformly across a growing ice
particle, otherwise it would remain spherical. Thus, to model the growth of an ice particle, one
must make some assumptions regarding the distribution of added mass. For example, the basic
planar or columnar habit of a crystal may be approximated as a spheroid (Chen and Lamb 1994), or
simply as a sphere. But in each case, any “complexity” in the crystal such as branching, hollowing,
and non-spherical habit is treated with an “effective” density that is reduced from the bulk ice
density (~920 kg m~3).

A variety of techniques have been used to estimate the effective densities of ice particles. One
approach is to acquire in-situ estimates of cloud particle sizes and masses (Heymsfield and Iaquinta
2000; Baker and Lawson 2006; Erfani and Mitchell 2016). While in-situ observations have the
benefit of examining entire populations of particles, their studies typically cannot determine the
density of small crystals. The results from Cotton et al. (2013) are an exception, suggesting that
particles with radii less than 35 xm are characterized by a constant effective density of 700 kg m=>.

Limits on the optical resolution of airborne probes can add uncertainty to the shapes and sizes of
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small particles, however, Erfani and Mitchell (2016) estimated effective densities of particles with
maximum dimensions down to 20 pum using a cloud particle imager. Further uncertainty arises
from the fact that two-dimensional projections of particles can correspond to numerous particle
orientations and three-dimensional geometries (Dunnavan and Jiang 2019; Dunnavan et al. 2019).

Another method of estimating the effective density of ice is from ground-based observations of
precipitating snowflakes (Muramoto et al. 1995; Brandes et al. 2007; Rees et al. 2021; Leinonen
et al. 2021). One benefit of ground-based versus aircraft observations is that the ice particles can
be imaged more than once and from multiple directions. For example, a Multi-Angle Snowflake
Camera (MASC, Garrett et al. 2015) utilizes multiple camera views to reliably record a snowflake’s
three-dimensional geometry (Dunnavan et al. 2019; Rees et al. 2021; Leinonen et al. 2021).
However, the effective densities derived from ground-based observations of large (radius > 0.5 mm)
snowflakes are not applicable to the small crystals (radius < 100 gm). Both aircraft and ground-
based methods only have instantaneous views of particles, and thus cannot provide information on
how effective density changes in time. Yet the time variation of particle mass and size is required
to evaluate and improve growth models.

Time variation of the effective ice density may be derived from laboratory measurements. Prior
experiments have grown ice particles in cloud chambers (Fukuta 1969; Ryan et al. 1974, 1976;
Weitzel et al. 2020) and wind tunnels (Matsuo and Fukuta 1987; Takahashi and Fukuta 1988;
Takahashi et al. 1991). Wind tunnel experiments suspend crystals for tens of minutes and show that
effective densities can decline substantially and rapidly, particularly in pronounced habit regimes
(Fukuta and Takahashi 1999). However, all of the prior laboratory measurements of effective
density known to the authors were at temperatures (7)) higher than -25°C. Polycrystalline ice is
more likely to form as 7" decreases (Parungo and Weickmann 1973; Bacon et al. 2003; Bailey and
Hallett 2004) and polycrystals can have substantially lower effective densities than single-crystals
(Ryan et al. 1976). Unfortunately, no prior time-series measurements of the growth of small ice
crystals exist at low temperatures and high supersaturation. Without such measurements, it is not
possible to assess model-generated growth rates, even those derived from instantaneous in-situ
observations.

We address this lack of data by presenting results from experiments using small crystals grown

in a levitation thermal diffusion chamber at 7 < —40°C. These experiments are used to estimate
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effective densities for vapor growth. In the following sections, we describe the experimental design
and the crystal growth model used to fit the experimental data. In §4 and 5 we estimate effective
densities from the data and use a newly-developed budding rosette model to interpret the data. In §6,
two parameterizations of effective-density-size, and therefore, mass-size relationships are derived.
These parameterizations link laboratory-determined growth rates to the effective density, therefore
allowing the use of measured growth rates in cloud models. We end in §7 with a discussion and

summary of our findings.

2. Levitation diffusion chamber ice growth experiments

Our experiments involve growing small (initial radius ro of 8 - 26 ym and equivalent-mass
spherical radius ry; < 40 um) ice particles inside the Button Electrode Levitation (BEL) thermal-
gradient diffusion chamber. The chamber is described in detail by Harrison et al. (2016), so we
will discuss it only briefly here. The BEL chamber consists of parallel copper plates at the top
and bottom, which are separated by a plastic ring 1.27 cm tall and 10.2 cm in diameter. The
aspect ratio of 8:1 is sufficiently large so that wall effects are minimized (Elliott 1971). The
plate temperatures are controlled independently, and the bottom plate has a lower temperature for
thermal stability. Water vapor is supplied by ice-covered filter paper that is affixed to the interior
plate surfaces. There are holes in the filter paper on the top plate for four button electrodes and
an opening through which droplets are introduced to the chamber. Simulations and measurements
reveal that the supersaturation at the center of the chamber may be approximated with diffusion
chamber theory (Pokrifka et al. 2020), where the supersaturation is controlled by the difference in
the plate temperatures.

Charged liquid water droplets are launched into the BEL chamber. The droplets quickly freeze
and are levitated by an opposing direct current voltage applied to the bottom plate, and they are
stabilized horizontally by an alternating current on the upper electrodes. The charge applied to
the ice particles is less than that which could cause electrically enhanced growth (Bacon et al.
2003; Davis 2010; Harrison et al. 2016). During an experiment, the ice particle grows from the
vapor, increasing the voltage necessary for levitation. Stable levitation is maintained by software
that automatically adjusts the bottom-plate voltage, and records the time-series thereof at 1 Hz.

The measured voltage is then normalized by its value at the beginning of the experiment. That
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normalization is equivalent to the mass ratio, m, = m/mg, where m is the particle’s mass and m
is its mass at the beginning of the experiment. We determine mg by illuminating the particle
with a helium-neon laser and match the resulting diffraction patterns to Mie theory, which gives
the initial spherical radius (rg). As the particle grows, the diffraction patterns gradually become
disordered, indicating that the particle is no longer spherical. Beyond the initial time, no further
size information is directly measured; it must instead be inferred from the mass ratio time-series.
The water used in these experiments is either pure high-pressure liquid chromatography (HPLC)
water for homogeneous nucleation (177 experiments) or a 0.2 g L™' mixture of the bionucleant
Snomax® in HPLC water (following Harrison et al. 2016) for heterogeneous nucleation (91 exper-
iments). However, the key results of this study do not show any significant nucleation dependence
(i.e., the presence or lack of ice nucleating particles), thus we will be presenting them in aggregate.
Experiments were conducted at atmospheric pressure (~ 970 hPa) with conditions that have con-
stant temperatures ranging from -65 to -40°C and supersaturations from ; 1% to liquid saturation.
These conditions cover lower 7" and higher s; than previous experiments with the BEL chamber
(Harrison et al. 2016; Pokrifka et al. 2020), which used T between -45 and -30°C. For the present ex-
periments, the device has been upgraded such that the copper plates are now cooled using methanol,
which is sealed into its housing with fluorosilicone gaskets, instead of Syltherm™ coolant sealed
with Buna-N gaskets. This modification allows the plates to be cooled to ~ —70°C without coolant
leaks, and the BEL chamber can produce s; near liquid saturation for temperatures down to -60°.
Since high supersaturation requires a large difference between the plate temperatures, achieving
liquid saturation at 7 < —60°C would risk causing methanol leaks. Thus, the changes to the device
have enabled us to explore experimental conditions where there has been a lack of ice growth data.

Next, to interpret the growth data, we compare them to a vapor growth model, as described below.

3. Ice vapor growth model

We analyze the growth data using the Diffusion Surface Kinetics Ice Crystal Evolution (DiSKICE)
model (Harrington et al. 2019). The DiSKICE model can develop the primary habits of faceted
ice with the inclusion of attachment kinetics, and it has been used to successfully interpret prior
laboratory growth data (Harrison et al. 2016; Harrington et al. 2019; Pokrifka et al. 2020). The

DiSKICE model treats the far-field gas-phase diffusion to the ice particle with capacitance theory
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and vapor attachment with the theory of faceted growth. The resulting growth equation,

d
d_’:L :47TC(C,a)S[pqueff[T’ P,a(T,s:)], (1)

is similar in form to the capacitance model, where C(c, a) is the geometric capacitance that depends
on the a and ¢ semi-axis lengths, s; is the ice supersaturation, and p,, is the ice equilibrium vapor
density. The effective vapor and thermal diffusivity, D, s, includes the influences of attachment
kinetics through the deposition coefficient @, which may have different values for the a- and
c-semi-dimensions, allowing for the development of the primary habit forms (i.e. plates and
columns).

The deposition coefficient is parameterized by Nelson and Baker (1996) as

SSMVf' M Schar M
a:( ) tanh( ) , 2)

Schar Ssurf

where sy, 1 is the supersaturation at the particle surface, scj4, is a characteristic supersaturation, and
M is a growth mechanism parameter that ranges from 1 to 30. For example, spiral dislocations are
represented by M =1, while M > 10 is used for step nucleation. Outcroppings of dislocations on the
surface likely control the growth of ice following nucleation (Nelson and Knight 1998), producing
efficient growth (with @ > 0.1). However, the development of thin crystals with pronounced aspect
ratios requires step nucleation, which is far less efficient (Frank 1982). Consequently the growth
mode may vary both spatially across a particle (Wood et al. 2001) and temporally (Pokrifka et al.
2020).

At high supersaturation, the deposition coefficients approach unity, therefore attachment kinetics
no longer limit growth. But they remain in control of the mass distribution over a particle as
branching and/or hollowing occur. Branching and hollowing, and other complexities, are treated
through an effective density p.sr. The DiSKICE model incorporates a time-varying effective
density following Chen and Lamb (1994), in which the change in volume V of an enclosing shape
about a particle is the change in its mass divided by the density of the deposited ice, or deposition

density pq.p. Their Eq. 41 can be written as

dm _d(pessV)  dV 3)
dr . dr | Perg



166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

The deposition density is temperature- and supersaturation-dependent, and is determined from
measurements (Chen and Lamb 1994). If a crystal formed from a frozen water droplet with an

initial density of p; = 920 kg m~3, integration of the above equation assuming a constant p 4, p gives

Vi \%
peff(t):piw(;)"'pdep [1_%]a “4)

where Vj is the initial particle volume. Equation 4 clearly shows that the effective density in the
DiSKICE model decreases in proportion to V!, or 7=3 if the enclosing shape is a sphere. It should
be noted that such a decrease can be too rapid for larger crystals (Schrom et al. 2020). However,
this method is advantageous since the effective density will asymptotically approach p4., as the
volume increases.

Many prior studies have instead characterized p. s with a size-dependent power-law (Mitchell
1996; Cotton et al. 2013) or polynomial (Erfani and Mitchell 2016). Since we cannot physically
interpret multiple polynomial-fit parameters using a single measured quantity (mass ratio), we also

estimate p, rr with DiSKICE using a power-law,

o Vo PV_ ro 17 .
peff(t)—Pi[m] —pi[m], ®)

where r( is the initial radius, r(z) is the enclosing spherical radius at time ¢, and P = 3Py is an
adjustable parameter determined from best fits to the data. The mass growth rate is then

p, dVI~Pv dv

dm d(pe V)
= = (1=PY) -pess - (©)

dt dt YO dr
Note that the right-most equation has the same form as that of Eq. 3, except that the deposition
density has the form (1 - Py)p. s, which declines with increasing volume. This form has the
disadvantage that p, ¢ is not asymptotic and may become nonphysical for large particles. However,
the decrease of the deposition density with size leads to an initially slower, and more realistic,
decline in p, ¢y than Eq. 4 (Schrom et al. 2020). Since both forms of the effective density (Egs. 4
and 5) are used in parameterizations, we use each to fit the laboratory measurements. Be aware
that the p, r-values derived from these fits are associated with vapor growth, since the particle

geometry is unknown.
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4. Measurement Analysis

Ice particles in the size range of our experiments (ry < 40 um) have typically been treated as
spheres by prior laboratory measurements (Skrotzki et al. 2013; Harrison et al. 2016) and numerical
cloud models (Reisner et al. 1998; Morrison and Milbrandt 2015). Additionally, ice crystal growth
is not limited by attachment kinetics when the supersaturation exceeds the characteristic value
(Schar), which results in large (> 0.1) deposition coefficients (Eq. 2). For spherical growth in
these cases, the DISKICE model reduces to capacitance theory. Therefore, we compare our
measurements to solid spheres grown at the capacitance rate (hereafter “solid spheres”).

Note that preparation of the data follows the same procedures as Pokrifka et al. (2020). That is,
we fit the raw mass growth time-series data with cubic functions, then preform any further analysis
on those fits. However, we also use a low-pass filter on the data to illustrate the close fit of the

cubics.

a. Effective density fits to growth time-series

Recall that complexity can enhance crystal growth rates. Therefore, ice particles from our
experiments with mass growth rates greater than those of solid spheres are candidates to be
analyzed for reduced effective densities (p. rr). While we do not have sufficient visual information
to directly measure a particle’s morphology in our experiments, the complex habits formed in prior
levitation diffusion chamber experiments (see Bacon et al. 2003, their Figs. 5 and 8) indicates that
our particles may be treated with an equivalent-diameter sphere and an effective density. Using the
DiSKICE model, we simulate the growing crystal while allowing the effective density to decline
following either Eq. 4 or 5. We then fit the growth time-series by varying either pg., (Eq. 4) or
P (Eq. 5) until a minimum in the root-mean-square error is reached. For simplicity, we assume
diffusion-limited growth (@ = 1), which is consistent with frozen droplets initially having many
surface dislocations and with the instabilities associated with branching and hollowing (see §3).
This assumption may produce growth rates too large for faceted particles (Harrison et al. 2016;
Pokrifka et al. 2020), and it is primarily valid for high supersaturations, thus our results are upper
estimates of p, .

We measured enhanced growth for numerous crystals, and it is therefore not practical to show

the time-series for each experiment. Instead, we show characteristic examples of the measured
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Fic. 1. Representative time-series that is well-fit by both effective density models. The top panel shows the
measured mass ratio after low-pass data filtering (black circles, not all points shown), a cubic fit through the data
(black curve), a simulated solid sphere with the same initial size (dotted blue curve), an effective density model
fit to the data where pg., = 376 kg m~> (dashed green curve), and an effective density model fit to the data where
P =0.900 (dot-dashed magenta curve). The middle panel shows the mass ratio growth rate (d(m/mg)/dt). The
bottom panel shows the modeled effective density time-series. This experiment had ro = 12.2um, T = -55.9°C,

S; = 46.9070, and Si,rat = 0.67.

10



245

246

247

248

224

225

226

227

228

229

230

231

232

233

238

239

240

241

242

243

244

TasLE 1. The following are statistics of the relative errors for the py., and P fitting methods to the mass
ratio data. Given are the median error, the mean error, and the standard deviation, along with the maximum and
minimum error found among all cases. The percentage of growth experiments with a relative error of less than

5% is also shown.

statistic Pdep P
median 1.55% 2.06%
mean 1.92% 2.70%
standard deviation 1.52% 2.21%
maximum 7.95% 10.8%
minimum 0.114%  0.208%
errors < 5% 94.5% 82.4%

growth time-series in Figures 1 and 2, along with model fits to the data. We chose examples that
show both accurate fits to the data (Fig. 1), and fits with larger errors (Fig. 2). We find that growth
data are well characterized, at a given temperature, by the ratio of the ice supersaturation (s;) to its

value at liquid saturation (s; 4y, the maximum value expected in a cloud),

Si

(7

Sirat = .
Simax

We refer to this quantity as the supersaturation ratio, which varies between zero and unity (i.e,
ice- and liquid-saturation). This ratio provides a common scale for the comparison of data from
different temperatures. Both of the presented cases were at high supersaturation ratios of 0.67
and 0.97, respectively. Each case shows that the measured growth (black circles and curves) is
greater than predictions using a solid sphere (blue dotted curves). This result is consistent with the
development of complex morphology at high s;.

Most cases were similar to the time-series shown in Fig. 1, where the data are accurately modeled
by fitting the data with pg4., (Eq. 4, green dashed curves) or P (Eq. 5, magenta dot-dashed curves).
In this case, the particle grew at -55.9°C and 46.9% supersaturation with an initial radius of 12.2
u#m, and the best-fits produce values of p 4., =376 kg m~ and P = 0.90. The relative errors of the
fits in Fig. 1 (1.48% and 1.35% for the fits on pg4., and P, respectively) are near the median for all
the experiments (see Table 1), which indicates that both methods consistently produce accurate

fits to the growth data.

11
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Fic. 2. Representative time-series that is less accurately fit by either effective density model. The panels,
points, and linestyles are the same as in Fig. 1, except the dashed green curves are from a fit with pg., = 87

kg m~3 and the dot-dashed magenta curves are from a fit with P = 1.810. This experiment had ro = 15.8um,
T =-60.6°C, s; =74.0%, and s; -, = 0.97.

On the other hand, some of the fitting results had larger errors, where the modeled mass ratios
resemble the data, but the growth rates are divergent. A typical example is shown in Fig. 2, for a
particle that grew at a temperature of -60.6°C and a supersaturation of 74.0% with an initial radius

of 15.8 um. The model fit using the deposition density model produces a low value of pg., = 87

12
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kg m~3 and the fit with the power-law density produced a best-fit value of P = 1.81, but the relative
errors are 4.00% and 5.70%, respectively. Even though the errors are higher in some cases, the
effective density models represent the data better than growth of a solid sphere.

Unsurprisingly, the two fitting methods produce different functional forms for the effective density
and, therefore, mass growth rate. In Fig. 1, both methods simulate the growth rate comparably
well, but the P-fit is noticeably worse in Fig. 2. However, it should be noted that, while the fit
with pge, typically preformed better than the fit with P (Table 1), that was not always the case.
Table 1 further shows that 94.5% of the cases fit with the pg4., model, and 82.4% of the cases fit
with the power-law, had less than 5% errors relative to the data. The mass ratio data themselves are
conservatively estimated to have uncertainties of +5% (Pokrifka et al. 2020). Therefore, nearly all
of the best-fit models reproduce the data with sufficient accuracy. In contrast, as the next section
will show, the model of a solid sphere underestimates the growth rate with increasing magnitude

and frequency as supersaturation increases.

b. Normalized growth rates

Pokrifka et al. (2020) analyzed the inhibition of ice depositional growth due to attachment kinetics
using a normalized growth rate, and this methodology is also useful for analyzing growth that is

enhanced due to morphological changes. In that work, we defined the normalized growth rate as

d_m|
. __ dt !measured
Muorm =

47T}”_sDeff ' (8)

The numerator is the measured growth rate ‘il—’;’lmwmed averaged for a 1-um increase in the
equivalent-mass spherical radius (ry). This quantity is then normalized by 477D, sy, which is the
size-increment averaged growth rate of a solid sphere without the supersaturation. Thus, if the
particle growing in the diffusion chamber is a solid sphere, then 1,,,, would be equal to s;, and the
growth rate data will follow the supersaturation. For growth inhibited by attachment kinetics, the
normalized growth rates from the data are less than those of solid spheres (Pokrifka et al. 2020).
In the current study, we focus primarily on regimes in which the growth is enhanced.

Figure 3 shows the normalized growth rates for particles in the r; range of 14 - 15 um plotted

against the supersaturation ratio (s; scaled by $; max, Eq. 7). The normalized growth rates have

13
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Fic. 3. Normalized growth rate divided by maximum supersaturation as a function of supersaturation ratio.
Black points are derived from data as the radius increases from 14 to 15 um, with error bars from uncertainty in
the initial size, temperature, and supersaturation. The red dashed line is from the capacitance growth rate of a

solid sphere.

likewise been scaled by s; 4. to preserve the 1:1 relation for ri,,,, of a solid sphere. The data
(black points) show that there are enhanced 1,,,,,, values compared to a solid sphere, particularly
when s; ., > 0.4, and with increasing frequency and magnitude as liquid saturation is approached
(i.e. as ;g — 1).

Pokrifka et al. (2020) showed that some of their r1,,,,,, values had a size dependence, indicating
that the growth could not be characterized by spheres growing at the capacitance rate. Many of
the data here, especially at high s; .., likewise have a size dependence. Figure 4 shows the mean
change in r1,,,, for each particle as ry increases from 9 to 25 um in 1-gm increments (m).

For a solid sphere, this derivative is zero because #t,,,, depends only on s;. At low s; 4, there

14
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is indeed very little change to the normalized growth rate with size, indicating that these crystals
grow near the spherical rate. However, at higher s; ,,,, most of the data have increasing normalized
growth rates with increasing size. Similar to Fig. 3, the enhanced growth appears mostly when
sirar > 0.4, and it increases with supersaturation ratio, maximizing at liquid saturation. This result
is consistent with what is expected if complex habits develop.

It is worth noting that some of the data initially have normalized growth rates less than a solid
sphere, but the rates increase to exceed the solid sphere rate as the particles grow larger. This
would make sense if the growth was limited by attachment kinetics, as for a faceted crystal, prior to
the development of habit complexity. Before the facets formed, the mass growth rate would have

been near that of a solid sphere (Nelson and Swanson 2019; Harrington and Pokrifka 2021). The
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transition from frozen droplet to faceted crystal can cause a reduction in the deposition coefficient,
though this transition sometimes happens too quickly to be detected in our experiments (Pokrifka
et al. 2020). Harrington and Pokrifka (2021) showed that this transition is faster with increasing
supersaturation, which means that we would most likely measure kinetics-limited growth rates at
the beginning of high-s; experiments.

The above analyses of effective density fits to the mass ratio time-series and the normalized growth
rate calculations make it clear that the growth enhancement at high supersaturation increases as a
particle grows. Below, we investigate if the data can be represented by single- and polycrystalline

ice growth models.

5. Time-Averaged Effective Density and Budding Rosette Model

The scatter in the growth data shown in Figs. 3 and 4 can be reduced if the data are examined as
a function of the amount of growth enhancement. For this, we define the growth rate ratio (vit,4;)
as the time-average measured growth rate divided by that of a solid sphere, where the averages
are taken over the lifetime of the particle. This ratio depends primarily on the crystal geometry,
because the supersaturation and temperature dependencies cancel. Note that there is a dependence
on attachment kinetics, but it is weak at high supersaturation. The top panel of Fig. 5 shows the
time-average effective density for each particle from the fit with p4,., as a function of 1,4, (black
circles). The time-average effective densities derived from the power-law fitting method are similar
(not shown). Plotting against 71,,; clearly demonstrates that particles with more enhanced growth
require smaller p,rr. The black circles in the lower panel of Fig. 5 show the exponents from the
power-law fitting method, also as a function of the growth rate ratio. Larger values of P correspond
to larger r1,,;, which is unsurprising since these results are a reflection of the effective density
(Eq. 5). These results may seem intuitive, but what is most intriguing is how well the data points
organize when plotted against r,,, for a relatively large temperature range (-65 to -40°C). Since
the growth rate ratio depends primarily on crystal geometry, the data organization indicates an
underlying similarity in the crystals grown in the diffusion chamber. This organization does not
occur if the data are plotted against temperature or supersaturation (not shown).

To establish physical meaning in these results, and ensure that they are reasonable, it is prudent

to compare them to modeled ice particle growth with known habits. We have already shown that
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Fic. 5. Effective density (top) and power-law exponent (bottom) as a function of growth rate ratio. The black
circles in the top panel are mean effective densities from fits to the mass ratio time-series using the deposition
density. The black circles in the bottom panel are exponents from the best-fit to the data with the power-law
method. In both panels, the shaded regions are from particles simulated by the DiSKICE model using dislocation
growth for both plates and columns (grey) or ledge nucleation for plates (red) and columns (blue). The green

points in both panels are from a budding rosette model.
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a solid sphere underestimates the measured growth rates, however non-isometric shapes produce
substantially enhanced growth (Takahashi et al. 1991). In the next section, we use the DiSKICE
model to show that planar and columnar particles cannot explain the data, and that a budding

rosette model can.

a. Effective density of single crystalline habits

We use DiSKICE to simulate the growth of single-crystalline particles, all of which are initially
spherical with a radius of 10 um. The crystals are grown for 15 minutes, which is typical for
our high-s; growth experiments. To develop single-crystalline habit forms, a lesser characteristic
supersaturation (S¢p,) is required for the primary dimension of growth (i.e., the prism face for
planar crystals, and the basal face for columnar crystals). Zhang and Harrington (2014) estimated
that 5.5, for the primary growing dimension is about 1/2 that of the minor dimension near -40°C,
and data at higher temperatures indicate that it is never less than 1/6. We use s, values taken
from Harrington et al. (2019), however that work provides only the particle average value, therefore
we use the two ratios (1/2 and 1/6) as upper and lower estimates of s, for the primary dimension.
In DiSKICE, the growth mechanism must also be specified. The freezing of supercooled water
produces numerous dislocations, and we therefore set M = 1 in Eq. 2 (see Harrington et al. 2019).
This selection produces high deposition coefficients and is similar to the constant values used in
some cloud models. As crystals become larger, step nucleation can dominate the growth producing
thin plates or columns (Frank 1982; Nelson 2001), and we therefore also conduct simulations with
M =10. The temperatures are set at decades from -70 to -40°C, and supersaturation ratios (s; ,4r)
used are 0.25, 0.50, 0.75 and 1.00.

In Fig. 5, the range of the DiSKICE model solutions with dislocation growth is shown by the
shaded grey region. All of these particles remain compact, as is to be expected for growth by
dislocations (Harrington et al. 2019). The compact shape and high deposition coeflicients prevent
the growth rate ratio from becoming much greater than 1. The red and blue shaded regions of
Fig. 5 correspond to the range of solutions for plates and columns, respectively, grown with step
nucleation. Step nucleation produces thin plates and long columns, which succeeds in producing
growth rate ratios greater than 2, as seen in the data, but there is very little overlap in the phase

space. Note that the power-law exponent, P, approaches 1 for solid plates and 2 for solid columns
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at the highest growth rate ratios, which is expected. For example, columns with the largest aspect
ratios occur when growth on the prism faces is suppressed, producing growth that is essentially
one-dimensional (along the c-dimension). Such crystals, therefore, should have a value of P that
approaches 2. The data suggest that some of the particles grown in the diffusion chamber were

columnar, but it is unlikely that we grew dislocation-dominated crystals or single-crystalline plates.

b. Budding rosette growth model

Since polycrystals, especially rosette crystals, nucleate often at temperatures less than -40°C
(Heymsfield et al. 2002; Bacon et al. 2003; Bailey and Hallett 2009; Lawson et al. 2019), we also
compare our results to a model of budding rosette growth. Our model is similar to that of Um and
McFarquhar (2011), except we combine the rosette capacitance models of Westbrook et al. (2008)
and Chiruta and Wang (2003) with a central sphere. We then obtain instantaneous growth rates for
known particle shapes from which effective densities can be calculated.

We begin with an ice sphere with an initial radius rg, like our experiments. As the particle
grows, n;, number of bullets protrude out of the sphere (see Fig. 6). Measurements of frozen drops
indicate that this begins with the development of small facets on the surface that can grow outwards
becoming the branches of a budding rosette (Parungo and Weickmann 1973, conceptual sequence
in their Fig. 10). Each bullet is comprised of a hexagonal column 2c¢ in length and 2a in width,

which has a volume

Veol = 3\/§a2c, )

with the addition of a pyramidal region connecting it to the sphere. We follow Westbrook et al.
(2008) and define the volume of the hexagonal pyramid as Vj.y, = fpyr\/gazc, where the height
of the pyramid (h,,) is defined as a fraction f,,, of the column length such that 2, = 2cf,,,. We
subtract off the volume of the pyramidal peak V). to allow for some contact area with the sphere.
The contact region is 2aq across, where ag 1s a fraction f,o of the radius of the sphere rg (i.e.,
aop = faoro). The height of the removed peak is therefore ho = h,ap/a, and the volume of the

removed peak is Vjoqk = (V3/ 2)a3h0. The total volume of the pyramidal region becomes

a

3
Viyr = Vhexp = Vpeak = fpyr‘/gazc [1 - (;0) ] . (10)
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381 Fic. 6. Schematic of the budding rosette model. Each bullet has a length 2¢, a width 2a, and a pyramidal “tip”
s that intersects with the central sphere, which itself has a radius ry. Each pyramid has a total height 4, with a

3  portion Ay long removed from the peak such that intersection with the sphere is f,or¢ across.

w7 Thus, the budding rosette volume is

4
Vios = gﬂl’8+nb(Vcol+prr), (11)
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with effective density

.Vr
pur = £ where gy =ros2e (14 ). (12
. ap

gﬂreff

assuming a symmetrical rosette.

To compare this model to our data, the growth rate for a budding rosette is needed, and this
requires the capacitance. The capacitance of a rosette depends on the maximum dimension and
the aspect ratio (¢ = c¢/a) of the branches. The branch aspect ratio is determined using the ratio of

the a- and c-dimension deposition coeflicients following Nelson and Baker (1996),

dc «,
—=—2=T. 13
da «a (13)

We calculate the capacitance of a bullet rosette with n;, branches of aspect ratio ¢ as

C=0.35¢""YD,ax if n, =4 (Westbrook et al. 2008, their Eq. 5)
C =0.400""% D ux if n, =6 (Westbrook et al. 2008, their Eq. 6)
np\0257 s ‘ ) .
C=0.40 (F) ¢ Dyax  ifnp > 6 (Chiruta and Wang 2003, based on their Eq. 15),

(14)
where D,qy = 4c(1+ fp,,) is the maximum dimension of a rosette with four or six branches
(Westbrook et al. 2008). To approximate the capacitance for rosettes with more branches, we
use the capacitance from Chiruta and Wang (2003). Their parameterization is valid for rosettes
with 2 to 16 branches, but it is independent of the branch aspect ratio. We therefore estimate
the ¢-dependence using the six-branch capacitance of Westbrook et al. (2008), ensuring that the
equations match for n, = 6. Since the exponent on ¢ appears to be weakly dependent on n;, (see
the first two equations in Eq. 14), this approximation is justifiable.

The growth of a budding rosette requires the inclusion of the spherical core, an influence that
needs to be estimated. Growth from vapor deposition depends on the surface area multiplied by
the vapor diffusion flux. For a sphere this goes as 47rr§ X (De¢frSipeq/ro). For a non-spherical
crystal, Nelson (1994, pg 52, Eq. 3.1) suggests C is the appropriate length scale for the flux, the
growth rate then goes as 47C? x (D, ff8iPeq/C). As an approximation, we follow Harrington and

Pokrifka (2021) and write the growth of a budding rosette as a weighted combination of these
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fluxes, using the weighting factor

: 47r?
W= Aint — 0 , (15)
Asel 471(r(2)+C2)

where A;,; is the surface area of the sphere and A, is a ’scaling” surface area of the sphere and
the branches. This latter area is, in a sense, a total area for vapor diffusion. The growth rate of a

budding rosette is therefore approximately

Deffsipeq

d D.rrs;
m eff lpeq_l_(l_w)
r C

d_ = Ager |w :4”(r0+C)Deffsipeq, (16)
t ros

where the right-most form results from substitution of the total area and the weight. Note that the
growth length scale simply becomes the initial radius plus the capacitance of the branches. Since
the crystals begin without branches, this equation reduces to that of a sphere, as expected. To
compare directly to the data requires the growth rate ratio averaged over the growth time-series

which is

mrm:(rO*C). (17)

Is
where r; is the solid-sphere radius.

The evolution of a budding rosette is simulated using the geometry (Egs. 11 and 12) with the
growth equation (Eq. 16). Our measurements provide the ranges for the initial radius (5 - 20 um)
and the final mass ratio (8 - 18), but f,y,, fu0. I', np, must be prescribed in this model. These
values are given reasonable ranges based on geometry and prior measurements. For example, [
may be unity, producing compact branches, or it may be as large as 20 (Harrington et al. 2019,
their Fig. 12) causing the branches to become long and thin. We set n;, to 4, 6, or 10, based on
observations that rosettes can have at least 8 branches (Heymsfield and Iaquinta 2000) and prior
theoretical calculations providing the capacitance for 4, 6 (Westbrook et al. 2008) and up to 16
branch rosettes (Chiruta and Wang 2003). If n;, is 4 or 6, we set f,o to be within the range of 0.5
- 0.9. Since f,o controls that amount of the internal sphere’s surface area that is covered by each
branch, it is reduced to be 0.2 - 0.5 when nj; = 10 to accommodate the larger number of branches.

These ranges are based on estimates of the number of hexagonal facets that can reasonably tile
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Fic. 7. Example budding rosette simulations with six branches and an initial radius of 10 ym. Cyan, black,
and purple curves have I' set to 1.5, 3.0, and 6.0, respectively. Dashed, solid, and dot-dashed curves have f,g set
to 0.5, 0.7, and 0.8, respectively. Plotted is the effective density (upper left), power-law exponent (upper right),

branch aspect ratio (lower left), and growth rate ratio (lower right) as a function of mass ratio.

the surface of a sphere, following the model of Harrington and Pokrifka (2021). Westbrook et al.
(2008) assumes a value of 0.5 for f,,,, which we expand to a range of 0.2 - 0.6.

Figure 7 shows the simulated growth of selected, six-branched particles following Egs. 9 - 17, all
of which use rg = 10um, final m, = 15 and f,,, = 0.5. Unsurprisingly, increasing I" (cyan to black
to purple solid curves) causes a larger decrease in the effective density and increase in the power-
law exponent. That is, increasing the growth of the c-dimension with respect to the a-dimension

causes the branches to become thinner (larger aspect ratio), lowering the effective density. The
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resulting branch aspect ratios are quite reasonable, reaching 1.5 - 2.5 when I' = 6. Decreasing
fa0 (dot-dashed to solid to dashed purple curves) produces thinner branches, a decreased effective
density and an increased power-law exponent. This also makes physical sense, because a smaller
initial branch area spaces them further apart and makes them thinner. Furthermore, both increasing
I" and decreasing f,o produce enhanced growth rates, with growth rate ratios ranging from 1 to ;2.
These values of effective density, power-law exponent, and growth rate ratio are in good agreement
with the data (Fig. 5).

The results from Fig. 7 clearly indicate that growth rate ratio and effective density depend on the
manner in which branches form (through surface area coverage) and the resulting aspect ratios of
the branches (controlled by the deposition coefficient ratio I'). The variability in the data shown
in Fig. 5 (black circles) is therefore not surprising. To emulate the data, we ran many additional
simulations with the budding rosette model (Eqs. 9 - 17), the results of which are shown as green
points in Fig. 5. Each point is from one growth simulation, and the variability is from random
selections of rg, fpyr, fa0, np, I' and the final mass ratio using the ranges discussed above. These
results strongly resemble the data and imply that the particles grown in the laboratory were likely
polycrystalline, and may well have been budding rosettes. Simulations with a polycrystalline plate
model does not produce a match with the data, since the points scatter near P = 1 (not shown),
which is reasonable for planar particles.

The match of the budding rosette model with the data also provides indirect corroboration
of the classical geometric rosette model for cloud modeling applications. However, using this
model requires a number of unknown parameters, including the number of branches and branch
aspect ratio, which makes fitting the growth data with the budding rosette model unjustified.
The measured mass ratio time-series and initial size are not enough to adequately constrain the
unknown parameters. Thus, the parameterizations that we develop in the following section are
derived entirely from the laboratory data, independent of the budding rosette model. The advantage
in using the simplified effective density in a parameterization is that the unknown parameters are

implicitly included.
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6. Supersaturation dependence and parameterization of the effective density

The strong correlation between the effective density and the growth rate enhancement indicates
that there is structural regularity to the measured data that should also appear as a function of the
supersaturation, even though such regularity is not apparent in Figs. 3 and 4. For completeness, we
include the data at low supersaturation, which often show evidence of attachment kinetic limitations
(Pokrifka et al. 2020). To further investigate the supersaturation dependence to growth, we examine
the fraction of experiments with kinetic limitations (growth rate ratio ; 1) as compared to those
with enhanced growth (growth rate ratio ; 1). If we calculate this fraction in supersaturation ratio
bins of 0.0 - 0.4, 0.4 - 0.6, 0.6 - 0.8, and 0.8 - 1.0 (Fig. 8), it becomes clear that kinetics-limited
growth (dashed) is more common when the s; 4 is lower, whereas enhanced growth is common
when s; 4 1s high (solid). The increased occurrence of enhanced growth with increasing s; r
reflects the results shown in Fig. 4. Note that a similar result appears when s; 4, ranges of 0 - 0.2
and 0.2 - 0.4 are used, as little growth enhancement occurred at s; ,,, < 0.4 (Fig. 4), thus we use
the combined range of 0 - 0.4 for clarity, and do so for the remainder of this work. This s; ,,; range
is well represented by solid ice, however attachment kinetics must be included to properly account
for the mass growth rate (Pokrifka et al. 2020).

We should expect an approximately monotonic rise in the relative frequency of enhanced growth
cases with supersaturation ratio, but variability within a given s; ,,, range is also to be expected,
since crystals nucleated from frozen water droplets will vary in their morphological complexity
(Bacon et al. 2003). Such variability is shown in Fig. 9 through a 2-dimensional (2-D) distribution
of the relative frequency of cases as a function of the supersaturation ratio and the growth rate ratio
for the entire dataset. This 2-D distribution confirms that increasing s; ,,; increases the likelihood
of particles growing at enhanced rates and that low s, 4, often produces kinetics-limited growth
that can be approximated as solid ice (i.e., pgep = 920 kg m~> and P = 0).

It is important to note that while the 268 experiments we conducted are numerous for individual
crystal studies, the data are too few for a detailed statistical analysis. In addition, there are
relatively fewer data at s;,,, < 0.2. Experiments at s;,, < 0.2 are challenging, since they take
a whole day to conduct due to very small particle growth rates. This is in contrast to higher-
sirqr €Xperiments, where multiple particles can be grown within a day. However, most of the

high-s; r4; (2 0.8) experiments were conducted around the low-to-mid portion of the temperature
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Fic. 8. Fraction of particles in the dataset that show enhanced growth (solid) or limited growth (dashed) in

supersaturation ratio bins of 0.0 - 0.4, 0.4 - 0.6, 0.6 - 0.8, and 0.8 - 1.0.

range (i.e., -63 to -53°C). To examine the potential impact of this sample bias, we split the dataset
into “warm” (T > —56°C) and “cold” (T < —56°C) subsets. We indeed find that “warm” cases
more frequently occur at low-s; o, and low-r1,,;, and vise versa for “cold” cases, but both subsets
demonstrate increasing r,,, with increasing s; ,,, (not shown). Thus, the precise value and location
of the maximum in Fig. 9 may change with more even sampling, but the positive correlation of
supersaturation ratio and growth rate ratio is robust for both data subsets. This result indicates that
Sirar 18 an environmental condition that may be utilized in conjunction with our data to produce
parameterizations of effective density. We will also demonstrate that the sample bias has minimal
effect on these parameterizations.

Given the systematic correlation of the growth rate ratio with the supersaturation ratio, we should

expect the effective density to behave in a similar fashion. Figure 10 shows the relative frequency
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Fic. 9. Two-dimensional relative frequency distribution of supersaturation ratio versus growth rate ratio.
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unity, as for a solid sphere: Above this line growth is enhanced, below it growth is limited.

of pgep values derived from the fits (Eqs. 3 and 4) for all of the experiments in supersaturation
ratio bins of 0 - 0.4 (cyan), 0.4 - 0.6 (blue), 0.6 - 0.8 (purple), 0.8 - 1 (black). To demonstrate
the overall trend in each s; 4 bin, the pg., values are separated in bins of 0 - 300, 300 - 600,
600 - 920 kg m~3. The relative frequencies are also listed in Table 2. It is clear from Fig. 10

that conditions with s; 4, < 0.6 often produce high values of p4.,, and small p 4, values are rare.
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(black).

As s; ;s increases, so does the frequency of smaller pg4, values, such that pg4., > 600 kg m~3 is
the rarity when s; ,,; > 0.6. Unsurprisingly, supersaturation near liquid saturation (s; ,4,(,0.8) most
frequently produces the smallest values of p4.,, which are associated with the greatest degree of
growth enhancement. The supersaturation ratio dependence of the time-averaged effective density
(Fig. 11, solid curves) is similar to that of pg.,, though the values of p.sr are larger. This is
expected because p, s approaches pg.,, as crystal size increases.

A 2-D relative frequency distribution of the deposition density and supersaturation ratio (Fig. 12)
provides a more succinct visualization of the information in Fig. 10. The distribution highlights
two local maxima of the relative frequency. One maximum appears for values of s; 4 < 0.4, and

it corresponds to particles with high density (o4, ~ p;). As the supersaturation ratio approaches
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TasLE 2. Relative frequencies of deposition density, effective density from p 4., —fits, and power-law exponent
for experiments in supersaturation ratio bins of 0 - 0.4, 0.4 - 0.6, 0.6 - 0.8, and 0.8 - 1. The densities are in ranges
of 0 - 300, 300 - 600, and 600 - 920 kg m~3, and the power-law exponents are in ranges of 0-0.5,0.5-1,1 - 1.5,
and 1.5 - 2.

supersaturation ratio deposition density (kg m™~3) effective density (kg m~3) power-law exponent
0-300 300-600 600 -920 0-300 300-600 600 -920 0-05 05-1 1-15 15-2
0-04 12.1% 15.2% 72.7% 5.0% 19.2% 75.8% 71.7%  12.1%  10.1%  6.1%
0.4-0.6 14.3% 25.4% 60.3% 9.5% 25.4% 65.1% 61.9% 159% 17.4%  4.8%
0.6-0.8 35.3% 64.7% 0.0% 8.8% 82.4% 8.8% 0.0%  41.2% 50.0%  8.8%
0.8-1 61.1% 26.4% 12.5% 32.0% 48.6% 19.4% 9.7% 11.1%  48.6%  30.6%
3

liquid saturation, p4., falls and there is another maximum at pg, ~ 250 kg m™. To estimate
the most likely values of pg., at some s; .4, we fit a linear function between both maxima (dark
green dashed line). Atlow s; 4, we find the linear fit from s; .o, = 0 and pg., = 920 kg m™ to the
high-density local maximum (light green dashed line). The two linear fits cover all values of s; ;4

from our experiments and are given by

— 32.3325‘,‘,”” +920, Sirar < 0.267
pdep(si,ral) = , (18)
— 1027.456S,"m; +1185.834, Sirat > 0.267

3

where the coefficients have units of kg m™. A mass-size relationship can then be derived by

substituting Eq. 18 into Eq. 4,

4 4
m(pdep) = gﬂpeff(pdep)r3 = gﬂ{[pi _pdep(si,rat)]r(S) +pdep(si,rat)r3}- (19)

Here, r is the the radius of the sphere encompassing the particle, or the maximum semi-dimension.
Equations 18 and 19 comprise a parameterization of the effective density as a function of pg, at
low temperatures suitable for particle property microphysical models rooted in the method of Chen
and Lamb (1994), such as Hashino and Tripoli (2007), Chen and Tsai (2016), and Jensen et al.
(2017). Those models currently use pqe, = p; at temperatures below -20°C. Note that Eq. 19 is
strictly valid for constant s; .,;. We discuss below how to utilize this parameterization with variable

temperature and supersaturation.
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Fic. 11. Relative frequency of cases producing mean effective densities in ranges of 0 - 300, 300 - 600, and 600
- 920 kg m~3, derived from the deposition density (solid) and power-law (dashed) for the same supersaturation

ratio bins as in Fig. 10.

To test the potential impact that a sampling bias may have on this parameterization, we repeat the
above linear fitting procedure with data in the range 0.2 < s; 4, < 0.8 (purple dot-dashed curve in
Fig. 12). This range of supersaturation ratio eliminates the regions where most of the sampling bias
occurred. Using only data where 0.2 < s; »4; < 0.8 produces the same trend as the whole dataset, but
with a slightly larger slope (compared to the green dashed curve). This change in slope makes sense
in comparison to Fig. 10, which shows that disregarding s; o > 0.8 would shift the most frequent
values of pge), at high s; .4 to be 300 - 600 kg m~3. Because the data between 0.2 < Sirar < 0.8 are
evenly sampled, we can also test for a temperature-dependence in our parameterization method.
While using the supersaturation ratio provides a common, temperature-independent scale to analyze

the data, temperature has other influences, such as in crystal morphology and attachment kinetics.
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Fic. 12. Two-dimensional relative frequency distribution of supersaturation ratio versus deposition density.
Increasingly red contours indicates increasing number of occurrences. The light green dashed curve is a linear
fit from the (s; ;s =0, pgep =920 kg m~3) coordinate to the nearest local maximum, and the dark green dashed
curve is a linear fit between the two maxima. The purple dash-dotted curve is the same as the green dashed
curves, but using only cases with s; .o, between 0.2 and 0.8. The pink and indigo dotted curves are the same as

the purple dash-dotted curve, but with the temperatures restricted to above -56°C and below -56°C, respectively.

As before, we have split the dataset into cold and warm regions at -56°C, and the resulting curves

are plotted on Fig. 12. For T > —56°C (pink dotted curve) the slope decreases, and for 7 < —=56°C
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(indigo dotted curve) the slope increases. This small variation indicates that the temperature
dependence of pg., is second-order compared to the primary dependence on s; ,4;, Which seems
well characterized by our data.

Traditional microphysical schemes parameterize the effective density and the mass with power
laws, and we therefore follow the above method to estimate the most likely value for the power-law
exponent P for Egs. 5 and 6. Figure 13 shows the relative frequency of observed P values for
the same supersaturation ratio ranges used in Fig. 10 (see also Table 2). Here, the power-law
exponents are binned into ranges of 0 - 0.5, 0.5 - 1, 1 - 1.5, and 1.5 - 2. Similar to Fig. 10,
lower supersaturation ratios s; »o; < 0.6 (cyan and blue curves) produce little enhanced growth and,
therefore, values of P ~ 0 occur frequently. Increasing s; 4 (to purple then black curves) increases
the frequency of P values associated with greater growth enhancement. Again, the largest amount
of growth enhancement is most common near liquid saturation (black curve), but even under these
conditions, P is most frequently in the range of 1 - 1.5 instead of 1.5 - 2. Since P ~ 2 is consistent
with columnar growth (note that hollow columns can have P > 2), it is interesting that the fraction
of particles grown near liquid saturation with P ~ 2 (30.6%) is close to the fraction of columns that
Bailey and Hallett (2004) grew under similar conditions (Hashino and Tripoli 2008, see their Fig.
1). Additionally, the power-law produces time-averaged p, s s relative frequencies that are similar
to those calculated from pg,,, but with values of 300 - 600 kg m~> being slightly more common
(Fig. 11, dashed curves).

Like pg4ep, the variability in P with supersaturation ratio can be better visualized with a 2-D
distribution. Figure 14 shows two local maxima corresponding to those of Fig. 12. One maximum
is at low s; 4, associated with high density particles (P ~ 0) and growth limited by attachment
kinetics. The second maximum occurs at high s;,,, where growth is enhanced (P ~ 1.4). To
estimate a most likely value of P at high s; .4, we fit a line through both maxima (dark green dashed
line). The value of P is estimated at low-s; o, values with a linear fit from s; ., =0 and P =0 to
the nearest local maximum (light green dashed line). The most likely value of P for each s; ;4 1s

thus estimated to be

0.0825; yars Sirar < 0.267
P(Si,rat) = . (20)
210651 ra —0.541,  8;yar > 0.267
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Fic. 13. Relative frequency of cases producing power-law exponents in ranges of 0 - 0.5,0.5-1, 1 - 1.5, and

1.5 - 2 for the same supersaturation ratio bins as in Fig. 10

Combining Eq. 20 with Eq. 5 provides a parameterization for the effective density of small vapor

grown crystals. This parameterization therefore produces a supersaturation-dependent power-law,

4 4 P(si,rar - i
m(P) = 3mpesy(P)r = smpyrg ) =P i), 1)

It should be noted that the sampling bias and temperature dependence shown for Fig. 12 is less
pronounced for the distribution of P, and is therefore not shown. Because Eqs. 18 - 21 were
derived from the measured growth of small particles (r ~ 10 — 100 um) at temperatures between
-65 and -40°C, these parameterizations may not be applicable to other conditions. Like Eq. 19,
Eq. 21 is strictly valid for constant s; .4 (i.€., constant temperature and supersaturation). When the
supersaturation ratio is variable, as in a real cloud, care must be taken in using Eq. 21. Since the

power-law exponent changes with supersaturation ratio, one cannot simply change P in Eq. 21, as
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linear fit between the two maxima.

this would instantaneously change the particle characteristics. Instead, the approach we advocate is
to calculate the deposition density by taking the time-derivative of either Eq. 19 or 21 (depending

on the chosen parameterization), which will result in either Eq. 3 or 6, respectively. The particle
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effective density is then updated using Eq. 4. The physical interpretation is that the change in s; ;.4
influences the effective density of the mass added to a particle during vapor growth.

Be aware that we can not validate the approach described above. There are not any published data
of individual ice particle growth rates with variable temperature and supersaturation at 7’ < —40°C
to compare against. Under these conditions, it is unknown if a particle’s deposition density or
power-law exponent would change rapidly in response to a change in s; .4, or if they are set upon
nucleation and early growth. Due to this limitation, we suggest utilizing the results from our wide

range of constant experimental conditions as an approximation.

7. Summary and Discussion

We grew 268 individual ice particles with equivalent-mass spherical radii less than 40 yum
inside the BEL diffusion chamber. Particle mass ratio time-series were measured at temperatures
between -65 and -40°C for supersaturations up to liquid saturation. Growth rates at high s; typically
exceeded that of a solid sphere, which is consistent with complex crystal habits and can be treated
with an effective density. We estimated p, s r with model fits to the measured mass ratio time-series
by adjusting either a deposition density (p4p) or a power-law exponent (P). Both p, s models
represented the data well, and the time-averaged fit results resembled effective densities derived
from models of budding rosettes and, at the largest growth rate ratios, columns. It is thus plausible
that many of the particles growing at high s; developed those habits. The measured growth
enhancement due to such complexity was well characterized by a ratio of the supersaturation to its
value at liquid saturation (s; ). We have used 2-D relative frequency distributions of the pg4e,
and P results to estimate the most frequent values of p4., and P for any s; ,4;, which may then be
used to estimate a supersaturation-dependent effective density.

It is important to heed the limitations in our study. These particles grew under constant tem-
perature and supersaturation, which is not the case in clouds. We have assumed that the particles
with enhanced growth had deposition coefficients of unity, but due to the attachment kinetic effects
required to produce complex ice habits, this cannot be true for the whole particle. Similarly, we
treated particles with growth rate ratios less than unity as kinetics-limited, but facet development
on a frozen droplet can also have anomalously low growth rates with a high particle-averaged

(Pokrifka et al. 2020; Harrington and Pokrifka 2021). Furthermore, while our analysis suggests
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that many of the crystals we grew may have been budding rosettes or columns, we cannot confirm
the particle morphology. Our geometric model of a budding rosette, despite reproducing the vari-
ability in the data, neglects facet hollowing, which likely occurred in our high-s; experiments and
would contribute to the effective density reduction. Caution is therefore warranted in estimating
growth rates from the budding rosette model, especially given its numerous required, but unknown,
parameters. The effective density parameterizations derived from the fits to the data with the de-
position density and power-law exponent avoid these unknown parameters, but do so by avoiding
a direct link to crystal geometry. That is, any and all complexity in particle shape is entangled in
Pdep and P.

Despite these limitations, our results are consistent with prior work. As shown in Fig. 5, our
effective density estimates range from about 100 kg m™ to p;. This is comparable to estimates
from prior laboratory studies, but most of those were from particles growing at T > —22°C and
primarily near liquid saturation (high s; ,,;) (Fukuta 1969; Takahashi et al. 1991).

Prior effective density estimates under similar temperature and supersaturation conditions as in
our experiments have been made from in-situ observations, and they also find that p, s can be as
low as 100 kg m™3, but for larger particles (Mitchell 1996; Heymsfield et al. 2004, 2007). Their
effective density relations must be limited at some minimum diameter, generally between 70 and
100 ym (Brown and Francis 1995; Heymsfield et al. 2010), otherwise nonphysical ice densities are
produced. Smaller crystals are generally assumed to have the density of bulk ice (p.7r ~ p;).

However, other effective density estimates derived from in-situ observations that accommodate
small particles are in good agreement with our measurements (Fig. 15). Figure 15 shows time-
averaged effective densities as a function of growth rate ratio, much like the top panel of Fig. 5.
Here, the circles are derived from the power-law fits to the data, with shading indicating the
supersaturation ratio. Also plotted, in diamonds, are average effective densities following the
mass-size parameterizations of Cotton et al. (2013), Erfani and Mitchell (2016), Fridlind et al.
(2016), and Lawson et al. (2019). In each case, we simulate the growth of a particle with an initial
radius of 10 um and a final mass ratio of 15 (final mass-equivalent spherical radius of ~ 25um).
The simulations use a temperature of -50°C and pressure of 970 hPa, and are across a range of
supersaturation ratios from O to 1, similar to the laboratory experiments. The observations of Cotton

etal. (2013) (cyan) are consistent with our data at low s; ,.,;. Likewise, the rosette models of Fridlind

36



674

675

676

677

678

679

680

692

693

694

695

696

697

698

699

1.0
—— Bucky ball (Fridlind et al. 2016)
900 1 <> Bucky ball, average (Fridlind et al. 2016)
@ rosette, average (Fridlind et al. 2016)
800 - < Perr = 700 kg m~3 (Cotton et al. 2013) 0.8
<> warm anvil (Erfani and Mitchell 2016) '
’ cold anvil (Erfani and Mitchell 2016)
— 700 1 warm synoptic (Erfani and Mitchell 2016)
IE ' O cold synoptic (Erfani and Mitchell 2016) .g
2 600 h ——— Erfani and Mitchell (2016) 068
:>, < rosette (Lawson et al. 2019) 5
Z ©
=)
S 500 B
(] o
: e oo g
o @
&£ 400 A K
? °
300 A M. Py L 0.2
° 32
200 - o PP
—- 0.0

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
growth rate ratio

Fic. 15. Time-average effective density as a function of growth rate ratio. Circle are from the power-law fits to
the mass ratio data, with darker shading indicating higher supersaturation ratio. Diamonds are from calculations
using others’ mass-size relationships. Shown in red are the rosette (solid diamond), Bucky ball (curve) and
average of the Bucky ball (empty diamond) from Fridlind et al. (2016). The constant effective density from
Cotton et al. (2013) is in cyan, and the rosette model from Lawson et al. (2019) is in yellow. Shown in green
are the warm anvil (light solid), cold anvil (dark solid), warm synoptic (light empty), and cold synoptic (dark

empty) cirrus cases from Erfani and Mitchell (2016), with the full growth range as a green curve.

et al. (2016) (solid red) and Lawson et al. (2019) (yellow) produce growth rate enhancements and
effective density reductions that align well with the growth data. Erfani and Mitchell (2016) present
multiple temperature-dependent mass-size relationships for synoptic (empty green) and anvil (solid
green) cirrus. We have plotted the results from their warmest (light green) and coldest (dark green)
cases, which produce slightly lower effective densities than our data, but they follow a similar
functional form across our full mass range (green curve). The one outlier in this comparison is the
Bucky ball model of Fridlind et al. (2016) (empty red). The average effective density from this

model is significantly lower than the laboratory data. The full growth model across our mass range
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diameter > 65 pym All simulations have an initial radius of 10 ym, f,,, =0.5, and f,0 =0.7. Cyan, black, and

purple curves have I" set to 1.5, 3.0, and 6.0, respectively. Note the logarithmic scale p.ry.

(red curve) reveals that, at small sizes, the Bucky ball model is an exceptional match to our data,
but the effective density falls too quickly as the particle grows. Otherwise, these results indicate
that particle growth rates produced by mass-size relationships derived from in-situ observations
are corroborated by the growth rates of our laboratory measurements at low- to mid-s; ,4;. They do
not, however, reach the highest growth rate ratios (and lowest effective densities) that our data and
parameterizations produce at high-s; ;.

Further agreement between our study and in-situ observations appears in comparing geometric
models. The correspondence between our measurements and our geometric model of a budding

rosette indicates that a rosette model provides relatively accurate growth rates at high s;. Heymsfield
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et al. (2002) present a geometric rosette model suitable for larger crystals that was successfully
used to interpret in-situ observations. Figure 16 shows that our model of a budding rosette, using
four branches (solid curves), produces effective densities that approach the values from the model
by Heymsfield et al. (2002) (dashed curves, beginning at a diameter of 65 ym), when the particles
grow larger (mass ratio 2 10). The overlaps in p, ¢y between both models, and between our budding
rosette model and data, suggest that our measurement-derived effective density functions offer a
plausible extension to nucleation sizes that is complementary to in-situ observations.

One advantage of our approach is that information on the time-dependence of growth is implicitly
included in our parameterizations, since the mass-size relationships are derived from fits to the
time-series data. Our measurement-derived parameterizations provide a method to model the

growth of small ice particles that captures the effects of habit complexity.
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