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ABSTRACT: Acid-catalyzed alcohol dehydration is a key reaction step in biomass
upgrading, kinetics of which are significantly affected by mixed aqueous solvents.
Computational modeling can provide fundamental understanding of solvation effects in
catalysis, and ultimately a predictive tool for optimizing reactivity and selectivity. We
introduce a multiscale method that combines density functional theory (DFT) with
classical molecular dynamics (MD) to investigate the effect of mixed solvents (water with
DMSO/GVL/MeCN) on the kinetics of acid-catalyzed dehydration of t-butanol and
fructose. We determine the thermodynamically stable form of the excess proton (i.e., the
catalyst) in mixed solvents. In water/GVL and water/MeCN mixtures, the excess proton
resides on a water cluster (H5O2

+). In water/DMSO, it forms a DMSO-H3O
+ cluster in a bulk water/DMSO mixture, but appears as

H5O2
+ when close to an alcohol reactant. We model the E1 dehydration mechanism on t-butanol and fructose with DFT, and

subsequently solvate each reaction intermediate and transition state with MD. Reaction free energy profiles for the elementary steps
are mapped out at different solvent compositions. Our predictions compare well to results of Mellmer et al. Nature Catalysis 2018, 1,
199−207 and Nature Communications 2019, 10, 1−10, for both AIMD-measured reaction free energy profiles and experimental
rate constants. By decoupling the gas-phase and solvation free energies, our calculation provides a clear interpretation of the
solvation effects on an absolute free energy scale, and furthermore deconvolutes these effects into intuitive short-range electronic and
longer range electrostatic interactions. Furthermore, our approach reveals solvent structuring around the reaction intermediates and
the transition state. Our scalable DFT/MD approach provides a potentially powerful tool to predict reaction kinetics in condensed
phases as well as detailed structural and energetic understanding of solvation effects in catalysis.

KEYWORDS: acid catalysis, homogeneous catalysis, solvation effect, mixed solvent, QM/MM, multiscale modeling

■ INTRODUCTION

Upgrading lignocellulosic biomass into valuable chemicals and
fuels requires selectively transforming bulky organic molecules
into desired products.1 Biomass upgrading reactions are often
catalyzed by Brønsted acid in aqueous solution. For example,
alcohol dehydration is an acid-catalyzed reaction that removes
a hydroxyl (−OH) group to form an unsaturated C�C bond.
To improve the activity and selectivity of acid-catalyzed

biomass reactions, different proton carriers and solvents can be
considered. Heterogeneous catalysts such as metal−organic
frameworks2 and zeolites3,4 are robust candidates for the
proton carrier. These catalysts both provide adsorption sites
for stabilizing the reaction intermediates and transition states
and act as Brønsted acid with a tunable proton dissociation free
energy. Alternatively, solvent molecules can act as the proton
carrier in homogeneous catalysis system. Water is a common
solvent for biomass conversion; addition of aprotic co-solvents
significantly alters the kinetics of acid-catalyzed biomass
reactions5,6 by differentially solvating reactive intermediates
and transition states.7 Tuning the interactions between the
reactive species, the catalyst and the (mixed) solvent provides a
powerful design space for optimizing kinetics of biomass
reactions.

Computational modeling can help rationally design the
optimal sets of catalysts and solvents for biomass reactions, and
solution-phase acid-catalyzed reactions in general.8 In this
paper, we present a multiscale computational approach that
combines density functional theory (DFT) with classical
molecular dynamics (MD) to model the kinetics of acid-
catalyzed reactions in the solution phase. Below, we first review
different computational methods to model solution-phase
chemistry, motivating our DFT/MD approach. We then
introduce our specific study: modeling the effect of aprotic
co-solvents on the kinetics of homogeneous acid-catalyzed
alcohol dehydration reactions.
Computational Model for the Solution-Phase Reac-

tion. An atomistic computational approach to model the
thermodynamics and kinetics of a solution-phase reaction must
accomplish two goals. First, it must describe how the energy
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changes when chemical bonds form or break. This requires a
quantum mechanical treatment. Second, it must describe how
the solvent stabilizes different extrema along the reaction
coordinate. This requires sampling of the fluctuating solvent
configurations around the reactive center, which alter the free
energies of the reaction intermediates and transition states. For
homogeneous acid-catalyzed reactions, the solvent can take
part in the reaction coordinate, acting as either the donor or
acceptor of a proton (e.g., water as H3O

+ or H5O2
+ complexes).

Ab initio MD (AIMD) has been used to study the reaction
kinetics of solution-phase reactions.6,9,10 AIMD treats both the
reaction and solvent coordinates at the quantum mechanical
(e.g., DFT) level of theory. However, AIMD is computationally
expensive: AIMD simulations with state-of-the-art algorithms
and processors can only tractably model roughly several
hundreds of atoms for tens of picoseconds. With such a short
timescale, reactions with high activation barriers must be
accelerated with non-equilibrium enhanced sampling techni-
ques.11 These enhanced sampling techniques require repre-
senting the reaction coordinates in terms of some collective
variables defined from various atomic distances. For simpler
homogeneous acid-catalyzed reactions such as hydride shift or
dehydration, the mechanism is known and the collective
variables are straightforward to define and use.9,10,12 Even with
enhanced sampling, AIMD sampling of solvent coordinates,
especially for mixed solvents around a charged solute, is still
limited by its short time and length scale. Furthermore, given
the vast number of reactions in a biomass upgrading network,
coupled with numerous possible co-solvents, proton carriers,
and counterions to choose from, it is challenging to use only
AIMD to explore this design space. This motivates the
development of “faster” computational tools, as well as simple
design rules for modeling the kinetics of acid-catalyzed
reactions in mixed solvents.7

Ab initio methods can be combined with implicit solvation
models to avoid the solvent sampling limitation by instead
treating the solvent as a continuum. However, these models
sacrifice atomistic description and are unreliable if not
specifically parameterized for a particular system. For example,
the implicit solvation model CPCM fails to capture the effect
of water versus methanol solvents on the kinetics of the
glucose hydride shift reaction.10 This suggests that explicit
solvent is required to capture mixed solvent effects on reaction
kinetics.
Classical MD treats solvent molecules explicitly at much less

computational expense than AIMD. To simulate solvents, an
empirical force field is parameterized to reproduce bulk liquid
properties such as density, heat of vaporization, and solvation
free energies.13−15 It is therefore advantageous to employ
classical MD to model solvent coordinates, though a quantum
description of the reaction coordinates is still required. This
motivates the combination of DFT with classical MD to
describe the reaction coordinates and solvent coordinates,
respectively.
Quantum mechanical/molecular mechanical (QM/MM)

methods combine these two approaches. QM/MM approaches
typically embed a QM-treated region inside a force-field-
treated extended solvent, running both simultaneously in a
joint MD simulation.16−19 The key challenge of the QM/MM
approach is the treatment of the interactions between the QM
and the MM regions.16 The choice for this embedding
treatment is non-trivial for more complex systems, such as in
electrochemistry where the metallic surface complicates the

electrostatics.20 Our approach fits in the general category of
QM/MM methods, though we separately perform QM (DFT)
analysis of the reaction coordinates, then subsequently embed
it into a MM treatment of solvent interaction.
In our DFT/MD model, reaction coordinates and solvent

coordinates are described by DFT and classical MD,
respectively, in separate calculations. The DFT and MD
simulations are connected by a thermodynamic cycle (Figure
1). The horizontal arrows in the thermodynamic cycle of

Figure 1 indicate either a reaction free energy or activation free
energy, depending on whether the right hand side is a final
product state or a transition state. The vertical arrows indicate
the solvation free energies of the initial and final/transition-
state species.
The core idea of our DFT/MD approach is simple. First,

DFT together with thermal corrections are used to calculate
the gas-phase free energy change. This is done by geometrically
optimizing the reacting species to local energy minima,
corresponding to metastable reaction intermediates, or to
saddle points, corresponding to transition states. The reaction
initial state, intermediates, and the transition state are carried
over to a separate classical MD simulation, where their
solvation free energies are calculated. Finally, the solution-
phase reaction/activation free energy can be computed by
completing the thermodynamic cycle (eq 1).

G G G G
l g

1
sol

2
sol

= + (1)

This DFT/MD approach differs from embedded QM/MM
approaches in that the DFT-treated reaction coordinates are
static in the force-field MD simulation of solvation effects.
Though DFT and MD simulations are run separately, there
exists an intimate connection between the quantum and
classical models through the DFT-assisted parameterization of
the force field as will be outlined in the Methods section. This
parameterization parallels the choices made in QM/MM
schemes, but is simplified by the assumption that the DFT
region remains frozen during our solvation simulation. This
sequential procedure for integrating DFT and classical MD has
also been developed previously for liquid/solid interface
studies.21,22

Our DFT/MD model offers two major advantages over
current state-of-the-art QM/MM and AIMD approaches:
lower computational cost and the ability to discern solvation
effects by explicitly computing the solvation free energies. Both
topics will be further discussed in the Method and Result and
Discussion sections.
Aprotic Co-Solvent Effect on Alcohol Dehydration

Kinetics. We illustrate and validate our DFT/MD approach
by studying the effect of aprotic co-solvents on the kinetics of
solution-phase acid-catalyzed alcohol dehydration. Though the
dehydration reaction mechanism is well known, the influence

Figure 1. Thermodynamic cycle depicting a reaction or activation free
energy change in the gas (ΔGg, top) and solution (ΔGl, bottom)
phases.
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of water/organic solvent mixtures on reaction energetics was
only recently investigated using AIMD simulations.7,8,23,24 The
dehydration reaction, which removes a hydroxyl group, is an
ubiquitous step in the network of biomass upgrading
reactions.1 The Dumesic lab recently published extensive
experimental rates for these biomass dehydration reactions,
highlighting the effect of co-solvents on the reaction
kinetics.5,6,9 Their pioneering work, combined with AIMD
studies done in collaboration with their experiments, provide
an excellent benchmark for validation of our DFT/MD
approach.
We leverage the findings from two papers by Mellmer et

al.,6,9 including both experimental rate measurements and
AIMD activation barrier calculations performed by the
Neurock lab. Experimentally, they measured the rate constants
for t-butanol and fructose dehydration reactions in different
weight ratios of water mixed with dimethylsulfoxide (DMSO),
acetonitrile (MeCN), or γ-valerolactone (GVL). The reaction
rate varies by 3 orders of magnitude, depending on co-solvent
identity and concentration (see Figure 1 in ref 6). AIMD
simulation with enhanced sampling of the reaction coordinates
was used to simulate the reaction mechanism and calculate the
apparent activation barriers for t-butanol and fructose acid-
catalyzed dehydration in pure water, water/DMSO, and water/
GVL. The calculated apparent activation barriers agree well
with the trend of experimental rate constants. We use as
benchmark from their work both the AIMD-calculated
absolute apparent activation barriers, and the relative apparent
activation barriers as obtained from experimental ratio of rate
constants.
In summary, we apply our DFT/MD approach to calculate

the activation free energies of acid-catalyzed dehydration of
two biomass model alcohol molecules (t-butanol and fructose)
in three mixed solvent systems (water with DMSO, MeCN,
and GVL). The DFT/MD results are compared to both the
experimentally measured rate constants and AIMD-calculated
apparent activation free energies.6,9

DFT/MD Method. Details of the combined DFT and
classical MD approach are presented below in two sections.
First, specifics for the gas-phase DFT calculation of the
reaction coordinates are introduced. Second, we give details for
the classical MD solvation simulations, including the force-field
parameterization and thermodynamic integration.

DFT Modeling of Reaction Coordinates. Molecular
DFT calculations were performed using Gaussian09 soft-
ware.25 The split-valence basis set with polarization and diffuse
functions 6-311G++(d,p) was used with the b3lyp26 hybrid
functional. Dehydration of both t-butanol and fructose follows
the well-known E1 elimination mechanism (Figure 2).
The reaction coordinates were “scanned” by performing

constrained optimizations. Each scan gave DFT energy minima
or maxima, from which geometries were extracted and re-
optimized to a reaction intermediate or a transition state,
respectively, using the Berny optimization algorithm.27 The
ground-state energies of the optimized reaction states were
corrected for thermal enthalpies and entropies using standard
ideal gas statistical thermodynamics treatment with harmonic
vibrator and rigid rotor approximations. Anharmonic vibrations
may contribute to the computed gas-phase free energy,
especially for the transition state with “softer” vibrations,
though are not considered in our current model. The
temperatures used for thermal correction were 363 K for t-
butanol dehydration and 373 K for fructose dehydration. The
DFT calculations that had a net positive +1 charge did not
require a counter charge for neutrality because atomic orbital
basis set was used. Details of the reaction scans can be found in
Section S2 of Supporting Information.
Although we do not rely on implicit solvation models to

obtain solvation free energies, we use them to stabilize the
charged reaction states and relax their geometries. For this
purpose, we turned on the implicit solvation model IEFPCM28

during the reaction scans and subsequent geometry opti-
mization of each reaction states. The gas-phase DFT energy
and thermal corrections were then obtained from single-point
calculations with the implicit solvation model turned off.
The gas-phase translational entropy and therefore free

energy of each reaction state depends on the choice of
standard-state concentration. The initial state of both alcohol
reactions (Figure 2) includes the proton carrier catalyst and
the alcohol molecule, each at their standard concentrations.
Subsequent reaction states are “merged” structures that can be
considered as one individual species. Following conventional
reaction thermodynamic practice, the concentrations of all
reaction species in the solution phase are chosen to be 1 M.
Solvation Free Energies Using Classical MD. Each

DFT-optimized intermediate- and transition-state structure
was inserted to a classical MD simulation, where thermody-

Figure 2. Cartoon depiction of the E1 dehydration mechanism on t-butanol (top) and fructose (bottom).
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namic integration29−31 was used to calculate its solvation free
energy. Thermodynamic integration is well-established and
commonly used to calculate solvation free energies of small
molecules, with good agreement with experiment.32,33

Classical MD simulations were run using GROMACS 5.1
software.34−39 The OPLS-AA force field40 was used with the
TIP3P41 model of water. An MD solvation run includes the
solute, water solvent, and co-solvents (DMSO, MeCN, or
GVL) in a cubic box of side length 3.3 nm (pure water) or 4.0
nm (mixed solvents). Considering the Bjerrum length of pure
water at 298 K (373 K) is about 0.7 nm (0.5 nm), the 3.3 nm
box length is then adequate to screen the electrostatic
interaction between the charged solute and its periodic
image. The Bjerrum length is expected to increase with the
addition of aprotic co-solvent that has a lower dielectric
constant, which motivated a slight increase of box length to 4.0
nm. Co-solvent mixtures were packed with the solute into the
simulation box using Packmol software.42 The system
equilibrated using 5000 steps of steepest descent minimization
followed by two short NVT and NPT runs of 100 ps each. The
production run time is 8 ns per λ value (total of 29 λ values),
where λ is the thermodynamic integration parameter that tunes
the interactions between the reaction states and the solvents.
The run time was chosen to be long enough to obtain a
reasonably smooth curve as shown in Figure 10 (simulation
time convergence tests are shown in Section S6 of Supporting
Information). A time step of 2 fs was used with the SETTLE43

treatment of water molecules. The temperatures were thermo-
statted using velocity rescaling,44 to experimental values:6 363
K for t-butanol and 373 K for fructose. The Berendsen
barostat45 was used with a pressure of 1 bar. A background
homogeneous −1 charge cancels the +1 positive charge on the
reaction states.
The force-field parameters for co-solvent molecules

(DMSO, MeCN, and GVL) were tuned to reproduce
experimental enthalpies of mixing with water. Details of the
parameters and tuning are reported in Section S1 of
Supporting Information. This tuning ensures a thermodynami-
cally accurate solvation environment before embedding and
solvating any reaction state.
The choice of force-field parameters for the reaction states is

non-trivial because reaction intermediates and transition states
cannot be represented by default force-field parameters
intended for stable molecules. This model choice is critical
as it dictates the strength of interaction of each reaction state
with the solvents.
Non-bonded interactions include electrostatic interactions,

parameterized by the atomic partial charges, and dispersive
interactions, parameterized by the Lennard-Jones 6−12
parameters. The Lennard-Jones parameters of a reaction
state are taken from default OPLS-AA parameters because
the atomic rearrangements during a reaction step are unlikely
to significantly alter the electronic polarizability of the atom
constituents. In contrast, the partial charges are adjusted at
each reaction step because the electronic dipole and
monopoles change quite significantly along the reaction
coordinate. We used the electrostatic potential fitting (ESP)
method46,47 in DFT (with continuum solvation turned off) to
determine the atomic partial charges, which were then
employed in the force-field MD simulations. Full tables of
non-bonded parameters for the reaction states can be found in
Section S3 of Supporting Information.

Bonded interactions within the “solute” reaction states are
not included because their internal coordinates are frozen
during MD simulations. This simplification has several
advantages. First, we avoid having to develop the parameters
for numerous internal degrees of freedom. Second, the
transition state is a saddle point in the potential energy
surface and would require artificial stabilization of the unstable
mode. Though one may argue that the relaxation of the
internal coordinates of the solute significantly contributes to its
solvation free energy, by treating all reaction states as frozen,
we expect reasonable error cancellations because we ultimately
only need relative solvation free energies in different solvents
for our predictions (eq 1). In Section S5 of Supporting
Information, we lay out several calculations for the hydration
free energies of small organic molecules and charged proton-
water clusters with and without the frozen solute treatment to
assess the degree of error cancellation.
Classical MD is far less computationally expensive compared

to AIMD, allowing for much better sampling of solvent
configurations. For example, consider the system of 90 wt %
DMSO. Our classical MD simulation consists of 450 DMSO
and 210 H2O molecules, which runs 52 ns per day using four
CPUs with one GPU. With tractable computing resources, our
classical MD can easily afford nanoseconds of solvent
equilibration around the reactive centers, which we found
necessary to obtain a statistically converged relative solvation
free energy results (see Section S6 of Supporting Information).
AIMD simulation of the same 90 wt % DMSO system,
reported by Mellmer et al., used 21 DMSO with 10 H2O
molecules,6 which ran for only 20 picoseconds at each
collective variable window. By comparing with a system of
64 water, which has roughly the same number of valence
electrons, we estimate such an AIMD simulation runs for 0.014
ns per day using 28 CPUs.
Though less extreme than AIMD, in the QM/MM

approach, dynamic evolution of the QM region still incurs
significant computational costs. The charged reaction species
along with a small number of solvent molecules need to be
included in the QM region to have realistic short-range
interactions17,19 (much like our choice of DFT-treated solvent
discussed in the next section). Similar to AIMD, the reaction
coordinates in the QM region need to be sampled along some
path defined by a collective variable using umbrella sampling or
metadynamics.11 The sampling of each collective variable
window then needs to be long enough to allow for solvent
reconfiguration in the MM region.
We highlight that 8 ns/λ × 29λ = 232 ns of dynamic

simulation was needed to obtain reliable statistics for solvation
of a single intermediate or transition state for a single (mixed)
solvent using classical MD. We report here activation free
energies for 67 combinations of reactions and solvents,
requiring collectively over 31,000 ns of dynamic simulation.
To run AIMD or QM/MM dynamics for this length of
simulation time (with 0.5 fs time step) would require 5.6
billion energy/force evaluations. This is orders of magnitude
beyond what is viable using AIMD or QM/MM simulations.
Finally, a major benefit of explicitly computing the solvation

free energies is that it provides a clear indicator for the
solvation impact on reaction energetics, something not
attainable from conventional enhanced sampling using QM/
MM or AIMD simulations. The potential of mean force
obtained from enhanced sampling of any reaction coordinate is
always relative to an arbitrary starting point within that
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particular coordinate. This means that though one may attain a
lower activation barrier for a particular reaction by changing
from solvent A to solvent B, one cannot immediately tell if
solvent B is destabilizing the initial state or stabilizing the
transition state (or both) relative to solvent A because there is
no common starting point between the two solvents. In
contrast, our DFT/MD model computes the solution-phase
reaction free energy profile with a common starting point: the
gas-phase free energy. By computing the solvation free energies
of all the reaction intermediates and the transition state into
solvent A or B from the same gas-phase reference, our model
allows for an immediate assessment of the solvation role on the
change in activation barrier. We later illustrate this improved
interpretability of solvation effects in Figure 11.
Choice of DFT-Treated Proton Carrier. Though the

classical MD simulation is used to quantify solvation, nearby
solvent molecules can directly alter the reaction coordinates,8

which requires a DFT description. The solvent interactions can
be separated into short-range electronic and longer range
electrostatic effects. The short-range electronic effect describes
how nearby solvent molecules impact the local electron
densities around the reaction states. These short-range solvent
molecules should be included in the static DFT region.
Conversely, the longer range electrostatic effect includes both
medium range interactions such as dispersion, dipole−dipole
or hydrogen bonding, and also longer range dielectric
screening. These electrostatic interactions can be well
described by the classical force field. The question is, therefore:
how does one decide to use DFT or force field to treat a given
solvent molecule?
Answering this question requires a chemical understanding

of the reaction coordinates, as well as some testing. In this
section, we present a simple test using the DFT/MD approach
to determine which and how many solvent molecules should
be included in the DFT model.
Which Solvents Act as Proton Carriers?We first address

which solvent in a mixed system acts as the proton carrier and
thus should be included in the DFT region. In pure water at
room temperature, we expect the proton carrier to be the
Zundel cation, H5O2

+, a structure known to facilitate proton
transfer in aqueous solution.48−53 In mixed solvents, the
aprotic co-solvent could either take over or assist water in
stabilizing the excess proton.
To decide the choice of which proton carrier to use for each

co-solvent system, we compute the proton transfer free energy
between proton clusters, using the DFT/MD framework with
the thermocycle as shown in Figure 3. In this way, we calculate
ΔGPT

l , the free energy change to transfer the proton from a
protonated water cluster to a protonated co-solvent cluster at
373 K, an elevated temperature relevant to the reactions in this

study. The solvation of each species was done in liquid water.
The standard concentration of water is 55 M and that of A or
A−H3O

+ is 1 M. Figure 4 summarizes results of ΔGPT
l for each

aprotic co-solvent.
All aprotic co-solvents were found to thermodynamically

prefer to assist water instead of completely taking over the
proton carrying task (i.e., A−H3O

+ instead of A−H+ or A−H−

A+, see Section S8 of Supporting Information). From the
values of ΔGPT

l , it is evident that in solution, the order of
favorability for carrying the excess proton is: DMSO−H3O

+ >
H5O2

+ > MeCN−H3O
+ > GVL−H3O

+.
Based on pKa values54 of protonated acetonitrile (−10.1),

protonated GVL (−7.0 for protonated ester), and protonated
water (−1.74), we expect that the excess proton readily resides
only on water molecules for water/MeCN or water/GVL
mixtures at room temperature. The large values of ΔGPT

l for
MeCN and GVL indicates that the population of MeCN−

H3O
+ and GVL−H3O

+ is negligible except for at very high
concentration of the respective aprotic co-solvents. This result
suggests that the proton carrier taking part in the dehydration
reaction (Figure 2) is H5O2

+ for both water/MeCN and water/
GVL mixtures.
In contrast, DMSO readily shares the excess proton with

water. The proton affinity of the oxygen bonded with the sulfur
in DMSO is significantly larger than the nitrogen on MeCN or
the oxygen on GVL. This is apparent from the pKa value of
protonated DMSO (−1.80),54 being comparable to that of
water. Furthermore, simulations and spectroscopic experi-
ments have confirmed the formation of the DMSO−H3O

+

complex in water/DMSO mixtures.6,55,56

Though the thermodynamic stability of DMSO−H3O
+ over

H5O2
+ is apparent and would suggest modeling the proton

carrier as DMSO−H3O
+ in the reaction coordinates, we

instead still choose to use H5O2
+ as the proton carrier in water/

DMSO mixtures, following further analysis on the reaction free
energy profile. Figure 5 shows the free energy of protonating a
t-butanol molecule using either H5O2

+ or DMSO−H3O
+, as

calculated in pure water solvent using DFT/MD.
The result in Figure 5 suggests that, though DMSO−H3O

+

is more stable in the bulk solvent, the proton donor in contact
with t-butanol is preferred as H5O2

+. This is consistent with the
benchmarking AIMD simulation in ref 6 where the excess
proton approximately retains a H5O2

+ structure in close
proximity with the t-butanol reactant even at 90 wt %
DMSO. We will compare our activation barriers to these
AIMD results, where the initial state is referenced to the excess
proton in the vicinity of the alcohol reactant; therefore for
consistency, we model the proton carrier as H5O2

+ in the
water/DMSO mixture.
How Many and Where Are the Proton Carriers? With

the decision to use water as the proton carrier for all mixtures,
we now must choose how many and where to place the water
molecules within the DFT representation. In the dehydration
reaction coordinates, the protonated water cluster initially acts
as a proton donor and then acts as a proton acceptor when the
proton is transferred from the carbocation (see Figure 2).
Figure 6 shows an example of two water molecules acting as
the proton donor, while two acting as the proton acceptor.
The solvent molecules circled in Figure 6 require a DFT

description if they significantly alter the electronic densities
and hence the chemical potential of the reaction states. We aim
to include the least number of solvent molecules in the DFT
representation because: (1) force-field dynamic simulation of

Figure 3. Thermodynamic cycle for the proton transfer between
water and aprotic solvent molecules. Species A depicts any aprotic co-
solvent molecule in consideration: DMSO, MeCN, and GVL. The
solvation free energies are computed in pure water.
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these molecules is much less computationally expensive and
(2) only tightly bound solvent molecules at a given state are
properly represented as static, with their entropy contribution
removed. This entropy penalty may exceed the energy
(enthalpy) benefit of being included in the DFT cluster,
making the addition of a solvent molecule to the DFT region
thermodynamically unfavorable.
We show in Figure 7 the free energy change to reach the first

protonation step in pure water, with different choices for the
initial protonated water cluster (H3O

+vs H5O2
+) and varying

the number of water molecules included in the DFT
representation of the alcohol-proton-water cluster.
We first look at placing water molecules as the proton donor

for t-butanol. With three water molecules to use, the proton
donor can be H3O

+, H5O2
+, or H7O3

+. Although adding
additional water always lowers the enthalpy, there is also an
entropy loss associated with requiring a water molecule to be
static. As seen from the bottom three protonated scenarios in
Figure 7, protonating t-butanol with H5O2

+ incurs the least free
energy cost (10.6 kJ/mol). Relative to the t-butanol-H5O2

+

cluster, t-butanol-H3O
+ pays an enthalpic penalty larger than

the entropy gain from removing one static water and hence is
14.0 kJ/mol less stable (in free energy). In contrast, adding
another water to t-butanol-H5O2

+ and making t-butanol-H7O3
+

incurs a net free energy cost of 4.2 kJ/mol, stemming from the
loss in entropy that outweighs the enthalpic benefit.
Furthermore, H3O

+ in bulk solvent is also not as
thermodynamically stable as H5O2

+, as seen from the 12.8 kJ/
mol difference in the initial state. The thermodynamic of the
excess proton in solution is itself a non-trivial topic, of which
was studied in our previous work.57

Turning to the proton acceptor for the last protonation step,
the top right state in Figure 7 depicts adding an extra flanking
water molecule, ready to accept the methyl proton. The
entropy loss of holding the flanking water static far outweighs
the enthalpy gain from stabilizing the proton on a −CH3

Figure 4. queous-phase free energy transfer of the excess proton from H5O2
+ to the most stable form of proton carrier for each respective aprotic co-

solvent (DMSO, GVL, and MeCN).

Figure 5. Free energy change of the first protonation step for t-butanol, using either H5O2
+ or DMSO−H3O

+. The initial state depicts each reactant
in bulk solution at its reference concentrations. The protonated state depicts bringing the proton carrier in close proximity with the t-butanol
molecule and sharing the proton with its oxygen.

Figure 6. DFT-optimized protonated state for t-butanol dehydration.
The H5O2

+ structure circled on the right will donate the proton in the
first protonation elementary step. In the last deprotonation step, the
two water molecules on the left will accept the proton from the
methyl group to generate the alkene and reform an H5O2

+ cluster.
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Figure 7. Free energy change of the first protonation step for t-butanol with different placement of water molecules.

Figure 8. (a) Reaction free energy profile of t-butanol dehydration in the gas phase (top) and in water solvent (bottom), each profile referenced to
its respective initial state. The solvation free energies of each reaction states are shown in the middle section. The activation free energy ΔG⧧ is the
free energy difference between the solvated transition and initial states. Each reaction state corresponds to the elementary steps shown in Figure 2.
(b) Electrostatic potential iso-surface around the reaction states, with labels for the ESP charges of the heavy atoms (C and O) plus neighboring H
atoms. The +1 charge is more localized among the oxygens in the protonated state, among the carbons in the carbocation state, and smeared out to
all carbons and oxygens in the transition state.
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group, incurring a net free energy cost of 18.6 kJ/mol.
Furthermore, the water molecules acting as the proton donors
in the first protonation step can serve as the proton acceptors
in the last deprotonation step (Section S2 of Supporting
Information).
Altogether, the results in Figures 4, 5, and 7 guide us toward

choosing to simply use two water molecules as both the proton
donor and proton acceptor along the reaction coordinate in all
solvent mixtures. On reflection, these are not difficult choices,
at least when considering mixed water/MeCN and water/GVL
solvents. Water clusters will carry the proton and serve as the
proton donor to the alcohol and acceptor to the methyl
proton. Two water molecules benefit from significant enthalpic
interaction with the positive charge along the reaction
coordinate, such that they can be treated statically. By carefully
studying how DFT-treated solvent molecules affect reaction
energetics within our DFT/MD framework, we obtain valuable
information about the balance of enthalpy/entropy contribu-
tions to solvation.
DFT/MD Energetic Results. Reaction Free Energy

Profile. With the choice of proton carrier made, we map the
free energy profile for the intermediates and the transition state
in the alcohol dehydration mechanism. Figure 8a illustrates the

reaction free energy profile calculated in the gas phase using
DFT and solvated to the aqueous phase using MD. In the
aqueous phase, the difference in free energies of the transition
state and initial state gives the activation free energy ΔG⧧ of 92
kJ/mol in pure water solvent.
The first protonated step in the gas phase is downhill in free

energy. This is because in the gas phase, the excess +1 charge
on the H5O2

+ species favors the stabilization provided by the t-
butanol molecule. After solvating the initial state into liquid
water, the excess positive charge is largely stabilized by
dielectric screening of the solvent. Furthermore, bringing the
solvated H5O2

+ to protonate a t-butanol molecule requires
giving up a water molecule hydrogen-bonded to the H5O2

+

cluster, incurring a net free energy cost of 11 kJ/mol. In other
words, the net solvent stabilization of separated t-butanol and
H5O2

+ species (−264 kJ/mol) outweighs their interaction (−74
kJ/mol) plus the solvation of the protonated state (−180 kJ/
mol).
In subsequent reaction states, the C−O bond is first cleaved

to produce a carbocation, then a proton hops from a −CH3

group onto water molecules. The gas-phase free energy profile
for this sequence is an uphill activated process. Once the
protonated state is formed, it would require 41 kJ/mol to

Figure 9. (a) Reaction free energy profile of t-butanol (bottom) and fructose (top) in various solvents. DFT/MD profile shows reasonable
agreement with AIMD’s across the board. (b) Comparison of activation free energies of above reactions from DFT/MD versus AIMD. DFT/MD’s
barriers are consistently slightly larger, but follow AIMD’s trend closely. AIMD results were taken from refs 6 and 9.
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overcome the free energy barrier to complete the reaction in
the gas phase (difference in gas-phase transition and
protonated states in Figure 8a). The same activated process
requires 81 kJ/mol in the aqueous phase. This increased free
energy cost stems from the decrease in solvation free energy as
the reaction progresses (see ΔGsol in Figure 8a).
The decrease in solvation free energies along the reaction

path can be explained from the delocalization of the excess +1
charge (Figure 8b). As the nuclei rearranges along the reaction
path, the +1 charge first localizes on the three H2O proton
carriers, then on C4H9

+ carbocation, and finally delocalizes
throughout the transition state. The “smeared-out” positive
charge electrostatically interacts less strongly with polar solvent
molecules, ultimately reducing its solvation free energy. Within
the DFT/MD framework, this electronic delocalization is
captured when the atomic partial charges of the reaction states
are obtained from the ESP scheme in DFT calculations (Figure
8b).
The acid concentration, which governs the translational

entropy of the excess proton, affects the activation free energy
(Section S4 of Supporting Information). As the concentration
increases, the translational entropy of the proton decreases,
consequently increasing the chemical potential of the initial
state and lowering the activation free energy; at higher acid
concentration, it is “thermodynamically easier” for the t-
butanol molecule to find an excess proton to react with. Below
when we compute the activation free energies in mixed
solvents, we use 1 M acid standard concentration, consistent
with common practice in reaction thermodynamics literature.
Absolute Activation Barrier versus AIMD. We compute

the free energy profile along the reaction coordinates for the
dehydration of t-butanol and fructose in pure water and in

water/organic co-solvent mixtures, as shown in Figure 9a. The
mixed solvent compositions are chosen to match previous
AIMD studies of the same reactions in refs 6 and 9. The
activation free energies are again plotted in Figure 9b for in-
scale comparison between DFT/MD (with statistical error bars
from MD simulation) and AIMD.
As seen from Figure 9a, the agreement of the free energy

profiles between DFT/MD and AIMD is rather impressive,
especially given significant differences between approaches.
The AIMD free energy profiles were obtained from umbrella
sampling using a pre-determined set of collective variables.6,9

This approach samples the collective variables under a biased
force, allowing for a weighted histogram analysis method
implementation. Ultimately, its accuracy relies on the
calculations of the atomic forces performed by DFT at each
MD time step, which capture both the reaction and solvent
coordinates together. In contrast, the DFT/MD approach
completely decouples the gas-phase reaction free energy and
the solvation free energy and employs a thermodynamic cycle
to connect them. Aside from yielding this satisfying agreement
between the two methods, this validates our earlier partition of
the solvation effects between short-range electronic and longer
range electrostatic contributions, which could be modeled by
DFT and classical MD separately.
The comparison shown in Figure 9b indicates consistently

higher activation free energies predicted by DFT/MD. The
trend across different solvents for both reactions, however,
agrees excellently between the two methods. Larger activation
free energies computed in DFT/MD could stem from our
chosen 1 M acid standard concentration, and furthermore
point to one subtle difference between the AIMD and DFT/
MD approaches. As eluded to earlier in the analysis of Figure 5,

Figure 10. Relative activation free energies G G( )mix w of the t-butanol (left) and fructose (right) dehydration reaction in water/DMSO,
water/GVL, and water/MeCN.
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the AIMD free energy profile is referenced to an initial state
where the proton carrier is already close to the biomass
molecule. Whereas, the DFT/MD free energy profile
references a proton carrier solvated in the bulk at some
chosen standard concentration. As well known6,7,56 and also
shown later, mixed solvent configurations in the bulk are very
different to those in local proximity with a charged solute. This
gives rise to an “effective concentration” of the proton in the
local environment of the reaction state that is non-trivial to
predict. We suggest that this different initial state free energy
reference of the proton is the cause of the consistent deviation
in the activation free energies calculated by the two methods as
shown in Figure 9b. The direction of this difference is
appropriate, as we find a free energy increase to bring the bulk
proton carrier toward the alcohol molecule, and the AIMD free
energy profile6 also shows this increase to be progressive as the
proton approaches the alcohol molecule. This suggests that the
initial state in AIMD simulation is already slightly higher in
free energy than a true bulk initial state, leading to lower
AIMD-measured activation free energies.
Besides producing remarkably similar energetics compared

to AIMD, the DFT/MD method does so with significantly
lower computational cost. DFT calculations are needed for
only gas-phase reaction scans, while classical force field
provides excellent sampling of solvent configurations. Well-
sampled solvent configurations also allow for meaningful
statistical error bars, which can be made more precise simply
by running longer MD simulations with tractable cost.
Relative Activation Barrier versus Experiment. We

next compare our calculated activation free energies to
experimental rate constants from ref 6, The data presented
in ref 6 consists of the ratios of reaction rate constants in mixed
solvent to that in pure water kmix/kw at different water/organic
co-solvent compositions. Employing classical transition state
theory, we transform the ratio of rate constants into the relative
activation free energy

G G G

RT
k

k
ln

mix w

mix

w

=

=

(2)

The dependence on acid concentration cancels in the
calculation of the free energy difference. The experimentally
inferred relative activation free energy ΔΔG⧧ is directly
comparable to that computed from DFT/MD.
The relative activation free energies are plotted in Figure 10

for both t-butanol and fructose dehydration in water/DMSO,
water/MeCN, and water/GVL solvents. Good quantitative
agreement is observed across the board. For the t-butanol
reaction, the slight positive values in ΔΔG⧧ (i.e., elevated
activation barrier) by adding moderate amount of MeCN or
GVL, followed by a dip to negative values at very high co-
solvent concentration (>80 wt %) are observed. In contrast,
the fructose dehydration activation free energies consistently
decrease with addition of any aprotic co-solvent. This good
agreement of our results with experimental rate measurements
further validates the DFT/MD approach.
As unique to our DFT/MD approach, we can interpret the

change in the activation free energy across different solvents
directly from the change in solvation free energies of the initial
and transition states. This idea is illustrated in Figure 11. The
initial and transition states of both t-butanol and fructose

reactions are stabilized from the addition of DMSO to water.
This is a general trend for MeCN/water and GVL/water
mixtures as well (see Section S7 in Supporting Information).
The difference in solvation free energies between the initial
and transition states explains the change in activation free
energies. For t-butanol dehydration, 90 wt % DMSO, relative
to water, stabilizes the initial state 5 kJ/mol stronger compared
to the transition state, giving rise to the observed 5 kJ/mol
increase in the activation free energy. The reverse is true for
fructose dehydration, having a 10 kJ/mol lower activation free
energy at 90 wt % DMSO. We stress once again that the
conventional enhanced sampling of reaction coordinates used
in AIMD and other QM/MM approaches cannot provide such
solvation comparison on an absolute scale as shown in Figure
11.
Mixed Solvent Structuring. The distribution of mixed

solvents around the reaction states of alcohol dehydration has
been considered by others. Recent work used classical MD to
map out solvent distribution around the biomass reactant7,12,58

or around the excess proton carrier.56 MD-derived structural
information was then used as descriptors for a neural network
model23 or a multivariate model.59 These models aim to
provide rapid and accurate predictions for the rate of biomass
reactions in mixed aqueous/organic solvents.
Improving on these results, the DFT/MD approach captures

the structuring of solvent around not only the reactant, but
around metastable reaction intermediates and transition states.
We characterize the solvent configurations in terms of 2D
radial distribution functions (RDFs) or alternatively in more
details with 3D spatial distribution functions (SDFs), obtained
from 8 ns trajectory of classical MD about a DFT-determined
reaction state.
Figure 12 displays the RDFs between oxygens on the

transition state of t-butanol dehydration and oxygens on either
water or DMSO. In the top figure, the water or DMSO
concentrations are referenced either to pure water or 97 wt %
DMSO, respectively. This figure therefore compares local
solvent concentrations on an absolute scale across different
solvent compositions. From this figure, it is evident that the
absolute number of water (DMSO) in the local region (<0.35
nm) of the transition state goes down (up) as more DMSO is
added.
In contrast, the bottom RDFs are normalized with respect to

the bulk concentration of each respective solution, which allow
for comparison in relative scale across solvent compositions.
For both water or DMSO, the first RDF peak increases with

Figure 11. Change in solvation free energies of t-butanol (left) and
fructose (right) initial and transition states from water to 90 wt %
DMSO.
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higher DMSO concentration. This means that for water,
though the absolute number of water molecules (per unit
volume) near the solute goes down with higher DMSO
concentration, the number of local water molecule relative to
that in the bulk goes up. The increasing number of local
molecules with respect to the bulk is also true for DMSO. This
affinity of the reaction state for water versus for aprotic co-
solvent is termed “preferential clustering” in previous studies of
mixed aqueous/organic solvent and is used as a descriptor for a
predictive model.7,23

Figure 13 shows the 3D SDFs for 20 and 97 wt % DMSO. It
is clear that at low concentration of DMSO, the oxygens on
water (blue region) and DMSO (red region) compete to form
hydrogen bonds (black dashed lines) with the four free −OH
groups of the transition state. At higher DMSO concentration,
the DMSO molecules also flank behind the hydrophobic part
of the transition state.

In summary, our solvent structural analysis confirms recently
established understanding of co-solvent preferential clustering.
Furthermore, most published studies of solvation effects in
mixed solvent relies on analyzing solvent configurations around
only the biomass reactant (i.e., t-butanol or fructose).7,12,56 Our
DFT/MD approach provides the same structural analysis for
any desired state along the reaction path. Though outside the
current scope of our work, in-depth analysis of how co-solvent
rearranges along the reaction path could provide new
descriptors for future predictive models.

■ CONCLUSIONS

In this work, we have presented a DFT/MD approach to
compute activation free energies for alcohol dehydration
reactions in mixed solvents. The calculated activation barriers
are validated by comparison to both AIMD computations and
experimental rate measurements from refs 6 and 9 with
excellent agreement.

Figure 12. RDFs for oxygens on the transition state of t-butanol dehydration and the oxygens on water or on DMSO. The top RDFs are referenced
to the bulk density of water in pure water (0 wt %) or DMSO in 97 wt % DMSO. The bottom RDFs are referenced to bulk density of the respective
solution.

Figure 13. SDFs for oxygens on the transition state of t-butanol dehydration and the oxygens on water (blue) or on DMSO (red). The left and
right boxes are for 20 and 97 wt % DMSO, respectively. The dashed black line indicates obvious hydrogen bonds.
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From this successful validation, we provide deeper under-
standing of solvent influence on the reaction mechanism and
energetics. Solvent molecules interact with the reaction species
through both short-range electronic and longer range electro-
static contribution. The short-range electronic interaction
significantly alters the electronic structures of the reaction
state, necessitating a DFT-level description. The longer range
electrostatic interaction includes dispersion, dipole−dipole or
hydrogen bonding, and long-range dielectric screening. These
interactions can be well described using classical force fields in
MD simulations. The solvation effect on a condensed phase
reaction is therefore an interplay between these two types of
interactions, and also between enthalpic stabilization and the
entropy penalty of solvent molecule taking part in the reaction
mechanism. Furthermore, by explicitly calculating the solvation
free energies, the reaction free energy profiles can be compared
across solvents on an absolute free energy scale.
Our DFT/MD approach is a very scalable procedure. The

static DFT description significantly reduces the computational
costs in comparison with AIMD and QM/MM approaches
that dynamically sample the reaction coordinates. With careful
consideration of DFT versus force-field treatments of the
reaction coordinates and solvent coordinates, respectively, the
approach can be extended to condensed-phase reactions with
more complex mechanisms or in more complex environments
such as porous solid catalysts.2,4

Besides computing reaction energetics, our simulation also
reveals how co-solvents structure around each state of a
reaction path. These data can be readily extended for various
different reactions in different solvents, potentially offering
valuable descriptors in recently developed predictive models
for the rate of biomass reactions.

■ ASSOCIATED CONTENT

*sı Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acscatal.2c03978.

Force-field parameters and DFT reaction scan profiles
(PDF)

■ AUTHOR INFORMATION

Corresponding Author

Michael J. Janik − Department of Chemical Engineering,
Pennsylvania State University, University Park, Pennsylvania
16802, United States; orcid.org/0000-0001-9975-0650;
Email: mjj13@psu.edu

Authors

Bolton Tran − Department of Chemical Engineering,
Pennsylvania State University, University Park, Pennsylvania
16802, United States; orcid.org/0000-0003-2645-4898

Scott T. Milner − Department of Chemical Engineering,
Pennsylvania State University, University Park, Pennsylvania
16802, United States; orcid.org/0000-0002-9774-3307

Complete contact information is available at:
https://pubs.acs.org/10.1021/acscatal.2c03978

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors acknowledge funding from NSF-CBET 1939464
and support from the William H. Joyce Chair. This work used
the Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by the National Science
Foundation under Grant No. ACI-1548562.

■ REFERENCES

(1) Chheda, J. N.; Huber, G. W.; Dumesic, J. A. Liquid-phase
catalytic processing of biomass-derived oxygenated hydrocarbons to
fuels and chemicals. Angew. Chem., Int. Ed. 2007, 46, 7164−7183.
(2) Liao, Y. T.; Matsagar, B. M.; Wu, K. C. Metal-Organic
Framework (MOF)-Derived Effective Solid Catalysts for Valorization
of Lignocellulosic Biomass. ACS Sustainable Chem. Eng. 2018, 6,
13628−13643.
(3) Zhang, D.; Barri, S. A.; Chadwick, D. Dehydration of 1,2-
propanediol to propionaldehyde over zeolite catalysts. Appl. Catal., A
2011, 400, 148−155.
(4) Mei, D.; Lercher, J. A. Effects of Local Water Concentrations on
Cyclohexanol Dehydration in H-BEA Zeolites. J. Phys. Chem. C 2019,
123, 25255−25266.
(5) Mellmer, M. A.; Sener, C.; Gallo, J. M. R.; Luterbacher, J. S.;
Alonso, D. M.; Dumesic, J. A. Solvent effects in acid-catalyzed
biomass conversion reactions. Angew. Chem., Int. Ed. 2014, 53,
11872−11875.
(6) Mellmer, M. A.; Sanpitakseree, C.; Demir, B.; Bai, P.; Ma, K.;
Neurock, M.; Dumesic, J. A. Solvent-enabled control of reactivity for
liquid-phase reactions of biomass-derived compounds. Nat. Catal.
2018, 1, 199−207.
(7) Walker, T. W.; Chew, A. K.; Li, H.; Demir, B.; Zhang, Z. C.;
Huber, G. W.; Van Lehn, R. C.; Dumesic, J. A. Universal kinetic
solvent effects in acid-catalyzed reactions of biomass-derived oxygen-
ates. Energy Environ. Sci. 2018, 11, 617−628.
(8) Varghese, J. J.; Mushrif, S. H. Origins of complex solvent effects
on chemical reactivity and computational tools to investigate them: a
review. React. Chem. Eng. 2019, 4, 165−206.
(9) Mellmer, M. A.; Sanpitakseree, C.; Demir, B.; Ma, K.; Elliott, W.
A.; Bai, P.; Johnson, R. L.; Walker, T. W.; Shanks, B. H.; Rioux, R. M.;
Neurock, M.; Dumesic, J. A. Effects of chloride ions in acid-catalyzed
biomass dehydration reactions in polar aprotic solvents. Nat.
Commun. 2019, 10, 1132.
(10) Mushrif, S. H.; Varghese, J. J.; Krishnamurthy, C. B. Solvation
dynamics and energetics of intramolecular hydride transfer reactions
in biomass conversion. Phys. Chem. Chem. Phys. 2015, 17, 4961.
(11) Piccini, G.; Lee, M.-S.; Yuk, S. F.; Zhang, D.; Collinge, G.;
Kollias, L.; Nguyen, M.-T.; Glezakou, V.-A.; Rousseau, R. Ab initio
molecular dynamics with enhanced sampling in heterogeneous
catalysis. Catal. Sci. Technol. 2022, 12, 12−37.
(12) Velasco Calderón, J. C.; Jiang, S.; Mushrif, S. H. Understanding
the Effect of Solvent Environment on the Interaction of Hydronium
Ion with Biomass Derived Species: A Molecular Dynamics and
Metadynamics Investigation. ChemPhysChem 2021, 22, 2222.
(13) Kowsari, M. H.; Tohidifar, L. Systematic evaluation and
refinement of existing all-atom force fields for the simulation of liquid
acetonitrile. J. Comput. Chem. 2018, 39, 1843−1853.
(14) Vishnyakov, A.; Lyubartsev, A. P.; Laaksonen, A. Molecular
dynamics simulations of dimethyl sulfoxide and dimethyl sulfoxide-
water mixture. J. Phys. Chem. A 2001, 105, 1702−1710.
(15) Colombari, F. M.; de Moura, A. F.; Freitas, L. C. G. Chiral
recognition of liquid phase dimers from gamma-valerolactone racemic
mixture. J. Mol. Model. 2018, 24, 215.
(16) Lin, H.; Truhlar, D. G. QM/MM: What have we learned, where
are we, and where do we go from here? Theor. Chem. Acc. 2007, 117,
185−199.
(17) Lu, X.; Fang, D.; Ito, S.; Okamoto, Y.; Ovchinnikov, V.; Cui, Q.
QM/MM free energy simulations: recent progress and challenges.
Mol. Simul. 2016, 42, 1056−1078.

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.2c03978
ACS Catal. 2022, 12, 13193−13206

13204

https://pubs.acs.org/doi/10.1021/acscatal.2c03978?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acscatal.2c03978/suppl_file/cs2c03978_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+J.+Janik"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-9975-0650
mailto:mjj13@psu.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bolton+Tran"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-2645-4898
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Scott+T.+Milner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-9774-3307
https://pubs.acs.org/doi/10.1021/acscatal.2c03978?ref=pdf
https://doi.org/10.1002/anie.200604274
https://doi.org/10.1002/anie.200604274
https://doi.org/10.1002/anie.200604274
https://doi.org/10.1021/acssuschemeng.8b03683?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.8b03683?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.8b03683?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.apcata.2011.04.028
https://doi.org/10.1016/j.apcata.2011.04.028
https://doi.org/10.1021/acs.jpcc.9b07738?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.9b07738?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/anie.201408359
https://doi.org/10.1002/anie.201408359
https://doi.org/10.1038/s41929-018-0027-3
https://doi.org/10.1038/s41929-018-0027-3
https://doi.org/10.1039/c7ee03432f
https://doi.org/10.1039/c7ee03432f
https://doi.org/10.1039/c7ee03432f
https://doi.org/10.1039/c8re00226f
https://doi.org/10.1039/c8re00226f
https://doi.org/10.1039/c8re00226f
https://doi.org/10.1038/s41467-019-09090-4
https://doi.org/10.1038/s41467-019-09090-4
https://doi.org/10.1039/c4cp05063k
https://doi.org/10.1039/c4cp05063k
https://doi.org/10.1039/c4cp05063k
https://doi.org/10.1039/d1cy01329g
https://doi.org/10.1039/d1cy01329g
https://doi.org/10.1039/d1cy01329g
https://doi.org/10.1002/cphc.202100485
https://doi.org/10.1002/cphc.202100485
https://doi.org/10.1002/cphc.202100485
https://doi.org/10.1002/cphc.202100485
https://doi.org/10.1002/jcc.25337
https://doi.org/10.1002/jcc.25337
https://doi.org/10.1002/jcc.25337
https://doi.org/10.1021/jp0007336?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0007336?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0007336?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s00894-018-3744-2
https://doi.org/10.1007/s00894-018-3744-2
https://doi.org/10.1007/s00894-018-3744-2
https://doi.org/10.1007/s00214-006-0143-z
https://doi.org/10.1007/s00214-006-0143-z
https://doi.org/10.1080/08927022.2015.1132317
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.2c03978?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(18) Roßbach, S.; Ochsenfeld, C. Influence of Coupling and
Embedding Schemes on QM Size Convergence in QM/MM
Approaches for the Example of a Proton Transfer in DNA. J. Chem.
Theory Comput. 2017, 13, 1102−1107.
(19) Caratzoulas, S.; Vlachos, D. G. Converting fructose to 5-
hydroxymethylfurfural: A quantum mechanics/molecular mechanics
study of the mechanism and energetics. Carbohydr. Res. 2011, 346,
664−672.
(20) Schwarz, K.; Sundararaman, R. The electrochemical interface in
first-principles calculations. Surf. Sci. Rep. 2020, 75, 100492.
(21) Lim, H. K.; Lee, H.; Kim, H. A Seamless Grid-Based Interface
for Mean-Field QM/MM Coupled with Efficient Solvation Free
Energy Calculations. J. Chem. Theory Comput. 2016, 12, 5088−5099.
(22) Clabaut, P.; Schweitzer, B.; Götz, A. W.; Michel, C.; Steinmann,
S. N. Solvation Free Energies and Adsorption Energies at the Metal/
Water Interface from Hybrid Quantum-Mechanical/Molecular
Mechanics Simulations. J. Chem. Theory Comput. 2020, 16, 6539−
6549.
(23) Chew, A. K.; Jiang, S.; Zhang, W.; Zavala, V. M.; Van Lehn, R.
C. Fast predictions of liquid-phase acid-catalyzed reaction rates using
molecular dynamics simulations and convolutional neural networks.
Chem. Sci. 2020, 11, 12464−12476.
(24) Maldonado, A. M.; Basdogan, Y.; Berryman, J. T.; Rempe, S. B.;
Keith, J. A. First-principles modeling of chemistry in mixed solvents:
Where to go from here? J. Chem. Phys. 2020, 152, 130902.
(25) Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E.,
Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G.
A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J.,
Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ort, J.
V.Gaussian 09, Revision A.02. 2016.
(26) Becke, A. D. Density-functional thermochemistry. III. The role
of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.
(27) Schlegel, H. B. Optimization of Equilibrium Geometries and
Transition Structures. J. Comput. Chem. 1982, 3, 214−218.
(28) Mennucci, B.; Cammi, R.; Tomasi, J. Excited states and
solvatochromic shifts within a nonequilibrium solvation approach: A
new formulation of the integral equation formalism method at the
self-consistent field, configuration interaction, and multiconfiguration
self-consistent field level. J. Chem. Phys. 1998, 109, 2798−2807.
(29) Kirkwood, J. G. Statistical Mechanics of Fluid Mixtures. J.
Chem. Phys. 1935, 3, 300−313.
(30) Straatsma, T. P.; Berendsen, H. J. C. Free energy of ionic
hydration: Analysis of a thermodynamic integration technique to
evaluate free energy differences by molecular dynamics simulations. J.
Chem. Phys. 1988, 89, 5876−5886.
(31) Straatsma, T. P.; Berendsen, H. J. C.; Postma, J. P. M. Free
energy of hydrophobic hydration: A molecular dynamics study of
noble gases in water. J. Chem. Phys. 1986, 85, 6720−6727.
(32) Hess, B.; van der Vegt, N. F. Hydration thermodynamic
properties of amino acid analogues: A systematic comparison of
biomolecular force fields and water models. J. Phys. Chem. B 2006,
110, 17616−17626.
(33) Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.;
Sherman, W. Prediction of absolute solvation free energies using
molecular dynamics free energy perturbation and the opls force field.
J. Chem. Theory Comput. 2010, 6, 1509−1519.
(34) Berendsen, H.; van der Spoel, D.; van Drunen, R. GROMACS
A message-passing parallel molecular dynamics implementation.
Comput. Phys. Commun. 1995, 91, 43−56.
(35) Lindahl, E.; Hess, B.; van der Spoel, D. GROMACS 3.0: a
package for molecular simulation and trajectory analysis. J. Mol.
Model. 2001, 7, 306−317.
(36) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark,
A. E.; Berendsen, H. J. C. GROMACS: Fast, flexible, and free. J.
Comput. Chem. 2005, 26, 1701−1718.
(37) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E.
GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and
Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4,
435−447.

(38) Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.;
Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der
Spoel, D.; Hess, B.; Lindahl, E. GROMACS 4.5: a high-throughput
and highly parallel open source molecular simulation toolkit.
Bioinformatics 2013, 29, 845−854.
(39) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.;
Hess, B.; Lindahl, E. GROMACS: High performance molecular
simulations through multi-level parallelism from laptops to super-
computers. SoftwareX 2015, 1-2, 19−25.
(40) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development
and Testing of the OPLS All-Atom Force Field on Conformational
Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996,
118, 11225−11236.
(41) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.
W.; Klein, M. L. Comparison of simple potential functions for
simulating liquid water. J. Chem. Phys. 1983, 79, 926−935.
(42) Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M.
PACKMOL: A package for building initial configurations for
molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157−
2164.
(43) Miyamoto, S.; Kollman, P. A. Settle: An analytical version of
the SHAKE and RATTLE algorithm for rigid water models. J.
Comput. Chem. 1992, 13, 952−962.
(44) Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling
through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.
(45) Berendsen, H. J.; Postma, J. P.; van Gunsteren, W. F.; DiNola,
A.; Haak, J. R. Molecular dynamics with coupling to an external bath.
J. Chem. Phys. 1984, 81, 3684−3690.
(46) Singh, U. C.; Kollman, P. A. An approach to computing
electrostatic charges for molecules. J. Comput. Chem. 1984, 5, 129−
145.
(47) Besler, B. H.; Merz, K. M.; Kollman, P. A. Atomic charges
derived from semiempirical methods. J. Comput. Chem. 1990, 11,
431−439.
(48) Kirchner, B. Eigen or zundel ion: News from calculated and
experimental photoelectron spectroscopy. ChemPhysChem 2007, 8,
41−43.
(49) Dahms, F.; Costard, R.; Pines, E.; Fingerhut, B. P.; Nibbering,
E. T.; Elsaesser, T. The Hydrated Excess Proton in the Zundel Cation
H5O2+: The Role of Ultrafast Solvent Fluctuations. Angew. Chem.,
Int. Ed. 2016, 55, 10600−10605.
(50) Dahms, F.; Fingerhut, B. P.; Nibbering, E. T. J.; Pines, E.;
Elsaesser, T. Large-amplitude transfer motion of hydrated excess
protons mapped by ultrafast 2D IR spectroscopy. Science 2017, 357,
491−495.
(51) Daly, C. A.; Streacker, L. M.; Sun, Y.; Pattenaude, S. R.;
Hassanali, A. A.; Petersen, P. B.; Corcelli, S. A.; Ben-Amotz, D.
Decomposition of the Experimental Raman and Infrared Spectra of
Acidic Water into Proton, Special Pair, and Counterion Contribu-
tions. J. Phys. Chem. Lett. 2017, 8, 5246−5252.
(52) Fournier, J. A.; Carpenter, W. B.; Lewis, N. H.; Tokmakoff, A.
Broadband 2D IR spectroscopy reveals dominant asymmetric H5O2+
proton hydration structures in acid solutions. Nat. Chem. 2018, 10,
932−937.
(53) Calio, P. B.; Li, C.; Voth, G. A. Resolving the Structural Debate
for the Hydrated Excess Proton in Water. J. Am. Chem. Soc. 2021, 143,
18672−18683.
(54) Klein, D. R.Organic Chemistry, 3rd ed.; Wiley, 2017; p 1312.
(55) Sofronov, O. O.; Bakker, H. J. Energy Relaxation and Structural
Dynamics of Protons in Water/DMSO Mixtures. J. Phys. Chem. B
2018, 122, 10005−10013.
(56) Chew, A. K.; Van Lehn, R. C. Quantifying the stability of the
hydronium ion in organic solvents with molecular dynamics
simulations. Front. Chem. 2019, 7, 439.
(57) Tran, B.; Cai, Y.; Janik, M. J.; Milner, S. T. Hydrogen bond
thermodynamics in aqueous acid solutions: a combined DFT and
classical force-field approach. J. Phys. Chem. A 2022, 136, 7382−7398,
DOI: 10.1021/acs.jpca.2c04124.

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.2c03978
ACS Catal. 2022, 12, 13193−13206

13205

https://doi.org/10.1021/acs.jctc.6b00727?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00727?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00727?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.carres.2011.01.029
https://doi.org/10.1016/j.carres.2011.01.029
https://doi.org/10.1016/j.carres.2011.01.029
https://doi.org/10.1016/j.surfrep.2020.100492
https://doi.org/10.1016/j.surfrep.2020.100492
https://doi.org/10.1021/acs.jctc.6b00469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00632?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00632?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00632?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/d0sc03261a
https://doi.org/10.1039/d0sc03261a
https://doi.org/10.1063/1.5143207
https://doi.org/10.1063/1.5143207
https://doi.org/10.1063/1.464913
https://doi.org/10.1063/1.464913
https://doi.org/10.1002/jcc.540030212
https://doi.org/10.1002/jcc.540030212
https://doi.org/10.1063/1.476878
https://doi.org/10.1063/1.476878
https://doi.org/10.1063/1.476878
https://doi.org/10.1063/1.476878
https://doi.org/10.1063/1.476878
https://doi.org/10.1063/1.1749657
https://doi.org/10.1063/1.455539
https://doi.org/10.1063/1.455539
https://doi.org/10.1063/1.455539
https://doi.org/10.1063/1.451846
https://doi.org/10.1063/1.451846
https://doi.org/10.1063/1.451846
https://doi.org/10.1021/jp0641029?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0641029?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp0641029?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct900587b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct900587b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0010-4655(95)00042-e
https://doi.org/10.1016/0010-4655(95)00042-e
https://doi.org/10.1007/s008940100045
https://doi.org/10.1007/s008940100045
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1021/ct700301q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct700301q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/bioinformatics/btt055
https://doi.org/10.1093/bioinformatics/btt055
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1021/ja9621760?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja9621760?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja9621760?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.445869
https://doi.org/10.1002/jcc.21224
https://doi.org/10.1002/jcc.21224
https://doi.org/10.1002/jcc.540130805
https://doi.org/10.1002/jcc.540130805
https://doi.org/10.1063/1.2408420
https://doi.org/10.1063/1.2408420
https://doi.org/10.1063/1.448118
https://doi.org/10.1002/jcc.540050204
https://doi.org/10.1002/jcc.540050204
https://doi.org/10.1002/jcc.540110404
https://doi.org/10.1002/jcc.540110404
https://doi.org/10.1002/cphc.200600476
https://doi.org/10.1002/cphc.200600476
https://doi.org/10.1002/anie.201602523
https://doi.org/10.1002/anie.201602523
https://doi.org/10.1126/science.aan5144
https://doi.org/10.1126/science.aan5144
https://doi.org/10.1021/acs.jpclett.7b02435?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.7b02435?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.7b02435?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41557-018-0091-y
https://doi.org/10.1038/s41557-018-0091-y
https://doi.org/10.1021/jacs.1c08552?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.1c08552?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.8b06938?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.8b06938?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3389/fchem.2019.00439
https://doi.org/10.3389/fchem.2019.00439
https://doi.org/10.3389/fchem.2019.00439
https://doi.org/10.1021/acs.jpca.2c04124?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.2c04124?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.2c04124?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.2c04124?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.2c03978?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as



