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SUMMARY
A key aspect of neuroscience research is the development of powerful, general-purpose data analyses that
process large datasets. Unfortunately, modern data analyses have a hidden dependence upon complex
computing infrastructure (e.g., software and hardware), which acts as an unaddressed deterrent to analysis
users. Although existing analyses are increasingly shared as open-source software, the infrastructure and
knowledge needed to deploy these analyses efficiently still pose significant barriers to use. In this work,
we develop Neuroscience Cloud Analysis As a Service (NeuroCAAS): a fully automated open-source analysis
platform offering automatic infrastructure reproducibility for any data analysis. We show how NeuroCAAS
supports the design of simpler, more powerful data analyses and that many popular data analysis tools
offered through NeuroCAAS outperform counterparts on typical infrastructure. Pairing rigorous infrastruc-
ture management with cloud resources, NeuroCAAS dramatically accelerates the dissemination and use
of new data analyses for neuroscientific discovery.
INTRODUCTION

Driven by the constant evolution of new recording technologies

and the vast quantities of data that they generate, neural data

analysis—which aims to build the path from these datasets to

scientific understanding—has grown into a centrally important

part of modern neuroscience, enabling significant new insights

into the relationships between neural activity, behavior, and

the external environment (Paninski and Cunningham, 2018).

Accompanying this growth, however, neural data analyses

have becomemuchmore complex. Historically, the software im-

plementation of a data analysis (what we call the core analysis;

Figure 1A) was typically a small, isolated code script with few de-

pendencies. In stark contrast, modern core analyses routinely

incorporate video-processing algorithms (Pnevmatikakis et al.,

2016; Pachitariu et al., 2017; Mathis et al., 2018; Zhou et al.,

2018; Giovannucci et al., 2019), deep neural networks (Batty

et al., 2016; Gao et al., 2016; Lee et al., 2017; Parthasarathy

et al., 2017; Mathis et al., 2018; Pandarinath et al., 2018; Giovan-
Neu
nucci et al., 2019), sophisticated graphical models (Yu et al.,

2009; Wiltschko et al., 2015; Gao et al., 2016; Wu et al., 2020),

and other cutting-edge machine learning methods (Pachitariu

et al., 2016; Lee et al., 2017) to create general-purpose tools

applicable to many datasets.

To support this increasing complexity, core analysis software

is increasingly coupled to underlying analysis infrastructure

(Figure 1A): software dependencies like the deep learning

libraries PyTorch and TensorFlow (Abadi et al., 2016; Paszke

et al., 2019), system-level dependencies to manage jobs and

computing resources (Merkel, 2014), and hardware depen-

dencies such as a precisely configured central processing unit

(CPU), access to a graphics processing unit (GPU), or a required

amount of devicememory. Figure 1A shows how these individual

components form a full infrastructure stack: the necessary but

largely ignored foundationof resourcesenablingall data analyses

(Demchenko et al., 2013; Jararweh et al., 2016; Zhou et al., 2016).

Neglected infrastructure has immediate implications already

familiar to the neuroscience community: for every novel analysis,
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Figure 1. Data analysis infrastructure

(A) Core analysis code depends upon an infrastructure stack.

(B) Common problems arise at each layer of this infrastructure stack for analysis users and developers.

(C) Many common management tools deal only with one or two layers in the infrastructure stack, leaving gaps that users and developers must fill manually.

(D) In common neural data analysis tools for calcium imaging and behavioral analysis many infrastructure components are not managed by analysis developers

and implicitly delegated to the user (see STAR Methods for full details and supporting data in Tables S2 and S1).

ll
NeuroResource
analysis usersmust spend labor and financial resources on hard-

ware setup, software troubleshooting, unexpected interruptions

during long analysis runs, processing constraints due to limited

‘‘on-premises’’ computational resources, and more (Figure 1B).

However, far from simply being a nuisance, neglected infrastruc-

ture has wide reaching and urgent scientific consequences.

Most prominently, infrastructure impacts analysis reproduc-

ibility. As data analyses become more dependent on complex

infrastructure stacks, it becomes extremely difficult for analysis

developers to work reproducibly (Monajemi et al., 2019; Nowog-

rodzki, 2019). The current treatment of analysis infrastructure is a

major contributor to the endemic lack of reproducibility suffered

by modern data analysis (Crook et al., 2013; Hinsen, 2015; Stod-

den et al., 2018; Krafczyk et al., 2019; Raff, 2019), and infrastruc-

ture-based barriers have been noted to impede the proliferation

of new neuroscientific tools (Magland et al., 2020). Specific

cases where seemingly small infrastructure issues directly affect

the representation of data-derived quantities have been docu-

mented across the biological sciences (Ghosh et al., 2017;Miller,

2006; Glatard et al., 2015). Analogously, for machine learning
2772 Neuron 110, 2771–2789, September 7, 2022
methods, infrastructure components can dictate model perfor-

mance (Sculley et al., 2015; Radiuk, 2017), and a recent survey

of this literature observed that although local compute clusters

claim to address the issue of hardware availability, none of the

studies that required use of a compute cluster were reproducible

(Raff, 2019).

Major efforts have been made by journals (Donoho, 2010;

Hanson et al., 2011; Editorial, 2014) and funding agencies

(Carver et al., 2018) to encourage the sharing of core analysis

software. Additionally, new tools have been developed to

address related neuroscientific challenges like the formatting

(Teeters et al., 2015; R€ubel et al., 2019, 2021) and storage of

data (Dandi Team, 2019), or workflow management on existing

infrastructure (Yatsenko et al., 2015; Gorgolewski et al., 2011)

(see discussion for a detailed overview). However, these impor-

tant efforts still neglect key issues in the configuration of infra-

structure stacks. Despite calls to improve standards of practice

in the field (Neuro Cloud Consortium, 2016) and work in fields

such as astronomy, genomics, and high energy physics (Hoffa

et al., 2008; Riley, 2010; Goecks et al., 2010; Zhou et al., 2016;
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modify corresponding configuration parameters as needed. Finally, the user uploads dataset(s) and a configuration file for analysis. NeuroCAAS detects upload
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Chen et al., 2019; Monajemi et al., 2019), there has been little

concrete progress in our field toward a scientifically acceptable

infrastructure solution for many popular core analyses. Some

tools—compute clusters, versioning tools like Github (https://

github.com), and containerization services like Docker (Merkel,

2014)—provide various infrastructure components (Figure 1C),

but it is nontrivial to combine these components into a complete

infrastructure stack. The ultimate effect of these partially used

toolsets is a hodgepodge of often slipshod infrastructure prac-

tices (Figure 1D; supplemental information in Tables S1 and S2).

Critically, management of these issues most often falls upon

trainees who are neither scientifically rewarded (Landhuis,

2017; Chan Zuckerberg Initiative, 2019) nor specifically in-

structed (Merali, 2010) on how to set up increasingly complex

core analyses and infrastructure stacks, reliant on whatever

resources are available on hand. We term this conventional

model infrastructure-as-graduate-student, or IaGS—infrastruc-

ture stacks treated as a scientific afterthought, delegated entirely

to underresourced trainees and operating as a silent source of

errors and inefficiency. The IaGS status quo fails any reasonable

standard of scientific rigor, reduces the accessibility of valuable

analytical tools, and impedes scientific training and progress.

Of course, infrastructure challenges are not specific to neuro-

science, or even science generally. Entities that deploy software

at industrial scale have recently adopted the infrastructure-as-

code (IaC) paradigm, automating the creation and management

of infrastructure stacks (Morris, 2016; Aguiar et al., 2018). In

contrast to IaGS approaches, the IaC paradigm begins with a

code document that completely specifies the infrastructure

stack supporting any given core software. From this code docu-

ment, the corresponding infrastructure stack can be assembled

automatically (most often on a cloud platform), in a process

called deployment. After deployment, anyone with access to

the platform can use the core software in question without

knowledge of its underlying infrastructure stackwhile still having

the assurance that core software is functioning exactly as indi-

cated in the corresponding code document. Altogether, IaC en-

ables reproducible usage at scale, skirting all of the issues

shown in Figure 1B. Despite these benefits, there has been no

previous effort to extend IaC to general-purpose neuroscience

data analyses and associated infrastructure stacks.

In response, we developed Neuroscience Cloud Analysis As a

Service (NeuroCAAS), an IaC platform that pairs core analyses

for neuroscience data with bespoke infrastructure stacks

through deployable code documents. NeuroCAAS assigns

each core analysis a corresponding infrastructure stack, using

a set of modular components concisely specified in code (see

section NeuroCAAS builds complete infrastructure stacks for

details). NeuroCAAS stores the specification of this core analysis

and infrastructure stack in a code document called a blueprint,

which any analysis user can then deploy to analyze their data.

To maximize the scale and accessibility benefits of our platform,

we provide an open-source web interface to NeuroCAAS (see
IAEs (immutable analysis environments for software infrastructure) and correspon

structure). Multiple infrastructure stacks may be deployed in parallel for multiple d

ically handles input and output scaling. The deployed resources persist only as ne

back to the user. See Figure S1 for comparison with IaGS, and Figure S3 for IAE
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section NeuroCAAS supports simple use and development),

available to the neuroscience community at large. The result is

scalable, reproducible, drag-and-drop usage of neural data

analysis: neuroscientists can log on to the NeuroCAAS website,

set some parameters for an analysis, and simply submit their

data. A new infrastructure stack is then deployed on the cloud

according to a specified blueprint and autonomously produces

analysis results, which are returned to the user. This aspect of

NeuroCAAS warrants emphasis, as it diverges starkly from tradi-

tional scientific practice: NeuroCAAS is not only a platform

design or suggestion that the reader can attempt to recreate

on their own; instead, NeuroCAAS is offered as an open-source

infrastructure platform available for immediate use, via a website

(www.neurocaas.org).

Our results sections are organized as follows: We first

describe IaC analysis infrastructure on NeuroCAAS (NeuroCAAS

builds complete infrastructure stacks) and how it addresses

common engineering challenges related to analysis reproduc-

ibility, accessibility, and scale (NeuroCAAS supports simple

use and development). In existing platforms leave infrastructure

gaps, we compare NeuroCAAS0s solution to these engineering

challenges with features of existing data analysis platforms.

Next, in sections NeuroCAAS simplifies large data pipelines: wi-

defield imaging protocol and NeuroCAAS stabilizes deep

learning models: ensemble markerless tracking, we show how

NeuroCAAS can enable novel analyses designed to take advan-

tage of the platform’s infrastructure benefits. Finally, in Neuro-

CAAS is faster and cheaper than IaGS analogs, we quantify

the performance of popular data analyses on NeuroCAAS and

find that analyses encoded in blueprints are cheaper and faster

than analogs run on local infrastructure (e.g., a compute cluster).

RESULTS

NeuroCAAS’s primary technical contribution is a method to pre-

cisely specify the entire infrastructure stack underlying any core

analysis and reproduce it on demand. Treating core analysis and

infrastructure as a unified whole within NeuroCAAS makes ana-

lyses more reproducible and accessible at scale than existing

alternatives.

In the simplest use case, users simply log in to the platform

and drag-and-drop their dataset(s) into a web browser (Figure 2,

top left), sending it to cloud-based user storage. After specifying

a set of developer-defined parameters to apply to the selected

dataset(s), they can submit a NeuroCAAS ‘‘job.’’ No further

user input is needed: given the relevant datasets(s) and parame-

ters, NeuroCAAS sets up core analysis for each dataset on an

entirely new infrastructure stack from the corresponding blue-

print (Figure 2, black arrows). NeuroCAAS then pulls data and

parameters independently into each infrastructure stack (Fig-

ure 2, blue arrows), providing scalable and reproducible compu-

tational processing as needed (Figure 2, bottom right). Analysis

outputs (including live status logs and a complete record of the
ding hardware instances (immutable analysis environments for software infra-

atasets and the job manager (job managers for system infrastructure) automat-

cessary, and results, as well as diagnostic information, are automatically routed

list.
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job’s inputs and infrastructure) are then delivered back to time-

stamped folders in user storage for inspection by analysis users

(Figure 2, bottom left), and finally, infrastructure stacks are dis-

solved when data processing is complete (Figure 2, bottom

right). As an example, Video S1 shows how users can train three

separate DeepGraphPose models (Wu et al., 2020) on three

separate datasets simultaneously using the NeuroCAAS web

interface.

NeuroCAAS builds complete infrastructure stacks
The structure of NeuroCAAS naturally solves the issues of

reproducibility, accessibility, and scale that burden existing

infrastructure tools and platforms. NeuroCAAS partitions a

complete infrastructure stack into three decoupled parts that

together are sufficient to support virtually any given core anal-

ysis. First, to address all software level infrastructure,

NeuroCAAS offers all analyses in immutable analysis environ-

ments or IAEs (immutable analysis environments for software

infrastructure). Second, to address system configuration, each

NeuroCAAS analysis has a built-in job manager (job managers

for system infrastructure) that automates all of the logistical tasks

associated with analyzing data: configuring hardware, logging

outputs, parallelizing jobs, andmore. Third, to provide reproduc-

ible computing hardware on demand, NeuroCAAS manages a

resource bank (resource banks for hardware infrastructure) built

on the public cloud,making the service globally accessible at un-

matched scale. For a given core analysis, the configuration of

these three infrastructure components is concisely summarized

in a NeuroCAAS blueprint, from which they can be automatically

rebuilt (blueprints for instant reproducibility). We describe

component implementation in further depth in method details.

Immutable analysis environments for software

infrastructure

On NeuroCAAS, all core analyses run inside IAEs. An IAE is an

isolated computing environment containing the installed core

analysis code and all necessary software dependencies, similar

to a Docker container (Merkel, 2014). Importantly, an IAE also

contains a single script that parses input and parameters in a

prescribed way and runs the steps of core analysis workflow

(Figure 2, right; Figure S6, top left). The fact that analysis work-

flow is entirely governed by this script (i.e., non-interactive)

makes our analysis environments immutable. IAEs eliminate

the possibility of bugs resulting from incompatible depen-

dencies, mid-analysis misconfiguration (Figure S1A, installation

and troubleshooting), or other so-called ‘‘user degrees of

freedom’’ and ensure that analyses are run within developer-

defined workflows. Immutability has a long history as a principle

of effective programming and resource management in com-

puter science (Bloch, 2008; Morris, 2016), and in this context,

it is closely related to the view that data analysis should be auto-

mated as much as possible (Tukey, 1962; Waltz and Buchanan,

2009). These views are justified by observed benefits to analysis

at scale, which we leverage in sections NeuroCAAS simplifies

large data pipelines: widefield imaging protocol and NeuroCAAS

stabilizes deep learning models: ensemble markerless tracking.

Each IAE has a unique ID, and analysis updates can be re-

corded in IAEs linked through blueprint versions (see blueprints

for instant reproducibility for details). We have currently imple-
mented 22 analyses in a series of IAEs (Table S3) and are actively

developing more (see www.neurocaas.org for current options).

Job managers for system infrastructure

Given a dataset and analysis parameters, how does NeuroCAAS

setup the right IAE and computing hardware to process these in-

puts? This configuration is the responsibility of the NeuroCAAS

job manager, which monitors analysis progress and returns

timestamped job outputs to user storage from the IAE (including

live job logs). Although similar in these regards to a cluster work-

load manager like slurm (Yoo et al., 2003) (Figure 2, blue arrows),

the NeuroCAAS job manager does not assign jobs to running

infrastructure, but rather sets up all other infrastructure compo-

nents ‘‘on the fly,’’ removing the need for manual infrastructure

maintenance (Figure 2; black arrows). The job manager for

each analysis functions according to a code ‘‘protocol’’ that de-

scribes what steps should be taken when a new NeuroCAAS job

is requested. Importantly, protocols can be customized for each

analysis, allowing developers to implement simple features like

input parsing, or complex multi-stack workflows as described

in sections NeuroCAAS simplifies large data pipelines: widefield

imaging protocol and NeuroCAAS stabilizes deep learning

models: ensemble markerless tracking.

Resource banks for hardware infrastructure

To automatically reproduce infrastructure on demand, we

crucially need a way to create identical hardware configurations

across multiple users of the same analysis, who may be

analyzing data simultaneously atmany different locations around

the world. This key requirement is handled by the NeuroCAAS

resource bank. The NeuroCAAS resource bank can make hard-

ware available through pre-specified instances: bundled collec-

tions of virtual CPUs, memory, and GPUs that can emulate any

number of familiar hardware configurations (e.g., personal

laptop, workstation, on premise cluster). However, unlike these

persistent computing resources, the NeuroCAAS resource

bank is built upon globally available, virtualized compute hard-

ware offered through the public cloud (currently Amazon Web

Services [AWS]). At any time, the resource bank can provide a

large number of effectively identical hardware instances to

execute a particular task (Figure 2, bottom right). The reproduc-

ible nature of hardware instances in the resource bank comple-

ments the immutability of workflows imposed by IAEs. By

default, we fix a single instance type per analysis in order to facil-

itate reproducibility (see method details for more information).

Blueprints for instant reproducibility

For any given analysis, each of NeuroCAAS0s infrastructure com-

ponents has a specification in code (IAEs and resource bank in-

stances have IDs, job managers have protocol scripts). The

collection of all infrastructure identifying code associated with

a given NeuroCAAS analysis is stored in the blueprint of that

analysis (Figure 2, top right—for an example, see Figure S2),

from which new copies of the infrastructure stack can be de-

ployed at will, providing reproducibility by design. Despite sus-

tained efforts to promote reproducible research, (Buckheit and

Donoho, 1995), in many typical cases, data analysis remains

frustratingly non-reproducible (Crook et al., 2013; Gorgolewski

et al., 2017; Stodden et al., 2018; Raff, 2019). NeuroCAAS side-

steps all of the typical barriers to reproducible research by tightly

coupling the creation and function of infrastructure stacks to
Neuron 110, 2771–2789, September 7, 2022 2775
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their documentation. For transparency, NeuroCAAS stores all

currently available and developing analysis blueprints in a public

code repository (see method details). Updates made to any

component of an infrastructure stack on NeuroCAAS (IAEs, job

managers, or hardware instances) can only be implemented

through subsequent deployments of updated blueprints. We re-

cord these changes systematically using simple version control

on the blueprint itself, ensuring a publicly visible record of anal-

ysis development.

NeuroCAAS supports simple use and development
Users analyze data on NeuroCAAS solely through interactions

with cloud storage. Therefore, NeuroCAAS supports any inter-

face that allows users to transfer data files to and from cloud

storage. The standard interface to NeuroCAAS is a website,

www.neurocaas.org, where users can sign up for an account,

browse analyses, deposit data, and monitor analysis progress

until results are returned to them as described in Figure 2. We

will describe other interfaces to NeuroCAAS in sections Neuro-

CAAS simplifies large data pipelines: widefield imaging protocol

and discussion. Regardless of interface, there is no need to

manage persistent compute resources during or after analysis,

and costs directly reflect usage time.

For comparison, IaGS begins with a number of time-

consuming manual steps, including hardware acquisition,

hardware setup, and software installation. With a functional

infrastructure stack in hand, the user must prepare datasets

for analysis, manually recording analysis parameters and moni-

toring the system for errors as they work. Although parallel

processing is possible, it must be scripted by the user, and in

many cases, datasets are run serially. What results from IaGS

is massive inefficiency of time and resources. Users must also

support the cost of new hardware ‘‘up front,’’ before ever seeing

the scientific value of the infrastructure that they are purchasing.

Likewise, labs or institutions must pay support costs to maintain

infrastructure when it is not being used and replace components

when they fail or become obsolete (see Figure S1 for a side-by-

side comparison with NeuroCAAS). Two editorial remarks bear

mentioning at this point: first, the stark difference laid out in these

workflows is the essence of IaGS versus IaC and explains the

dominance of IaC in modern industrial settings. Second,

NeuroCAAS is and will remain an open-source tool for the scien-

tific community, in keeping with its sole purpose of improving the

reproducibility and dissemination of neuroscience analysis tools.

For analysis developers interested in NeuroCAAS, we de-

signed a developer workflow and companion python package

that streamlines the process of migrating an existing analysis

to the NeuroCAAS platform (see method details and Figure S6

for an overview). Our developer workflow abstracts away the

cloud infrastructure that NeuroCAAS is built on, allowing for anal-

ysis development entirely from the developer’s command line.

We highlight several key features of this workflow here. Impor-

tantly, we do not expect any previous experience in containeriza-

tion technology, cloud tools, or IaC from developers.

Curated deployments

After setting up an IAE and initializing a corresponding blueprint,

developers submit blueprints and test data to our code reposi-

tory in publicly visible pull requests. NeuroCAAS team members
2776 Neuron 110, 2771–2789, September 7, 2022
then review the submitted blueprint and deploy the correspond-

ing infrastructure stack in ‘‘test mode,’’ reviewing outputs, re-

questing updates, and ensuring stated function in a public forum

before releasing the analysis to users.

Improving analysis robustness

A central challenge of building general-purpose data analysis is

the difficulty of anticipating all analysis use cases as a developer

and ensure robustness to all possible datasets. This is true even

with the testing, review and development practices that

NeuroCAAS puts in place. However, NeuroCAAS0s design has

several features intended to accelerate the process of improving

analysis robustness both during and after initial deployment.

When errors occur, users can refer the analysis developer to

version controlled analysis outputs using standard interfaces

like Github issues, greatly simplifying error replication. Devel-

opers can then set up fixes on the same infrastructure and up-

date the analysis blueprint in subsequent deployments. Since

infrastructure is rebuilt from the blueprint for each NeuroCAAS

job, an updated blueprint fixes the bug, for all future analysis

runs of all analysis users. Importantly, updates can be made to

a public analysis without influencing the reproducibility of

past results (see method details and Figure S6 for details, and

additional resources for links to a full developer guide).

Testing the NeuroCAAS usage model

Next, we study how the design of NeuroCAAS translates into

quantifiable analysis benefits. We confirmed the accessibility

of data analyses on NeuroCAAS by opening the platform to a

group of alpha testers (users and developers) over a period of

22 months. In Figure 3A, we see that although some users

analyzed a handful of datasets, others analyzed hundreds and

spent days of compute with the platform. Figure 3B further

studies the co-occurrence of different usage patterns: a large

number of single dataset jobs are suggestive of one-off explor-

atory use, whereas there is also a considerable proportion of

jobs that leverage NeuroCAAS0s capacity for parallelism,

analyzing anywhere from 2 to 70 datasets in a single job. We

also grouped usage by data analysis (Figure 3C). We classified

different analyses as follows: dark blue bars indicate existing

analysis adapted for NeuroCAAS by manuscript authors. These

analyses were developed collaboratively, and in many cases, we

iterated on an initial ‘‘dev’’ version of an analysis adapted for

NeuroCAAS with feedback from users, before releasing a ‘‘pub-

lic’’ version that was robust to various differences in workflow

and dataset type. Light green bars indicate analyses developed

by independent researchers following our developer workflow.

We highlight the fact that analyses built following the developer

workflow are well used, indicating the viability of the workflow

that we have built. Dark green bars indicate analyses that we

introduce in this paper specifically for NeuroCAAS infrastructure,

described further in sections NeuroCAAS simplifies large data

pipelines: widefield imaging protocol and NeuroCAAS stabilizes

deep learning models: ensemble markerless tracking. Finally,

light blue bars indicate ‘‘custom’’ analyses that we built for

particular user groups. NeuroCAAS authors built custom ana-

lyses through simple copying and editing of existing, general

purpose blueprints. Although per-user custom analyses are not

a focus of our platform, these results demonstrate the ease

with which different variants of an analysis can be provided

http://www.neurocaas.org


+ +

A

B

C

Figure 3. Usage statistics for NeuroCAAS platform over a 22-month test period

(A) Histograms for number of datasets (left) and corresponding compute hours (right) spent by each active user of NEUROCAAS.

(B) Histograms for job size indicate the number of datasets (top) and corresponding compute hours (bottom) concurrently analyzed in jobs.

(C) Usage grouped by platform developer. Dark blue (internal): analyses adapted for NeuroCAAS by paper authors. Light green (external): analyses that were not

developed by NeuroCAAS authors. Dark green (native): NeuroCAAS native analyses (see NeuroCAAS simplifies large data pipelines: widefield imaging protocol

and NeuroCAAS stabilizes deep learning models: ensemble markerless tracking). Light blue (custom): custom versions of generic analyses built for individual

alpha users. We exclude usage attributed to analysis testing by NeuroCAAS team members.
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within NeuroCAAS0s design, and we discuss how users can

leverage NeuroCAAS for custom use cases in the discussion.

Next, we confirmed that the design of data analysis using

NeuroCAAS0s IaC approach does indeed provide robust

reproducibility. We selected two analyses available on our plat-

form, and we analyzed the similarity of analysis outputs across

multiple runs in Table 1 (see Figure S3 for in depth analysis,

and Figure S4 for corresponding analysis of timings). Fixing a

single dataset, configuration file, and blueprint for each analysis,

we evaluated reproducibility of results in terms of differences be-

tween analysis outputs (see Table 1 caption for metrics). First,

we observe that over multiple runs conducted by the same

researcher in the United States, (Table 1, versus Run 2), results

showed no scientifically relevant differences. Second, we varied

the identity and physical location of the person requesting

NeuroCAAS jobs: compared with jobs started by independent

researchers in India and Switzerland (Table 1, versus Run 5,

Run 10, respectively), we once again note no meaningful differ-

ences in the outputs of these analyses. Although physical loca-

tion might bias or restrict researchers to use specific analysis

infrastructure on other platforms, they have access to the exact

same analysis infrastructure through NeuroCAAS. Finally, we

conducted a test to measure if our platform was truly IaC: given

dataset, configuration file, and analysis blueprint, there should

be no reliance on the compute resources that we used to
develop these analysis and perform reference runs. For a final

run, we automatically deployed a complete clone of the

NeuroCAAS platform on a new set of cloud resources, as any

user of our platform can do in a few simple steps (details in

discussion; Figure S5). We then ran jobs with the blueprints, da-

tasets, and configuration files for the corresponding analyses

(Table 1, versus Run 14), showing that results from this cloned

platform are indistinguishable from those generated by the orig-

inal platform.

Existing platforms leave infrastructure gaps

Although we do not attempt an exhaustive review of existing

analysis platforms in neuroscience here, we characterize

some exemplars in order to contrast NeuroCAAS from typical al-

ternatives. In Figure 4, we plot a variety of popular neuroscience

analyses onto a space defined by (1) their place in the adoption

lifecycle and (2) corresponding infrastructure needs. We overlay

several exemplar platforms on this graph, with shading repre-

senting the kinds of analyses they are able to support. The de-

gree to which a platform’s support extends to the right defines

its accessibility or the ease with which developers and

users can configure analyses on the platform and begin to pro-

cess data. Accessibility is a key feature for analyses that are still

early in the adoption lifecycle with active development and a

growing user base. Likewise, the degree to which a platform’s

support extends upwards defines its scale, a one-dimensional
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Table 1. Quantifying reproducibility via output comparisons for two analyses on NeuroCAAS

Reference run output

(comparison metric)

versus Run 2

(US)

versus Run 5

(India)

versus Run 10

(Switzerland)

versus Run 14

(platform clone)

Analysis

CaImAn (Giovannucci et al., 2019) spatial components (Jaccard

distance)

0.0 0.0 0.0 0.0

temporal components (RMSE) 0.0 0.0 0.0 0.0

Ensemble DeepGraphPose

(NeuroCAAS stabilizes deep

learning models: ensemble

markerless tracking)

body part traces (RMSE) 1.2e-8 1.2e-8 2.3e-8 1.4e-8

For CaImAn (an algorithm to analyze calcium imaging data), we independently characterized differences in the spatial and temporal components

recovered by the model. Differences in spatial components are measured by the average Jaccard distance over pairs of spatial components. A Jac-

card distance of 0 corresponds to two spatial components that perfectly overlap. Differences in temporal components were calculated as the average

root mean squared error (RMSE) taken over paired time series of component activity. For Ensemble DeepGraphPose (an algorithm to track body parts

of animals during behavior from video), we considered multiple sets of outputs from a single, pretrained model. Here, RMSE takes units of pixels;

hence, differences of order 1e�8 are not relevant for behavioral quantification. For both analyses, we fixed a single dataset, configuration file, and

blueprint across runs. See Figures S3 and S4 for more.
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approximation of the infrastructure needs for which it can pro-

vide. Although the exact positioning of these analyses and plat-

forms is subjective and dynamic, there are general features of

the analysis platform landscape that we discuss in what follows.

Local platforms like CellProfiler (Carpenter et al., 2006), Ilastik

(Sommer et al., 2011) (cell-based image processing), Icy (Chau-

mont et al., 2012), ImageJ (Schneider et al., 2012) (generic

bioimage analysis), BIDS Apps (Gorgolewski et al., 2017) (MRI

analyses for brain imaging data structure format), and Bio-

conductor (Amezquita et al., 2020) (genomics) have all achieved

success in the field by packaging together popular core analyses

with necessary software dependencies and intuitive, stream-

lined user interfaces. Most of these local platforms also have

an open contribution system for interested developers. Local

platforms are thus highly accessible to both developers and

users but are in the large majority of cases designed only for

use on a user’s local hardware, limiting their scale (Figure 4,

bottom).

In contrast, remote platforms like the Neuroscience Gateway

(NSG) (Sanielevici et al., 2018) (specializing in neural simulators),

Flywheel (flywheel.io) (emphasizing fMRI and medical imaging),

and neuroscience-focused research computing clusters offer

powerful hardware through the extreme science and engineering

discovery environment (XSEDE) portal (Towns et al., 2014), the

public cloud and on-premises hardware, respectively. These

remote platforms offer powerful compute, but at the cost of

accessibility to users, who must adapt their software and work-

flow to new conventions (i.e., wait times for jobs to run on shared

resources, hardware specific installation, custom scripting envi-

ronments, and limitations on concurrency) in order to make use

of offered hardware. As a particular example, NSG requires

users to submit a script that they would like to have run on exist-

ing compute nodes in the XSEDE cluster, making it more similar

to a traditional on-premises cluster in usage than NeuroCAAS.

NSG also restricts jobs to run serially and does not have an

open system for contributing new analyses, making it incompat-

ible with the usage model and analyses that we present here.

Likewise, although Flywheel (Flywheel Exchange, 2019) (with a
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focus on human brain imaging tools) offers the option of cloud

compute, the platform is not structured in terms of infrastructure

stacks for given analyses, in effect leaving many infrastructure

design choices to individual users. Altogether, remote platforms

are best for committed, experienced users who are already

familiar with the analyses available on the remote platform and

understand how to optimize them for available hardware. It is

also more difficult to contribute new analyses to these platforms

than their locally hosted counterparts (see Figure 4, left side).

This difficulty makes them less suitable for actively developing

or novel analyses, as updates may be slow to be incorporated,

or introduce breaking changes to user-written scripts, making

remote platforms altogether less accessible than local ones.

Some platforms provide both local or remote style usage: Gal-

axy (Goecks et al., 2010) and Brainlife (Avesani et al., 2019) offer

a set of default compute resources but can also be used to run

analyses on personal computing resources or the cloud. These

mixed-compute models provide a useful way to increase the

accessibility of many analyses and can provide levels of repro-

ducibility similar to that provided by the IAE and job manager

of NeuroCAAS. However, without having an IaC framework

that makes a reproducible configuration of compute resources

available to all analysis users, we lose the guarantee that all plat-

form users will be able to use analyses that depend on specific

infrastructure configurations. As noted in Goecks et al. (2010),

it is a challenge even for these mixed-compute platforms to

ensure accessibility for an analysis developed on a given set of

local compute resources—significant work must be done to

make this analysis functional on other computing resources or

to maintain these local compute resources in order to ensure

that others can use them whenever needed. These challenges

are only exacerbated by the increasing reliance of analysis tools

upon more powerful and specific infrastructure configurations,

such as high performance GPUs.

Although undeniably useful, all available platforms operate on

a tradeoff that forces researchers to choose between accessi-

bility and scale. Although these platforms often concentrate on

applications that mitigate the effects of this tradeoff, there are
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many popular analyses that would not be suitable for existing

analysis platforms (see Figure 4, center). Furthermore, critically

for reproducibility, across all existing platforms, analysis users

and developers are still required to manually configure analysis

infrastructure, whether by installing new tools onto one’s per-

sonal infrastructure or porting code and dependencies to run in

a remote (and sometimes variably allocated) infrastructure stack.

Some platforms in cellular and molecular biology (Riley, 2010),

as well as bioinformatics (Simonyan andMazumder, 2014; Terra,

2022) have shown that IaC approaches are feasible to handle

these infrastructure issues. A notable difference in the design

of our platform is that these other platforms assume that individ-

ual users will themselvesmanually configure analyses—that they

will choose relevant resources to support the analyses that they

want to conduct or compose an analysis of interest out of a set of

small modular parts; in each case performing the work of a

NeuroCAAS developer. Although resulting analyses can be

shared with other individuals on a case-by-case basis, this is
very different from NeuroCAAS. Our platform is geared toward

a heterogeneous community of researchers, where some re-

searchers are developing general purpose analyses that only

need to be configured or updated once before being used by a

large group of potential users.

Next, we concretely demonstrate how the infrastructure ben-

efits of the NeuroCAAS platform address ongoing challenges

in neuroscience data analysis. We show two examples of

NeuroCAAS native analyses that would not be feasible without

the simultaneous benefits to accessibility, scale, and reproduc-

ibility that we provide.

NeuroCAAS simplifies large data pipelines: Widefield
imaging protocol
Often, big data pipelines demandmany individual preprocessing

steps, creating the need for unwieldy multi-analysis infrastruc-

ture stacks—infrastructure stacks that support the needs of

multiple core analyses at the same time. A notable example is
Neuron 110, 2771–2789, September 7, 2022 2779



Figure 5. NeuroCAAS supports multi-stack design patterns

(A) Default workflow: if more than one dataset is submitted, NeuroCAAS automatically creates separate infrastructure for each.

(B) Chainedworkflow: multiple analysis components with different infrastructure needs are seamlessly combined on demand. Intermediate results are returned to

the user so that they can be examined and visualized as well (NeuroCAAS simplifies large data pipelines: widefield imaging protocol).

(C) Parallelism + chained workflow: workflows A and B can also be combined to support batch processing pipelines with a separate postprocessing step

(NeuroCAAS stabilizes deep learning models: ensemble markerless tracking).
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widefield calcium imaging (WFCI)—a high-throughput imaging

technique that can collect activity-dependent fluorescence sig-

nals across the entire dorsal cortex of an awake, behaving

mouse (Couto et al., 2021), potentially generating terabytes of

data across chronic experiments. The protocol paper Couto

et al. (2021) describes a complete WFCI analysis that links

together cutting-edge data compression/denoising with demix-

ing techniques designed explicitly for WFCI (via penalized matrix

decomposition, or PMD [Buchanan et al., 2018] and localized

semi-nonnegative matrix factorization [LocaNMF] [Saxena

et al., 2020], respectively). Each of these analyses depends

upon its own specialized hardware and installation, creating

many competing requirements on a multi-analysis infrastructure

stack that are difficult to satisfy in practice. Although we offer a

NeuroCAAS implementation of the described WFCI analysis in

Couto et al. (2021), we do not discuss how NeuroCAAS ad-

dresses the issue of multi-analysis infrastructure stacks, which

can pose IaGS challenges even to our blueprint based

infrastructure.

Instead of workingwithmulti-analysis infrastructure stacks, for

this analysis NeuroCAAS extends the function of a standard job

manager (see Figure 5A) to trigger multiple jobs, built from sepa-

rate blueprints, in sequence (Figure 5B). We employ this design

to dramatically simplify the infrastructure requirements for a

complete WFCI pipeline. First the initial steps of motion correc-

tion, denoising, and hemodynamic correction of the data are

run from a blueprint that emphasizes multicore parallelism

(64 CPU cores) to suit the matrix decomposition algorithms

employed by PMD. Upon termination of this first step, analysis

results are not only returned to user storage, but also used as in-

puts to a second job, performing demixing with LocaNMF on

infrastructure supporting a high performance GPU. This modular

organization improves the performance and efficiency of each

analysis component (see Figure 7), and also allows users to

run steps individually if desired, giving them the freedom to inter-
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leave existing analysis pipelines with the components offered

here. As an alternative to the standard NeuroCAAS interface,

this WFCI analysis can be controlled from a custom-built graph-

ical user interface (GUI). This GUI further extends NeuroCAAS0s
accessibility with features such as interactive alignment of a

brain atlas to user data as part of parameter configuration (in

the process validating input data as well). Following parameter

configuration, this GUI interacts with NeuroCAAS programmati-

cally, using locally run code scripts to perform data upload and

job submission, and to detect and retrieve results once analysis

is complete. Results can be visualized directly in this GUI as well.

Altogether, this GUI can be used as a model for researchers

who would like to take advantage of our computational infra-

structure within a more sophisticated user interface, or integrate

NeuroCAAS programmatically with other software tools. Impor-

tantly, despite its interactivity, the performance of ourWFCI anal-

ysis does not depend on the infrastructure available to the user.

For example, users could simultaneously launch many analyses

and have them run in parallel through this GUI, easily conducting

a hyperparameter search over their entire multi-step analysis.

Researchers can find the GUI for this WFCI analysis with

NeuroCAAS integration at https://github.com/jcouto/wfield.

For developers, this analysis presents a counterpart to exist-

ing domain specific projects such as CaImAn (Giovannucci

et al., 2019) for cellular resolution calcium imaging or

SpikeInterface (Buccino et al., 2020) for electrophysiology,

which explicitly make multi-step data analyses compatible

with optimized hardware. In contrast, our WFCI analysis is

made directly available to users on powerful remote hardware

without the need for anyone to revise existing analysis or infra-

structure. To our knowledge, there is no other neuroscience

platform with the accessibility, scale, and support for reproduc-

ibility to link together cutting-edge analyses across separate in-

frastructures and make this exact configuration available

directly to the research community.

https://github.com/jcouto/wfield


Figure 6. Ensemble markerless tracking

(A) Example frame from mouse behavior dataset (courtesy of Erica Rodriguez and C. Daniel Salzman) tracking keypoints on the top down view of a mouse, as

analyzed in Wu et al. (2020). Marker shapes track different body parts: blue markers representing the output of individual tracking models, and orange markers

representing the consensus. Inset image shows tracking performance on the nose and ears of the mouse.

(B) Consensus test performance versus test performance of individual networks on a dataset with ground truth labels as measured via root mean squared er-

ror (RMSE).

(C) Traces from 9 networks (blue) + consensus (orange). Across the entire figure, ensemble size = 9. (A) and (C) correspond to traces taken from the 100% split in

(B) corresponding to 20 training frames.
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NeuroCAAS stabilizes deep learning models: Ensemble
markerless tracking
The black box nature of deep learning can generate sparse, diffi-

cult to detect errors that reduce the benefits of deep learning

based tools in sensitive applications. For modern markerless

tracking analyses built on deep neural networks (Mathis

et al., 2018; Graving et al., 2019; Nilsson et al., 2020; Wu et al.,

2020), these errors can manifest as ‘‘glitches’’ (Wu et al.,

2020), where a marker point will jump to an incorrect location,

often without registering as an error in the network’s generated

likelihood metrics (see Figure 6).

One general purpose approach to combat the unreliable

nature of individual machine learning models is ensembling

(Dietterich, 2000): instead of working with a single model, a

researcher simultaneously prepares multiple models on the

same task, subsequently aggregating their outputs into a single

consensus output. Ensemble methods have been shown to be
effective for deep networks in a variety of contexts (Lakshminar-

ayanan et al., 2017; Fort et al., 2019; Ovadia et al., 2019), but they

confer a massive infrastructure burden if run on limited local

compute resources: researchers must simultaneously train,

manage, and aggregate outputs across many different deep

learning models, incurring either prohibitively large commit-

ments to deep learning specific infrastructure and/or infeasibly

long wait times.

In contrast, NeuroCAAS enables easy and routine implemen-

tation of ensemble methods. By modifying the NeuroCAAS job

manager, we designed an analysis that takes input training

data and distributes it to N identical sets of IAEs and resource

bank instances (Figure 5C). For the application shown here,

we used an IAE with DeepGraphPose (Wu et al., 2020) as our

core analysis; the N infrastructures differ only in theminibatch or-

der of data used to train models. The results from each trained

model are then used to produce a consensus tracking output,
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taking each individual model’s estimate of part location across

the entire image (i.e., the confidence map output) and averaging

these estimates. Even with this relatively simple approach, we

find the consensus tracking output is robust to the errors made

by individual models (Figures 6A and 6C). This consensus perfor-

mance is maintained even when we significantly reduce the size

of the training set (Figure 6B). Finally, in Figure 6C, we can see

that there are portions of the dataset where the individual model

detections fluctuate around the consensus detection. This fluc-

tuation offers an empirical readout of tracking difficulty within

any given dataset; frames with large diversity in the ensemble

outputs are good candidates for further labeling and could be

easily incorporated in an active learning loop. After training,

models can be kept in user storage and used to analyze

further behavioral data, without moving these models out of

NeuroCAAS. Overall, Figure 6 shows that with the scale of infra-

structure available on NeuroCAAS, ensembling can easily

improve the robustness of markerless tracking, naturally com-

plementing the infrastructure reproducibility provided by the

platform.

NeuroCAAS is uniquely capable of providing the flexible infra-

structure necessary to support a generally available, on-demand

ensemble markerless tracking application. To our knowledge,

none of the platforms with the scale to support markerless

tracking on publicly available resources (e.g., on premise clus-

ters, Google Colab, Galaxy [Goecks et al., 2010], NSG [Saniele-

vici et al., 2018], Brainlife [Avesani et al., 2019]) can satisfactorily

alleviate the burden of a deep ensembling approach, still forcing

the user to accept either long wait times or manual management

of infrastructure. These limitations also prohibit use cases

involving the quantification of ensemble behavior across

different parameter settings (cf. Figure 6B, where we trained 45

networks simultaneously).

NeuroCAAS is faster and cheaper than IaGS analogs
NeuroCAAS offers a number of major advantages over IaGS:

reproducibility, accessibility, and scale, whether we compare

against a personal workstation or resources allocated from a

locally available cluster. However, since NeuroCAAS is based

on a cloud computing architecture, one might worry that data

transfer times (i.e., uploading and downloading data to and

from the cloud) could potentially lead to slower overall process-

ing or that the cost of cloud compute could outweigh that of local

infrastructure.

Figure 7 considers this question quantitatively, comparing

NeuroCAAS with a simulated personal workstation (see quantifi-

cation and statistical analysis for details). For the analogous

comparisons (with similar conclusions) against a simulated local

cluster, see Figure S7. Figure 7 presents time and cost bench-

mark results on four popular analyses that cover a variety of

data modalities: CaImAn (Giovannucci et al., 2019) for cellular

resolution calcium imaging, DeepLabCut (DLC) (Mathis et al.,

2018) for markerless tracking in behavioral videos, and a two-

step analysis consisting of PMD (Buchanan et al., 2018) and

LocaNMF (Saxena et al., 2020) for analysis of widefield imaging

data. To be (extremely) conservative, we assume local infra-

structure is set up, neglecting all of the time associated with

installing and maintaining software and hardware.
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Across all analyses and datasets considered in Figure 7, ana-

lyses run on NeuroCAAS were significantly faster than those run

on the selected local infrastructure, even accounting for the time

taken to stage data to the cloud (Figure 7A, left panes). We

batched data to take advantage of both compute optimization

offered by individual core analyses and NeuroCAAS 0s scale

(see quantification and statistical analysis for details). These ex-

amples show that many analyses can be used efficiently on

NeuroCAAS, regardless of the degree to which they have been

intrinsically optimized for parallelism. Additionally NeuroCAAS

upload time can be ignored if analyzing data that is already in a

user storage—for example if there is a need to reprocess data

with an updated algorithm or parameter setting—leading to

further speedups. Finally, although we found download speeds

negligible (see quantification and statistical analysis for full de-

tails of timing quantifications), this could vary significantly based

on user internet speeds and analyses. Across our platform, we

have attempted to design analyses with much smaller outputs

than input data—a point we will return to in the discussion.

Next, we turn to cost analyses. Over the range of algorithms

and datasets considered here, we found that the total baseline

NeuroCAAS analysis cost was on the order of a few US dollars

per dataset (Figure 7A, right panels)—see Table S7 for pricing

details. We observe that for the most part, costs are approxi-

mately linear in compute time, ensuring that even compute inten-

sive operations like training a deep network for DLC (�12 h on

the instances used here) can be accomplished for �$10—

trained networks can also be maintained in cloud storage to

reduce data transfer cost. In addition to our baseline implemen-

tation, we also offer an option to run analyses at a significantly

lower price (indicated as ‘‘Std’’ and ‘‘Save,’’ respectively, in the

cost barplots in Figure 7), if the user can upper bound the ex-

pected runtime of their analysis to anything lower than 6 h (i.e.,

from previous runs of similar data).

Finally, we compare the cost of NeuroCAAS directly with the

cost of purchasing local infrastructure. We use a total cost of

ownership (TCO)metric (Morey andNambiar, 2009) that includes

the purchase cost of local hardware, plus reasonable mainte-

nance costs over estimates of hardware lifetime; see quantifica-

tion and statistical analysis for full details. We first ask how

frequently one would have to run the analyses presented in Fig-

ure 7 before it becomes worthwhile to purchase dedicated local

infrastructure. This question is answered by the local cost cross-

over (LCC): the threshold weekly rate at which a user would have

to analyze data for NeuroCAAS costs to exceed the TCO of local

hardware. As an example, the top two bars of Figure 7B, left,

show that in order for a local machine to be cost effective for

CaImAn, one must analyze �100 datasets of 8.39 GB per

week, every week for several years (see Table S4 for a conver-

sion to data dimensions). In all use cases, the LCC rates in Fig-

ure 7B show that a researcher would have to consistently

analyze �10–100 datasets per week for several years before it

becomes cost effective to use local infrastructure. Although

such use cases are certainly feasible, managing these use cases

on local infrastructure via IaGS would involve an significant

amount of human labor.

In Figure 7C, we characterize this labor cost via the local utili-

zation crossover (LUC): the actual time cost of analyzing data on



Figure 7. Quantitative comparison of NeuroCAAS versus local processing for three different analyses
(A) Simple quantifications of NeuroCAAS performance. Left graphs compare total processing time on NeuroCAAS versus local infrastructure (orange).

NeuroCAAS processing time is broken into two parts: upload (yellow) and compute (green). Right graphs quantify cost of analyzing data on NeuroCAAS with

two different pricing schemes: standard (dark blue) or save (light blue).

(B) Cost comparison with local infrastructure (LCC). Figure compares local pricing against both standard and save prices, with realistic (2 years) and optimistic (4

years) lifecycle times for local hardware.

(C) Achieving crossover analysis rates. Local utilization crossover gives the minimum utilization required to achieve crossover rates shown in (B). Dashed-vertical

line indicates maximum feasible utilization rate at 100% (utilizing local infrastructure 24 h every day). See Figure S7 for cluster analysis, and Tables S4–S8 for

supplemental information.
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a local machine at the corresponding LCC rate. Across the ana-

lyses that we considered, local infrastructure would have to be

dedicated to the indicated analysis for 25%–50% of the infra-

structure’s total lifetime (i.e., �6–12 h per day, every day) to

achieve its corresponding LCC threshold, requiring an inordinate

amount of work on the part of the researcher to manually run

datasets, monitor analysis progress for errors, or build the

computing infrastructure required to automate this process—in

essence forcing researchers to perform by hand the large-scale

infrastructure management that NeuroCAAS achieves automat-

ically. These calculations demonstrate that even without consid-

ering all of the IaGS issues that our solution avoids or explicitly

assigning a cost to researcher time, it is difficult to use local

infrastructure more efficiently than NeuroCAAS for a variety of

popular analyses. Given the diversity of IaGS solutions, we

also provide a tool for users to benchmark their available infra-

structure options against NeuroCAAS (see the instructions at

https://github.com/cunningham-lab/neurocaas).
NeuroCAAS is offered as a free service for many users
In many cases, researchers may use infrastructure available on

hand to test out analyses before purchasing components for a

dedicated infrastructure stack. Given the low per-dataset cost

and the major advantages summarized above of NeuroCAAS

compared with the current IaGS status quo, we have decided

to mirror this model on the NeuroCAAS platform, and subsidize

a large part of NeuroCAAS usage by the community. Users do

not need to setup any billing information or worry about incurring

any costs when starting work on NeuroCAAS; we cover all costs

up to a per-user cap (initially set at $300). This subsidization re-

moves one final friction point that might slow adoption of

NeuroCAAS, and protects NeuroCAAS as a non-commercial

open-source effort. Since NeuroCAAS is relatively inexpensive,

many users will not hit the cap; thus, for these users,

NeuroCAAS is offered as a free service. We note that we are

also open to considering budget increases for researchers as

they become necessary.
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DISCUSSION

NeuroCAAS integrates rigorous infrastructure practices into neu-

ral data analysis while also respecting current development and

use practices. The fundamental choice made by NeuroCAAS is

to provide analysis infrastructure with as much automation

as possible. This choice naturally makes NeuroCAAS into a

service, and in the simplest case, neither analysis users nor anal-

ysis developers have to manage infrastructure directly; rather,

NeuroCAAS removes the infrastructure burden entirely. Howev-

er, as an open-source project, NeuroCAAS also acknowledges

the possibility that some users may want to accept some degree

of responsibility for computing infrastructure, in return for a

greater degree of flexibility in how they use the platform.Wehigh-

light two notable alternative use cases here:

Working at scale: Large datasets/many jobs
Although our drag-and-drop console removes the need for users

to have previous experience with coding, some users may find

the console restrictive when working with large datasets or man-

aging many jobs at once—both important facets of analysis use

that NeuroCAAS is poised to improve. These restrictions can be

reduced by working with NeuroCAAS using a command line

interface (CLI), or by integrating calls to NeuroCAAS within

locally run applications, as is done in section NeuroCAAS sim-

plifies large data pipelines: widefield imaging protocol. Since

NeuroCAAS can be used solely by interacting with cloud stor-

age, these interfaces to NeuroCAAS are easily supported by

general purpose data transfer tools. We provide instructions

for this use case in our developer documentation (see additional

resources).

In order to streamline data transfer in cases where input or

output data are unavoidably large, we have also implemented

a ‘‘storage bypass’’ option for our CLI interface. Using this op-

tion, public data stored elsewhere in the AWS cloud can be

analyzed, and results can be written back directly to this location

without incurring additional data transfer time and costs, laying

the groundwork for the integration of NeuroCAAS analyses

with external data sources. This option is intended for analyses

that handle especially large input or output data, where CLI

use is preferable, but we plan to extend this functionality to all

analyses and our standard interface soon. We believe these

additional features will better equip NeuroCAAS to handle the

ever increasing scale of neuroscience data (e.g., Steinmetz

et al., 2021; Couto et al., 2021), as well as methods that consider

multiple data modalities simultaneously (e.g., Batty et al., 2019),

and facilitate sharing of analysis outputs across many users.

Working independently: private management of costs/
compute resources
A major benefit of NeuroCAAS0s IaC construction is that the

entire platform (except private user data) can be reconstructed

automatically, given the code in the NeuroCAAS source reposi-

tory (method details; Figure S5). There is no dependence of the

platform upon specifics of infrastructure configuration that are

not recorded in a blueprint. This benefit means that if users

anticipate very high costs or would like to use IaC to manage

their own custom analyses, it is easy for them to switch from us-
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ing our public implementation of NeuroCAAS to one that

they pay for themselves, maintaining all the benefits of

NeuroCAAS0s infrastructure management. We provide detailed

instructions on this process in our developer documentation

(additional resources), describing platform setup and cloning of

individual analyses.

Finally, we revisit NeuroCAAS0s stated objectives of support-

ing reproducible, accessible, and scalable data analyses. These

are fundamentally multifaceted issues and will manifest in

different ways across a variety of use cases. To this end, we

identify strengths and limitations of NeuroCAAS0s approach to

these issues (and related costs) so that researchers can evaluate

the suitability of NeuroCAAS to their particular use case.

Reproducibility
What are the benefits and limits of analysis reproducibility in

NeuroCAAS? In the section testing the NeuroCAAS usage

model, we show that a dataset, configuration file, and analysis

blueprint form a set of sufficient resources to reproduce an anal-

ysis output against a set of practically relevant interventions. We

note some qualifications to this performance: First, it can be non-

trivial to maintain a dataset across multiple analysis runs. Impor-

tantly, when data are uploaded, it will not be versioned by

default, creating the potential for it to be overwritten. For dataset

provenance, we recommend data infrastructure projects like

DANDI (Dandi Team, 2019). Integration with a data archive is

an important future direction to extend reproducibility for

NeuroCAAS. Second, we are limited by the inherent computa-

tional reproducibility of the core analysis we offer—for example,

random computations can introduce significant differences from

run to run (although ensemble methods can mitigate these is-

sues). Finally, we can consider the life cycle of different re-

sources on the AWS cloud. For example, reproducibility could

be affected if support for certain hardware instances become

deprecated, and can no longer be used to run analyses. Given

the large scale reliance of industrial applications on the AWS

cloud, such events are very rare and announced well in advance,

but we can take steps to address such a contingency. In partic-

ular, an important future direction is to consider how we can

expand our approach outside of a particular cloud provider

(see method details for more).

Accessibility
NeuroCAAS aims to improve the accessibility of data analysis

by removing the need for users to independently configure

infrastructure stacks, as is the de facto standard with IaGS ap-

proaches. By default, NeuroCAAS does not aim to improve other

aspects of accessibility, such as the scientific use of core anal-

ysis algorithms. For example, if a user has data that are incor-

rectly formatted for a particular algorithm, the same error will

happen with NeuroCAAS as it would with conventional usage,

even though curated deployments and blueprint based updates

can significantly mitigate such issues.

Another approach toward achieving robust and general pur-

pose analyses focuses on the explicit standardization of data for-

mats and workflow. Asmentioned, we plan to integrate with data

archiving projects like distributed archives for neurophysiology

data integration (DANDI) (Dandi Team, 2019) that enforces the
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Neurodata Without Borders (NWB) (Teeters et al., 2015; R€ubel

et al., 2019, 2021) data standard, providing a stable set of expec-

tations for analysis developers while also improving reproduc-

ibility of analysis results. Likewise, workflow management sys-

tems for neuroscience such as Datajoint (Yatsenko et al., 2015)

or more general tools like snakemake (Köster and Rahmann,

2012) and the Common Workflow Language (Amstutz et al.,

2016) codify the sequential steps that make up a data analysis

workflow on given infrastructure, ensuring data integrity and

provenance. Other platforms both within (NeuroScout, 2022;

Avesani et al., 2019) and outside of neuroscience (Seven Bridges

Genomics, 2019) provide well-designed examples of how stan-

dardized data formats paired with workflow management sys-

tems can be used to make analyses more modular and easy

to use.

Scale
Although NeuroCAAS offers analyses at scale, it does not offer

unstructured access to cloud computational resources. The

concept of IAEs should clarify this fact: NeuroCAAS serves a

set of analyses that are configured to a particular specification,

as established by the analysis developer. This constraint is

often ideal, since the specification is in many cases established

by the analysis method’s original authors. Without specific

structure to manage the near infinite scale of resources

available on the cloud, the management of resources on the

cloud easily becomes susceptible to the issues of IaGS that

motivated the development of NeuroCAAS to begin with (Mona-

jemi et al., 2019). The constraint of immutability distinguishes

NeuroCAAS from interactive data analysis offerings that offer

cloud computing like Pan-neuro (Rokem et al., 2021) or Google

Colab, in keeping with their differing intended use cases.

Although interactive computing plays a key role in data analysis

applications, we believe there is fundamental value in immutable

data analyses as well.

Importantly, immmutability does not suggest that analyses on

NeuroCAAS are a black box. All NeuroCAAS analyses are built

from open-source projects, the workflow scripts used to parse

datasets and config files inside an IAE are made available to all

analysis users, and jobs constantly print live status logs back

to users. Furthermore, our novel analyses show that there are

means of comprehensively characterizing analysis performance

that only become available at scale (i.e., full parameter searches

over a multi-step analysis or ensembling to evaluate reliability of

analysis outputs).

Cost
The cost quantifications that we present in this manuscript are

intended to demonstrate that the cost of using NeuroCAAS0s
computing infrastructure is practically feasible when compared

against the cost of computing on typical IaGS infrastructure.

One point to note is that for individual research groups, the

cost of using local infrastructure may vary significantly across in-

stitutions. Our quantifications are best fit to the case where a

research group is supporting its own computing costs and re-

sources. Although the relative cost of using NeuroCAAS may

thus differ from group to group, it is our hope that offering ana-

lyses at a uniform (and highly subsidized) cost will increase anal-
ysis accessibility to a significant portion of the neuroscience

community and potentially provide amore concrete understand-

ing of the costs associated with the development and adoption

of new analysis tools.

Beyond compute, we do not discuss the costs of storing and

retrieving data from the cloud in depth. Without restricting data

sizes on user storage, we found that data storage costs were

small enough that we could support them without counting

them toward user budgets. A common theme of the analyses

that we discuss is that we can minimize data retrieval costs by

designing workflows such that analysis results that the user

actually needed to retrieve were far smaller than input data, spe-

cifically by modifying IAEs and by maintaining large intermediate

results on the cloud for use in future analyses. NeuroCAAS0s cost
benefits may be reduced if these conditions are harder to

achieve for a given analysis, although we believe that alternative

use cases, such as our CLI interface with ‘‘storage bypass’’ are

well poised to handle these contingencies, especially when

paired with future directions such as integration with a data

archive. Importantly, on private resources users will have to

pay for cloud storage. This cost can be minimized by deleting

input data and storing all results locally when not in use.

Beyond our proposed improvements above, NeuroCAAS will

naturally continue to evolve by virtue of its open-source code

and public cloud construction. First, we hope to build a commu-

nity of developers who will add more analysis algorithms to

NeuroCAAS, with an emphasis on subfields of computational

analysis that we do not yet support. Throughout this

manuscript, we focus largely on analyses in systems neurosci-

ence and neurophysiology, in accordance with the previous

experience of the authors, and the opinion that analyses in this

area are in great need of the platform design implemented by

NeuroCAAS. We also plan to add support for real-time process-

ing (e.g., Giovannucci et al. [2017] for calcium imaging or

Schweihoff et al. [2021] and Kane et al. [2020] for closed-loop ex-

periments, or Lopes et al. [2015] for the coordination of multiple

data streams), using blueprint based methods to design fast,

reliable infrastructure for closed-loop analyses, in the same spirit

as these batch mode analyses. Second, other tools have

brought large-scale distributed computing to neural data ana-

lyses (Freeman, 2015; Rocklin, 2015) in ways that conform to

more traditional high performance computing ideas of

scalability for applications that are less easily parallelized than

those presented here. Integrating more elaborate scaling into

NeuroCAAS while maintaining development accessibility will

be an important goal going forward. Third, we aim to take inspi-

ration from other computing platforms both within and beyond

neuroscience to improve the usability of our platform, such as re-

porting the expected runtime and success rate of analyses (Ave-

sani et al., 2019), indicating the compatibility of different analysis

steps in a sequence (Seven Bridges Genomics, 2019) or

improving user and developer resources to include forums and

full-time support (Goecks et al., 2010). We also aim to identify

platforms and tools that could potentially be integrated with

NeuroCAAS resources, in order to provide them with the infra-

structure reliability that we prioritize. Finally, a major opportunity

for future work is the integration of NeuroCAAS with modern

visualization tools. We have emphasized above that IAEs on
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NeuroCAAS are designed with the ideal of fully automated data

analyses in mind, because of the virtues that automation brings

to data analyses. However, we recognize that for some of the

core analyses on NeuroCAAS, and indeedmost of those popular

in the field, some user interaction is required to speed up analysis

and optimize results. We have already demonstrated the

compatibility of interactive interfaces with NeuroCAAS in our

WFCI analysis, and we will aim to establish a general purpose

interface toolbox for developers in the same spirit, without sacri-

ficing the benefits of cost efficiency, scalability, and reproduc-

ibility that distinguish NeuroCAAS in its current form.

Longer term, we hope to build a sustainable and open-source

user and developer community around NeuroCAAS. We

welcome suggestions for improvements from users, and new an-

alyses as well as extensions from interested developers, with the

goal of creating a sustainable community-driven resource that

will enable new large-scale neural data science in the decade

to come.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw data used for the benchmarking of

CaImAn (Giovannucci et al., 2019)

Zenodo Zenodo: https://doi.org/10.5281/zenodo.

1659149

Performance quantification data used to

report timing and cost of analyses on

NeuroCAAS (related to Table 1 and Figure 8)

Zenodo CSHL Scientific Digital Repository: https://

doi.org/10.5281/zenodo.6512118

Raw data used for to test WFCI analysis. Cold Spring Harbor Repository Zenodo: https://doi.org/10.14224/1.38599

Software and algorithms

Source repository used to build analyses

from blueprints.

Zenodo Zenodo: https://doi.org/10.5281/zenodo.

6512118

Contributor repository used to help

developers add analyses to NeuroCAAS.

Zenodo Zenodo: https://doi.org/10.5281/zenodo.

6512121

Interface repository used to build the

website www.neurocaas.org

Zenodo Zenodo: https://doi.org/10.5281/zenodo.

6512125

Repository used to generate ensemble

outputs from individually trained models

Zenodo Zenodo: https://doi.org/10.5281/zenodo.

6513057
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, John P. Cunningham

(jpc2181@columbia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Quantifications of performance and reproducibility of NeuroCAAS have been deposited at Zenodo and are publicly available as

of the date of publication. DOIs are listed in the key resources table.

d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key re-

sources table.

d All other data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.
METHOD DETAILS

NeuroCAAS architecture specifics
The software supporting the NeuroCAAS platform has been divided into three separate Github repositories. The first, https://github.

com/cunningham-lab/neurocaas is themain repository that hosts the Infrastructure-as-Code implementation of NeuroCAAS.Wewill

refer to this repository as the source repo throughout this section. The source repo is supported by two additional repositories:

https://github.com/cunningham-lab/neurocaas_contrib hosts contribution tools to assist in the development and creation of new an-

alyses on NeuroCAAS, and https://github.com/jjhbriggs/neurocaas_frontend hosts the website interface to NeuroCAAS. We will

refer to these as the contrib repo and the interface repo respectively throughout this section. We discuss the relationship between

these repositories in the following section, and in Figure S5.

Source repo

Section NeuroCAAS builds complete infrastructure stacks gives an overview of how NeuroCAAS encodes individual analyses into

blueprints, and deploys them into full infrastructure stacks, following the principle of Infrastructure-as-Code (IaC). This section pre-

sents blueprints in more depth and show how the whole NeuroCAAS platform can be managed through IaC, encoding features such
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as user data storage, credentials, and logging infrastructure in code documents analogous to analysis blueprints as well. All of these

code documents, together with code to deploy them, make up NeuroCAAS0s source repo. There is a one-to-one correspondence

between NeuroCAAS0s source repo and infrastructure components: deploying the source repo provides total coverage of all the

infrastructure needed to analyze data on NeuroCAAS (Figure S5, bottom). Although much of the code to translate blueprints and

other infrastructure code necessarily references AWS resources, NeuroCAAS blueprints and other IaC artefacts are not tied to

AWS, except in their reliance on particular hardware instance configurations. We can potentially recreate these hardware instances

in other public clouds, using existing tools to support cloud-agnostic IaC approaches, as suggested by Brikman (2019). Doing so will

further improve the scale and robustness of our platform.

Within the source repo, each NeuroCAAS blueprint (see Figure S2 for an example) is formatted as a JSON document with prede-

fined fields. The expected values for most of these fields identify a particular cloud resource, such as the ID for an immutable analysis

environment, or a hardware identifier to specify an instance within the resource bank (Lambda.LambdaConfig.AMI and

Lambda.LambdaConfig.INSTANCE_TYPE in Figure S2, respectively). Upon deployment, these fields determine the creation of

certain cloud resources: AWS EC2 Amazon Machine Images in the case of IAE IDs, and AWS EC2 Instances in the case of hardware

identifiers. One notable exception is the protocol specifying behavior of a corresponding NeuroCAAS jobmanager (Lambda.CodeUri

and Lambda.Handler in Figure S2). Instead of identifying a particular cloud resource, each blueprint’s protocol is a python module

within the source repo that contains functions to execute tasks on the cloud in response to user input. The ability to specify protocols

in python allows NeuroCAAS to support the complex workflows shown in Figure 5. Jobmanagers are deployed from these protocols

as AWS Lambda functions that execute the protocol code for a particular analysis whenever users submit data and parameters.

Since all parts of NeuroCAAS workflow can be managed with python code (i.e. through a programmatic interface, job manager pro-

tocol, or within the IAE itself), external workflow management tools can easily be integrated to analyses on a case-by-case basis in

order to deploy the scale of NeuroCAAS in parallel or sequentially, as needed.

Another major aspect of NeuroCAAS0s source repo that is not discussed in the results is the management of individual users.

NeuroCAAS applies the same IaC principles to user creation and management as it does to individual analyses. To add a new

user to the platform, NeuroCAAS first creates a corresponding user profile in the source repo (Figure S5, right), that specifies user

budgets, creates private data storage space, generates their (encrypted) security credentials, and identifies other users who they

collaborate with. Users resources are created using the AWS Identity and Accesss Management (IAM) service.

Contrib and interface repos

Given only the NeuroCAAS source repo, analyses can be hosted on the NeuroCAAS platform and new users can be added to the

platform simply by deploying the relevant code documents. However, interacting directly with resources provided by the

NeuroCAAS source repo can be challenging for both analysis users and developers. For developers, the steps required to fill in a

new analysis blueprint may not be clear, and the scripting steps necessary within an IAE to retrieve user data and parameters requires

knowledge of specific resources on the Amazon Web Services cloud. For users, the NeuroCAAS source repo on its own does not

support an intuitive interface or analysis documentation, requiring users to interact with NeuroCAAS through generic cloud storage

browsers, forcing them to engage in tedious tasks like navigating file storage and downloading logs before examining them. Collec-

tively, these tasks lower the accessibility that is a key part of NeuroCAAS ’s intended design. To handle these challenges, we created

two additional code repositories, the NeuroCAAS contrib repo and interface repo, for developers and users, respectively.

The NeuroCAAS contrib repo supports a command line tool and python code to streamline the process of developing and creating

new NeuroCAAS analyses. During the development process, the NeuroCAAS contrib repo can create infrastructure stacks indepen-

dently of input-triggered job managers for a limited time, allowing developers to build and test IAEs interactively on powerful hard-

ware instances in ‘‘debugmode’’ (Figure S5, bottom right), and populate the analysis blueprint as they go. Then, when a new analysis

is ready to be used on NeuroCAAS, the NeuroCAAS contrib repo automatically versions the entire source repository after integrating

and deploying the new blueprint, generating a unique analysis version ID. All NeuroCAAS analyses can be updated only by directly

editing blueprints, and blueprints are assigned a new analysis version ID every time that they are updated. By enforcing a tight cor-

respondence between blueprints and analyses, we ensured the reproducibility of all analyses conducted via NeuroCAAS, regardless

of ongoing updates to the underlying infrastructure or algorithm (Figure S5, top right). With an analysis version ID, it is possible to

replicate results that were generated with older versions of some analysis algorithm, making this a particularly useful feature for users

processing data with an analysis that is still actively being developed. The NeuroCAAS developer documentation linked in additional

resources contains a detailed guide for developers to get started with NeuroCAAS.

The NeuroCAAS interface repo supports the website interface to NeuroCAAS, hosted at www.neurocaas.org. In addition to

providing documentation and a simpler user interface, (Figure S5, bottom left) the interface repo interacts with the source repo to

automatically create and deploy user profiles when users sign up, significantly increasing the potential scale of the platform (Fig-

ure S5, top left). This website based user credentialing system can be referenced by other user interfaces as well, as is done in

https://github.com/jcouto/wfield. If users wish to share analysis access and data with other users, they can also use the website

to create and request unique ‘‘group codes’’ at sign up, that they can use to invite other users into the same group. Doing so allows

them to easily share analysis access with others.
Neuron 110, 2771–2789.e1–e7, September 7, 2022 e2
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Developer workflow
In this section we give more specific steps of how developers and authors built analyses for NeuroCAAS. See also Figure S6 for a

corresponding schematic.

Flexible installation and scripting

Developers first install their core analysis into an IAE and hardware instance, just as they would with a local computer. Within an IAE

any programming language can be supported, although certain precautions must be taken when working with licensed software

such as Matlab (see developer documentation for more details https://neurocaas.readthedocs.io/en/latest/index.html). We provide

tools to help developers write a workflow script to make their core analysis immutable (Figure S6). Post installation, the configured

IAE is automatically saved in a blueprint (Figure S6, right).

Simple input/output handling

All NeuroCAAS analyses take a dataset file and a YAML formatted configuration file as input. Datasets can be parallelized over, and

configuration files can specify any kind of parameter, including paths to supplemental data files (we provide an example of such a

workflow in our custom analyses). NeuroCAAS handles transfer of data files from users into an IAE, and likewise writes any results

back to users in timestamped folders that ensure version control for analysis outputs. All messages that would be printed to the IAE

console during analysis are delivered back to the user in real time as a set of automatically formatted log files, along with job success/

failure status messages, CPU usage, and memory usage. Developers can specify any files to be returned to the user, including

custom logs, or intermediate results that would be useful to examine as analysis proceeds.

Testing with private data storage

Each user of a given analysis has a password protected account that authorizes them to interface with their own private cloud stor-

age. Users have separated input and output areas in cloud storage, where they can maintain datasets for re-analysis, or keep inter-

mediate analysis results as convenient. Although we have not capped the size of data we allow each user to store overall, we restrict

both as follows: users cannot download data from input areas (although they can delete), and they cannot upload to output areas.

These restrictions have distinct benefits for cost and reproducibility. In the later stages of testing, developers can upload test data

and configuration files to private data storage exactly as a user would, and ensure that results and logging information appear as

intended before releasing their analysis to the public. Developers can also set up selective access for designated test users before

releasing the analysis to the general public. At this stage, we also work with developers to determine the optimal hardware instance

type from the resource bank for their analysis and to determine if additional configuration of a custom job manager is necessary. We

note, importantly that our current storage solution does not meet HIPAA standards and should not be used for sensitive health

records.

Reproducible use and development

By default, each analysis on NeuroCAAS provisions a single type of hardware instance for all data. However, if needed instances can

be provisioned in a dataset-dependent manner, adjusting the size of storage volumes, memory, or other computing resources. These

per-job changes are still recorded in versioned logs to ensure reproducibility of all jobs (see immutable analysis environments for

software infrastructure for details). Such dataset dependent changes can be triggered by users, with the CLI interface, or pro-

grammed by developers through the job manager. In cases where users report bugs, analysis developers can then access the exact

same IAE, resource bank instance, and inputs in interactive ‘‘debug mode’’ once again, making changes and redeploying the blue-

print exactly as they did in the initial deployment. Furthermore, if developers would like to continue updating their analysis, they can

do so without impacting the reproducibility of existing results, because each NeuroCAAS job produces an analysis ID identifying a

particular blueprint version.

Novel analyses
For each novel analysis described in ‘‘NeuroCAAS simplifies large data pipelines: widefield imaging protocol’’ and ‘‘NeuroCAAS sta-

bilizes deep learning models: ensemble markerless tracking,’’ we provide details on its component infrastructure stacks, as well as

details on relevant development outside the NeuroCAAS framework we have already presented.

Widefield imaging

The Widefield Calcium Imaging analysis that we present involves two independent infrastructure stacks, with the second taking as

input the results of the first. The first infrastructure stack performs motion correction, denoising, compression, and hemodynamic

correction, and is performed on an instance with 64 virtual cores (further infrastructure details are identical to the ‘‘PMD’’ row of

Table S5). The second infrastructure stack performs demixing of denoised, corrected widefield imaging data, and is performed

on an instance with a Tesla V100 GPU (further infrastructure details are identical to the ‘‘LocaNMF’’ row of Table S5). In addition

to these two infrastructure stacks, we support a custom GUI (available at https://github.com/jcouto/wfield). This user interface inte-

grates with the credentials generated for users on the NeuroCAASwebsite, allowing users who have signed up via the website to use

the GUI with an existing account. The GUI hosts a number of initialization steps on the user’s local machine, involving selection of

parameters and alignment of data to landmarks on a given brain atlas. The GUI is also able to upload data directly to NeuroCAAS

cloud storage, submit jobs, andmonitor their progress. Next, the GUI is able to detect when the first step of processing is completed,

and submits the relevant results files as input to the second step, mimicking the steps a user would take manually to manage this

process. Finally, when all processing is complete the GUI retrieves analysis results back to the user’s local machine. For more details

on implementation of each analysis step, please see Couto et al. (2021).
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Ensemble markerless tracking

The deep ensembling analysis that we present is also performed in two separate infrastructure stacks, but both the initial training and

the consensus output generation steps are performed on the same IAE and resource bank instance. In both cases, we use an

instance equipped with a Tesla V100 GPU, otherwise identical to the infrastructure shown in the DeepLabCut row of Table S5.

We trained DeepGraphPose with the default training settings provided in the file run_dgp_demo.py within the core

DeepGraphPose analysis code, on the ‘‘twomice-top-down’’ data from the DeepGraphPose paper (Wu et al., 2020). That paper pro-

vides full videos of analysis of this dataset using a single DeepGraphPose model. To enable ensembling, we built a separate set of

ensembling tools that work with DeepGraphPose (Wu et al., 2020) - they can be found at https://github.com/cunningham-lab/

neurocaas_ensembles. In order to create a consensus output, we averaged the confidence maps from each model in an ensemble

in the following way: Assume a set of N trained DGP networks, 4i;i˛1.N, and a video frame, F ˛RX3Y33 with three color channels.

Assume that the network has been trained to track a single body part (the general case follows immediately), and take the scoremap

outputs (unnormalized likelihoods) on this image from the output convolutional layer, denoted 4sc
i ðFÞ, where each scoremap

4sc
i ðFÞ˛RX3Y . These scoremap outputs are unnormalized likelihoods representing the probability that the body part of interest is

located in any individual pixel of the image. Then, we can compute the mean scoremap for a given image as:

4scðFÞ = S� 1

 
1

N

X
i

S
�
4sc
i ðFÞ�

!
(Equation 1)

Where S is the elementwise sigmoid function. The consensus output is then calculated from the softargmax function of this mean

scoremap.

Furthermore, to calculate the rmse error, we use the followingmetric: Assumewe have detections for all of the test frames in a video

as a tensor, x˛RT3D3C, with entries xtdc, where t represents the frame index, d the part index, and c the coordinate ˛ ½x;y�. Likewise,

we have groundtruth data g with entries gtdc of the same dimension. Then the error is calculated as follows:

RMSEðx;gÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t;d;c

h
ðxtdc � gtdcÞ2

i
T

vuut
(Equation 2)

Details and implementation can be found in the repository https://github.com/cunningham-lab/neurocaas_ensembles, and the full

analysis is available for use at http://neurocaas.org/analysis/14.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantifying reproducibility on NeuroCAAS
In order to quantify the reproducibility of analyses on NeuroCAAS, we selected two analyses already available on NeuroCAAS;

CaImAn (Giovannucci et al., 2019), and Ensemble DeepGraphPose (NeuroCAAS stabilizes deep learning models: ensemble marker-

less tracking). We fixed in place the blueprint version for these analyses, as well as a dataset and configuration file, and compared the

results of 15 independent runs for each of these analyses. These runs capture a variety of different real world interventions that can

affect analysis reproducibility in practice. In particular, Runs 1-5 were performed by a paper author in the United States, Runs 6-10

were performed by a non-author researcher in India, and Runs 11-14 were performed by a non-author researcher in Switzerland.

Within each of these sets of runs, we can test for the variation in analysis outputs over analysis runs conducted by the same

researcher. Across these sets of runs, we can test for variation in analysis outputs over the physical location of the researcher

performing experiments. Finally, for both analyses Run 15 was performed using an entirely separate instantiation of the

NeuroCAAS platform, as described in the discussion, and for which detailed instructions are provided in our developer documenta-

tion. This run ensures that there is no dependence of our analysis results on the particular set of infrastructure resources used to build

and implement NeuroCAAS analyses blueprints.

In the absence of a generic metric to compare analysis outputs, we chose specific metrics for each analysis.

CaImAn

We benchmarked CaImAn on the YST dataset introduced in the CaImAn paper (Giovannucci et al., 2019). To compare the outputs of

CaImAn, we independently looked at the differences between the spatial components (referred to as the ‘‘A’’ matrix in the CaImAn

software package) and the temporal components (referred to as the ‘‘C’’ matrix in theCaImAn software package) found by the system

independently. For both temporal and spatial components, we assumed a deterministic ordering of components across runs. We

compared components pairwise, and reported average quantities across paired components. To determine the variation of spatial

components across runs, we quantified the Jaccard similarity coefficient pairwise between detected components, as has been done

previously in Giovannucci et al. (2017). In order to compare the variation of temporal components across runs, we quantified the root

mean square error between paired temporal components. In both cases, we found no detectable variation across runs.

Ensemble DeepGraphPose

We benchmarked Ensemble DeepGraphPose on the ‘‘twomice-top-down’’ data described in the methods above with the introduc-

tion of Ensemble Markerless Tracking. We compared the outputs of each run as the time series describing the temporal evolution of
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each individual body part. We quantified differences between two runs, x1; x2 as the root mean squared error between time series

describing the evolution of each individual body part, averaged overall body parts. RMSE has previously been used in the literature

to quantify the similarity between the tracked positions of behavioral markers, as in Mathis et al. (2018) and Wu et al. (2020). We

expect this variation to come from non-deterministic computations used to speed up the computation of convolutions employed

in the relevant behavioral tracking model.

Timings

As a separate but related question, we also quantified the variation in the time taken to analyze data on NeuroCAAS across these

same 15 runs. We quantified timings as follows:

d The Setup Time of an analysis was calculated as the time between the moment when a job was submitted to user storage

(measured as the upload timestamp associated with a job’s ‘‘submit.json’’ file) and when the job was marked as started in

the corresponding ‘‘certificate.txt’’ log in user storage (reported as a delta following the statement ‘‘JOB MONITOR LOG

COMPLETE’’.)

d TheAnalysis Timewas calculated as the time between the end of a job’s Setup Time and the timewhen the last analysis output

of a particular run is uploaded to user storage (measured using upload timestamps of those analysis results).

d The Shutdown Time of an analysis is the time between the end of a job’s Analysis Time and the time when all resources asso-

ciated with the job have been stopped. It is measured based upon the time when a job end marker file is written to user storage

(called ‘‘end.txt’’).

The total timing of an analysis job is the sum of these three contributions. In practice, we care most about variation in the first two

components, as these are most relevant to a user’s experience of NeuroCAAS.

Quantifying usage
By default, NeuroCAAS records metadata for each job that is requested, such as the requester of the job, the time at which it was

requested, and the datasets and config file that were analyzed. These quantities are necessary to enable per-user budgeting.

We aggregated this per-user metadata in order to generate the usage statistics shown in Figure 3. Aggregation and analysis of user

data is now offered to developers through the contrib repo described above, and the data for Figure 3 panels were generated by

running the command:

$ neurocaas-contrib monitor visualize-parallelism

This command is included with the developer CLI, which lists the usage of a single analysis bucket. We ran this command for the

following analyses:

d epi-ncap-web

d dlc-ncap-web

d pmd-ncap-web

d caiman-ncap-web

d locanmf-ncap-web

d bardensr

d dlc-ncap-stable

d caiman-ncap-stable

d polleuxmonitored

d carceamonitored

d wfield-preprocess

d yass-ncap-stable

d one-photon-compress

d one-photon-demix

d one-photon-mcorr

d dgp-refactor

d ensemble-dgp

d label-job-create-web

We then iterated through all of these logs, and aggregated information across all platform usage for these analyses, usingmetadata

for individual jobs to group results by user, by parallelism, and by developer. For each aggregated collection of jobs, we extracted the

total corresponding number of compute hours as well, using the script figures/parallelized.py included in the contrib repo. Critically,

here we exclude usage by NeuroCAAS team members testing analyses for deployment, which is run from the user accounts ‘‘revie-

wers’’,‘‘debuggers’’, and ‘‘examplegroup2’’. In rare cases where metadata logging failed, we excluded the corresponding analysis

job from this quantification.
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Benchmarking algorithms on NeuroCAAS
For each analysis currently on NeuroCAAS, the specific infrastructure choices in the corresponding blueprint (Figure S5, right) are

given in Table S5. To meaningfully benchmark NeuroCAAS against current standards, we simulated corresponding local infrastruc-

ture. Local infrastructure was also built on AWS, and spans resources comparable to personal hardware and cluster compute, de-

pending on the use case (see Table S6). As a general guideline, we chose local infrastructure representatives that would reasonably

be available to a typical researcher, unless the datasets we considered required more powerful resources. To account for the diver-

sity of resources available to neuroscience users, we offer alternative quantifications to those presented in Figure 7 in the supple-

mental information (see Figure S7), and make performance quantification data and calculations available to users who would like

to compare to their own infrastructure through a custom tool on our project repository (see README: https://github.com/

cunningham-lab/neurocaas).

For each analysis that we benchmarked on NeuroCAAS, we chose three datasets of increasing size as representative use cases of

the algorithms in question. The size differences of these datasets reflect the diversity of potential use cases among different users of

the same algorithm. The CaImAn benchmarking data consists of datasets N.02.00, J_123, J_115 from the data shared with the

CaImAn paper (Giovannucci et al., 2019). Benchmark analysis is based on a script provided to regenerate Figure 7 of the CaImAn

paper. Note that although this data could be batched, we choose to maintain all three datasets as contiguous wholes. We took

advantage of the fact that the algorithm was built to parallelize across multiple cores of the same machine, and chose hardware

to make effective use of this implementation across data sizes (for details see Figure 8 in Giovannucci et al., 2019). DeepLabCut

benchmarking data consists of behavioral video capturing social interactions between twomice in their home cage. Data is provided

courtesy of Robert C. Froemke and Ioana Carcea, as analyzed and presented in Carcea et al. (2019). Data processing consisted of

analyzing these videos with a model that had previously been trained on other images from the same dataset. The same dataset was

used to benchmark PMD and LocaNMF as a single analysis pipeline with two discrete parts. Input data consist of the dataset

(‘‘mSM30’’), comprising widefield calcium imaging data videos, provided courtesy of Simon Musall and Anne Churchland, as

used in Musall et al. (2019) and Saxena et al. (2020). The full dataset is available in a denoised format at http://repository.cshl.

edu/id/eprint/38599/. Data processing on NeuroCAAS consisted of first processing the raw videos with PMD, then passing the re-

sulting output to LocaNMF. For DLC and PMD+LocaNMF, the NeuroCAAS compute time was effectively constant across increasing

total dataset size, as we assumed data was evenly batched into subsets of approximately equal size and each batch was analyzed in

its own independent infrastructure stack (as in Figure 5A).

Further details on the datasets used can be found in Table S4.

We split the time taken to run analyses on NeuroCAAS into two separate quantities. First, we quantified the time taken to upload

data from local machines to NeuroCAAS, denoted as NeuroCAAS (Upload) in Figure 7. This time depends upon the specifics of the

internet connection that is being used. It is also a one time cost: once data is uploaded to NeuroCAAS, it can be reanalyzed many

timeswithout incurring this cost again. Upload timesweremeasured from the sameNeuroCAAS interfacemade available to the user.

(This upload time was skipped in the quantification of local processing time.) Second, we automatically quantified the total time

elapsed between job submission and job termination, when results have been delivered back to the end user in the NeuroCAAS inter-

face (denoted as NeuroCAAS (Compute) in Figure 7) via AWS native tools (see supplemental information for details, and use of this

data for Figure 3). Finally, we do not include time taken to download data back to a local machine in these quantifications because we

found that this time was negligible across all analyses that we considered-at most � 2 minutes, and in most cases on the order of a

few seconds. Local timings were measured on automated portions of workflow in the same manner as NeuroCAAS (Compute).

We quantified the cost of running analysis onNeuroCAAS by enumerating costs of each of the AWS resources used in the course of

a single analysis. Resources can be found in Table S7. We provide the raw quantification data and corresponding prices in Table S7

as well. To further reduce costs, we also offer the option to utilize AWS Spot Instances (dedicated duration); these are functionally

identical to standard compute instances, but are provisioned for a pre-determined amount of time with the benefit of significantly

reduced prices. We provide the estimated cost of running analyses with both of these options in Figure 7, with quantifications labeled

‘‘NeuroCAAS Save’’ corresponding to analyses run with dedicated duration spot instances, and those labeled ‘‘NeuroCAAS Std’’

corresponding to those run with standard instances. For more on Spot Instance price quantification, see supplemental information.

With simulated local infrastructures on AWS in hand, costs were calculated by pricing analogous computing resources as if the

user had purchased them for a personal workstation, or as if they had been allocated to the user on an on-premises cluster

(Table S8, https://calculator.aws/). In Figure 7, we assume that the local infrastructures considered are hosted on typical local laptop

or desktop computing resources, supplemented with the resources necessary to run analyses as they were done on NeuroCAAS

(additional storage, memory, GPU, etc), while maintaining approximate parity in processor power.We referred toMorey and Nambiar

(2009) to convert pricetag costs of local machines to Equivalent Annual Costs, i.e. the effective cost per year if we assume our local

machines will remain in service for a given number of years, as our implementation of a TCO calculation (as is often done in industry).

Given a price tag cost xlocal, an assumed lifetime n, an annuity rate r, and csðnÞ defined as the estimated annual cost of local machine

support given a lifetime n, we follow Mahvi and Zarfaty (2009) and Morey and Nambiar (2009) in calculating the Equivalent Annual

Cost as:

EACðxlocal;n; rÞ =
xlocal

1�ð1+ rÞ� n

r

+ csðnÞ:
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Here csðnÞ is provided in the cited paper (Morey and Nambiar, 2009), estimated from representative data across many different

industries. The denominator of the first term is an annuity factor. We consider two different values for n, which we label as ‘‘realistic’’

(2 years) and ‘‘optimistic’’ (4 years) in the text. In industry, 3–4 years is the generally accepted optimal lifespan for computers, after

which support costs outweigh the value of maintaining an old machine (Business Intelligence, 2004, Mahvi and Zarfaty, 2009; Morey

and Nambiar, 2009). Some have argued that with more modern hardware, the optimal refresh cycle has shortened to 2 years (J.Gold

Associates LLC, 2014). By providing quantifications assuming two and four year refresh cycle, we consider the short and long end of

this generally discussed optimal range.

Given a per-dataset NeuroCAAS cost xNeuroCAAS , we further derive the Local Cost Crossover (LCC), the threshold weekly data

analysis rate at which it becomes cost-effective to buy a local machine. The LCC is given by:

LCCðxlocal;n; r; xNeuroCAAS Þ = EACðxlocal;n; rÞ
523 xNeuroCAAS

:

Furthermore, given the per-dataset local analysis time, we can estimate the corresponding Local Utilization Crossover (LUC). The

LUC considers the LCC in the context of the maximal achievable data analysis rate on local infrastructure as calculated in the pre-

vious section. If the time taken to analyze a dataset on a local machine is given by tlocal (in seconds), the LUC is given by:

LUCðtlocal; xlocal; n; r; xNeuroCAAS Þ = LCCðxlocal;n; r; xNeuroCAAS Þ3 tlocal 3 100

604800
:

Survey of analyses and platforms
We characterized data analysis infrastructure stacks as consisting of three hierarchical parts (Dependencies, System, Hardware),

segmented consistently with infrastructure descriptions referenced elsewhere (Demchenko et al., 2013; Zhou et al., 2016). In several

different subfields of neuroscience, we then selected 10 recent or prominent analysis techniques, and asked how they fulfilled each

component of data analysis infrastructure to generate Figure 1D. We denoted a particular infrastructure component as supported if it

is referenced in the relevant installation and usage guides as being provided in a reliable, automatedmanner (e.g., automatic package

installation via pip), offering a conservative estimate of lack of infrastructure support. Survey details are provided in Tables S1 and S2.

We addressed the question of howdata analyses are installed and usedwith these surveys in the tradition of the open source usability

literature. Surveys such as these are standardmethodology in this field, which relies upon empirical data from studies of user’s usage

habits (Nichols et al., 2001; Zhao and Deek, 2005), developer sentiment (Terry et al., 2010), and observation of user-developer inter-

actions via platforms like Github (Cheng and Guo, 2018).

To generate Figure 4, we first quantified the traffic and infrastructure experienced by individual analyses by examining their Github

pages, and taking the maximum of the number of forks, stars, and watchers, as well as the listed hardware requirements of each

analysis (numbers as of September 2020). We then overlaid several exemplar platforms based on the analyses that they supported,

as well as restrictions based on the accessibility and scale requirements imposed by each (local hardware, limitation to one analysis

at a time), taking care to include analyses that the platforms supported in practice.

ADDITIONAL RESOURCES

d Standard interface for users to work with analyses on NeuroCAAS: www.neurocaas.org.

d Documentation for developer workflow (and CLI usage): https://neurocaas.readthedocs.io/en/latest/develop/installation.html.
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