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Face familiarity detection with complex synapses

Li Ji-An,1,2 Fabio Stefanini,1 Marcus K. Benna,1,3,4,* and Stefano Fusi1,4,5,*

SUMMARY

Synaptic plasticity is a complex phenomenon involving multiple biochemical pro-
cesses that operate on different timescales. Complexity can greatly increase
memory capacity when the variables characterizing the synaptic dynamics have
limited precision, as shown in simple memory retrieval problems involving
random patterns. Here we turn to a real-world problem, face familiarity detec-
tion, and we show that synaptic complexity can be harnessed to store in memory
a large number of faces that can be recognized at a later time. The number of
recognizable faces grows almost linearly with the number of synapses and
quadratically with the number of neurons. Complex synapses outperform simple
ones characterized by a single variable, even when the total number of dynamical
variables is matched. Complex and simple synapses have distinct signatures that
are testable in experiments. Our results indicate that a system with complex syn-
apses can be used in real-world tasks such as face familiarity detection.

INTRODUCTION

Synaptic memory is a complex phenomenon, which involves intricate networks of diverse biochemical pro-

cesses that operate on different timescales. We recently showed that this complexity can be harnessed to

greatly increase the memory capacity1,2 in situations in which the synaptic weights are stored with limited

precision. More specifically, we proposed a complex synaptic model which is characterized bym dynamical

variables. These variables might correspond to different biochemical processes that operate on different

timescales. If the interactions between these processes are properly tuned, the memory capacity of a pop-

ulation of synapses, estimated by an ideal observer who has access to all the synaptic weights, can increase

almost linearly with its size (i.e., the number of synapses Nsyn), even when bothm and the number of states

of each variable grow no faster than logarithmically with Nsyn. This is the optimal scaling under some

conditions (see2) and significantly better than what can be achieved by employing simple synapses charac-

terized by a single variable.3–5

These previous studies on complex synapses focused on the problem of storing a large number of random

and uncorrelated memories. Only recently, complex synapses started to be employed in more realistic

problems (e.g., see6) in which memories are structured and correlated. Here we show that synaptic

complexity can be important also in a real-world problem, face familiarity detection. The task is particularly

difficult because we require that each face is presented only once (one-shot learning) and it has to remain

recognizable for a long time. Moreover, each face is required to be recognizable even when a different

pose is used as a memory cue. This is a typical situation in which a proper pre-processing of the visual stim-

uli combined with the complexity of the synapses can lead to a significant advantage in terms of memory

capacity. The images of the faces that we used in our simulations are pre-processed by a simulated visual

system which has been trained to report the identity of the person portrayed in the image. We then

extracted the principal components (which can also be implemented by a neural network, see e.g.7) and

binarized these representations. The pre-processed representations of different faces are approximately

decorrelated, although a downstream readout can still retain the ability to generalize to different poses

(i.e., different poses of the same face have similar representations). The decorrelation step is important

to make the representations suitable for the memory system that stores the information about face famil-

iarity. Modeling this process of ‘‘recoding’’ is of fundamental importance and it has been the subject of

several studies which started with the work of David Marr in the 70s8 and continued in the 80s and in

the 90s with the first memory models of the hippocampus.9–13 In these models the representations of

memories are first orthogonalized to become more separable and hence facilitate the storage and recon-

struction of memories. This orthogonalization process can be explicitly modeled as a process of
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compression10,14–19, which leads to the most efficient decorrelated representations for memory storage.

Compression is also an important underlying principle of several computational processes.20,21

The pre-processed representations are then stored in a neural circuit that contains the complex synapses

proposed in.2 These are characterized by dynamical variables that operate on multiple timescales. The fast

ones can rapidly store information about a new visual stimulus such as a face, even when the stimulus is

shown only once. This information is then progressively transferred to the slow variables, which can retain

it for a long time. Because of these slow variables, which influence the synaptic efficacy, the older memories

are protected from overwriting due to the storage of new faces. Synapses that are described by a single

dynamical variable can either learn quickly if they are fast, but then they also forget quickly, or they can

retain memories for a long time if they are slow, but then they cannot learn in one shot and require multiple

exposures to the same face. This plasticity-rigidity dilemma concerns a very broad class of realistic synaptic

models whose dynamical variables have a limited precision.3,5,22

Our memory benchmark for the complex synapses, familiarity detection (sometimes called familiarity

discrimination or novelty detection), is an important component of recognition memory, which has been

widely studied in humans and in animals. In particular, familiarity detection refers to the ability to rapidly

memorize new items and report at a later time whether we have encountered them or not. In the case of

faces, we would report that a face of a person is familiar if we experience the sense that we have already

encountered that person in the past. The second component of recognition memory is recollection, which

corresponds to the retrieval of the details of the individual (e.g. the name) and the episodic memories asso-

ciated with that person. We can often experience a sense of familiarity without being able to recollect the

details about an encountered individual. Familiarity detection, which is the focus of this article, has been

studied in the famous and remarkable experiment by Standing,23 in which he showed that it is possible

to recognize a surprisingly large proportion of 10,000 images that are flashed on a screen only once and

for a brief time. The subjects were asked whether they had seen an image or not, which is one way of as-

sessing the familiarity of an image. Although familiarity detection is only one component of recognition

memory, in the article we will use the verb ‘recognize’ to indicate the ability of a subject to report whether

a visual stimulus had already been seen or not. The result of the Standing experiment is even more remark-

able when one considers that more recent studies proved that subjects couldmemorize many details about

each image.24,25

The neural substrate of recognition memory is unknown, although multiple lesion studies indicate that the

hippocampus and perirhinal cortex play an important role.26–28 The role of each area is controversial as for

some investigators both the hippocampus and the perirhinal cortex contribute to recollection (memory

retrieval) and familiarity28,29 and for others the hippocampus supports recollection only, and perirhinal cor-

tex supports familiarity.26,27 One of the problems in the interpretation of these studies is that it is difficult to

separate the contribution that each area gives to familiarity and recollection because when a memory can

be recollected it can always be recognized. Another problem is that the role of these two areas differs de-

pending on the nature of the memories (e.g., recognition of novel faces is intact in patients with lesioned

hippocampus at a short retention interval, instead recognitionmemory for words, buildings, inverted faces,

and famous faces is impaired30), on the length of the retention interval (for intervals of a few minutes or

longer the hippocampus is certainly important for familiarity28,31) and on whether the memory is presented

in a particular context or in isolation (perirhinal cortex is more important for the recognition of items in

isolation whereas the hippocampus is more important when there is a contextual or associational compo-

nent26). In the Discussion we will describe a possible interpretation of our model.

There are several biology-inspired computational models studying different aspects of recognition mem-

ory: some neural network models following the complementary learning systems approach were proposed

to tease apart the hippocampal and neocortical contributions to recognition memory32,33; other models

were concerned with the synaptic plasticity (learning) rules in the perirhinal cortex.34 Finally, there are

models that stress the distinct roles of familiarity and recollection in retrieving memories.35

Analytical estimates of familiarity memory capacity showed that in the case of random uncorrelated pat-

terns, the number of memories that can be correctly recognized as familiar can scale quadratically with

the number of neurons N in a recurrent network.36 Not too surprisingly, this is a much better scaling

than the linear scaling of the Hopfield model,37 in which random memories are actually reconstructed
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(see also the Discussion). The scaling for memory reconstruction is markedly worse and can be as low as
ffiffiffiffi
N

p

when the patterns representing the memories are correlated.34 These computational models can replicate

some interesting aspects of experiments on the capacity of human recognition memory.38

We constructed amodel for recognition memory that incorporates complex synapses characterized by var-

iables that have limited dynamical range (number of distinguishable states). We show that a simple neural

circuit designed to reconstruct the memorized face can take advantage of the complexity of synapses and

can efficiently store a large number of faces. In particular, we show that the number of faces that can be

successfully recognized as familiar scales approximately quadratically with the number of neurons, or lin-

early with the number of synapses. This is the same scaling achieved in36, in which synaptic weights could

be stored with unlimited precision. Moreover, this scaling is similar to the one predicted for random pat-

terns in2, despite the fact that our pre-processing system does not completely decorrelate the patterns that

represent different faces. Importantly, the network can recognize a face even when it is presented in a

different pose, and the scaling is only slightly worse than in the case in which the exact same picture of

the face is presented for familiarity testing. This ability to generalize is a distinctive feature of recognition

memory, it is observed in experiments and it plays an essential role in any machine learning system that

relies on novelty signals to speed up learning.39 We then compared the performance of the recognition

system with complex synapses to one with the same architecture but with simple synapses characterized

by a single dynamical variable. The number of synapses is chosen so that the total number of synaptic vari-

ables would be the same in the two systems and of course the pre-processing system is exactly the same in

the two cases. We show that the system with complex synapses outperforms the one with simple synapses,

indicating that complexity provides the neural system with a clear computational advantage.

RESULTS

Face familiarity detection system

Our face familiarity detection system consists of three modules: an input (embedding) module, a memory

module, and a readout (detection) module (see Figure 1A and model details in ‘‘face familiarity detection

system’’ in STAR Methods and Table 1 summarizing the notations).

The embeddingmodule consists of a deep convolutional neural network (pre-trained on several face tasks),

taking pre-processed face images from VGGFace240 as inputs (see ‘‘face data set’’ in STAR Methods). The

activity of the penultimate layer (adjacent to the classification layer) was extracted, further decorrelated

(principal component analysis), and binarized. The top N ðN% 2048Þ binarized principal components are

taken as the binary face pattern x = ½x1;.; xN�T , serving as the activity of theN input neurons for the mem-

ory module. Despite the similarities between these binary face patterns and random unstructured binary

patterns, we found non-trivial high-order statistics in these face patterns (see STARMethods ‘‘statistical dif-

ferences between binary face patterns and random patterns’’ and Figure S1).

The memory module is the only part of our network containing plastic synapses. The synapses are contin-

uously updated by the ongoing presentation of the face patterns, whereas the weights of the input module

are frozen during online learning. The memory module consists of N memory neurons, one for each input

neuron in the embedding module (see Figure 1B). The j-th input neuron connects to the i-th memory

neuron (for isj) with synaptic weight (efficacy) wij and bias term bi. There is no connection between the

i-th input neuron and the i-th memory neuron for any i (i.e., wii = 0ci). This plastic layer of synapses imple-

ments a simple feedforward memory model that can perform an approximate one-step reconstruction of a

stored input pattern from a noisy cue at test time and we denote the binary memory patterns retrieved (re-

constructed) in this manner as y = ½y1;.; yN�T . Because the i-th memory neuron yi is expected to

reconstruct the i-th input neuron xi, we set the value of the i-th memory neuron to be xi during learning.

The synaptic weights and biases are updated with the Hebbian learning rule with bounded dynamical

ranges. For each synapse (i.e., for each weight w and bias term b), we implemented a complex synaptic

model2 withm discretized dynamical variables u1;.; um in discrete time. Herem denotes the total number

of dynamical variables per synapse (a measure of synaptic complexity), each of which operates on a

different timescale.

The readout (detection) module compares the output x = ½x1;.; xN�T of the embedding module and the

output y = ½y1;.; yN�T of the memory module to assess the level of familiarity of a given pattern.
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To evaluate the memory performance of our familiarity detection system we studied how the number of faces

that can be recognized scales with the number of neurons N. The memory capacity of neural systems always

increases with the size of the network (as the number of neurons increases also the number of synapses

A B

C

D

Figure 1. The architecture of our face familiarity detection system and the task diagram

(A) The neural system contains three modules: the input (embedding) module, the memory module, and the readout (detection) module. The synapses

between the embedding module and the memory module (as well as the biases in the memory module) are plastic, while all other synapses are fixed (after

being either set by hand or pre-trained), which requires online learning of face patterns.

(B) The plastic connections between the input neurons (encoding face patterns) in the embedding module and the memory neurons (encoding memory

patterns) in the memory module.

(C) A series of face images are presented to the neural system. In each familiarity detection (FD) test, the system is required to determinewhether a presented face

is familiar or unseen. A face is considered familiar if the test image is identical to a previously presented one (i.e., the same pose, SP) or a new pose of a previously

presented face (i.e., a different pose, DP), and is considered novel if it is an image of an unseen person’s face. In each two-alternative forced-choice (FC) test, the

neural system is presented with a pair of face images (exactly one familiar and one unseen), and is required to choose which one of the two is familiar.

(D) During learning, face patterns xð ,Þ are stored in the synaptic weights via the desired weight update Dwð ,Þ generated from the Hebbian learning rule.

When we test the face stored at time 0, the pattern x0ð0Þ (either a noisy version of xð0Þ in the DP case or xð0Þ itself in the SP case) is presented to the system at

time t. The ioSignal is the overlap between the synaptic weight wðtÞ at time t and the test weight update Dw 0ð0Þ (even though the synaptic weight is never

actually changed by the test weight update). The rSignal is the overlap between the test face pattern x0ð0Þ and the corresponding memory pattern yðtÞð0Þ
reconstructed using the current synaptic weight wðtÞ.
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increases), but the growth can vary in a wide range, from a very inefficient logarithmic scaling3 with N to a

quadratic dependence. For networks with complex synapses, the memory capacity depends also on the num-

ber of dynamical variables m per synapse (synaptic complexity), and it is important to scale m up when N

increases. If m is fixed, then the memory capacity can increase rapidly with N (e.g. quadratically), but only

to some value determined by m. Beyond that value, the increase is only logarithmic. Fortunately, a modest

increase in m allows us to rapidly (exponentially) increase this critical value. To take advantage of a larger

population of neurons, it is important to increase the longest timescale of the synapses, which is related

to its complexity m. This can be achieved by choosing an m that grows logarithmically with N (such that

m = log2 N � 1, as suggested in2). We present the results of varying m and N separately in Figures S5

and S6.

In the following simulations, all memory metrics, including the signal-to-noise ratio (SNR) and the task per-

formance, are evaluated after the neural system reaches its steady state, i.e., when a large number of face

patterns (with constant input statistics) have already been stored. In the steady state, the distribution of syn-

aptic weights does not change any longer,2 although synapses continue to be updated as new face images

are memorized. The system is then presented with two thousand real face images from different people,

interleaved with the necessary number of non-evaluated synthesized face image patterns (see ‘‘synthesiz-

ing artificial face patterns’’ in STAR Methods). We showed that the effect of interleaving with synthesized

face patterns was indistinguishable from interleaving with real face patterns (see STAR Methods

Table 1. Notations used in the text

Type Notation Explanation Value

Hyperparameter a const. determining overall

timescale of model dynamics

0.25

n0 const. related to the ratio of

timescales of successive variables

2

V maximal value of the discrete

levels of dynamical variables

312

D number of discrete levels of

dynamical variables

32

Nb number of bits of

dynamical variables

5

Model simulation N number of neurons 16 to 2048

m synaptic complexity

(number of dynamical variables)

1 to 10

q synaptic learning rate

(encoding probability)

0.01, 0.128, 1

Model parameter wij synaptic weight –

bi synaptic bias –

Model variable x input pattern –

y memory pattern –

I desirable update imposed

by the input pattern

–

uk dynamical variable –

Memory metric S or S memory signal –

N memory noise –

S=N memory signal-to-noise ratio –

r idealized memory signal –

T longest timescale of the synapse –

t� memory lifetime –

Learning schedule n interval number –

g length of the first interval –
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‘‘interleaving with synthesized and real face patterns’’ and Figure S2). Our memory metrics were evaluated

only over these real face images and further averaged over independent simulations to reduce the noise

floor. We also quantified the variability of our results by first computing the metrics in each independent

sequence and then considering their variations across sequences (see Figure S7).

SNR analysis and memory performance

Tomeasure the strength of amemory we took the perspective of an ideal observer, who has direct access to

all the synaptic weights1,2,22 (see also ‘‘evaluating the memory signal and noise’’ in STAR Methods) and can

compare them to the synaptic modificationsDw induced by the particular memory that we are tracking. The

more similar (correlated) the current weights are to the Dw, the stronger the memory signal. The way this

similarity is computed is illustrated in Figure 1D: say that the memory that we intend to track is memorized

at time 0. At that time a pattern xð0Þ is imposed on the input, determining through a simple Hebbian rule

the Dwð0Þ, which is then used to update the synapses, leading to wð1Þ. Note that Dwð0Þ is only the desired

update as the final new synaptic state will depend on the complex internal dynamics of the synapse (i.e.,

wð1Þ is not necessarily wð0Þ + Dwð0Þ). At a later time, say time t, we can test the memory stored at time

0. As a test face, we considered both faces in the same pose (SP) as those stored in memory and faces

in a different pose (DP) (see Figures 1C and 2). In the first case, we would simply compare wðtÞ to Dwð0Þ.
In the DP case, Dw0ð0Þ is computed from a face pattern x0ð0Þ that is not in the same pose as the memorized

face. The similarity (correlation) between Dw0ð0Þ and wðtÞ is defined as the ideal observer signal (ioSignal).

We computed the average of the signal Sio and the noise N io (SD of the signal) across the full temporal

series of the different faces. The ideal observer signal-to-noise ratio (ioSNR) Sio=N ioðDtÞ is our first measure

of memory strength and it depends on the age of the memory Dt.

We also estimated the ability to reconstruct a memorized face by computing the rSignal, which is the over-

lap between the test face pattern x0ð0Þ and the corresponding memory pattern yðtÞð0Þ (reconstructed from

x0ð0Þ using the current synaptic weightwðtÞ). For t% 0, ioSignal and rSignal are approximately zero because

wðtÞ has not been updated by Dwð0Þ yet. The ioSignal and rSignal will reach their maximum at t = 1, and

gradually decrease as time elapses.

The ioSNR critically depends on the number of memories that are stored after the tracked face pattern, i.e.,

the memory age. Different curves in Figures 2A and 2B correspond to synaptic models with different

numbers of input neurons (and memory neurons) N and dynamical variables m. The curves are plotted

on a log-log scale, for which a straight line represents a power-law dependence.

In the SP case, the ioSNR curves decay as a power-law over a time interval T corresponding to the longest

timescale of the synapse before the decay becomes exponential. The ioSNR decays as slowly as the inverse

A B C

Figure 2. Ideal observer SNR (ioSNR) of the memory module as a function of face memory age and its scaling

properties

(A) Doubly logarithmic plots of ioSNR versus the number of subsequently stored memories. Different curves correspond

to models with a different number N of memory neurons and m of dynamical variables in the same pose (SP) case. The

parameters N and m are varied by increasing N by factors of two and setting m = log2 N � 1.

(B) The same as in the previous panel, but in the different pose (DP) case.

(C) Log-Log plot of the ioSNR memory lifetime versus N in the SP, DP, and random-pattern (RD) cases. The legend

indicates the best fit linear regression slopes (corresponding to the power of base N in the scaling behavior with the

logarithmic correction; data points deviating from the regression line due to saturation were excluded).
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square root of the memory age in the power-law regime. ChangingN shifts the ioSNR curves in the log-log

plot vertically, while increasingm primarily extends the power-law regime (i.e., increases T ; see Figure 2A).

We determined the scaling of the familiarity memory lifetime with N (and m), where the lifetime t�ioSNR is

represented by the memory age at which the ioSNR first drops below a given threshold. A value of 1 cor-

responds to a situation where the signal and the noise are of the same intensity. We chose a threshold of

0.5, though its precise value does not affect the scaling behavior much. We found that the familiarity mem-

ory lifetime scales approximately as N2 (see Figure 2C, in which the linear regression slope on a log-log

scale is about 1.78 for the SP case, compared to 1.79 for random patterns (RD)). This scaling is very close

to the theoretical result for optimal storage of random unstructured patterns.2 Because m increases

together with N (logarithmically), the familiarity memory lifetime scales exponentially with m (with the

same linear regression slope on a log2-linear plot of t
�
ioSNR versus m).

For the DP case (see Figure 2B), the ioSNR curves are lower than those in the SP case, due to the differences

between the memorized and the tested face patterns. When there are more memory neurons, the shape of

its initial decay with memory age becomes flatter. The initial ioSNR increases slowly withN forN< 512, and

then drops a little for largerN, because compared with the earlier features, the later features are much less

correlated between poses of the same person. Nevertheless, the familiarity memory capacity still scales as

a power of N: the regression slope is 1.53 (the model with 2048 neurons is removed from linear regression

due to saturation).

As mentioned above, we also considered another measure of the memory signal that is more directly related

to the ability of the system to reconstruct the storedmemory, the rSignal. We then studied the readout signal-

to-noise ratio (rSNR), defined similarly to the ioSNR (see Figure 3). We found that the rSNR behaves similarly to

the ioSNR at long time lags, but deviates from it for small memory ages, reflecting the effect of the neuronal

nonlinearity (i.e., the nonlinear activation function). This nonlinear effect, which becomes more significant for

larger N or smallerm (see also Figure S8), leads to larger initial rSNR values, but does not substantially affect

the memory lifetime t�rSNR (similarly defined as the memory age at which the rSNR first drops below a given

threshold) compared to the ioSNR measure. The initial SNR enhancement quickly attenuates, leading to a

similar scaling for t�rSNR. These results further validate the ideal observer approach.

Task protocol and performance

To evaluate the task performance of our system, we considered two tests in whichwepresented a series of pre-

processed face images to the neural system and tested its memory on randomly chosen faces (see Figure 1C).

These tasks are made particularly challenging by the fact that the familiar faces are presented only once.

In the first familiarity detection (FD) test, the neural system is required to determine whether the face image

presented at test time is familiar (either SP or DP of a previously presented face image) or unseen (an image

A B C

Figure 3. Readout SNR (rSNR) of the memory module as a function of face memory age and its scaling properties

(A) Doubly logarithmic plots of rSNR versus the number of subsequently stored memories. Different curves correspond to

models with a different number N of memory neurons and m of dynamical variables in the same pose (SP) case. The

parameters N and m are varied by increasing N by factors of two and setting m = log2 N � 1.

(B) The same as in the previous panel, but in the different pose (DP) case.

(C) Log-Log plot of the rSNRmemory lifetime versusN in the SP, DP, and random-pattern (RD) cases. The legend indicates

the best fit linear regression slopes (corresponding to the power of base N in the scaling behavior with the logarithmic

correction; data points deviating from the regression line due to saturation were excluded).
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of an unseen person) by comparing the output of the detection module to a threshold. Here, the face im-

ages presented to the system are balanced, i.e., familiar faces previously presented within a certain age-

range and unseen faces appear at test time with equal probability. The threshold on the overlap did not

depend on the age of face, which is assumed to be unknown at test time, and it was optimized to best sepa-

rate familiar from novel faces for all ages shorter than the memory lifetime t�ioSNR (for details see STAR

Methods ‘‘choosing the optimal threshold in the FD task’’ and Figure S3). Note that t�ioSNR, and hence

the threshold, will depend on the number of neurons and the complexity of the synapses.

We now define t�FD as the age at which the FD test performance drops below some threshold. In Figure 4, we

plot the task performance in the FD test as a function of memory age. In the SP case, increasing N and m

leads to a substantial extension of the task-relevant familiarity memory lifetime t�FD (see Figure 4A). The

memory lifetime was estimated assuming a performance threshold of 60% (this value was chosen to

keep the initial task performance of all the simulations above the threshold). The power-law scaling

behavior of the familiarity memory lifetime is revealed by plotting t�FD versus N on a log-log scale (linear

regression slope 1.78; see Figure 4E), which shows a very similar growth also in the RD case (linear regres-

sion slope 1.85). The initial task performance cannot reach 100% because each model optimized for the

model-specific age-range has a non-zero constant error rate for unseen faces, even if the true positive

rate (accuracy for familiar faces) saturates at 100% (also see Figure S4). As expected, in the DP case the

task performance is worse than in the SP case (see Figure 4C). However, we still found a reasonable po-

wer-law scaling with N (regression slope 1.49).

In the second two-alternative forced-choice (FC) test, the neural system is presented with a pair of face im-

ages containing one familiar (either SP or DP) and one unseen face, and is required to choose which one of

the two is familiar by comparing the output of the detection module for the two faces. The task perfor-

mance is defined as the probability of correctly choosing the familiar face (over the unseen one) for face

A

B

C

D

E

F

Figure 4. Familiarity detection (FD) and two-alternative forced-choice (FC) test performance of our system and

their scaling properties

(A and B) Task performance as a function of the memory age. Different curves correspond to models with a different

number N of memory neurons (and number m of dynamical variables such that m = log2 N � 1) in the same pose (SP)

case.

(C and D) As in the previous panels, but for the different pose (DP) case.

(E and F) FD and FC memory lifetimes versus N in the SP, DP, and random-pattern (RD) cases. The legend indicates the

best fit linear regression slopes (corresponding to the power of base N in the scaling behavior with the logarithmic

correction; data points deviating from the regression line due to saturation were excluded). Also see Figures S3 and S4.
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memories of different ages (see Figures 4B, 4D and 4F). The regression slope of the memory lifetime t�FC
(defined as the age at which the FC test performance drops below some threshold) versus N on a log-

log scale is 1.76 for the SP case and 1.43 for the DP case.

Complex versus simple synapses

To obtain a fair comparison between complex synapses2 and the well-studied, simple (multi-state) synap-

ses,3–5 we evaluated the familiarity memory performance of a neural system with complex synapses and

three models with simple synapses in which we matched the total number of dynamic variables. As the

complex synapse has 10 times more dynamical variables than the simple synapse, we randomly pruned

90% of the complex synapses. In this way each memory neuron in the complex model has on average

204 incoming synapses (randomly sampled 10% from 2047 presynaptic input neurons) and 1 bias

(i.e., 2048 � ð204 + 1Þ � 10 = 4198400 variables in total), whereas in the three simple models each neuron

has 2047 incoming synapses (1 dynamical variable) and 1 bias (i.e., 2048 � 2047 � 1 = 4192256z4198400 var-

iables in total). The simple synapses follow essentially the same model dynamics as the previously studied

hard-bounded multi-state synapses.4 They differ in their level of plasticity: the synapses in the first model

are updated every time an input pattern is stored, while the synapses in the second and third ones are

changed stochastically according to a learning rate (encoding probability q) less than one, and thus are

more ‘‘rigid’’.3,41 Small learning rates lead to lower initial ioSNR values, but also to longer memory lifetimes.

We choose q = 0:128 for the second model so that its initial ioSNR is comparable to the complex synapse

system in the SP and DP cases. For the third model, we picked q = 0:01 to obtain the longest memory life-

times possible for a system of simple synapses of this size, with an initial SNR just above the threshold (in the

DP case).

Each variable in all of these models has the same number of discrete levels, and the total numbers of vari-

ables are approximately matched in the simple and the complex system. These simulations show that the

complex system has a substantially better familiarity memory performance than the simpler systems (see

Figure 5), despite the smaller number of synapses. For the SP and RD cases, the memory lifetime of the sys-

tem with complex synapses is � 400 � 900 times longer; while for the DP case, the improvement factor is

� 20 � 40. Slower simple synapses (with smaller q) can greatly extend the familiarity memory lifetime, but

at the expense of the initial SNR and thus the generalization ability. Even so, they are far frommatching the

memory lifetime of the complex system. This clear advantage is further confirmed by another comparison,

where we matched the number of dynamic variables using a different approach: We considered a larger

network for the simple synapses (see Figure S8). We can conclude that the memory model with complex

synapses performs at least two orders of magnitude better in terms of familiarity memory capacity, and

we expect the gap between simple and complex systems to grow even wider in networks with a larger num-

ber of neurons because of the different scaling behaviors.

Testable predictions for simple and complex synapses

Simple and complex synapses exhibit quantitatively different SNR decays and memory performance. We

now show that it is possible to design an experiment with a specific learning schedule that would reveal

whether the synapses are complex or simple. The main idea is that memories can be repeatedly refreshed

in such a way that the asymptotic minimum memory strength remains constant. Ideally, this could be im-

plemented by monitoring the memory signal of a specific stimulus, and refreshing the memory by present-

ing the same stimulus again as soon as the signal drops below some threshold. Using this procedure, we

obtain a refresh schedule, which can be described by specifying the intervals that separate two consecutive

presentations of the same stimulus. Depending on the synaptic model, the length of these intervals will be

different, and, most importantly, will change over time in a different way.

Figure 5. Complex and simple synapses

Comparison between models with simple synapses (N = 2048, m = 1) and different learning rates (q = 1, 0.128, and 0.01, respectively) and a complex

model (N = 2048,m = 10, q = 1)that has the same total number of memory neurons and plastic variables, by keeping only 10% percent of the synapses of

the fully connected simple models (i.e., 90% of the complex synapses are pruned).

(A–D) Comparisons betweenmodels for the same pose (SP) case in terms of ioSNR, rSNR, familiarity detection (FD) performance, and two-alternative forced-

choice (FC) performance.

(E–H) Similar comparisons between models in the different pose (DP) case.

(I–L) Comparisons between models in terms of different measures of familiarity memory lifetime (t�ioSNR, t
�
rSNR, t

�
FD, and t�FC, respectively) in the SP, DP, and

random-pattern (RD) cases. Also see Figure S8.
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We illustrate this with three idealized models of memory traces through simulations: the exponential

decay model (in which the signal decays as e� t=t , where t is the time constant), the inverse-square-

root ð1 = ffiffi
t

p Þ power-law decay, and the hyperbolic ð1 =tÞ power-law decay (which is achievable by a

heterogeneous population of simple synapses42). See Figures 6A–6C and 6F. We set the threshold to

q = 0:5, but its precise value does not affect the scaling behavior of the intervals. For the idealized expo-

nential decay model, the length of the interval remains constant after the second presentation (the con-

stant interval is t lnð1 + C =qÞ, where C is the initial signal strength and q is the pre-specified threshold).

Of interest, the length of the interval increases asymptotically linearly for the idealized inverse-square-

root decay model (the coefficient of this linear asymptotic growth is p2C2=2q2, see mathematical details

in STAR Methods ‘‘asymptotic behavior of the optimal learning schedules for idealized synaptic models

with specific decay kernels’’). The situation for the hyperbolic decay is intermediate between the expo-

nential and inverse-square-root decay models, showing an approximately logarithmic increase of the

length of the interval.

The idealized exponential decay and inverse-square-root decaymodels represent very different degrees of

synaptic complexity. The memory signal of complex synapses decays as an inverse-square-root power-law

over the longest timescale of the synapse before the decay becomes exponential. Example memory signal

trajectories under the optimal learning schedule for simulated models with different synaptic complexity

are shown in Figures 6D and 6E. The length of the interval is approximately constant for the model with

simple synapses ðm = 1Þ, similar to the idealized exponential decay, but increases linearly for the model

with complex synapses ðm = 8Þ, similar to the idealized inverse-square-root decay. Averaged over multi-

ple such noisy trajectories, the interval curves are plotted on a log-log scale as a function of interval

numbers (see Figure 6G). Increasing the synaptic complexitym effectively extends the linear growth regime

(corresponding to the inverse-square-root power-law decay regime of the ioSNR) and postpones the

gradual transition into the constant interval regime (corresponding to the exponential decay regime of

the ioSNR). The idealized inverse-square-root decay thus approximates the envelope of the interval curves

of models of different synaptic complexity m. We further study the scaling properties of the length of the

interval (Figure S9).

However, it would not be feasible in experiments to monitor the memory signal in real time. Indeed, to

measure the signal we need to expose the subject to thememory we intend to test, and hence we are going

to modify the memory signal we want to estimate. We propose that we can simply use either a constant

interval or a presentation schedule with a linearly increasing one without monitoring the memory signal

(between presentations). Both protocols will be parameterized by a single variable. Under the constant

schedule, a specific memory is refreshed after an interval of a fixed length g, whereas under the linear

schedule, a specificmemory is refreshed after a linearly increasing interval. In particular, the interval is equal

to gn, where n is the interval number, and g is the length of the first interval (see Figures 7A and 7B). These

refreshes serve the dual roles of evaluating familiarity detection performance (e.g., by querying the subject

whether the presented stimulus is familiar) and boosting memory strength (corresponding to the increase

of the signal strength immediately after the refresh). Under the constant learning schedule, the perfor-

mance of the exponential decay model will remain constant, consistent with the conclusion drawn from

the optimal schedule. The inverse-square-root decay and the hyperbolic decay models will exhibit gradu-

ally improving performance. Under the linear learning schedule, the performance of exponential decay and

hyperbolic decay models will quickly drop to chance level, but the inverse-square-root decay model will

maintain its performance, as predicted by the optimal schedule.

Figure 6. The optimal learning schedule, in which the pattern is presented whenever themonitored ioSignal drops below a pre-specified threshold

(0.5 shown)

(A–C) The idealized exponential decay, inverse-square-root decay, hyperbolic decay models of ioSignal under the optimal learning schedule. The ioSignal

decreases over time and is enhanced by pattern presentations indicated by red arrows. The signal strength immediately before each presentation is marked

by orange stars.

(D) A typical noisy ioSignal trajectory from the model with simple synapses (N = 64,m = 1). The length of the interval between consecutive presentations is

approximately constant, similar to the idealized exponential decay.

(E) A typical noisy ioSignal trajectory from themodel with complex synapses (N = 64,m = 8). The length of the interval approximately increases linearly with

interval numbers, similar to the idealized inverse-square-root decay.

(F) The length of the interval as a function of interval numbers for three idealized decay models.

(G) The length of the interval increases as a function of interval numbers under the optimal schedule, averaged over noisy ioSignal trajectories. Different

colored curves correspond to models with a different synaptic complexity m. The shaded region is bounded by interval curves of the idealized exponential

decay and inverse-square-root decay models. Also see Figure S9.
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We define the signal gain for interval number n as the logarithmic ratio of the ioSignal after the n-th interval

(immediately before the ðn + 1Þ-th presentation) relative to the ioSignal after the first interval (immediately

before the second presentation). Positive signal gains correspond to better familiarity detection perfor-

mance, and negative ones indicate worse performance after the following presentations. The three ideal-

ized decay models demonstrate qualitatively different signal gains under the constant and linear schedules

with varying g (see Figure S10), offering testable predictions for experiments.

To better discriminate between complex synapses with a square root decay and simple heterogeneous

synapses with a hyperbolic decay, we introduced a more general learning schedule (see Figure 7C).

Here the length of the interval takes the form of gnb, where n is the interval number, and g is the length

of the first interval. b = 0 corresponds to the constant schedule, and b = 1 to the linear schedule. In the

parameter space spanned by the parameters g and b, as the interval number increases, the positive gain

regime (red) shrinks quickly for any positive b in the idealized exponential decay model. This regime exists

in the inverse-square-root decay model for b> 1 and in the hyperbolic decay model for smaller but positive

b. Differentiating between these two power-law decay models requires the examination of the sign of the

signal gain around b = 1: positive for the inverse-square-root decay and negative for the hyperbolic decay.

This general learning schedule thus provides experimental predictions for behavioral signatures that differ

between the three idealized decay models, and allow us to discriminate between memory networks of

various degrees of complexity.

DISCUSSION

We have presented a modular memory system that can solve a real-world problem such as face familiarity

detection, which involves the ability to store in memory in one shot a large number of visual inputs. Thanks

to the pre-processing and the interactions between fast and slow variables of the complex synaptic model,

the familiarity memory capacity grows almost linearly with the number of plastic synapses or quadratically

with the number of neurons of the memory module. The scaling of the system with simple synapses is only

logarithmic with the number of synapses,3,41 although the memory performance can significantly increase

when the learning rate q becomes small, or when the number of states per variable increases.3,4 However,

even when the parameter q is properly tuned, the linear scaling cannot be achieved with a small number of

states, and the system with complex synapses outperforms the one with simple synapses in all cases, even

when the total number of dynamical variables is the same for the two systems.

The advantage of complex synapses comes from two important properties: the first one is that they involve

multiple timescales, enabling the system to learn quickly using the fast components, and forget slowly due

to the slow components. The second one is that the dynamical components operating on different time-

scales can interact to transfer information from one component to another. In the case of our specificmodel

the information diffuses from the fast components to the slow ones, and back (see2 for more details). These

two properties are important for any memory system that involves a process of consolidation, whether the

process is synaptic or requires communication across multiple brain areas (memory consolidation at the

systems level, see e.g.42).

Our previous work2 systematically studied the scaling properties, the memory capacity, and the robustness

of a broad class of complex synaptic models for random and uncorrelated synaptic modifications. One of

Figure 7. Pre-determined learning schedules

(A) The idealized exponential decay, inverse-square-root decay, hyperbolic decay models of ioSignal under the constant learning schedule, in which the

pattern is presented each time after an interval of a pre-determined constant length. The ioSignal decreases over time and is enhanced by pattern

presentations indicated by red arrows. The signal strength immediately before each presentation is marked by orange stars, reflecting familiarity task

performance. In the following presentations, the task performance of the exponential decay remains constant, while the two power-law decay models’

performance gradually increases.

(B) The idealized exponential decay, inverse-square-root decay, hyperbolic decay models of ioSignal under the linear learning schedule, in which the pattern

is presented each time after an interval of linearly increasing length. In the following presentations, the inverse-square-root decay model maintains its

performance, but the performance of exponential decay and hyperbolic decay models quickly drops to chance level (orange stars not shown due to

extremely low signal strength).

(C) The signal gain as a function of g (length of the first interval) and b (exponent of length increase) for the three idealized decay models under the general

pre-determined learning schedule, where the length of the interval equals gnb (n denotes the interval number, 100 %g% 104 on a log scale, 0% b% 2 on a

linear scale). Red regime is shown for positive gain ð> 0:2Þ, blue for negative gain ð< � 0:2Þ, and gray for marginal gain (between � 0:2 and 0.2). The three

idealized decay models exhibit qualitatively different behaviors. Also see Figure S10.
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the situations in which the synaptic modifications are random and uncorrelated is when the patterns of ac-

tivity that represent the memories are also random and uncorrelated, which is what was assumed in all the

early works on memory capacity (e.g.37). One of the reasons behind this assumption is that it allowed the-

orists to perform analytic calculations. However, it is a reasonable assumption even when more complex

memories are considered. Indeed, storage of new memories is likely to exploit similarities with previously

stored information. Hence, the information contained in a memory is likely to be pre-processed, so that

only those components that are not correlated with previously stored memories are actually stored. In

other words, it is more efficient to store only the information that is not already present in our memory.

As a consequence, it is not unreasonable to consider memories that are unstructured (random) and do

not have any correlations with previously stored information (uncorrelated). Unfortunately, these processes

that lead to uncorrelated representations are rarely modeled explicitly (but see18) and we currently do not

have a general theory for dealing with more realistic, highly structured memories. In our model, the face

stimuli, which are highly structured and correlated, are pre-processed by a simulated visual system, whose

intermediate representations are then used as inputs to our memory module. Though non-trivial higher-or-

der statistics remain in those intermediate representations (see Figure S1), this pre-processing seems to be

sufficient to achieve approximately the same scaling properties predicted for random patterns.

Another important difference between our previous and present work is related to the nature of the mem-

ory problem to be solved. In our previous work, we were dealing either with a classification task with

randomly chosen labels (a typical perceptron problem with only one output unit) or with a reconstruction

memory problem in which a recurrent network would learn to reproduce a previously seen input at the time

of memory retrieval. In this work, we considered familiarity detection, which is a recognition memory

problem. To reconstruct each individual binary feature of a memorized pattern, we would employ N� 1

synapses. Here we have designed a system in which N such output neurons are combined and readout

to report a one-bit response, which is familiarity. We are using all NðN � 1Þ plastic synapses that are

available to output only one bit of information. Hence it is not surprising that in the case of reconstruction

memory, the number of memories that can be retrieved (reconstructed) scales linearly with the number of

neurons N, while in the case of familiarity detection, the memory lifetime scales quadratically with N.

We also studied the generalization performance of the system by considering different poses of presented

faces as retrieval cues (the DP case), using probe patterns that differ from the originally stored ones.

Although the task performance for this DP case is worse than in the SP case, the power-law scaling prop-

erties are similar, and the drop in performance could be compensated by introducing more memory

neurons and possibly increasing the synaptic complexity. The ability to generalize to different poses is pre-

sumably helped by the complexity of the synapses. Indeed, in the case of random patterns, generalization

is related to the memory SNR.2 In future studies, we will determine whether there is a similar relationship

between the SNR and the ability to generalize to different poses.

Biological interpretation

We hypothesize that the embedding module represents the ventral stream of visual cortex, where faces are

clearly represented in dedicated patches, which are present in the inferior temporal cortex43,44 and in the

perirhinal cortex.45 The memory module could be mapped onto the hippocampus, containing synapses

that can be significantly more plastic than in the cortex. These highly plastic components would support

one-shot online learning. This hypothesis would be compatible with the models that see the hippocampus

as a memory device that compresses correlated memories before they are stored.10,17,18 This compression

process is often achieved by modeling the hippocampus as a sparse auto-encoder with one input layer,

containing the representation of the memory to be compressed, an intermediate layer and an output

reconstruction layer. The weights are tuned to reproduce the input in the output layer. The representations

in the intermediate layer are compressed because sparseness is imposed during the learning process.

Comparing the input and the output layer would be equivalent to the comparison we perform in our model

between the representations in the embedding module and the representations in the memory module. In

our model, we did not consider an intermediate layer as the face representations are already approximately

uncorrelated. However, we could easily introduce an intermediate layer to deal with other classes of visual

inputs. The reconstruction layer, and hence the detection module of our model could be in the entorhinal

cortex (EC), taking advantage of the architecture of the hippocampal-cortex loop17 (the hippocampus

projects back to EC, which is also the main input to the hippocampus). Alternatively, it could be that the

reconstruction layer is not explicitly implemented (see e.g.18). In this case the compressed representations
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would emerge in one of the parts of the hippocampus without the need to reconstruct the inputs. It could

be in the dentate gyrus, as hypothesized in18, or in specific parts of the hippocampus that are involved in

social interactions (e.g., CA2 is known to be involved in familiarity detection in mice46). The absence of an

explicit reconstruction layer would require a more complex readout, that probably needs to be trained

because the detection module would have to compare two different representations. This problem could

be solved by adopting a different strategy to detect novelty, as suggested in.47

Perirhinal cortex is bidirectionally connected with EC and hence with the hippocampus. It could certainly

represent familiarity even if we hypothesize that the hippocampus is the main locus of the memory module.

This familiarity signal could then be broadcast to the rest of the cortex and explain why familiarity can be

decoded also in other areas like infero-temporal cortex.48

Biological complexity at the systems level

In this article, we discussed how to take advantage of the biological complexity of individual synapses to

achieve an elevated memory capacity. Complex synapses are characterized by multiple dynamical

variables that operate on different timescales with interactions among them. The same computational prin-

ciples could be applied to memory consolidation mechanisms implemented at the systems level: for

example we could assume that the synapses are simple (e.g. binary) but heterogeneous, each character-

ized by a different learning rate. This is a scenario proposed in42 where not only the synapses had different

time constants, but they could also communicate through replay activity, effectively implementing a mech-

anism of information transfer that is similar to the one that occurs in the complex synapses. In these

scenarios it is possible to obtain a power law decay of the memory SNR, however in the case studied

in42, the slowest decay would scale as 1=t, whereas with the complex synapses of2 we can achieve approx-

imately 1=
ffiffi
t

p
. It is possible to choose a distribution of timescales of simple synapses that allow the SNR to

decay as in the case of complex synapses (see2, supplementary information 9). However, such a distribution

would be strongly skewed toward slow synapses, making the initial SNR very small.

Although we currently do not have an efficient model of heterogeneous simple synapses that has the same

performance as the model with complex synapses that we studied here, we cannot rule out the possibility

that the brain is using both mechanisms of memory consolidation (synaptic and systems level). With the

experiments that we proposed and that are discussed in the next subsection we cannot really separate

the contributions of the two mechanisms.

Predictions for familiarity detection experiments

Using different learning schedules (including the constant, the linear, and a more general learning

schedule), we demonstrate that the exponential decay, the inverse-square-root decay, and the hyperbolic

decay models lead to distinct and testable predictions for the familiarity task performance. This can be

directly tested in human (and animal) experiments. Within a series of images used in such a familiarity

experiment, face images of different identities are ordered so that the same face image is repeatedly

presented and at the same time evaluated (by testing familiarity detection) after an interval of a pre-deter-

mined length following a specific schedule.When designing the experiment, a large g (the first inter-refresh

interval) can lead to almost chance-level initial task performance, and a small one will cause saturated initial

performance. In practice, g should be chosen based on preliminary experiments to find an initial perfor-

mance which is sensitive to manipulation (e.g., 60–90%). A recent study showed that the two-alternative

forced-choice task performance for images (sketches) is around 85% when there are 100 interposed items

between the first presentation and the test (with a speed of 1s for each stimulus and 0.5s for the inter-item

interval).49 We thus take gz100 as an educated guess, which could be even smaller for a shorter stimulus

duration (i.e., less than 1s). For b, the relevant range in which it should vary would be between zero and

one to estimate the complexity of synapses (e.g. by choosing b uniformly for different images in one

experiment). Taking g = 100 and b = 1, the interval lengths would be gnb = 100; 200; 300; 400; 500; 600

for n = 1;.;6. Roughly speaking, within a 1-h experiment containing 2400 interleaved images (about 1s

for each stimulus plus 0.5s for response and inter-item interval, the same speed as in49), we will have test

images refreshed at least six times. Then how the signal gain (and the corresponding probability of suc-

cessful familiarity detection) develops as a function of the interval/presentation number will determine

the temporal decay kernel of the memory signal and therefore it will allow us to infer the complexity of

the memory consolidation process. We expect that biological synapses will behave similarly to the in-

verse-square-root model for a wide range of intervals until they gradually transition into an exponential
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decay. If we could ignore the effects of systems-level consolidation and internal replay, the interval number

at which this transition occurs would provide a measure of the intrinsic complexity of synapses in the

hippocampus.

Limitations of the study

One limitation of our work is the assumption that thememory neurons use exactly the same representations

as the input neurons. In reality, the number of memory neurons is unlikely to be precisely the same as the

number of input pattern dimensions, and they would in general use a different representation of a given

face from the input neurons. The detection module has to essentially compare the reconstructed memory

with the representation of the current cue. This is a computation that can be performed even when the rep-

resentations in the detection module are completely different from those in the input. However, it will

require a smarter readout system that is trained to perform this comparison. Generalizing our system to

include a more biologically plausible mapping between the embedding module and the memory module,

with a corresponding readout mechanism in the detection module, is an important direction for our

future work.

In our hippocampus-like memory module, there is only one feedforward layer that uses dense neural rep-

resentations. However, recurrent neural computations in the hippocampus can be beneficial in some mem-

ory tasks.50,51 In addition, sparse representations of memory patterns have long been known to harbor

computational benefits such as larger memory capacity and the capability to mitigate disruptive effects

of correlations.2,3,52,53 To what extent recurrent connections and sparse coding are beneficial in our neural

system for familiarity detection are questions currently under investigation.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for data should be directed to and will be fulfilled by the lead contact,

Stefano Fusi (sf2237@columbia.edu).

Materials availability

The study did not generate new reagents.

Data and code availability

The publicly available VGGFace2 face data set40 and pre-trained face networks employed in our study can

be found on the following websites: http://www.robots.ox.ac.uk/vgg/data/vgg_face2/, https://github.

com/ox-vgg/vgg_face2 and https://academictorrents.com/details/535113b8395832f09121bc53ac85d7b

c8ef6fa5b.

All code has been deposited and is publicly available on GitHub: https://github.com/jil095/cmplx-syn.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

METHOD DETAILS

Face data set

We used a large-scale face data set called VGGFace2.40 Compared to other public face data sets (such as

Labelled Faces in the Wild data set,54 CelebFaces + data set,55 VGGFace data set,56 MegaFace data set,57

and Ms-Celeb-1M data set58), it contains a relative large number of individuals (3.31 million images of 9131

individuals) and large intra-identity variations in pose, age, illumination and background (362.6 images per

person on average), with available human-verified bounding boxes around faces. For each face image, the

bounding box was then enlarged by 30% to include the whole head, resized such that the shorter side was

256 pixels long, and center-cropped to 2243224 pixels to serve as the input for our neural system described

below.

Face familiarity detection system

We provide Table 1 summarizing the notations used in the text.

Input (embedding) module

The embedding module consists of a deep convolutional neural network (SE-ResNet-50, SENet for short),

which is a ResNet architecture integrated with Squeeze-and-Excitation (SE) blocks adaptively recalibrating

channel-wise feature responses.59 Such networks for face recognition with different architectures and

different training protocols are publicly available online.40 We used one specific version of SENet, which

is pre-trained on the MS-Celeb-1M data set58 and then fine-tuned on the VGGFace2 data set. This version

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Vggface2 Cao et al.40 https://academictorrents.com/details/

535113b8395832f09121bc53ac85d7bc8ef6fa5b

Software and algorithms

Python Open source www.python.org

SE-ResNet-50 Cao et al.40 https://github.com/ox-vgg/vgg_face2

Deposited code This study https://github.com/jil095/cmplx-syn
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was reported to have the best generalization power on face verification and identification among architec-

tures (e.g., SENet and ResNet-50) and training protocols (e.g., training on different data sets with or without

fine-tuning) tested.40

The 2048 dimensional activity of the penultimate layer was extracted as the face feature vector for each face

image input. Because the face feature vectors are sparse and non-negative, we took the following steps to

transform them into a format that’s suitable as the input to thememory module: (i) the dimensionality of the

feature vector of each face was first reduced using principal component analysis (PCA); (ii) each dimension

was then binarized with a threshold equal to the median (�1 for values less than the median and +1 for

values larger than the median). The first N binarized principal components were taken as the binary face

pattern x = ½x1;.; xN�T , serving as the activity of the N input neurons of the memory module.

Memory module

The memory module consists of Nmemory neurons, one for each input neuron of the embedding module.

The j-th input neuron connects to the i-th memory neuron (for isj) with synaptic weight (efficacy) wij and

bias term bi. There is no connection between the i-th input neuron and the i-th memory neuron for any i

(i.e., wii = 0ci). The activity of the i-th memory neuron is

yi = sign

 
bi +

X
jsi

wijxj

!
; (Equation 1)

and we denote the binary memory patterns retrieved in this manner as y = ½y1;.; yN�T . This plastic layer of
synapses implements a simple feedforward memory model that can perform an approximate one-step recon-

struction of a stored input pattern from a noisy cue at test time. Because the i-thmemory neuron yi is expected

to reconstruct the i-th input neuron xi, we set the value of the i-th memory neuron to be xi during learning.

To update the synaptic weights and biases we used the learning rule:

Dwij = xixj; (Equation 2)

Dbi = xi: (Equation 3)

These equations describe the desirable plasticity steps to store each new pattern. However, simply

applying these additive updates would eventually result in unbounded values of the wij. Therefore, we em-

ployed a mechanism to limit the weights to bounded dynamical ranges. For each synapse (i.e., for each

weight w and bias term b), we implemented a complex synaptic model2 with m dynamical variables

u1;.; um in discrete time. Herem denotes the total number of variables per synapse (a measure of synaptic

complexity), each of which operates on a different timescale. Specifically, at each time step t the dynamical

variables uk (for 2% k%m) are updated as follows (the indices i and j labeling the synapses are omitted for

simplicity)

ukðt + 1Þ = ukðtÞ + n� 2k + 2
0 aðuk� 1ðtÞ � ukðtÞÞ � n� 2k + 1

0 aðukðtÞ � uk + 1ðtÞÞ: (Equation 4)

For k = m, the last variable uk + 1 is simply set to zero in this update equation, and for k = 1 we have

u1ðt + 1Þ = u1ðtÞ + IðtÞ � n� 1
0 aðu1ðtÞ � u2ðtÞÞ: (Equation 5)

Here IðtÞ is the desirable update (Dw or Db) imposed by the pattern xðtÞ, which takes a value + 1 or� 1 and

is computed from Equations 2 or 3. The first variable u1 is used as the actual value of the synaptic weight w

or bias b at test time. The parameters a and n0 determine the overall timescale of the model dynamics and

the ratio of timescales of successive synaptic variables (we set a = 0:25 and n0 = 2 in our models; see2 for

additional details).

To study the situation in which variables can only be stored with limited precision, we discretized them syn-

aptic variables and truncated their dynamical range to a maximum and minimum value. Hence, each

variable can take one of only a finite number of integer-spaced values arranged symmetrically around

zero, namely f� V ; � V + 1;.;V � 1;Vg, where in our simulations we chose V = 31=2, corresponding

to 32 levels (5 bits). At every time step, if the ukðt + 1Þ computed according to Equations 4 and 5 falls be-

tween two adjacent levels, its new value is set to one of those two levels, based on the result of a biased coin

flip with an odds ratio equal to the inverse ratio of the distances from ukðt + 1Þ to the two levels.
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In the comparison between models with simple synapses and complex synapses, we further considered

different learning rates q for the plastic synapses. Each synapse in the model is updated independently.

A synapse ðwijÞ is updated with probability q every time an input pattern is stored ðDwijÞ. With probability

1 � q, the weight update Dwij is rejected and wij remains unchanged. Synapses with smaller learning rate

are considered more ‘‘rigid’’.3,41

Readout (detection) module

The readout (detection) module compares the output x = ½x1;.; xN�T of the embedding module and the

output y = ½y1;.; yN�T of the memory module to assess the level of familiarity of a given pattern. This mod-

ule computes the Hamming distance between x and y, and outputs ‘‘familiar’’ (or ‘‘unseen’’/‘‘unfamiliar’’/

‘‘novel’’) if the distance is smaller (or larger) than some pre-set threshold. This approach is similar to the

one proposed in.36

Synthesizing artificial face patterns

The VGGFace2 data set only contains faces from 9131 different people. To facilitate the evaluation of the

memory performance of our system over multiple time scales, a larger number of independent non-eval-

uated patterns are required to be stored in between the face patterns whose memory signals are being

tracked. Thus, we synthesized artificial face patterns matching the first and second moments of real face

patterns. First, we extracted the mean values and the diagonal covariance matrix of the face feature vectors

after PCA to get an estimate of the distribution of patterns generated by the faces of all the people in the

data set. We then synthesized artificial face patterns by passing new samples from the correspondingmulti-

variate normal distribution through the binarization step. Mathematically, this process is equivalent to

generating unstructured, random, binary patterns. These artificial patterns were presented to the neural

system to be memorized at time steps in between the storage of the real face patterns, but were not

used to evaluate the memory performance.

Interleaving with synthesized and real face patterns

For all simulations in the main text, we stored synthesized face patterns (equivalent to unstructured,

random, binary patterns) at time steps in between the storage of the real face patterns. Therefore, most

of the patterns before and after one arbitrary stored real face pattern are synthesized face patterns.

Here we compared the case of interleaving with synthesized patterns and the case of interleaving with

real face patterns (different poses of face images from other non-evaluated people) for a system with

N = 128 and m = 6. We found that the two cases are almost indistinguishable (see Figure S2). This indicates

that our main simulations are unaffected no matter whether we are using synthesized patterns or real face

patterns for the interleaving purpose.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical differences between binary face patterns and random patterns

After dimensionality reduction and binarization in the preprocessing for face image inputs, the face pat-

terns become binary, similar to random unstructured binary patterns sampled from independent and iden-

tically distributed Bernoulli variables. Here we show that there are higher-order non-trivial statistics in the

face patterns, by comparing the pattern correlation matrices and the feature correlation matrices between

the face and the random data sets.

To generate the data sets we are comparing here, the outputs of the convolutional neural network’s penul-

timate layer are extracted, consisting of 431050 samples (8621 people, each with 50 poses) with 2048 fea-

tures. Features are centered first and then fed into principal component (PC) analysis. The covariance ma-

trix of these 2048 PC features has decreasing diagonal variance and zero off-diagonal covariance.

Taking onepose fromeach person, we thenbinarized these PC features andobtain the face data set (M = 8621

binary patterns, each with 2048 features). In the random data set, the 8621 random patterns (with 2048 binary

features) are directly sampled from a multivariate Gaussian distribution (with zero mean and diagonal covari-

ance matrix derived from the above face PC features) and then binarized. We ran the above process with ten

random seeds (sampling new poses or new random patterns).
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For the top N features ðN % 2048Þ in the face and the random data sets, we then computed the pattern

correlation matrix (M3 M; each element representing the correlation between two patterns of N dimen-

sions) and the feature correlation matrix (N3 N; each element representing the correlation between two

features of M dimensions). The variance, skewness, and kurtosis of these off-diagonal elements in

the pattern correlation and the feature correlation matrices are shown in Figure S1. For the off-diagonal

elements in the pattern correlationmatrix, the face data set and the randomdata set have indistinguishable

variance, but different skewness and kurtosis. For the off-diagonal elements in the feature correlation ma-

trix, the face data set also has different profiles in variance, skewness, and kurtosis from the random data

set. These differences indicate that the face patterns are substantially statistically different from the

random patterns also studied in the main text.

Evaluating the memory signal and noise

The ideal observer signal Sio and noise N io are computed as follows.

For a given face memory, the signal at time t of the input pattern xðt0Þ stored at an earlier time t0 is defined
as the overlap (inner product) between the synaptic modification Dwijðt0Þ imposed at storage and the cur-

rent ensemble of synaptic weights wijðtÞ:

Sioðt � t0Þ =
1

NðN � 1Þ
XN
i = 1

XN
j = 1;jsi

Dwijðt 0ÞwijðtÞ: (Equation 6)

We can then compute the average (denoted by CD) over all memories with an age ofDt = t � t0 to obtain the

expected signal

SioðDtÞ = CSioðDtÞD; (Equation 7)

and the corresponding noise term

N 2
ioðDtÞ = CðSioðDtÞ � CSioðDtÞDÞ2D: (Equation 8)

Similarly to the ioSNR, the readout signal Sr is defined as the overlap between an input pattern xðt0Þ (stored
at time t0) and the retrieved memory pattern yðt; t0Þ, the output of the memory module when the same

pattern is presented again at time t without updating the synaptic weights. We have

Srðt � t 0Þ =
1

N

XN
i = 1

xiðt 0Þyiðt; t 0Þ: (Equation 9)

As above, we can compute the expected signal Sr and noiseN r by averaging over memories of a given age,

and obtain the readout signal-to-noise ratio (rSNR) Sr=N rðDtÞ.

Choosing the optimal threshold in the FD task

As new patterns are presented to our proposed memory system, the familiarity of any old patterns de-

creases with time, and therefore the distribution of the readout signal for familiar patterns approaches

the one of the unseen patterns (see Figure S3A). In Figure S3B, we plot the classification accuracy of the

detection module as a function of elapsed time (relative to the presentation of the face pattern) with

different signal thresholds. Smaller thresholds result in higher error rates for unseen faces, but have a better

performance for familiar faces. To provide an operational definition of familiarity for the detection module,

we study the overall performance (the average of classification accuracy over the whole age-range) as a

function of the signal threshold and age-range (see Figure S3C). We include an equal number of familiar

and unfamiliar faces in these test sets, and weight false positive and false negative errors equally. For

longer age-ranges, the optimal threshold gradually decreases, since the familiar faces become indistin-

guishable from unseen faces, although choosing the right age-range ultimately depends on the applica-

tion and on the longest timescale of the synaptic model employed in the memory system.

For the evaluations in the main text, the threshold of each model is first optimized on a balanced test set with

familiar faces within the model-specific age-range (we choose t�ioSNR ), and then evaluated over longer time

scales. Since the distribution of the readout signal for unseen faces does not change over time, the detection

module with the fixed threshold detects unseen faces with constant error rate (1 - true negative rate) (see Fig-

ure S4B), while it recognizes familiar faces (true positive rate) better for more recent than for older ones (see

Figure S4A). The FD classification performance is the average of the true positive and true negative rates.
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Advanced learning schedules and idealized decay models

In addition to the simple schedule described above in which each face is stored only once, we further consider

two types of advanced learning schedules (namely optimal and pre-determined learning schedules), where

the same image pattern can be presented more than once and is evaluated during each presentation.

Under the optimal learning schedules, the ideal observer signal (ioSignal) of a specific pattern is constantly

monitored after its initial presentation. Every time its ioSignal drops below the pre-specified threshold, the

same pattern is presented again (refreshed) to boost its memory strength. The length of the n-th interval

between the n-th and ðn + 1Þ-th presentations will vary with the interval number n. Even though moni-

toring the memory signal in real time (without modifying it) is not feasible in experiments, we will show

that this theoretical analysis of the length of the n-th interval reveals major differences between synaptic

models with different complexity, which have measurable consequences.

Motivated by theoretical results on optimal learning schedules, we also propose pre-determined learning

schedules, under which the length of the interval between each two consecutive presentations takes the

form of gnb, where n is the interval number, g is the length of the first interval (between the first and the

second presentations), and b is the exponent. When b takes value 0 or 1, this schedule degenerates into

constant or linear schedules, in which a specific pattern is presented again (refreshed) after an interval of

a constant length or after an interval of a linearly increasing length.

To facilitate the study of the behavior of our simulatedmodels with simple and complex synapses under these

schedules, we introduced three idealized decay models in which the memory signal decays with a pre-spec-

ified profile: exponential, inverse-square-root power-law, and hyperbolic power-law. This allows us to quickly

run many numerical experiments with different learning schedules, since we do not have to simulate the inter-

nal dynamics of the complex synapses, which is inherently stochastic and would require averaging over many

realizations to obtain an estimate of the expected behavior (which is instead represented directly by the spec-

ified decay function). These idealized models will allow us to demonstrate that pre-determined learning

schedules can be used in experiments to discriminate different decay profiles, which are related to the

complexity of a memory system, without the need to access its internal constituents.

Free parameters in the idealized decay models were chosen tomatch the behavior of the simulatedmodels

with simple or complex synapses:

(1) The exponential decay model, with memory signal rðtÞ = Cexpe
� t=texp , where Cexp = 1 is the initial

memory strength and texp = 7:486 is the time constant, fit to the signal strength of simulatedmodels

with simple synapses ðm = 1Þ.
(2) The inverse-square-root power-law decay model, with rðtÞ = Cisr=

ffiffiffiffiffiffiffiffiffiffiffi
t + 1

p
, where Cisr = 1:316 is the

initial memory strength in order to fit the power-law decay regime of signal strength of models with

complex synapses ðm = 8Þ.
(3) The hyperbolic power-law decay model, with rðtÞ = Chyp=ðt + 1Þ, where Chyp is equal to Cisr.

Asymptotic behavior of the optimal learning schedules for idealized synaptic models with

specific decay kernels

Here we derive the constant length of the interval between successive presentations of the same pattern for

a simple synaptic model with an exponential decay and the asymptotically linear increase of the length of

the interval for the inverse-square-root decay model.

Let rðt; tnÞ = rðt � tnÞ denote the decay kernel of the memory signal of a synaptic model at time t for a

pattern presented at time tn (the n-th presentation, tR tn). If q is the threshold on this memory signal

(such that when the signal has dropped to this level the same pattern will be presented again), we have

the following system of equations:8>><
>>:

rðt2; t1Þ = q

rðt3; t2Þ + rðt3; t1Þ = q

.
rðtn; tn� 1Þ + rðtn; tn� 2Þ + / + rðtn; t1Þ = q:

(Equation 10)
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Let the n-th interval be tn : = tn + 1 � tn. Then we have:8>><
>>:

rðt1Þ = q

rðt2Þ + rðt2 + t1Þ = q

.
rðtnÞ + rðtn + tn� 1Þ + / + rðtn + tn� 1 + / + t1Þ = q:

(Equation 11)

For the exponential decay with rðtÞ = C expð� t =t0Þ, we can solve these equations from t1 to tn sequen-

tially and obtain the intervals for the exponential decay:�
tn = t0 lnðC=qÞ;n = 1
tn = t0 lnð1 + C=qÞ;n>1:

(Equation 12)

For the inverse-square-root decay with rðtÞ = C=
ffiffiffiffiffiffiffiffiffiffiffi
t + 1

p
, we have:

1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tn + 1
p

+ 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tn + tn� 1 + 1
p

+ / + 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tn + tn� 1 + / + t1 + 1
p

= q
.
C; (Equation 13)

which can be well approximated by the following integral equation when n is large enough:

q =C =

Z n

0

� Z n

n� t

tðxÞdx
�� 1=2

dt: (Equation 14)

Taking the derivative of both sides with respect to n, we have:

0=

� Z n

n� t

tðxÞdx
�� 1=2

t = n

+

Z n

0

d

dn

� Z n

n� t

tðxÞdx
�� 1=2

dt

=

� Z n

0

tðxÞdx
�� 1=2

� 1

2

Z n

0

tðnÞ � tðn � tÞ� Z n

n� t

tðxÞdx
�3=2 dt: (Equation 15)

It can be verified that tðnÞ = Mn is the solution of the above equation (where M is a constant), and thus we

proved the asymptotic linearity for the inverse-square-root decay.

To calculate the asymptotic linear coefficientM, we insert tn = Mn into Equation 13 (and ignore + 1 under

each square root when n is large enough),

1
. ffiffiffi

n
p

+ 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n + n � 1
p

+ / + 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n + n � 1 + / + 1
p

=
ffiffiffiffiffi
M

p
q
.
C: (Equation 16)

We call the left side An and let n go to infinity. In this limit we have

M = ðANC=qÞ2: (Equation 17)

Finally, we calculate AN as follows:

AN = lim
n/N

ffiffiffi
2

p Xn� 1

x = 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2n � xÞðx + 1Þp
x lim

n/N

ffiffiffi
2

p Z n� 1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n + ð2n � 1Þx � x2

q dx

= lim
n/N

�
ffiffiffi
2

p
arcsin

� 2x + 2n � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n + ð2n � 1Þ2

q
�������
n� 1

x = 0

=
pffiffiffi
2

p :

(Equation 18)
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