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SUMMARY

Many studies have shown that the excitation and inhibition received by cortical neurons remain roughly
balanced across many conditions. A key question for understanding the dynamical regime of cortex is the
nature of this balancing. Theorists have shown that network dynamics can yield systematic cancellation of
most of a neuron’s excitatory input by inhibition. We review a wide range of evidence pointing to this cancel-
lation occurring in a regime in which the balance is loose, meaning that the net input remaining after cancel-
lation of excitation and inhibition is comparable in size with the factors that cancel, rather than tight, meaning
that the net input is very small relative to the canceling factors. This choice of regime has important implica-
tions for cortical functional responses, as we describe: loose balance, but not tight balance, can yield many
nonlinear population behaviors seen in sensory cortical neurons, allow the presence of correlated variability,
and yield decrease of that variability with increasing external stimulus drive as observed across multiple

cortical areas.

INTRODUCTION

In what regime does cerebral cortex operate? This is a funda-
mental question for understanding cerebral cortical function.
The concept of a “regime” can be defined in various ways.
Here we will focus on a definition in terms of the balance of exci-
tation and inhibition: how strong are the excitation and inhibition
that cortical cells receive, and how tight is the balance between
them? As we will see, the answers to these questions have
important implications for the dynamical function of cortex.

We first consider several more fundamental distinctions in
cortical regime. First, neurons may fire in a regular or irregular
fashion, where regular firing refers to emitting spikes in a more
clock-like manner, while irregular firing refers to emitting spikes
in a more random manner, like a Poisson process. Cortex ap-
pears to be in an irregular regime (Softky and Koch, 1993; Shad-
len and Newsome, 1998), though some areas are less irregular
than others (Maimon and Assad, 2009). Second, neurons may
fire in a synchronous regime, meaning with strong correlations
between the firing of different neurons, or an asynchronous
regime, meaning with weak (or no) correlations. Here there is
varying evidence, which appears to depend on species, cortical
area, and brain state. In the asleep or anesthetized condition,
slow synchronous fluctuations are the norm (e.g., Stevens and
Zador, 1998; Lampl et al., 1999; DeWeese and Zador, 2006;
Ecker et al., 2014), with correlations decreased by stimulus drive
(Churchland et al., 2010; Smith and Kohn, 2008). In the awake
state, both asynchronous (Cohen and Kohn, 2011; Ecker et al.,
2010, 2014; Doiron et al., 2016; Poulet and Petersen, 2008;
Tan et al., 2014) and synchronous (DeWeese and Zador, 2006;
Poulet and Petersen, 2008; Tan et al., 2014) firing regimes

have been observed, with correlations decreased by stimulus
drive (Churchland et al., 2010; Tan et al., 2014), arousal (including
whisking and locomotion; Poulet and Petersen, 2008; McGinley
etal., 2015; Vinck et al., 2015; McCormick et al., 2015; Ferguson
and Cardin, 2020), or attention (Cohen and Maunsell, 2009;
Mitchell et al., 2009; Engel et al., 2016; Denfield et al., 2018). In
our initial discussion, we will take cortex to be in an asynchro-
nous regime, as in much previous theoretical work and as seems
to generally characterize the awake and stimulated or active
state (but see DeWeese and Zador, 2006). Later we will consider
mechanisms that suppress correlations with increasing drive.
Brunel (2000) first defined conditions on networks of excitatory
and inhibitory neurons that led them to operate in asynchronous
or synchronous and irregular or regular regimes.

A third distinction is whether a network goes to a stable fixed
rate of firing for a fixed input (with noisy fluctuations about that
fixed rate given noisy inputs) or whether it shows more complex
behaviors, such as movement between multiple fixed points, os-
cillations, or chaotic wandering of firing rates. We will focus on
the case of a single stable fixed point, which seems likely to
reasonably approximate at least awake sensory cortex (see dis-
cussion in Miller, 2016).

Finally, for a given fixed point, recurrent excitation may be
strong enough to destabilize the fixed point in the absence of
feedback inhibition. That is, if inhibitory firing were held frozen
at its fixed-point level, a small perturbation of excitatory firing
rates would cause them to either grow very large or collapse to
zero. In that case, the fixed point is stabilized by feedback inhi-
bition, and the network is known as an inhibition-stabilized
network (ISN). Alternatively, the recurrent excitation may be
weak enough to remain stable even without feedback inhibition.
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A number of studies have found strong evidence that multiple
cortical areas operate as ISNs, including primary visual, somato-
sensory, and motor/premotor cortices at spontaneous (Sanzeni
et al., 2020a) and primary visual and auditory cortex at stimulus-
driven (Adesnik, 2017; Kato et al., 2017; Ozeki et al., 2009) levels
of activity.

Note that for some of the distinctions we describe between re-
gimes, there is a sharp transition from one regime to the other,
while for others the transition is gradual. We use the word
“regime” in either case to describe qualitatively different network
behaviors.

The assumption that cortex is in an irregularly firing regime (as
well as its operation as an ISN) strongly points to the need for
some kind of balance between excitation and inhibition. Stochas-
ticity of cellular and synaptic mechanisms (Mainen and Sejnowski,
1995; O’Donnell and van Rossum, 2014; Schneidman et al., 1998)
and input correlations (DeWeese and Zador, 2006; Stevens and
Zador, 1998) may contribute to irregular firing. However, a number
of authors have argued that, assuming inputs are un- or weakly
correlated, thenirregular firing will arise if the mean input to cortical
cells is sub- or peri-threshold, so that firing is induced by fluctua-
tions from the mean rather than by the mean itself (Amit and Bru-
nel, 1997; Troyer and Miller, 1997; Tsodyks and Sejnowski, 1995;
van Vreeswijk and Sompolinsky, 1996, 1998). This is referred to as
the fluctuation-driven regime, as opposed to the mean-driven
regime, in which the mean input is strongly suprathreshold and
spiking is driven largely by integration of this mean input. The fluc-
tuation-driven regime yields random, Poisson-process-like firing,
because fluctuations are equally likely to occur at any time,
whereas the mean-driven regime yields regular firing.

Given the strength of inputs to cortex (to be discussed below),
the mean excitation received by a strongly responding cell is likely
to be sufficient to drive the cell near or above threshold. Therefore,
for the mean input to be subthreshold, the mean inhibition is likely
to cancel a significant portion of the mean excitation; that is, the
excitation and inhibition received by a cortical cell should be at
least roughly balanced (Tsodyks and Sejnowski, 1995; van Vrees-
wijk and Sompolinsky, 1996, 1998). Consistent with the idea that
inhibition balances excitation, many experimental investigations
have suggested that cortical or hippocampal excitation and inhibi-
tion remain balanced or inhibition dominated across varying activ-
ity levels (Anderson et al., 2000; Antoine et al., 2019; Atallah and
Scanziani, 2009; Barral and Reyes, 2016; Bridi et al., 2020; Deh-
ghani et al., 2016; Dorrn et al.,, 2010; Galarreta and Hestrin,
1998; Graupner and Reyes, 2013; Haider et al., 2006, 2013; Higley
and Contreras, 2006; Marifo et al., 2005; Moore et al., 2018; Okun
and Lampl, 2008; Shu et al., 2003; Sukenik et al., 2021; Tan and
Wehr, 2009; Wehr and Zador, 2003;Wu et al., 2008, 2006; Yizhar
etal., 2011; Zhou et al., 2014).

Excitation and inhibition may be balanced in at least two ways.
First, inhibitory and excitatory synaptic weights may be co-
tuned, so that cells (Bhatia et al., 2019; Xue et al., 2014) and/or
dendritic segments (lascone et al., 2020; Liu, 2004) that receive
more (or less) excitatory weight receive correspondingly more (or
less) inhibitory weight. Plasticity rules have been identified that
may help achieve such a balance (Chiu et al., 2019, 2018; Field
et al.,, 2020; Froemke, 2015; Hennequin et al., 2017; Joseph
and Turrigiano, 2017). However, this does not ensure balancing
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of excitation and inhibition received across varying patterns of
activity. Second, given sufficiently strong feedback inhibitory
weights, the network dynamics may ensure that the mean inhibi-
tion and mean excitation received by neurons remain balanced
across patterns of activity, without requiring tuning of synaptic
weights. Here, we will focus on this second, dynamic form of
balancing.

As we will discuss, theorists have described mechanisms for
such dynamic balancing of excitation and inhibition, keeping neu-
rons in the fluctuation-driven regime, without any need for fine-
tuning of parameters such as synaptic weights. This dynamical
balance can be a “tight balance,” which we define to mean that
the excitation and inhibition that cancel are much larger than the
residual input that remains after cancellation, or a “loose balance,”
meaning that the canceling inputs are comparable in size with the
remaining residual input (terms to describe balanced networks are
not yet standardized; see Box 1 for acomparison of our usage with
other nomenclatures). An example of a tightly balanced network is
shown in Figure 1. The question of whether the balance is tight or
loose has important implications for the behavior of the network.
Here we will review these issues and argue that the evidence is
most consistent with a loosely balanced regime.

A THEORETICAL PROBLEM: HOW TO ACHIEVE INPUT
MEAN AND FLUCTUATIONS THAT ARE BOTH
COMPARABLE IN SIZE WITH THRESHOLD?

How do cortical neurons stay in the irregularly firing regime?
There are two requirements to be in the fluctuation-driven
regime, which yields irregular firing: (1) the mean input the neu-
rons receive must be sub- or peri-threshold, and (2) input fluctu-
ations must be sufficiently large to bring neuronal voltages to
spiking threshold sufficiently often to create reasonable firing
rates. We will measure the voltage effects of a neuron’s inputs
in units of the voltage distance from the neuron’s rest to
threshold; this distance, typically about 20 mV for a cortical
cell (e.g., Figure 3K in Constantinople and Bruno, 2013), is equal
to 1 in these units. Thus, a necessary condition for being in the
irregularly firing regime is that the voltage mean driven by the
mean input (henceforth abbreviated to “the mean input”) should
have order of magnitude 1, which we write as O(1), or smaller.
The second requirement above then dictates that the voltage
fluctuations driven by the input fluctuations from the mean
(henceforth abbreviated to “input fluctuations”) should also be
O(1). In particular, this means that the ratio of the mean input
to the input fluctuations should be O(1). (Note that we use the
O() notation simply to indicate order of magnitude, and not in
its more technical, asymptotic sense of the scaling with some
parameter as that parameter goes to zero or infinity.)

Several authors have considered the requirements for these
conditions to be true (Renart et al., 2010; Tsodyks and Sejnow-
ski, 1995; van Vreeswijk and Sompolinsky, 1996, 1998).
Following these authors, we assume the network is composed
of excitatory (E) and inhibitory (/) neuron populations, which
receive excitatory inputs from an external (X) population. The
latter could represent any cortical or subcortical neurons outside
the local cortical network, for example, the thalamic input to an
area of primary sensory cortex. As a simplified toy model of
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the assumption that the network is in the asynchronous irregular
regime, we assume that the cortical cells fire as Poisson pro-
cesses without any correlations between them, as do the cells
in the external population.

Suppose that a neuron receives Kg excitatory inputs. Suppose
these inputs produce excitatory postsynaptic potentials (EPSPs)
that have an exponential time course, with mean amplitude Jg
and time constant 7g, and have mean rate rg (Figure 1A). Then
the mean depolarization produced by these excitatory inputs is
JeKereTe. Defining ng =re7e to be the mean number of spikes
of an input in time 7g, we find that the mean excitatory input to
the neuron is

g = JeKene. (Equation 1)
Let g denote the standard deviation (SD) of fluctuations in this
input. Assuming the spike counts of presynaptic neurons are un-
correlated, their spike count variances just add. Because they
are firing as Poisson processes, the variance in a neuron’s spike
count in time ¢ is equal to its mean spike count ng. Thus, the
variance of input from one presynaptic neuron is JEnE, and so
the variance in the total input is KEJEnE and

O = JE\/ KEnE.

Therefore, the ratio of the mean to the SD of the neuron’s excit-
atory input is

(Equation 2)

Be _ v/ Keng,

43

(Equation 3)

independent of Je. Similar reasoning about the neuron’s inhibitory
or external input leads to all the same expressions, except with E
subscripts replaced with / or X subscripts to represent quantities
describing the inhibitory or external input the cell receives.
Again, assuming that the different populations are uncorre-
lated so that their contributed variances add, the total or net
input the neuron receives has mean, u, and SD, ¢, given by

b= ME+ R — W (Equation 4)

= o242 452
0 =1/0g+ox+or.

We imagine that Kg and K, are the same order of magnitude,
O(K) for some number K, and similarly ng and n, are O(n) for
some number n. We also assume uy and ox are the same order
of magnitude as ug or w; and og or g, respectively, or smaller.
Then, if vKn is O(1), both u and ¢ can simultaneously be
made O(1) with suitable choice of the J’s (barring special cases
in which the elements of u precisely cancel). This means that the
irregularly firing regime is self-consistent: having assumed that
neurons are in the irregularly firing regime, we arrive at expres-
sions for the mean and SD of their input that indeed can keep
the network in this regime.

If K is very large, however—Ilarge enough that v'Kn>>1—then
the ratio of the mean to the SD of each type of input, and hence
ofthe netinput, ismuch greater than 1. Many authors have ignored
the role of n, assuming K is large enough that Kn is large. In

(Equation 5)
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describing such work, we will refer simply to K rather than Kn.
Van Vreeswijk and Sompolinsky (1996, 1998) considered the
case of such very large K and showed how the network could
remain in the asynchronous irregular regime. They proposed
choosing the J’s proportional to 1/v/K, so that the SDs o¢ and o,
are O(1) (Equation 2), but then by Equation 3 the means ug and
w are large, O(vK). Then, for the neurons to be in the asynchro-
nous irregular regime, inhibitory input, —u;, must cancel or “bal-
ance” a sufficient portion of the excitatory input, ug + uy, so that
the mean input, u, is O(1).

If a neuron’s mean excitatory and inhibitory inputs very pre-
cisely cancel each other, so that the mean net input u is much
smaller than either of these factors alone, we say that there is
“tight balance.” If the net input is more comparable in size with
the factors that are canceling, we call this “loose balance.”
The two cases may be distinguished by the size of a dimension-
less “balance index” (8):

= L (Equation 6)
M + x

Note that using the above analysis, in the limit of large K consid-
ered by van Vreeswijk and Sompolinsky (1996, 1998), 8 ~ 1/\/1?.
Tight balance means that the balance index is very small, 8 <« 1;
in loose balance, the index is not so small, say 8>0.1, very
roughly. As we will see, whether the network is in tight or loose
balance has important implications for the network’s behavior
and computational ability. (Note that in general, the degree of
balance can be different in different neurons in the same
network. In the above discussion we assumed that different neu-
rons of the same E/I type are statistically equivalent, e.g., in
terms of the number and activity of presynaptic inputs; this is
the case in the randomly connected network of van Vreeswijk
and Sompolinsky [1996, 1998]. In that case ¢ would not vary sys-
tematically between neurons of the same type.)

THE TIGHTLY BALANCED SOLUTION

Van Vreeswijk and Sompolinsky (1996, 1998) showed that for
very large K, and hence very large Kn, and all J’'s «1/vK, the
network dynamics would produce a tightly balanced solution
provided only that some mild (inequality) conditions on the
weights and external inputs are satisfied, without any require-
ments for fine-tuning. This is known more generally as the
“balanced network” solution (Figure 1B). To understand this so-
lution, we define the mean number of inputs, postsynaptic po-
tential (PSP) amplitude, and time constant from population B
(Be{E,l,X}) to a neuron in population A (Ae{E,I}) to be Kag,
Jas and 7ag respectively. We define the mean effective weight
from population B to a neuron in population A as Wag =
JasKasTag. Letting rg be the average firing rate of population
B, then Wagrg = JagKasns, the mean input from population B
to population A. We assume that Wagrg = O(vK) for all A, B.
The requirements for balance are then that the mean net input
to both excitatory and inhibitory cells, ug and u, respectively,
are O(1), where (from Equations 1 and 4),

Ug = Weere — Wair + Wexrx (Equation 7)
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Figure 1. Balance of excitation and
inhibition

(A) A neuron receiving Kg excitatory and K inhib-
itory recurrent inputs with unitary strengths Jg and
Ji, respectively, and Kx excitatory external inputs
with unitary strength Jx.

(B) Top: spike rasters from a simulation of a
network of spiking integrate-and-fire neurons in

the asynchronous irregular regime. Spike trains of
representative sub-populations of excitatory (red)
and inhibitory (blue) cells are shown. The external
input to the network is turned on at t = 0. Middle:

the membrane voltage trajectory of a typical
excitatory neuron in the network. Bottom: inputs to
the same neuron over time: recurrent excitatory (E)
and external excitatory (X) inputs, which together

Inputs (mV)

provide the total excitatory input (red); inhibitory
input (I, blue); and net inputs (yellow). The arrows
show the steady-state means (u) and SDs (o) of
the excitatory, inhibitory, and net inputs. The hor-
izontal gray lines in middle and bottom plots show
the spiking threshold. This network is in a regime
of tight balance of excitation and inhibition: the net
input, after cancellation of excitatory and inhibitory

0.10

Time (sec.)

u, = W|EI'E — W||r| + W|xrx. (Equation 8)
If we define the external inputs to the network g = Wexrx, || =
Wixrx, then these equations can be written as the vector
equation

u=Wr+l,
u e
whereu=| "B |, r=| 'E
u n

_ (e
trix W = (WEE _WE'>.

We Wy

The balanced network solution arises by noting that the left
side of Equation 9 is very small (O(1)) relative to the individual
terms on the right (O(v/K)). So we first find an approximate so-
lution rq to Equation 9 in which the small left side is replaced by
0toyield the equation for perfect balance, i.e., all inputs perfectly
canceling: Wrg+1= 0,0rrg = — W™ 'I, where W™ is the matrix
inverse of W. Note that ry is O(1), because the elements of W
and | are all the same order of magnitude, so their ratio is
generically O(1). We can then write r as an expansion in powers
of 1/VK, r=ro+ri/vK+..., where rg, ry, ... are all O(1), to
obtain a consistent solution: u = Wry/vK + ..., where the first
term on the right is O(1), as desired, and the remaining
terms are very small (O(1/vK) or smaller). The authors
showed that, with some mild general conditions on the weights
W and inputs I, this tightly balanced solution would be the
unique stable solution of the network dynamics. That is, for a
given fixed input I, the network’s excitatory/inhibitory dynamics
will lead it to flow to this balanced solution for the mean rates:
r=—w'+o01/VK).

We immediately see two points about the tightly balanced
(vKn >>1) solution:

(Equation 9)

) , and W is the weight ma-
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inputs, is much smaller than the factors that

0.15
cancel.

1. Mean population responses are linear in the inputs. —W~"I
is a linear function of the input I. Tight balance implies that
nonlinear corrections to r=ro= —W~'l are very small
relative to this linear term, so mean response r is for prac-
tical purposes a linear function of the input.

2. External input must be large relative to the net input and to
the distance from rest to threshold. The external input |
must have the same order of magnitude as the recurrent
input Wry, so that balance can occur, Wrg = — I, with
rates that are O(1). If | were smaller, the firing rates
r=rq would correspondingly be unrealistically small.

In the above treatment we focused on population-averaged
responses, re and ri. We emphasize that the balancing applies
only to the mean input across neurons of each type and leaves
unaffected input components with mean of zero across a given
type; while the mean input is very large in the tightly balanced
regime, zero-mean input components can be O(1) and yet elicit
O(1) responses in individual neurons (see, e.g., Hansel and van
Vreeswijk, 2012; Pehlevan and Sompolinsky, 2014; Sadeh and
Rotter, 2015). Furthermore, even in the tightly balanced regime,
individual neurons can exhibit nonlinearities in their responses,
but these are washed out at the level of population-averaged re-
sponses. We also note that nonlinear population-averaged
response properties can arise in the tightly balanced state
because of synaptic nonlinearities (e.g., synaptic depression),
which were neglected here (Mongillo et al., 2012), or because
of stimuli that force some neural sub-populations to zero firing
rate (Baker et al., 2020).

A LOOSELY BALANCED REGIME

As we have seen, if Kn is O(1), the mean and the fluctuations of
the input that neurons receive can both be O(1) without requiring
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Figure 2. The supralinear (power-law) neuronal transfer function

The transfer function of neurons in cat V1 is non-saturating in the natural dy-
namic range of their inputs and outputs and is well fit by a supralinear rectified
power law with exponents empirically found to be in the range 2-5. Such a
curve exhibits increasing input-output gain (i.e., slope, indicated by red lines)
with growing inputs, or equivalently with increasing output firing rates. Gray
points indicate a studied neuron’s average membrane potential and firing rate
in 30 ms bins, blue points are averages for different voltage bins, and the black
line is fit of power law, r = [V — 0]‘1 , where s firing rate, Vis voltage, [x], = X,
x>0, = 0 otherwise; 0 is a fitted threshold; and p, the fitted exponent, here is
2.79. Note that this shows that firing rate depends supralinearly on mean
voltage, but the loosely balanced circuits described here rely on rate de-
pending supralinearly on u = Wr+1. The voltage may be sublinear in this
quantity, because of synaptic depression of the recurrent inputs, spike-rate
adaptation, post-spike reset, or input-induced conductance increases; it may
be supralinear in this quantity, because of synaptic facilitation of recurrent
inputs or dendritic excitability. The models rely on the assumption that any
sublinearity in the net transformation from u to voltage is insufficient to undo
the supralinear voltage-to-firing-rate transformation, yielding a net supralinear
transformation from u to firing rate. Figure modified from Priebe et al. (2004).

any balancing. Given that there is both excitatory and inhibitory
input, there will always be some input cancellation or
“balancing”: some portion of the input excitation will be
canceled by input inhibition, leaving some smaller net input.
When Kn is O(1), all of these quantities—the excitatory input,
the inhibitory input, and the net input after cancellation—will
generically be O(1), and thus balancing is “loose”: the factors
that cancel and the net input after cancellation are of comparable
size, and the balance index 3 is not small.

However, the fact that there is some inhibition that cancels
some excitation does not by itself imply interesting conse-
quences for network behavior. We will use the term “loosely
balanced solution” to refer more specifically to a solution having
two features: (1) The dynamics yields a systematic cancellation
of excitation by inhibition like that in the tightly balanced solution.
In particular, in the loosely balanced networks on which we will
focus, a signature of this systematic cancellation is that the net
input a neuron receives grows sublinearly as a function of its
external input (as shown in Figure 3A and see below). (2) This
cancellation is “loose,” as just described. As we will discuss,
such a loosely balanced solution produces various specific
nonlinear network behaviors that are observed in cortex.

Ahmadian et al. (2013) showed that such aloosely balanced so-
lution would naturally arise from E/I dynamics for recurrent weights

¢? CellPress

and external inputs that are not large, provided that the neuronal
input/output function, determining firing rate versus input level,
is supralinear (having ever-increasing slope) over the neuron’s dy-
namic range. They modeled this supralinear input/output function
as a power law with power greaterthan 1 (Figure 2). Such a power-
law input-output function is theoretically expected for a spiking
neuron when firing is induced by input fluctuations rather than
the input mean (Hansel and van Vreeswijk, 2002; Miller and Troyer,
2002) and is observed in intracellular recordings over the full dy-
namic range of neurons in primary visual cortex (V1) (Priebe and
Ferster, 2008). Of course, a neuron’s input/output function must
ultimately saturate but, at least in V1, the neurons do not reach
the saturating portion of their input/output function under normal
operation. For the loosely balanced solution to arise, some general
conditions on the weight matrix and external inputs, similar to
those for the tightly balanced network solution but less restrictive,
must also be satisfied.

In the presence of a supralinear input/output function, the
loosely balanced solution arises as follows. Whereas previously
we considered the effects of increasing K when recurrent and
external inputs were all O(vK), now we consider the more bio-
logical case of increasing external input (i.e., stimulus) strength
while recurrent weights are at some fixed level. The supralinear
input/output function means that a neuron’s gain—its change
in output for a given change in input—is continuously increasing
with its activation level. This in turn means that effective synaptic
strengths are increasing with increasing network activation. The
effective synaptic strength measures the change in the postsyn-
aptic cell’s firing rate per change in presynaptic firing rate. This is
the product of the actual synaptic strength—the change in post-
synaptic input induced by a change in presynaptic firing—and
the postsynaptic neuron’s gain. Hence, the effective synaptic
strengths increase with increasing gains.

The increasing effective synaptic strengths lead to two re-
gimes of network operation. For very weak external drive and
thus weak network activation, all effective synaptic strengths
are very weak, for both externally driven and network-driven syn-
apses. External drive to a neuron is delivered monosynaptically,
via the weak externally driven synapses. In contrast, assuming
that the network is inactive in the absence of external input,
network drive involves a chain of two or more weak synapses:
the weak externally driven synapses activate cortical cells, which
then drive the weak network-driven synapses. From the same
principle that x? < x when x < 1, the network drive is therefore
much weaker than the external drive. Thus, the input to neurons
is dominated by the external input, with only relatively small con-
tributions from recurrent network input. In sum, in this weakly
activated regime, the neurons are weakly coupled, largely re-
sponding directly to their external input with little modification
by the local network.

With increasing external (stimulus) drive and thus increasing
network activation, the gains and thus the effective synaptic
strengths grow. This causes the relative contribution of network
drive to grow until the network drive is the dominant input. At
some point, the effective E—E connections become strong
enough that the network would be prone to instability: a small
upward fluctuation of excitatory activities would recruit sufficient
recurrent excitation to drive excitatory rates still higher, which if
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unchecked would lead to runaway, epileptic activity (and to ever-
growing effective synaptic strengths and thus ever-more-power-
ful instability). However, if feedback inhibition is strong and fast
enough, the inhibition will stabilize the network; that is, it be-
comes an ISN. This stabilization is accompanied by a loose
balancing of excitation and inhibition, as we will explain in
more detail below. Thus, in this more strongly activated regime,
the neurons are strongly coupled and are loosely balanced. Note
that the input driving spontaneous activity may already be strong
enough to obscure the weakly coupled regime, as suggested by
the finding that V1 under spontaneous activity is already an ISN
(Sanzeni et al., 2020a). As in the tightly balanced network, the
network’s excitatory/inhibitory dynamics lead it to flow to this
loosely balanced solution, without any need for fine-tuning of pa-
rameters. Because this mechanism involves stabilization, by in-
hibition, of the instability induced by the supralinear input/output
function of individual neurons along with E— E connections, it
has been termed the stabilized supralinear network (SSN) (Ahma-
dian et al., 2013; Rubin et al., 2015).

To describe the mathematics of this mechanism, we again
consider an excitatory and an inhibitory population along with
external input. We define the vectors r, u, and | and the matrix
W as before. Then the power-law input/output function means
that the network’s steady-state firing rate rsg for a steady input
| satisfies

rss = k(u)? =k(Wrss +1)°, (Equation 10)

where (v), is the vector v with negative elements set to zero,
(v)°. means raising each element of (v), to the power p, p is a
number greater than 1 (typically 2-5; Priebe and Ferster, 2008),
and k is a constant with units Hz/(mV)P (and the units of W, r,
and | are mV /Hz, Hz, and mV, respectively). If we let y=|| W ||
represent a norm of W (think of it as a typical total E or | recurrent
weight received by a neuron), and similarly let c =|| I || represent
a typical input strength, then it turns out the network regime is
controlled by the dimensionless parameter

o = kycP1, (Equation 11)
As we increase the strength of external drive and thus of
network activation, ¢ and thus « are increasing. When a < 1,
the network is in the weakly coupled regime; for a> 1, the
network is in the strongly coupled regime; and the transition be-
tween regimes generically occurs when o is O(1) (Ahmadian
et al., 2013).

The loosely balanced solution then turns out to be of the form

_ 1 C/
r=-W I+J<W+>7

(Equation 12)
where ry is dimensionless and O(1), and the higher order terms
(indicated by ...) involve higher powers of 1/a'/P (see Box 2).
Equation 12 is precisely the same equation as for the tightly
balanced solution, in the case that the input/output function is
a power law. In the tightly balanced network, s and ¢ are both
O(vVK), so a.is O((K)P/?) (i.e., very large), and the 1/a'/? in the
second term becomes O(1/vK), as expected. The loosely
balanced solution arises, however, when o is O(1). In particular,

6 Neuron 709, November 3, 2021

Neuron

in the biological case of fixed weights but increasing stimulus
drive, and given the supralinear neuronal input/output functions,
the same E/I dynamics that lead to the tightly balanced solution
when inputs are very large will already yield a loosely balanced
solution when inputs are O(1). The conditions for this loosely
balanced solution to arise are further discussed in Box 2.

The fact that the solution is loosely balanced can be seen by
computing the balance index, g (Equation 6). The network excit-
atory drive is O(yr), the external drive is O(c), and because the
first term on the right side of Equation 12 cancels the external
input, the net input after balancing is the product of W (which
is O(y)) and the second term on the right side of Equation 12,
and thus O(c /a'P) = O((c/¥)"P). Because 1/p<1, the net
input thus grows sublinearly with growing external input
strength, c, as illustrated in Figure 3. Moreover, it follows that

the balance index (Equation 6) is O(C/“W’/p) which is O(1 /a'/P)

c+yr

(assuming the order of magnitude of the recurrent input, yr, is
the same as or smaller than that of the external input strength,
c). Again, for the tightly balanced solution this is very small,
O(1/vVK), but the loosely balanced solution arises when this
is O(1).

We noted that the requirements on the weights and external
inputs for the loosely balanced solution to arise are less restric-
tive than those for the tightly balanced solution (further dis-
cussed in Box 2). When the conditions for the tightly balanced
solution are met, then, mathematically, with increasing external
input strength c, the loosely balanced solution evolves smoothly
into the tightly balanced solution, as illustrated in Figure 3.
However, biologically, the entire dynamical range of ¢ may lie
within the loosely balanced regime. Furthermore, firing rates
scale as c¢/y (Equation 12; note that the scale of —-W~ 'l is
I1]] /Il W = c/y), so that if firing rates are in a reasonable
range in the loosely balanced regime, they may become unreal-
istically high if ¢ is increased sufficiently to reach the tightly
balanced regime.

In models involving many neurons with structured connectiv-
ity and stimulus selectivity, like those illustrated in Figure 3,
neurons that prefer stimuli far from that presented may have
their firing rates pushed to zero. Then, because of the rectifica-
tion in Equation 10, Equation 12 no longer describes the full so-
lution. Nonetheless, loosely balanced solutions still arise when
ais O(1). That is, in such cases the full nonlinear steady-state
equations, Equation 10, can yield biologically plausible solu-
tions, and when that happens the net inputs to activated neu-
rons grow sublinearly with growing external input strength,
and balance indices are O(1) (as illustrated in Figure 3). The
case of structured networks with stimulus selectivity is further
discussed in Box 2.

We can now see that the loosely balanced regime differs from
the tightly balanced in the two points summarized previously:

1. In the loosely balanced regime, mean population re-
sponses are nonlinear in the inputs. This is because
when balance is loose, the second term in Equation 12,
which is not linear in the input, cannot be neglected rela-
tive to the first, linear term. In particular, the nonlinear pop-
ulation behaviors observed in the loosely balanced regime
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Box 1. Nomenclature for balanced solutions

There is no standard nomenclature for describing balanced solutions. Here we have used loose versus tight balance to describe,
given systematic cancellation, whether the remainder after cancellation is comparable with, or much smaller than, the factors that
cancel.

Deneve and Machens (2016) used loose balance to mean that fast fluctuations of excitation and inhibition are uncorrelated,
although they are balanced in the mean, as in the sparsely connected network of van Vreeswijk and Sompolinsky (1996, 1998),
and used tight balance to mean that fast fluctuations of excitation and inhibition are tightly correlated with a small temporal offset,
as in the densely connected network of Renart et al. (2010) and in the spiking networks of Deneve, Machens, and colleagues in
which recurrent connectivity has been optimized for efficient coding (Boerlin et al., 2013; Bourdoukan et al., 2012; Barrett et al.,
2013). All of these networks are tightly balanced under our definition.

Hennequin et al. (2017) also defined balance to be tight if it occurs on fast timescales, and loose otherwise, but they implied that this
is equivalent to our definition, that tight balance means the remainder is small compared with the factors that cancel, and loose
balance means the remainder is comparable with the factors that cancel. The implied equivalence rests on the fact that tight bal-
ance under our definition produces very large (i.e., O(vK)) negative eigenvalues (in linearization about the fixed point), which
means very fast dynamics, approaching instantaneous population response as K and hence negative eigenvalues go to infinity.
We point out, however, that loose balance under our definition can produce negative eigenvalues large enough to produce quite
fast dynamics, with effective time constants on the order of single neurons’ membrane time constant, or even as small as a few
milliseconds, depending on parameters.

An additional source of confusion is that there are two forms of fast fluctuations, with different behaviors. Fast fluctuations can be
shared (correlated) across neurons, or they can be independent. The large negative eigenvalues in tightly balanced networks (in our
definition) affect shared fluctuations corresponding to eigen-modes in which the activities of excitatory and inhibitory neurons fluc-
tuate coherently. Thus, shared fluctuations are balanced on fast timescales. In contrast, spatial activity patterns in which neurons
fluctuate independently are largely unaffected by those eigenvalues and need not be balanced.

Fluctuations due to changes in population mean rates of the external input are shared, and so this form of fluctuation is followed on
fast timescales in all balanced networks (at finite rates in loosely balanced networks and approaching instantaneous following in
tightly balanced networks). Fluctuations also arise from network and external neuronal spiking noise. In networks with sparse con-
nectivity (van Vreeswijk and Sompolinsky, 1998), this yields independent fluctuations in different neurons and thus independent
fluctuations of excitation and inhibition on fast timescales (though their means are balanced). In networks with dense connectivity
(Renart et al., 2010), these spiking fluctuations become shared fluctuations due to common inputs arising from the dense connec-
tivity, and so in these networks excitation and inhibition are balanced on fast timescales. To summarize, all balanced networks will
balance shared fluctuations, such as those due to changing external input rates, on fast timescales, but excitation and inhibition
can nonetheless be unbalanced on fast timescales in sparse networks, because of independent fluctuations induced by
spiking noise.

To conclude, we would argue for a future standardized terminology for dynamically induced balancing of excitation and inhibition,
in which “loose” and “tight” balance refer to our definition as to whether the remainder after cancellation is comparable with, or
much smaller than, the factors that cancel. We suggest the use of “temporal” versus “mean” balance to refer to whether or not
excitation and inhibition are balanced on fast timescales, which depends on whether there are substantial shared input fluctuations
across neurons. “Finite” versus “instantaneous” timescales of balancing can distinguish whether relaxation rates—the rates of
balancing shared fluctuations —are moderately sized versus very large.

with a supralinear input/output function closely matchthe = Measurements of biological parameters
specific nonlinear behaviors observed in sensory cortex How large is vVKn? We saw in Equation 3 that the ratio of the
(Rubin et al., 2015), as we will discuss below. mean to the SD, uy/oy, of the input of type Y (Ye{E,Il.X})
2. Inthe loosely balanced regime, external input can be com-  received by a neuron is equal to v/Kyny, where Ky is the number
parable with the net input and to the distance from restto  of inputs of type Y a given neuron receives and ny is the average
threshold. number of spikes one of these inputs fires in a PSP decay time 7
(nv = ryty, where ry is the average firing rate of one of these in-

puts). Here we estimate /Kgng.

WHAT REGIME DO EXPERIMENTAL MEASUREMENTS Note that /Kyny is actually an upper bound for the ratio uy /oy
SUGGEST? for a given input type, because we have neglected a number of
factors that would increase fluctuations for a given mean. These
include (1) correlations among inputs which, even if weak, can
significantly boost the input SD, oy, without altering input
mean; (2) variance in the weights, Jy, which would increase the

As we have seen above (Figure 3), the same model can give
a loosely balanced solution (Equation 12) when a is O(1)
(e.g., when ¢ and s are both O(1)) but give a tightly balanced
solution when o is large (e.g., when ¢ and s are both O(v/K)).

. A 2 L
Which of these regimes is supported by experimental mea- ~ €stimate of oy by a factor 1/(Jy)/(Jv)” (where (x) indicates the
surements? average value of x); and (3) network effects that can amplify input
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Figure 3. Loose versus tight balance

(A) Simulation of a rate model, the stabilized su-
pralinear network (SSN). The plot shows the
external input (blue), the recurrent or within-
network input (green), and the net input (orange,
equal to external plus recurrent) to the excitatory
cell receiving the peak stimulus. At all biological
ranges of external input (stimulus) strength, the

balance is loose, as exhibited by the left set of
three arrows (representing the external, recurrent,
and net inputs): the net input is comparable in size
to the other two. The balance systematically
tightens with increasing external input (right set of
arrows), as the net input grows only sublinearly
with increasing external input strength. At high
(possibly non-biological) levels of external input,

the balance will become tight, with the net input
much smaller in magnitude than the external and
recurrent inputs. The neurons were arranged in a
ring topology (there was an E/I neuronal pair at
each position on the ring), with position on the ring
corresponding, for example, to preferred direc-
tion, as in Ahmadian et al. (2013) and Rubin et al.
(2015). The strength of synaptic connections
decreased with distance over the ring, and
external (stimulus-driven) input peaked at the
stimulus direction.

(B) Simulations of a randomly connected network
of Ng=9600 excitatory and N;=2400 inhibitory
integrate-and-fire spiking neurons, in the asyn-
chronous irregular regime, receiving increasing
levels of external input. The network had ring to-
pology, as in (A), with probability rather than
strength of connections decreasing with distance,
Top: spike rasters of 80 excitatory and 20 inhibi-

tory neurons (randomly chosen from the portion of
the ring approximately tuned to the stimulus). The
gray bars on top denote the three stages with
different levels of external input, uy, which for the
stimulus-tuned neurons were at 0.5, 1.5, and 4, in
units of the rest-to-threshold distance (which was
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20 mV), respectively (other key parameters:
ox =0.2 in same units, all Kag =480 on average,
and for existing connections Jgg=0.63 mV,
Je=0.6 mV, Jg =0.32 mV, J;; =0.25 mV). Middle:

voltage trace of a randomly chosen E cell from the sub-population shown in the top rasters. Bottom: E, I, and net input to the same cell. The balance tightens with
growing external input strength; in the first two stages (up to t =0.5 s) the network is in a loose balance regime (0.1 <8 < 1), while in the last stage (t> 0.5 s)itis

tightly balanced (3 <0.1).

variances by creating firing rate fluctuations, although this ampli-
fication may be small for strong stimuli (Hennequin et al., 2018).
Furthermore, the ratio u/o of total input is expected to be smaller
than the ratio uy /oy for any single type. This is because ¢ in-
volves the sum of three variances (Equation 5), while p involves
a difference of one mean from the sum of two others (Equation
4), representing the effect of loose balancing.

Given these considerations, we are concerned primarily with
estimating the overall magnitude of \/Keng rather than detailed
values. If this magnitude is very much larger than the observed
w/o ratio in vivo, then tight balancing may be needed to explain
the in vivo ratio. To estimate the in vivo u/o ratio, we note that,
in anesthetized cat V1, o varies from 1 to 7 mV and p ranges
from 0 to 15 mV (20 mV in one case) for a strong stimulus
(Finn et al., 2007; Sadagopan and Ferster, 2012). Although these
authors did not give the paired p and o values for individual cells,
it seems reasonable to guess from these values that the value of
w/o for the total input to these cells is generally in the range 0-15.
Finn et al. (2007) also reported that, at the peak of a simple cell’s
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voltage modulation to a high-contrast drifting grating, the ratio
o/u had an average value of about 0.15 (here, we are taking p
to be the mean voltage at the peak). This suggests that the
average value of u /o at peak activation is around 1/0.15 = 6.7.

How large is v/Kene? In a study of input to excitatory cells in
layer 4 of rat S1 (Schoonover et al., 2014), the EPSP decay
time 7 was about 20 ms. From 1,800 to 4,000 non-thalamic-
recipient spines were found on studied cells which, with an esti-
mated average of 3.4 synapses per connection between layer 4
cells (Feldmeyer et al., 1999), corresponds to a Kg —the number
of other cortical cells providing input to one cell—of 530 to 1,200.
If re is expressed in Hz, then /Kene ranges from 3.3,/rg to
4.9,/re. Thus, even if average input firing rates were 10 Hz, which
would be very high for rodent S1 (Barth and Poulet, 2012) (note
that the average is over all inputs, not just those that are well
driven in a given situation, and so is likely far below the rate of
a well-driven neuron), these ratios would be 10.4-15.5. For
more realistic rates of 0.01-1Hz (Barth and Poulet, 2012; Brecht
et al., 2003; Manns et al., 2004), these ratios would be 0.33-4.9.
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Table 1. Values of /Kgng for varying Kg and rg, for r = 20ms

Ke = 200 Ke = 1000 Kg = 5000
re=0.1Hz 0.6 1.4 3.2
re=1Hz 2.0 4.5 10.0
re= 10 Hz 6.3 14.1 31.6

All of these are comparable in magnitude with observed in vivo
levels of u/a.

More generally, estimates across species and cortical areas
of the number of spines on excitatory cells, and thus of the
number of excitatory synapses they receive, range from 700
to 16,000, with numbers increasing from primary sensory to
higher sensory to frontal cortices (Amatrudo et al., 2012; Elston,
2003; Elston and Fuijita, 2014; Elston and Manger, 2014). Esti-
mates of the mean number of synapses per connection be-
tween excitatory cells range from 3.4 to 5.5 across different
areas and layers studied (Fares and Stepanyants, 2009; Feld-
meyer et al., 1999, 2002; Markram et al., 1997). These numbers
yield a Kg of 130 to 4,700. In Table 1, we show the value of
vKeng for Kg ranging from 200 to 5,000 (rounded upward to
bias results most in favor of a need for tight balancing) and
for rates rg of 0.1 to 10 Hz. The results are all comparable
with the u/a’s observed in vivo, except for the most extreme
case considered (Kg = 5000, rg = 10Hz), and even that case
is off by a factor of only 2. Thus, the numbers strongly argue
that tight balancing is not needed for the ratio of voltage
mean to variance to have values as observed in vivo.

External input is comparable in strength with net input.
Several studies have silenced cortical firing while recording intra-
cellularly to determine the strength of external input, with cortex
silenced, relative to the net input with cortex intact. These find
the external input to be comparable with the net input, consistent
with the loose balance scenario, rather than much larger as the
tight balance scenario requires.

Ferster et al. (1996) cooled V1 and surrounding V2 in anesthe-
tized cats to block spiking of almost all cortical cells, both excit-
atory and inhibitory, leaving axonal transmission (e.g., of
thalamic inputs) intact, though with weakened release. By
measuring the size of EPSPs evoked by electrical stimulation
of the thalamic lateral geniculate nucleus (LGN) in thalamic-
recipient cells in layer 4 of V1, they could estimate the degree
of voltage attenuation of EPSPs induced by cooling. Correcting
for this attenuation, they estimated that the first harmonic
voltage response to an optimal drifting luminance grating stim-
ulus of alayer 4 V1 cell was, on average, about one-third as great
with cortex cooled as with cortex intact, suggesting that the
external input to cortex is smaller than the net input with cortex
intact. Chung and Ferster (1998) and Finn et al. (2007) assayed
the same question by using cortical shock to silence the local
cortex for about 150 ms, during which time the voltage response
to an optimal flashed grating was measured. They found that on
average the transient voltage response in layer 4 cells with cortex
silenced was about one-half the size of that with cortex intact
(Chung and Ferster, 1998) and more generally ranged from 0%
to 100% of the intact cortical response (Finn et al., 2007). This
again suggests that the external input to cortex is smaller than
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the net input; that is, the external input is O(1), consistent with
loose but not tight balance.

Total excitatory or inhibitory conductance is comparable
with threshold. The above results suggest that depolarization
due to thalamus alone is less than that induced by the combina-
tion of thalamic and cortical excitation plus cortical inhibition
(i.e., after cortical “balancing” has occurred). One can also
ask what proportion of the total excitation is provided by thal-
amus. This has been addressed in voltage-clamp recordings
in anesthetized mice by silencing cortex through light activation
of parvalbumin-expressing inhibitory cells expressing channelr-
hodopsin. In layer 4 cells of V1 (Lien and Scanziani, 2013; Li
et al.,, 2013b) and primary auditory cortex (A1) (Li et al,
2013a), mean stimulus-evoked excitatory conductance with
cortex silenced was estimated to be 30%-40% of that with cor-
tex intact.

This tells us that the external and cortical contributions to exci-
tation are comparable. How large are they compared with the
excitation needed to depolarize the cell from rest to threshold,
which is typically a distance of about 20 mV (Constantinople
and Bruno, 2013)? With cortical spiking intact, these authors
(Lien and Scanziani, 2013; Li et al., 2013a) found mean stim-
ulus-evoked peak excitatory currents ranging from 60 to
150 pA for various stimuli. Even assuming a membrane resis-
tance of 200 MQ, which seems on the high end for in vivo record-
ings (Li et al., 2013a, reported input resistances of 150 — 200
Mg), these would induce depolarizations of 12-30 mV; that is,
the total excitatory current is comparable with threshold (i.e., it
is O(1)).

A similar result can be found from decomposition of excitatory
and inhibitory conductances from current-clamp recordings at
varying hyperpolarizing current levels. In neurons in anesthetized
cat V1 for an optimal visual stimulus, peak excitatory and inhibi-
tory stimulus-induced conductances, ge and g;, were typically
<10nS and almost always <20 nS, on top of stimulus-indepen-
dent conductances (g, , for leak conductance) of about 10 nS (An-
derson et al., 2000; Ozeki et al., 2009). A study of response to
whisker stimulation in anesthetized rat barrel cortex found excit-
atory and inhibitory conductances of <5 ns (Lankarany et al,,
2016). The depolarization that the stimulus-induced excitatory
conductance would induce by itself is (QEQfgL)VE, where Vg is
the driving potential of excitatory conductance, about 50 mV at
spike threshold of about —50 mV (e.g., Wilent and Contreras,
2005). Using the cat V1 numbers, this means that the depolariza-
tion driven by excitatory conductance is typically <25 mV and
almost always <33 mV. Hyperpolarization driven by the inhibitory
conductance alone would be 0.4-0.6 times these values, given
inhibitory driving force of —20 to —30 mV at spike threshold.
These values are all quite comparable with the distance from
rest to threshold, ~ 20 mV, that is, they are O(1).

How large is the expected mean excitatory input? We have
seen that the expected mean depolarization induced by recur-
rent excitation is JeKeng, where Jg is the mean EPSP amplitude.
On the basis of the measurements of Lien and Scanziani (2013)
and Li et al. (2013b), discussed above, total excitation may be
about 1.5 times greater than recurrent excitation. Jg can be diffi-
cult to estimate, because some of the Kg anatomical synapses
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may be very weak and not sampled in physiology, and because
synaptic failures, depression, or facilitation can alter average
EPSP size relative to measured EPSP sizes. Furthermore, mea-
surements are variable, for example Jg for layer 4 to layer 4 con-
nections in rodent barrel cortex has been estimated to be 1.6 mV
in vitro (Feldmeyer et al., 1999) versus 0.66 mV in vivo (Schoon-
over et al., 2014). If we assume typical values for Jg of 0.5— 1 mV,
then 1.5JgKene would exceed 75 mV for vKn>7 — 10 and
exceed 150 mV for vKn>10 — 14 (compare values of vKn in Ta-
ble 1). We can very roughly guess that neural responses may
become better described by tight rather than loose balance
somewhere in this range of mean excitatory input (and corre-
sponding vKn). Although the measurements of excitatory cur-
rents and conductances described above argue that such a
range is not reached in primary sensory cortex, it could conceiv-
ably be reached (Table 1) in areas with higher Kg (e.g., frontal
cortex).

Nonlinear behaviors

Sensory cortical neuronal responses display a variety of
nonlinear behaviors that, as we will describe, are expected
from the SSN loosely balanced regime but not from the tightly
balanced regime. A number of these behaviors of the SSN model
are shown in Figure 4. Many of these nonlinearities are often
summarized as “normalization” (Carandini and Heeger, 2011),
meaning that responses can be fit by a phenomenological model
of an unnormalized response that is divided by (normalized by)
some function of all of the unnormalized responses of all the neu-
rons within some region. To describe these nonlinear behaviors,
we must first define the classical receptive field (CRF): the local-
ized region of sensory space in which appropriate stimuli can
drive a neuron’s response.

One nonlinear property is sublinear response summation:
across many cortical areas, the response to two stimuli simulta-
neously presented in the CRF is less than the sum of the re-
sponses to the individual stimuli and is often closer to the
average than the sum of the individual responses (reviewed in
Reynolds and Chelazzi, 2004; Carandini and Heeger, 2011). An
additional nonlinearity is that the form of the summation changes
with the strength of the stimulus: summation becomes linear for
weaker stimuli (Heuer and Britten, 2002; T. Ohshiro et al., 2013,
Soc. Neurosci., conference). Although the SSN shows supralin-
ear summation for very weak stimuli (Figures 4A and 4B), the cir-
cuits in multiple cortical areas during spontaneous activity are
ISNs (Sanzeni et al., 2020a), indicating that the external input
driving spontaneous is likely already strong enough to eliminate
the weakly coupled regime of the SSN, in which summation is
supralinear. In experiments, it is often difficult to determine if
such nonlinear behaviors are computed in the recorded area or
involve changes in the inputs to that area. For example, cross-
orientation suppression in V1—suppression of response to a
preferred-orientation grating by simultaneous presentation of
an orthogonal grating—is largely (Priebe and Ferster, 2006; Li
etal., 2006) but not entirely (Sengpiel and Vorobyov, 2005) medi-
ated by changes in thalamic inputs to V1. However, some recent
experiments studied summation of response to an optogenetic
and a visual stimulus, a case in which the inputs driven by
each stimulus should not alter those driven by the other. Sublin-
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ear summation of responses to these stimuli was found (Nassi
et al.,, 2015; S. Wang et al., 2019, Cosyne, abstract; but see
Histed, 2018), which became linear for weak stimuli (S. Wang
et al., 2019, Cosyne, abstract).

Another set of nonlinearities involve interaction of a CRF stim-
ulus and a “surround” stimulus, which is located outside the
CRF. Across many cortical areas, surround stimuli can suppress
response to a CRF stimulus (“surround suppression”; reviewed
in Rubin et al., 2015; Angelucci et al., 2017), but this effect varies
with stimulus strength. When the center stimulus is weak, a sur-
round stimulus can facilitate rather than suppress response
(Ichida et al., 2007; Polat et al., 1998; Sato et al., 2014; Schwabe
et al., 2010; Sengpiel et al., 1997). In one study in V1 (Sato et al.,
2014), the surround stimulus was added intracortically rather
than by a visual stimulus, establishing that this computation
took place in V1. Similarly, the summation field size—the size
of a stimulus that elicits strongest response, before further
expansion yields surround suppression—is largest for weak
stimuli and shrinks with increasing stimulus strength (Anderson
et al,, 2001; Cavanaugh et al., 2002; Nienborg et al., 2013; Sce-
niak et al., 1999; Shushruth et al., 2009; Song and Li, 2008; Tsui
and Pack, 2011) (illustrated for the SSN in Figures 4C and 4D).
The summation field size in feature space—the optimal range
of simultaneously presented motion directions in monkey area
MT—similarly shrinks with increasing stimulus strength (Liu
et al., 2018).

Additional nonlinearities include a decrease, with increasing
stimulus strength, in the ratio of excitation to inhibition received
by neurons (Adesnik, 2017; Shao et al., 2013), shown for the SSN
in Figure 4E, and in the wavelength of a characteristic spatial
oscillation of activity (Rubin et al., 2015). In addition, although
multiple cortical areas are ISNs during spontaneous activity,
they become non-ISNs with suppression to sub-spontaneous
levels of activity by optogenetic activation of inhibitory neurons
(Sanzeni et al., 2020a). As discussed above, this is expected in
an SSN when activity suppression makes the effective excitatory
connections sufficiently weak. However, this is not unique to the
SSN; for example, in a rectified linear network, effective excit-
atory connections weaken as more excitatory neurons reach
zero firing rate.

All of these nonlinear cortical response properties, and more,
follow naturally (Ahmadian et al., 2013; Rubin et al., 2015) from
the two regimes (i.e., weak activation/weak effective synaptic
strengths versus stronger activation/stronger effective synaptic
strengths/loosely balanced regimes) of the scenario with a
supralinear input/output function, along with simple assump-
tions on connectivity (e.g., that connections decrease in strength
and/or probability with spatial distance, e.g., Markov et al., 2011,
or with difference in preferred features, e.g., Ko et al., 2011; Cos-
sell et al., 2015). In contrast, as described previously, the tightly
balanced scenario causes population-averaged responses to be
linear in the input (individual neurons, but not the population
average, may have nonlinear behaviors), and thus appears
inconsistent with these nonlinear cortical behaviors, which in
most cases are consistent enough across neurons that they
should characterize the mean population response. Synaptic
nonlinearities can give nonlinear population-averaged behavior
in the tightly balanced regime (Mongillo et al., 2012), as can
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Figure 4. Nonlinear neural behaviors in the loosely balanced regime

All panels are based on simulations of a stabilized supralinear network (SSN).

(A and B) Same ring model as in Figure 3A. (A) Three forms of response summation, for three levels of input (indicated by colors, corresponding to arrows in B):
supralinear summation, for very weak stimuli (left); sublinear summation, for stronger stimuli yielding loose balance (middle); and approximately linear summation,
for very strong stimuli yielding tight balance (right). The x axis is position on the ring, unrolled into a line. Black line shows profile of responses across excitatory
population to a 90° stimulus; response to a 270° stimulus is identical except shifted to peak at 270°. Green dotted lines show linear sum of responses to these two
stimuli. Red lines show actual responses when the two stimuli are presented simultaneously. (B) Additivity index is height of peak response to the two stimuli
together (red lines in A, divided by peak height of the linear summation of responses to each stimulus (green dashed lines in A). Index is shown for excitatory
population (red) and inhibitory population (blue). For very weak stimuli, summation is supralinear (index >1); for moderate stimuli yielding loose balance, sum-
mation is sublinear (index <1); and for very strong stimuli that ultimately yield tight balance, summation approaches linear (index = 1). x axis is identical to that in
Figure 3A, from which degree of balance for a given input strength can be seen. The inset is a blow-up of the same plot in the region of weak stimuli. The strength of
supralinearity or sublinearity, and whether the model approaches tight balance and linear summation for sufficiently high stimulus strength, can vary considerably
with parameters (see Ahmadian et al., 2013).

(C and D) Dependence of surround suppression on stimulus strength. (C) Response of an excitatory neuron to stimuli of different sizes, for increasing stimulus
strength c. (Increasing stimulus strength corresponds to increasing stimulus contrast, as indicated qualitatively by example stimuli shown at right; the quantitative
contrast levels illustrated are arbitrary.) With increasing stimulus strength, surround suppression of increasing strength is seen, and the summation field size —the
size yielding peak response —decreases. (D) Normalized summation field size (normalized to value for very large stimulus strength) versus stimulus strength, for
excitatory (red) and inhibitory (blue) cells, for same model as in (C). Summation field size systematically shrinks with stimulus strength.

(E) With increasing input strength, the ratio of recurrent (network) excitatory input, E,, to inhibitory input, /, decreases with increasing stimulus strength, as
observed in Shao et al. (2013), and Adesnik (2017).

(C), (D), and (E) are all from Rubin et al. (2015), used by permission; (E) is from a ring model as in (A) and (B) but with different parameters; (C) and (D) are from a
model of E and | neurons arranged on a line.

rectification nonlinearities (Baker et al., 2020), but it has not been  Correlations and variability

claimed or demonstrated that this could produce the specific = Across many cortical systems, the correlated component of
nonlinearities we have discussed that are seen in cortical re- neuronal variability is decreased when a stimulus is given, with
sponses. variability decrease seen both in neurons that respond to the
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stimulus and those that do not respond (Churchland et al., 2010).
This is also naturally explained by the loosely balanced SSN
network (Hennequin et al., 2018). In the strongly coupled regime
of the loosely balanced SSN network, increasing stimulus
strength increases the strength with which correlated patterns
of activity inhibit themselves, thus damping their responses to
input fluctuations. The tightly balanced state represents the
end state of this process: a fully asynchronous regime in which
correlations are completely suppressed (Renart et al., 2010;
van Vreeswijk and Sompolinsky, 1998; with dense connectivity,
the mean correlation is proportional to 1/K, and the SD of the
distribution of correlations is proportional to 1/vK [Renart
et al., 2010]; recall that K is meant to be a very large number to
achieve the tightly balanced state). Thus, the tightly balanced
state appears incompatible with the observed decrease in corre-
lated variability induced by a stimulus, because the state has
essentially no correlated variability. However, it should be noted
that variants of the tightly balanced network involving structured
connectivity can break the tight balance in structured ways that
yield finite correlated variability among preferentially connected
neurons (Litwin-Kumar et al., 2012; Rosenbaum et al., 2017).

DISCUSSION

We have seen that many independent lines of evidence are all
consistent with cortex being in a loosely balanced regime and
are inconsistent with tight balance. We define balance to mean
that the dynamics yields a systematic cancellation of excitation
by inhibition. A signature of this, for the loosely balanced sce-
nario that we consider, is that the net input a neuron receives af-
ter cancellation grows sublinearly as a function of its external
input. Loose balance means that the net input after cancellation
is comparable in size with the factors that cancel, whereas tight
balance means that the net input is very small relative to the
canceling factors. In both cases, the net input after cancellation
is comparable in size with the distance from rest to threshold so
that neuronal firing can be in the fluctuation-driven regime that
produces irregular firing like that observed in cortex.

One line of evidence for loose balance involves a variety of
measurements on the numbers and/or strengths of the inputs
that cells receive, including spine counts, strengths of external
and total input, and strengths of excitatory and of inhibitory input.
These measurements show that the expected ratio of meanto SD
of the network input before any tight balancing is already consis-
tent with the ratios observed for a cell’s net input as judged by its
voltage response. That is, tight cancellation is not needed to
achieve the ratios observed. These measurements further show
that external input and network input are comparable in size
with the net input remaining after cancellation and that they and
the total excitatory and total inhibitory input are all comparable
with the distance from rest to threshold, consistent with loose
but not tight balance. Other lines of evidence include a variety
of nonlinear population response properties of sensory cortical
neurons, as well as the presence of correlated variability in neural
responses and its decrease upon presentation of a stimulus, all of
which emerge naturally from loose balance with a supralinear
input/output function but appear largely incompatible with tight
balance.
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It should be emphasized that the number of excitatory synap-
ses received by an excitatory cell, Kg, increases from primary
sensory to higher sensory to frontal cortex (e.g., Elston, 2003).
Higher numbers are expected to push in the direction of tighter
balance. The expected ratio of input mean to SD and the ex-
pected size of the mean input both can become high enough
to potentially yield tight balance for the highest K¢'s, particularly
if higher average firing rates rg are assumed (Table 1). Our other
arguments depend largely, but not entirely, on measurements
from sensory cortex. The measurements of net input and
external input are all from primary sensory cortex. The studied
nonlinear response properties are primarily from both lower
and higher visual cortices (reviewed in Rubin et al., 2015). Sup-
pression of correlated variability by a stimulus, however, has
been observed in frontal and parietal as well as sensory cortex
(Churchland et al., 2010). In sum, although the evidence strongly
favors loose balance in sensory cortex, the evidence as to the
regime of motor or frontal cortex is weaker.

All of our analysis has been done in the simplified framework of
a single-compartment or “point” neuron, in which a neuron’s in-
puts simply add, so that excitation and inhibition cancel. This ig-
nores nonlinear aspects of dendritic integration (Palmer et al.,
2016; Poirazi and Papoutsi, 2020; Spruston et al., 2016). For
example, summation may occur within individual dendritic
branches, whose nonlinear outputs may then be summed in
more proximal branches and ultimately in the soma. Furthermore,
modulation of dendritic (Larkum et al., 2001) or somatic (Titley
etal., 2017) excitability may greatly alter the influence of synaptic
inputs on somatic voltage, so that synaptic input may be a poor
predictor of spike output. As noted previously, the strengths of
excitatory and inhibitory synapses appear to remain balanced
on individual dendritic segments (lascone et al., 2020; Liu,
2004). The mechanisms and functions of such local balancing
remain important outstanding questions. However, theoretical
study must abstract away some details to focus on others. The
approach of simplifying a neuron to a single compartment to
focus on the behavior of circuits of such neurons has been a
very fruitful one for gaining theoretical insights that illuminate ex-
periments, as exemplified by the studies discussed here. In addi-
tion to the theoretical utility of this simplification, it also receives
empirical justification from a finding that, despite dendritic nonlin-
earities, linear summation gives a very good approximation of
input integration in cortical pyramidal cells in vivo, capturing
more than 90% of the variance of somatic membrane potential
in experimental recordings (Ujfalussy et al., 2018).

We have studied a regime in which the dynamics is asynchro-
nous and goes to a fixed point—a steady rate of firing—for a
steady input. It has been argued that in awake rodent auditory
cortex, spontaneous activity may be driven by correlated bursts
or “bumps” of input on an otherwise quiet or far-from-threshold
background (DeWeese and Zador, 2006; Hromadka et al., 2013;
see also Tan et al., 2014). More generally, as discussed in the
introduction, both synchronous and asynchronous states are
observed in spontaneous activity in awake cortex (e.g., Fergu-
son and Cardin, 2020; McCormick et al., 2015). Stimulus-evoked
responses to commonly used stimuli in both auditory (Hromadka
et al., 2008) and somatosensory (Barth and Poulet, 2012) cortex
tend to be very sparse, with neurons having low mean firing
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Box 2. When do balanced solutions arise?

We consider a rate model in which the neuron’s input/output function is described by some function f(x), which is zero forx < 0 and
monotonically increasing for x>0. Then the network’s steady-state firing rate rsg for a steady input | is

res = f(Wrss + 1) (Equation B1)

where f acts element by element on its argument; that is, f(u) is a vector whose i element is f(y;) (the £'s might differ for different
neurons, which we neglect for simplicity). As before, we let y=|| W || and ¢ = || I ||. We define the dimensionless and O(1) matrix
J=W/y and vector g = I/c, so that J and g represent the relative synaptic strengths and relative input strengths, respectively,
while their overall magnitudes and dimensions are in s and c. Then, as in Ahmadian et al. (2013), we can define the dimensionless
variabley = %r, and Equation B1 can be rewritten

Vss = %f(c(JySS +9)) (Equation B2)

Note that this equation ensures that ysg > 0. Note also that, when f(x) =k(x)°_ ((x), = x, x>0; = 0, otherwise), then this equation

can be rewritten yss = a(Jyss +9)°. where a = kycP~'. This is the origin of the dimensionless constant & mentioned in the main text.
If we define f~'(0) = 0, then because f is monotonically increasing for non-negative arguments, it is invertible over that range; that
is, =" (x) is defined for x >0. We can then rewrite Equation B2 as

1

c .
: ! (Eyss) = (Jyss+9), (Equation B3)

If we assume

(Jyss +9),>0 for all /, (Equation B4)

that is, if (Jyss);> — (g); for all i, then we can replace the right side of Equation B3 with Jyss + g (without the () , ). This condition,
Equation B4, is a condition on the solution ygg, which we must check is self-consistently met for any solution we derive under this
assumption. Note also that, from Equation B2, the condition (Jyss +g); >0 is met if and only if (yss),> 0, so if we find a solution ysg
that has all positive elements, it will automatically satisfy Equation B4. Given this assumption, a bit of further manipulation then
yields

1

Ves = — J*‘g+E JfT (gyss) (Equation B5)
The first term, ygs = — J'g, is the balancing term, which cancels the external input g; that is, (JygS +g) = 0. If the second term
becomes small relative to the first in some limit, then the tightly balanced solution, yss = — J~'g or equivalently rss = — W'l, ex-

ists in that limit, while a loosely balanced solution (balance index O(1)) arises when the second term is comparable in size with the
first. (More careful analysis is needed to ensure that this solution is stable, and that there are not also other solutions.) Note that
Equation B5 gives an equation of the form Equation 12 when we (1) take f~' (x) = (x/k)1+/p and (2) multiply both sides of Equation B5
by c/y to convert ygg to rss.

Assuming all the elements of y3s= — J g are >0, a self-consistent solution in which the second term in Equation B5 becomes
small can be found in at least three cases:

1. If c and ¢ are scaled by the same factor, which becomes arbitrarily large, then there is a self-consistent solution in which ygg is
converging to — J~'g. Then the f~1 factor is not changing (except for the small changes due to the changes in ysg as it con-
verges), but it is multiplied by the factor %, which becomes arbitrarily small; thus the second term becomes arbitrarily small,
regardless of the particular structure of f. This is the case studied for the tightly balanced solution, in which both ¢ and s
are taken proportional to v/K, with K very large. (Note that the mean field equations derived in van Vreeswijk and Sompolinsky,
1998, differ from the generic steady-state rate equations, Equation B1, in that they also involve the self-consistently calculated
input fluctuation strengths, g4; the scaling argument given here nevertheless holds in that case too.)

2. Suppose c is scaled for fixed {5, which is the biological case in which synaptic strengths are fixed and the strength of the
external input is varied from small to large. Then if f~1(x) grows more slowly than linearly in increasing x, then the %factor shrinks
faster than the f~' term grows, so again there is a self-consistent solution in which ysg is converging to —J~"g and the second

(Continued on next page)
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Box 2. Continued

term becomes arbitrarily small with increasing c. This is the case studied for the loosely balanced solution in the SSN, in which
f(x) grows supralinearly with x and therefore f~'(x) grows sublinearly with x.

3. We again suppose c is scaled for fixed s, but now imagine that 7' (x) grows faster than linearly in increasing x; that is, f(x) is
sublinear (e.g., f(x) = (x)° for 0<p < 1). Then there is a self-consistent solution in which y — — J~'g as ¢ —0, with the second
term in Equation B5 going to zero as ¢ — 0. This case is the reverse of the SSN: the strongly coupled, balanced regime arises for
c¢— 0, while the weakly coupled, feedforward-driven regime arises for large c.

In sum, if the elements of —J~"g are positive, then a self-consistent tightly balanced solution arises for any f if ¢ and s are scaled
together by an increasing factor; for supralinear fif c is scaled by an increasing factor; or for sublinear f if c is scaled by a decreasing
factor. In all of these cases, for moderate sizes of the scaled parameter(s) (e.g., for the SSN, for « = O(1)) such that the second term
of Equation B5 is comparable in size with the first, a loosely balanced solution should arise. Note that because rss = (¢ /y¥)yss, then
from Equation B5 the net input after balancing should grow with increasing external input ¢ as f~'(c); this is sublinear in ¢ for the
SSN case of supralinear f.

If one considers a two-population model—a population of E cells and a population of | cells, with each population’s average rate
represented by a single variable—then conditions on J and g can be defined such that the elements of —J~'g are positive and the
balanced fixed point is stable and is the only fixed point (Ahmadian et al., 2013; Kraynyukova and Tchumatchenko, 2018; van
Vreeswijk and Sompolinsky, 1998). On the other hand, when the E element of —J~'g is negative, Equation B5 cannot serve as
a basis for an asymptotic expansion with the leading term —J~'g, and the tightly balanced state does not exist. (Given
(—J”g)E <0, if the tightly balanced state existed—meaning that the second term of Equation B5 becomes much smaller than
the first while Equation B5 is applicable —then ygg must have crossed zero to become negative, but once that has happened
we could no longer proceed past Equation B3, and Equation B5 would no longer be applicable, which is a contradiction; hence
the tightly balanced state cannot exist.) However, the loosely balanced state can still arise in this case in a broad parameter regime
of J and g and can be found as the fixed point of the iterative equation, yss(t) = —J g+ (1 /c)d~"F1((c /y¥)yss(t — 1)), given
appropriate initial conditions ysg(0); see Ahmadian et al. (2013). In this case, with increasing c, re grows, but then saturates
and starts decreasing, and eventually is pushed down to 0. However, if we assume that the maximal external input (i.e., the
maximal c; e.g., the maximal firing rate of the thalamic input to a primary sensory cortical area) can only drive rg to saturation
or slightly beyond, this case represents a viable model of cortical systems (Ahmadian et al., 2013; Hennequin et al., 2018; Rubin
et al., 2015; but see Sanzeni et al., 2020c).

A two-population model accurately describes the behavior of an unstructured model with many E and | neurons (i.e., with random
connectivity and with neurons in each population receiving comparable stimulus inputs). In some cases, this model also can form a
good approximation to the behavior of a multi-neuron circuit with structured connectivity and stimulus selectivity (Ahmadian et al.,
2013). More generally, though, in such a structured circuit with localized connectivity, for larger/stronger localized stimuli, some set
of neurons (e.g., neurons not selective for the stimulus) may eventually receive a net inhibition and become silent, meaning that the
condition of Equation B4 is not met and Equation B5 does not apply. (However, if the connectivity is translation invariant —the same
at any position in the model—and the external input extends more narrowly than the network connections, then a balanced fixed
point can still be attained; Rosenbaum and Doiron, 2014.) Nonetheless, we find in simulations (Ahmadian et al., 2013; Hennequin
etal., 2018; Rubin et al., 2015) that for reasonable stimulus input strengths, SSN behavior is reasonably described by the two-pop-
ulation model, in that (1) there is a transition with increasing input strength from a weakly coupled, feedforward-driven regime to a
strongly coupled, loosely balanced regime in which the input to excited neurons grows sublinearly as a function of the external
input strength, and (2) if we define the W and g of the two-population model as describing the net input received by a cell in
the larger, structured model (e.g., Wee represents the mean summed synaptic strength from excitatory cells to a single excitatory
cell, and ge represents the mean external input received by stimulus-selective excitatory cells) then reasonably good insight into
the operating regime of the larger model can be obtained from the analysis of the two-population model presented here and, in
much more detail, in Ahmadian et al. (2013); Kraynyukova and Tchumatchenko (2018).

We believe the same overall analysis of a transition from a weakly coupled regime to a strongly coupled, loosely balanced regime
will apply to multi-population models incorporating multiple subtypes of inhibitory cells (e.g., Garcia Del Molino et al., 2017; Ku-
chibhotla et al., 2017; Litwin-Kumar et al., 2016), but more detailed aspects of the analysis of the two-population model (Ahmadian
et al., 2013; Kraynyukova and Tchumatchenko, 2018) need to be generalized to that case.

Neuron

rates, although a given neuron may respond vigorously to partic-
ular stimuli. Very low firing rates may also suggest a regime
sitting far from threshold with occasional input “bumps” driving
occasional responses, although alternatively they may represent
failure to find optimal stimuli for the cells. Finally, in both of these
systems, natural stimuli and responses to them may be rapidly
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changing rather than sustained, requiring analysis of time-
dependent network dynamics rather than steady states. In the
tightly balanced network, the mean population response follows
the mean input close to instantaneously, although this could be
changed by incorporating more biophysical details of cells and
synapses. In the loosely balanced network, the population
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dynamics can be more complex and more model dependent. It
remains to be seen how useful the concepts discussed here
will be for understanding cortical systems that are synchronously
firing, driven by occasional synchronous inputs, or dynamically
responding to dynamically changing stimuli.

The seminal discovery of the tightly balanced network (van
Vreeswijk and Sompolinsky, 1996, 1998) solved a key problem
in theoretical neuroscience: how can neurons remain in the fluctu-
ation-driven regime, so that they have irregular firing with reason-
able firing rates, without requiring fine-tuning of parameters? The
answer was that when external and network inputs were very
large, the network’s dynamics could robustly tightly balance the
excitation and inhibition that neurons receive, leaving a net mean
input after cancellation that is negligibly small relative to the factors
that cancel. This allows both the mean and SD of the net input to
be comparable with the distance from rest to threshold despite
the very large size assumed for the factors that cancel, yielding
the fluctuation-driven regime. This achievement along with the
model’s mathematical tractability have made it a very influential
model for the theoretical study of neural circuits. However, for all
of the reasons stated above, the tightly balanced regime on which
the work focused does not seem to match observations of at least
sensory cortical anatomy and physiology.

The loosely balanced solution shows that when neuronal
input/output functions are supralinear, the same dynamical
balancing can arise from network dynamics without fine-tuning,
but in a regime in which external and network inputs are not
large. Instead, the balancing arises when these inputs, and the
net input remaining after cancellation of excitatory and inhibitory
input, are all comparable in size with one another and with the
distance from rest to threshold. Furthermore, for weak inputs
this same scenario produces a weakly coupled, feedforward-
driven regime that can explain the observation that network-level
input summation changes from sublinear for stronger stimuli to
linear or supralinear for weak inputs.

The tightly balanced network demonstrated that a network
could self-consistently generate its own variability. As we
showed in the section “How large is vVKn?”, the loosely
balanced regime can also generate realistic levels of variability.
However, biologically there is no need for the network to
generate all of its own variability, as all inputs to cortex are noisy
(and there are other sources of noise, such as stochasticity of
cellular and synaptic mechanisms [Mainen and Sejnowski,
1995; O’Donnell and van Rossum, 2014; Schneidman et al.,
1998] and input correlations [DeWeese and Zador, 2006; Ste-
vens and Zador, 1998)). In at least one case (Sadagopan and Fer-
ster, 2012), the noise derived from the cortical area’s input was
argued to be large enough to potentially fully account for the
noise seen in the cortical neurons.

Very recently, other solutions have been proposed to the prob-
lem of having both the input mean and SD be comparable with
the distance from rest to threshold (Khajeh et al., 2021; Sanzeni
et al., 2020b). Based on the evidence we have presented here,
any such solution, to be compatible with biology, should be
loosely rather than tightly balanced.

In conclusion, we believe that at least sensory, and perhaps all
of, cortex operates in a regime in which the inhibition and excita-
tion neurons receive are loosely balanced. This along with the
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supralinear input/output function of individual neurons and sim-
ple assumptions on connectivity explains a large set of cortical
response properties. A key outstanding question is the compu-
tational function or functions of this loosely balanced state and
the response properties it creates (e.g., see Echeveste et al.,
2020; G. Barello and Y. Ahmadian, unpublished data).
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