
Please cite this article in press as: Ahmadian and Miller, What is the dynamical regime of cerebral cortex?, Neuron (2021), https://doi.org/10.1016/
j.neuron.2021.07.031
ll
Perspective

What is the dynamical regime of cerebral cortex?
Yashar Ahmadian1,* and Kenneth D. Miller2,*
1Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
2Center for Theoretical Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, and Department of
Neuroscience, College of Physicians and Surgeons andMorton B. ZuckermanMind Brain Behavior Institute, Columbia University, New York,
NY, USA
*Correspondence: ya311@cam.ac.uk (Y.A.), kdm2103@columbia.edu (K.D.M.)
https://doi.org/10.1016/j.neuron.2021.07.031

SUMMARY

Many studies have shown that the excitation and inhibition received by cortical neurons remain roughly
balanced across many conditions. A key question for understanding the dynamical regime of cortex is the
nature of this balancing. Theorists have shown that network dynamics can yield systematic cancellation of
most of a neuron’s excitatory input by inhibition. We review a wide range of evidence pointing to this cancel-
lation occurring in a regime in which the balance is loose, meaning that the net input remaining after cancel-
lation of excitation and inhibition is comparable in size with the factors that cancel, rather than tight, meaning
that the net input is very small relative to the canceling factors. This choice of regime has important implica-
tions for cortical functional responses, as we describe: loose balance, but not tight balance, can yield many
nonlinear population behaviors seen in sensory cortical neurons, allow the presence of correlated variability,
and yield decrease of that variability with increasing external stimulus drive as observed across multiple
cortical areas.
INTRODUCTION

In what regime does cerebral cortex operate? This is a funda-

mental question for understanding cerebral cortical function.

The concept of a ‘‘regime’’ can be defined in various ways.

Here we will focus on a definition in terms of the balance of exci-

tation and inhibition: how strong are the excitation and inhibition

that cortical cells receive, and how tight is the balance between

them? As we will see, the answers to these questions have

important implications for the dynamical function of cortex.

We first consider several more fundamental distinctions in

cortical regime. First, neurons may fire in a regular or irregular

fashion, where regular firing refers to emitting spikes in a more

clock-like manner, while irregular firing refers to emitting spikes

in a more random manner, like a Poisson process. Cortex ap-

pears to be in an irregular regime (Softky and Koch, 1993; Shad-

len and Newsome, 1998), though some areas are less irregular

than others (Maimon and Assad, 2009). Second, neurons may

fire in a synchronous regime, meaning with strong correlations

between the firing of different neurons, or an asynchronous

regime, meaning with weak (or no) correlations. Here there is

varying evidence, which appears to depend on species, cortical

area, and brain state. In the asleep or anesthetized condition,

slow synchronous fluctuations are the norm (e.g., Stevens and

Zador, 1998; Lampl et al., 1999; DeWeese and Zador, 2006;

Ecker et al., 2014), with correlations decreased by stimulus drive

(Churchland et al., 2010; Smith and Kohn, 2008). In the awake

state, both asynchronous (Cohen and Kohn, 2011; Ecker et al.,

2010, 2014; Doiron et al., 2016; Poulet and Petersen, 2008;

Tan et al., 2014) and synchronous (DeWeese and Zador, 2006;

Poulet and Petersen, 2008; Tan et al., 2014) firing regimes
have been observed, with correlations decreased by stimulus

drive (Churchland et al., 2010; Tan et al., 2014), arousal (including

whisking and locomotion; Poulet and Petersen, 2008; McGinley

et al., 2015; Vinck et al., 2015; McCormick et al., 2015; Ferguson

and Cardin, 2020), or attention (Cohen and Maunsell, 2009;

Mitchell et al., 2009; Engel et al., 2016; Denfield et al., 2018). In

our initial discussion, we will take cortex to be in an asynchro-

nous regime, as in much previous theoretical work and as seems

to generally characterize the awake and stimulated or active

state (but see DeWeese and Zador, 2006). Later we will consider

mechanisms that suppress correlations with increasing drive.

Brunel (2000) first defined conditions on networks of excitatory

and inhibitory neurons that led them to operate in asynchronous

or synchronous and irregular or regular regimes.

A third distinction is whether a network goes to a stable fixed

rate of firing for a fixed input (with noisy fluctuations about that

fixed rate given noisy inputs) or whether it shows more complex

behaviors, such as movement betweenmultiple fixed points, os-

cillations, or chaotic wandering of firing rates. We will focus on

the case of a single stable fixed point, which seems likely to

reasonably approximate at least awake sensory cortex (see dis-

cussion in Miller, 2016).

Finally, for a given fixed point, recurrent excitation may be

strong enough to destabilize the fixed point in the absence of

feedback inhibition. That is, if inhibitory firing were held frozen

at its fixed-point level, a small perturbation of excitatory firing

rates would cause them to either grow very large or collapse to

zero. In that case, the fixed point is stabilized by feedback inhi-

bition, and the network is known as an inhibition-stabilized

network (ISN). Alternatively, the recurrent excitation may be

weak enough to remain stable even without feedback inhibition.
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A number of studies have found strong evidence that multiple

cortical areas operate as ISNs, including primary visual, somato-

sensory, and motor/premotor cortices at spontaneous (Sanzeni

et al., 2020a) and primary visual and auditory cortex at stimulus-

driven (Adesnik, 2017; Kato et al., 2017; Ozeki et al., 2009) levels

of activity.

Note that for some of the distinctions we describe between re-

gimes, there is a sharp transition from one regime to the other,

while for others the transition is gradual. We use the word

‘‘regime’’ in either case to describe qualitatively different network

behaviors.

The assumption that cortex is in an irregularly firing regime (as

well as its operation as an ISN) strongly points to the need for

some kind of balance between excitation and inhibition. Stochas-

ticity of cellular and synapticmechanisms (MainenandSejnowski,

1995; O’Donnell and van Rossum, 2014; Schneidman et al., 1998)

and input correlations (DeWeese and Zador, 2006; Stevens and

Zador, 1998)may contribute to irregular firing.However, a number

of authors have argued that, assuming inputs are un- or weakly

correlated, then irregular firingwill arise if themean input tocortical

cells is sub- or peri-threshold, so that firing is induced by fluctua-

tions from the mean rather than by the mean itself (Amit and Bru-

nel, 1997; Troyer and Miller, 1997; Tsodyks and Sejnowski, 1995;

vanVreeswijk andSompolinsky, 1996, 1998). This is referred to as

the fluctuation-driven regime, as opposed to the mean-driven

regime, in which the mean input is strongly suprathreshold and

spiking is driven largely by integration of thismean input. The fluc-

tuation-driven regime yields random, Poisson-process-like firing,

because fluctuations are equally likely to occur at any time,

whereas the mean-driven regime yields regular firing.

Given the strength of inputs to cortex (to be discussed below),

themean excitation received by a strongly responding cell is likely

to be sufficient to drive the cell near or above threshold. Therefore,

for the mean input to be subthreshold, the mean inhibition is likely

to cancel a significant portion of the mean excitation; that is, the

excitation and inhibition received by a cortical cell should be at

least roughly balanced (Tsodyks and Sejnowski, 1995; van Vrees-

wijk and Sompolinsky, 1996, 1998). Consistent with the idea that

inhibition balances excitation, many experimental investigations

have suggested that cortical or hippocampal excitation and inhibi-

tion remain balanced or inhibition dominated across varying activ-

ity levels (Anderson et al., 2000; Antoine et al., 2019; Atallah and

Scanziani, 2009; Barral and Reyes, 2016; Bridi et al., 2020; Deh-

ghani et al., 2016; Dorrn et al., 2010; Galarreta and Hestrin,

1998; Graupner andReyes, 2013; Haider et al., 2006, 2013; Higley

andContreras, 2006;Mariño et al., 2005;Moore et al., 2018; Okun

and Lampl, 2008; Shu et al., 2003; Sukenik et al., 2021; Tan and

Wehr, 2009; Wehr and Zador, 2003;Wu et al., 2008, 2006; Yizhar

et al., 2011; Zhou et al., 2014).

Excitation and inhibition may be balanced in at least two ways.

First, inhibitory and excitatory synaptic weights may be co-

tuned, so that cells (Bhatia et al., 2019; Xue et al., 2014) and/or

dendritic segments (Iascone et al., 2020; Liu, 2004) that receive

more (or less) excitatory weight receive correspondingly more (or

less) inhibitory weight. Plasticity rules have been identified that

may help achieve such a balance (Chiu et al., 2019, 2018; Field

et al., 2020; Froemke, 2015; Hennequin et al., 2017; Joseph

and Turrigiano, 2017). However, this does not ensure balancing
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of excitation and inhibition received across varying patterns of

activity. Second, given sufficiently strong feedback inhibitory

weights, the network dynamics may ensure that the mean inhibi-

tion and mean excitation received by neurons remain balanced

across patterns of activity, without requiring tuning of synaptic

weights. Here, we will focus on this second, dynamic form of

balancing.

As we will discuss, theorists have described mechanisms for

such dynamic balancing of excitation and inhibition, keeping neu-

rons in the fluctuation-driven regime, without any need for fine-

tuning of parameters such as synaptic weights. This dynamical

balance can be a ‘‘tight balance,’’ which we define to mean that

the excitation and inhibition that cancel are much larger than the

residual input that remainsafter cancellation,or a ‘‘loosebalance,’’

meaning that the canceling inputs are comparable in size with the

remaining residual input (terms todescribebalancednetworks are

not yet standardized; seeBox1 for a comparisonof our usagewith

other nomenclatures). An example of a tightly balanced network is

shown in Figure 1. The question of whether the balance is tight or

loose has important implications for the behavior of the network.

Here we will review these issues and argue that the evidence is

most consistent with a loosely balanced regime.

A THEORETICAL PROBLEM: HOW TO ACHIEVE INPUT
MEAN AND FLUCTUATIONS THAT ARE BOTH
COMPARABLE IN SIZE WITH THRESHOLD?

How do cortical neurons stay in the irregularly firing regime?

There are two requirements to be in the fluctuation-driven

regime, which yields irregular firing: (1) the mean input the neu-

rons receive must be sub- or peri-threshold, and (2) input fluctu-

ations must be sufficiently large to bring neuronal voltages to

spiking threshold sufficiently often to create reasonable firing

rates. We will measure the voltage effects of a neuron’s inputs

in units of the voltage distance from the neuron’s rest to

threshold; this distance, typically about 20 mV for a cortical

cell (e.g., Figure 3K in Constantinople and Bruno, 2013), is equal

to 1 in these units. Thus, a necessary condition for being in the

irregularly firing regime is that the voltage mean driven by the

mean input (henceforth abbreviated to ‘‘the mean input’’) should

have order of magnitude 1, which we write as Oð1Þ, or smaller.

The second requirement above then dictates that the voltage

fluctuations driven by the input fluctuations from the mean

(henceforth abbreviated to ‘‘input fluctuations’’) should also be

Oð1Þ. In particular, this means that the ratio of the mean input

to the input fluctuations should be Oð1Þ. (Note that we use the

OðÞ notation simply to indicate order of magnitude, and not in

its more technical, asymptotic sense of the scaling with some

parameter as that parameter goes to zero or infinity.)

Several authors have considered the requirements for these

conditions to be true (Renart et al., 2010; Tsodyks and Sejnow-

ski, 1995; van Vreeswijk and Sompolinsky, 1996, 1998).

Following these authors, we assume the network is composed

of excitatory (E) and inhibitory (I) neuron populations, which

receive excitatory inputs from an external (X) population. The

latter could represent any cortical or subcortical neurons outside

the local cortical network, for example, the thalamic input to an

area of primary sensory cortex. As a simplified toy model of
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the assumption that the network is in the asynchronous irregular

regime, we assume that the cortical cells fire as Poisson pro-

cesses without any correlations between them, as do the cells

in the external population.

Suppose that a neuron receives KE excitatory inputs. Suppose

these inputs produce excitatory postsynaptic potentials (EPSPs)

that have an exponential time course, with mean amplitude JE
and time constant tE, and have mean rate rE (Figure 1A). Then

the mean depolarization produced by these excitatory inputs is

JEKErEtE. Defining nE = rEtE to be the mean number of spikes

of an input in time tE, we find that the mean excitatory input to

the neuron is

mE = JEKEnE: (Equation 1)

Let sE denote the standard deviation (SD) of fluctuations in this

input. Assuming the spike counts of presynaptic neurons are un-

correlated, their spike count variances just add. Because they

are firing as Poisson processes, the variance in a neuron’s spike

count in time tE is equal to its mean spike count nE. Thus, the

variance of input from one presynaptic neuron is J2EnE, and so

the variance in the total input is KEJ
2
EnE and

sE = JE
ffiffiffiffiffiffiffiffiffiffiffi
KEnE

p
: (Equation 2)

Therefore, the ratio of the mean to the SD of the neuron’s excit-

atory input is

mE

sE

=
ffiffiffiffiffiffiffiffiffiffiffi
KEnE

p
; (Equation 3)

independent of JE. Similar reasoning about the neuron’s inhibitory

or external input leads to all the same expressions, except with E

subscripts replaced with I or X subscripts to represent quantities

describing the inhibitory or external input the cell receives.

Again, assuming that the different populations are uncorre-

lated so that their contributed variances add, the total or net

input the neuron receives has mean, m, and SD, s, given by

m = mE +mX � mI (Equation 4)

s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
E + s2

X + s2
I

q
: (Equation 5)

We imagine that KE and KI are the same order of magnitude,

OðKÞ for some number K, and similarly nE and nI are OðnÞ for
some number n. We also assume mX and sX are the same order

of magnitude as mE or mI and sE or sI, respectively, or smaller.

Then, if
ffiffiffiffiffiffi
Kn

p
is Oð1Þ, both m and s can simultaneously be

made Oð1Þ with suitable choice of the J’s (barring special cases

in which the elements of m precisely cancel). This means that the

irregularly firing regime is self-consistent: having assumed that

neurons are in the irregularly firing regime, we arrive at expres-

sions for the mean and SD of their input that indeed can keep

the network in this regime.

If K is very large, however—large enough that
ffiffiffiffiffiffi
Kn

p
[1—then

the ratio of the mean to the SD of each type of input, and hence

of thenet input, ismuchgreater than1.Manyauthorshave ignored

the role of n, assuming K is large enough that Kn is large. In
describing such work, we will refer simply to K rather than Kn.

Van Vreeswijk and Sompolinsky (1996, 1998) considered the

case of such very large K and showed how the network could

remain in the asynchronous irregular regime. They proposed

choosing the J’s proportional to 1=
ffiffiffiffi
K

p
, so that the SDs sE and sI

are Oð1Þ (Equation 2), but then by Equation 3 the means mE and

mI are large, Oð ffiffiffiffi
K

p Þ. Then, for the neurons to be in the asynchro-

nous irregular regime, inhibitory input, �mI, must cancel or ‘‘bal-

ance’’ a sufficient portion of the excitatory input, mE +mX, so that

the mean input, m, isOð1Þ.
If a neuron’s mean excitatory and inhibitory inputs very pre-

cisely cancel each other, so that the mean net input m is much

smaller than either of these factors alone, we say that there is

‘‘tight balance.’’ If the net input is more comparable in size with

the factors that are canceling, we call this ‘‘loose balance.’’

The two cases may be distinguished by the size of a dimension-

less ‘‘balance index’’ (b):

b =
jmj

mE +mX

: (Equation 6)

Note that using the above analysis, in the limit of large K consid-

ered by van Vreeswijk and Sompolinsky (1996, 1998), b � 1=
ffiffiffiffi
K

p
.

Tight balance means that the balance index is very small, b � 1;

in loose balance, the index is not so small, say b> 0:1, very

roughly. As we will see, whether the network is in tight or loose

balance has important implications for the network’s behavior

and computational ability. (Note that in general, the degree of

balance can be different in different neurons in the same

network. In the above discussion we assumed that different neu-

rons of the same E=I type are statistically equivalent, e.g., in

terms of the number and activity of presynaptic inputs; this is

the case in the randomly connected network of van Vreeswijk

and Sompolinsky [1996, 1998]. In that case bwould not vary sys-

tematically between neurons of the same type.)

THE TIGHTLY BALANCED SOLUTION

Van Vreeswijk and Sompolinsky (1996, 1998) showed that for

very large K, and hence very large Kn, and all J’s f1=
ffiffiffiffi
K

p
, the

network dynamics would produce a tightly balanced solution

provided only that some mild (inequality) conditions on the

weights and external inputs are satisfied, without any require-

ments for fine-tuning. This is known more generally as the

‘‘balanced network’’ solution (Figure 1B). To understand this so-

lution, we define the mean number of inputs, postsynaptic po-

tential (PSP) amplitude, and time constant from population B

ðB˛fE; I;XgÞ to a neuron in population A ðA˛fE; IgÞ to be KAB,

JAB and tAB respectively. We define the mean effective weight

from population B to a neuron in population A as WAB =

JABKABtAB. Letting rB be the average firing rate of population

B, then WABrB = JABKABnB, the mean input from population B

to population A. We assume that WABrB =Oð ffiffiffiffi
K

p Þ for all A; B.

The requirements for balance are then that the mean net input

to both excitatory and inhibitory cells, uE and uI respectively,

are Oð1Þ, where (from Equations 1 and 4),

uE = WEErE �WEIrI +WEXrX (Equation 7)
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A B Figure 1. Balance of excitation and
inhibition
(A) A neuron receiving KE excitatory and KI inhib-
itory recurrent inputs with unitary strengths JE and
Ji , respectively, and KX excitatory external inputs
with unitary strength JX.
(B) Top: spike rasters from a simulation of a
network of spiking integrate-and-fire neurons in
the asynchronous irregular regime. Spike trains of
representative sub-populations of excitatory (red)
and inhibitory (blue) cells are shown. The external
input to the network is turned on at t = 0. Middle:
the membrane voltage trajectory of a typical
excitatory neuron in the network. Bottom: inputs to
the same neuron over time: recurrent excitatory (E)
and external excitatory (X) inputs, which together
provide the total excitatory input (red); inhibitory
input (I, blue); and net inputs (yellow). The arrows
show the steady-state means (m) and SDs (s) of
the excitatory, inhibitory, and net inputs. The hor-
izontal gray lines in middle and bottom plots show
the spiking threshold. This network is in a regime
of tight balance of excitation and inhibition: the net
input, after cancellation of excitatory and inhibitory
inputs, is much smaller than the factors that
cancel.
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uI = WIErE �WIIrI +WIXrX: (Equation 8)

If we define the external inputs to the network IE = WEXrX, II =

WIXrX, then these equations can be written as the vector

equation

u = Wr + I; (Equation 9)

where uh

 
uE
uI

!
, rh

 
rE
rI

!
, Ih

 
IE
II

!
, and W is the weight ma-

trix W =

 
WEE �WEI

WIE �WII

!
.

The balanced network solution arises by noting that the left

side of Equation 9 is very small ðOð1ÞÞ relative to the individual

terms on the right ðOð ffiffiffiffi
K

p ÞÞ. So we first find an approximate so-

lution r0 to Equation 9 in which the small left side is replaced by

0 to yield the equation for perfect balance, i.e., all inputs perfectly

canceling: Wr0 + I = 0, or r0 = � W�1I, where W�1 is the matrix

inverse of W. Note that r0 is Oð1Þ, because the elements of W

and I are all the same order of magnitude, so their ratio is

generically Oð1Þ. We can then write r as an expansion in powers

of 1=
ffiffiffiffi
K

p
, r = r0 + r1=

ffiffiffiffi
K

p
+., where r0, r1, . are all Oð1Þ, to

obtain a consistent solution: u = Wr1=
ffiffiffiffi
K

p
+., where the first

term on the right is Oð1Þ, as desired, and the remaining

terms are very small (Oð1 = ffiffiffiffi
K

p Þ or smaller). The authors

showed that, with some mild general conditions on the weights

W and inputs I, this tightly balanced solution would be the

unique stable solution of the network dynamics. That is, for a

given fixed input I, the network’s excitatory/inhibitory dynamics

will lead it to flow to this balanced solution for the mean rates:

r = � W�1I +Oð1 = ffiffiffiffi
K

p Þ.
We immediately see two points about the tightly balanced

ð ffiffiffiffiffiffi
Kn

p
[1Þ solution:
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1. Mean population responses are linear in the inputs.�W�1I

is a linear function of the input I. Tight balance implies that

nonlinear corrections to rzr0 = �W�1I are very small

relative to this linear term, so mean response r is for prac-

tical purposes a linear function of the input.

2. External input must be large relative to the net input and to

the distance from rest to threshold. The external input I

must have the same order of magnitude as the recurrent

input Wr0, so that balance can occur, Wr0 = � I, with

rates that are Oð1Þ. If I were smaller, the firing rates

rzr0 would correspondingly be unrealistically small.

In the above treatment we focused on population-averaged

responses, rE and rI. We emphasize that the balancing applies

only to the mean input across neurons of each type and leaves

unaffected input components with mean of zero across a given

type; while the mean input is very large in the tightly balanced

regime, zero-mean input components can be Oð1Þ and yet elicit

Oð1Þ responses in individual neurons (see, e.g., Hansel and van

Vreeswijk, 2012; Pehlevan and Sompolinsky, 2014; Sadeh and

Rotter, 2015). Furthermore, even in the tightly balanced regime,

individual neurons can exhibit nonlinearities in their responses,

but these are washed out at the level of population-averaged re-

sponses. We also note that nonlinear population-averaged

response properties can arise in the tightly balanced state

because of synaptic nonlinearities (e.g., synaptic depression),

which were neglected here (Mongillo et al., 2012), or because

of stimuli that force some neural sub-populations to zero firing

rate (Baker et al., 2020).
A LOOSELY BALANCED REGIME

As we have seen, if Kn is Oð1Þ, the mean and the fluctuations of

the input that neurons receive can both beOð1Þwithout requiring



Figure 2. The supralinear (power-law) neuronal transfer function
The transfer function of neurons in cat V1 is non-saturating in the natural dy-
namic range of their inputs and outputs and is well fit by a supralinear rectified
power law with exponents empirically found to be in the range 2–5. Such a
curve exhibits increasing input-output gain (i.e., slope, indicated by red lines)
with growing inputs, or equivalently with increasing output firing rates. Gray
points indicate a studied neuron’s average membrane potential and firing rate
in 30 ms bins, blue points are averages for different voltage bins, and the black
line is fit of power law, r = ½V � q�p+ , where r is firing rate, V is voltage, ½x�+ = x,
x > 0, = 0 otherwise; q is a fitted threshold; and p, the fitted exponent, here is
2.79. Note that this shows that firing rate depends supralinearly on mean
voltage, but the loosely balanced circuits described here rely on rate de-
pending supralinearly on u = Wr + I. The voltage may be sublinear in this
quantity, because of synaptic depression of the recurrent inputs, spike-rate
adaptation, post-spike reset, or input-induced conductance increases; it may
be supralinear in this quantity, because of synaptic facilitation of recurrent
inputs or dendritic excitability. The models rely on the assumption that any
sublinearity in the net transformation from u to voltage is insufficient to undo
the supralinear voltage-to-firing-rate transformation, yielding a net supralinear
transformation from u to firing rate. Figure modified from Priebe et al. (2004).
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any balancing. Given that there is both excitatory and inhibitory

input, there will always be some input cancellation or

‘‘balancing’’: some portion of the input excitation will be

canceled by input inhibition, leaving some smaller net input.

When Kn is Oð1Þ, all of these quantities—the excitatory input,

the inhibitory input, and the net input after cancellation—will

generically be Oð1Þ, and thus balancing is ‘‘loose’’: the factors

that cancel and the net input after cancellation are of comparable

size, and the balance index b is not small.

However, the fact that there is some inhibition that cancels

some excitation does not by itself imply interesting conse-

quences for network behavior. We will use the term ‘‘loosely

balanced solution’’ to refer more specifically to a solution having

two features: (1) The dynamics yields a systematic cancellation

of excitation by inhibition like that in the tightly balanced solution.

In particular, in the loosely balanced networks on which we will

focus, a signature of this systematic cancellation is that the net

input a neuron receives grows sublinearly as a function of its

external input (as shown in Figure 3A and see below). (2) This

cancellation is ‘‘loose,’’ as just described. As we will discuss,

such a loosely balanced solution produces various specific

nonlinear network behaviors that are observed in cortex.

Ahmadian et al. (2013) showed that such a loosely balanced so-

lutionwouldnaturally arise fromE/I dynamics for recurrentweights
and external inputs that are not large, provided that the neuronal

input/output function, determining firing rate versus input level,

is supralinear (having ever-increasing slope) over the neuron’s dy-

namic range. Theymodeled this supralinear input/output function

asa power lawwith power greater than1 (Figure 2). Suchapower-

law input-output function is theoretically expected for a spiking

neuron when firing is induced by input fluctuations rather than

the inputmean (Hansel and vanVreeswijk, 2002;Miller andTroyer,

2002) and is observed in intracellular recordings over the full dy-

namic range of neurons in primary visual cortex (V1) (Priebe and

Ferster, 2008). Of course, a neuron’s input/output function must

ultimately saturate but, at least in V1, the neurons do not reach

the saturating portion of their input/output function under normal

operation. For the loosely balancedsolution toarise, somegeneral

conditions on the weight matrix and external inputs, similar to

those for the tightly balanced network solution but less restrictive,

must also be satisfied.

In the presence of a supralinear input/output function, the

loosely balanced solution arises as follows. Whereas previously

we considered the effects of increasing K when recurrent and

external inputs were all Oð ffiffiffiffi
K

p Þ, now we consider the more bio-

logical case of increasing external input (i.e., stimulus) strength

while recurrent weights are at some fixed level. The supralinear

input/output function means that a neuron’s gain—its change

in output for a given change in input—is continuously increasing

with its activation level. This in turn means that effective synaptic

strengths are increasing with increasing network activation. The

effective synaptic strength measures the change in the postsyn-

aptic cell’s firing rate per change in presynaptic firing rate. This is

the product of the actual synaptic strength—the change in post-

synaptic input induced by a change in presynaptic firing—and

the postsynaptic neuron’s gain. Hence, the effective synaptic

strengths increase with increasing gains.

The increasing effective synaptic strengths lead to two re-

gimes of network operation. For very weak external drive and

thus weak network activation, all effective synaptic strengths

are very weak, for both externally driven and network-driven syn-

apses. External drive to a neuron is delivered monosynaptically,

via the weak externally driven synapses. In contrast, assuming

that the network is inactive in the absence of external input,

network drive involves a chain of two or more weak synapses:

theweak externally driven synapses activate cortical cells, which

then drive the weak network-driven synapses. From the same

principle that x2 � x when x � 1, the network drive is therefore

much weaker than the external drive. Thus, the input to neurons

is dominated by the external input, with only relatively small con-

tributions from recurrent network input. In sum, in this weakly

activated regime, the neurons are weakly coupled, largely re-

sponding directly to their external input with little modification

by the local network.

With increasing external (stimulus) drive and thus increasing

network activation, the gains and thus the effective synaptic

strengths grow. This causes the relative contribution of network

drive to grow until the network drive is the dominant input. At

some point, the effective E/E connections become strong

enough that the network would be prone to instability: a small

upward fluctuation of excitatory activities would recruit sufficient

recurrent excitation to drive excitatory rates still higher, which if
Neuron 109, November 3, 2021 5
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uncheckedwould lead to runaway, epileptic activity (and to ever-

growing effective synaptic strengths and thus ever-more-power-

ful instability). However, if feedback inhibition is strong and fast

enough, the inhibition will stabilize the network; that is, it be-

comes an ISN. This stabilization is accompanied by a loose

balancing of excitation and inhibition, as we will explain in

more detail below. Thus, in this more strongly activated regime,

the neurons are strongly coupled and are loosely balanced. Note

that the input driving spontaneous activity may already be strong

enough to obscure the weakly coupled regime, as suggested by

the finding that V1 under spontaneous activity is already an ISN

(Sanzeni et al., 2020a). As in the tightly balanced network, the

network’s excitatory/inhibitory dynamics lead it to flow to this

loosely balanced solution, without any need for fine-tuning of pa-

rameters. Because this mechanism involves stabilization, by in-

hibition, of the instability induced by the supralinear input/output

function of individual neurons along with E/E connections, it

has been termed the stabilized supralinear network (SSN) (Ahma-

dian et al., 2013; Rubin et al., 2015).

To describe the mathematics of this mechanism, we again

consider an excitatory and an inhibitory population along with

external input. We define the vectors r, u, and I and the matrix

W as before. Then the power-law input/output function means

that the network’s steady-state firing rate rSS for a steady input

I satisfies

rSS = kðuÞp+ = kðWrSS + IÞp+ ; (Equation 10)

where ðvÞ+ is the vector v with negative elements set to zero,

ðvÞp+ means raising each element of ðvÞ+ to the power p, p is a

number greater than 1 (typically 2–5; Priebe and Ferster, 2008),

and k is a constant with units Hz=ðmVÞp (and the units of W, r,

and I are mV=Hz, Hz, and mV , respectively). If we let j= k W k
represent a norm ofW (think of it as a typical total E or I recurrent

weight received by a neuron), and similarly let c= k I k represent
a typical input strength, then it turns out the network regime is

controlled by the dimensionless parameter

a = kjcp�1: (Equation 11)

As we increase the strength of external drive and thus of

network activation, c and thus a are increasing. When a � 1,

the network is in the weakly coupled regime; for a[ 1, the

network is in the strongly coupled regime; and the transition be-

tween regimes generically occurs when a is Oð1Þ (Ahmadian

et al., 2013).

The loosely balanced solution then turns out to be of the form

r = �W�1I+
c

j

� r1
a1=p

+ .
�
; (Equation 12)

where r1 is dimensionless and Oð1Þ, and the higher order terms

(indicated by .) involve higher powers of 1=a1=p (see Box 2).

Equation 12 is precisely the same equation as for the tightly

balanced solution, in the case that the input/output function is

a power law. In the tightly balanced network, c and c are both

Oð ffiffiffiffi
K

p Þ, so a is OððKÞp=2Þ (i.e., very large), and the 1=a1=p in the

second term becomes Oð1 = ffiffiffiffi
K

p Þ, as expected. The loosely

balanced solution arises, however, when a is Oð1Þ. In particular,
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in the biological case of fixed weights but increasing stimulus

drive, and given the supralinear neuronal input/output functions,

the same E/I dynamics that lead to the tightly balanced solution

when inputs are very large will already yield a loosely balanced

solution when inputs are Oð1Þ. The conditions for this loosely

balanced solution to arise are further discussed in Box 2.

The fact that the solution is loosely balanced can be seen by

computing the balance index, b (Equation 6). The network excit-

atory drive is OðjrÞ, the external drive is OðcÞ, and because the

first term on the right side of Equation 12 cancels the external

input, the net input after balancing is the product of W (which

is OðjÞ) and the second term on the right side of Equation 12,

and thus Oðc =a1=pÞ = Oððc=jÞ1=pÞ. Because 1=p<1, the net

input thus grows sublinearly with growing external input

strength, c, as illustrated in Figure 3. Moreover, it follows that

the balance index (Equation 6) is O c=a1=p

c+jr

� �
which is Oð1 =a1=pÞ

(assuming the order of magnitude of the recurrent input, jr, is

the same as or smaller than that of the external input strength,

c). Again, for the tightly balanced solution this is very small,

Oð1 = ffiffiffiffi
K

p Þ, but the loosely balanced solution arises when this

is Oð1Þ.
We noted that the requirements on the weights and external

inputs for the loosely balanced solution to arise are less restric-

tive than those for the tightly balanced solution (further dis-

cussed in Box 2). When the conditions for the tightly balanced

solution are met, then, mathematically, with increasing external

input strength c, the loosely balanced solution evolves smoothly

into the tightly balanced solution, as illustrated in Figure 3.

However, biologically, the entire dynamical range of c may lie

within the loosely balanced regime. Furthermore, firing rates

scale as c=j (Equation 12; note that the scale of �W�1I is

k I k =k W k = c=j), so that if firing rates are in a reasonable

range in the loosely balanced regime, they may become unreal-

istically high if c is increased sufficiently to reach the tightly

balanced regime.

In models involving many neurons with structured connectiv-

ity and stimulus selectivity, like those illustrated in Figure 3,

neurons that prefer stimuli far from that presented may have

their firing rates pushed to zero. Then, because of the rectifica-

tion in Equation 10, Equation 12 no longer describes the full so-

lution. Nonetheless, loosely balanced solutions still arise when

a is Oð1Þ. That is, in such cases the full nonlinear steady-state

equations, Equation 10, can yield biologically plausible solu-

tions, and when that happens the net inputs to activated neu-

rons grow sublinearly with growing external input strength,

and balance indices are Oð1Þ (as illustrated in Figure 3). The

case of structured networks with stimulus selectivity is further

discussed in Box 2.

We can now see that the loosely balanced regime differs from

the tightly balanced in the two points summarized previously:

1. In the loosely balanced regime, mean population re-

sponses are nonlinear in the inputs. This is because

when balance is loose, the second term in Equation 12,

which is not linear in the input, cannot be neglected rela-

tive to the first, linear term. In particular, the nonlinear pop-

ulation behaviors observed in the loosely balanced regime



Box 1. Nomenclature for balanced solutions

There is no standard nomenclature for describing balanced solutions. Here we have used loose versus tight balance to describe,

given systematic cancellation, whether the remainder after cancellation is comparable with, or much smaller than, the factors that

cancel.

Denève and Machens (2016) used loose balance to mean that fast fluctuations of excitation and inhibition are uncorrelated,

although they are balanced in the mean, as in the sparsely connected network of van Vreeswijk and Sompolinsky (1996, 1998),

and used tight balance to mean that fast fluctuations of excitation and inhibition are tightly correlated with a small temporal offset,

as in the densely connected network of Renart et al. (2010) and in the spiking networks of Deneve, Machens, and colleagues in

which recurrent connectivity has been optimized for efficient coding (Boerlin et al., 2013; Bourdoukan et al., 2012; Barrett et al.,

2013). All of these networks are tightly balanced under our definition.

Hennequin et al. (2017) also defined balance to be tight if it occurs on fast timescales, and loose otherwise, but they implied that this

is equivalent to our definition, that tight balance means the remainder is small compared with the factors that cancel, and loose

balance means the remainder is comparable with the factors that cancel. The implied equivalence rests on the fact that tight bal-

ance under our definition produces very large (i.e., Oð ffiffiffiffi
K

p Þ) negative eigenvalues (in linearization about the fixed point), which

means very fast dynamics, approaching instantaneous population response as K and hence negative eigenvalues go to infinity.

We point out, however, that loose balance under our definition can produce negative eigenvalues large enough to produce quite

fast dynamics, with effective time constants on the order of single neurons’ membrane time constant, or even as small as a few

milliseconds, depending on parameters.

An additional source of confusion is that there are two forms of fast fluctuations, with different behaviors. Fast fluctuations can be

shared (correlated) across neurons, or they can be independent. The large negative eigenvalues in tightly balanced networks (in our

definition) affect shared fluctuations corresponding to eigen-modes in which the activities of excitatory and inhibitory neurons fluc-

tuate coherently. Thus, shared fluctuations are balanced on fast timescales. In contrast, spatial activity patterns in which neurons

fluctuate independently are largely unaffected by those eigenvalues and need not be balanced.

Fluctuations due to changes in populationmean rates of the external input are shared, and so this form of fluctuation is followed on

fast timescales in all balanced networks (at finite rates in loosely balanced networks and approaching instantaneous following in

tightly balanced networks). Fluctuations also arise from network and external neuronal spiking noise. In networks with sparse con-

nectivity (van Vreeswijk and Sompolinsky, 1998), this yields independent fluctuations in different neurons and thus independent

fluctuations of excitation and inhibition on fast timescales (though their means are balanced). In networks with dense connectivity

(Renart et al., 2010), these spiking fluctuations become shared fluctuations due to common inputs arising from the dense connec-

tivity, and so in these networks excitation and inhibition are balanced on fast timescales. To summarize, all balanced networks will

balance shared fluctuations, such as those due to changing external input rates, on fast timescales, but excitation and inhibition

can nonetheless be unbalanced on fast timescales in sparse networks, because of independent fluctuations induced by

spiking noise.

To conclude, we would argue for a future standardized terminology for dynamically induced balancing of excitation and inhibition,

in which ‘‘loose’’ and ‘‘tight’’ balance refer to our definition as to whether the remainder after cancellation is comparable with, or

much smaller than, the factors that cancel. We suggest the use of ‘‘temporal’’ versus ‘‘mean’’ balance to refer to whether or not

excitation and inhibition are balanced on fast timescales, which depends onwhether there are substantial shared input fluctuations

across neurons. ‘‘Finite’’ versus ‘‘instantaneous’’ timescales of balancing can distinguish whether relaxation rates—the rates of

balancing shared fluctuations—are moderately sized versus very large.
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with a supralinear input/output function closely match the

specific nonlinear behaviors observed in sensory cortex

(Rubin et al., 2015), as we will discuss below.

2. In the loosely balanced regime, external input can be com-

parable with the net input and to the distance from rest to

threshold.
WHAT REGIME DO EXPERIMENTAL MEASUREMENTS
SUGGEST?

As we have seen above (Figure 3), the same model can give

a loosely balanced solution (Equation 12) when a is Oð1Þ
(e.g., when c and c are both Oð1Þ) but give a tightly balanced

solution when a is large (e.g., when c and c are both Oð ffiffiffiffi
K

p Þ).
Which of these regimes is supported by experimental mea-

surements?
Measurements of biological parameters
How large is

ffiffiffiffiffiffiffi
Kn

p
? We saw in Equation 3 that the ratio of the

mean to the SD, mY=sY, of the input of type Y ðY ˛fE; I;XgÞ
received by a neuron is equal to

ffiffiffiffiffiffiffiffiffiffiffi
KYnY

p
, where KY is the number

of inputs of type Y a given neuron receives and nY is the average

number of spikes one of these inputs fires in a PSP decay time ty
(nY = rYty, where rY is the average firing rate of one of these in-

puts). Here we estimate
ffiffiffiffiffiffiffiffiffiffiffi
KEnE

p
.

Note that
ffiffiffiffiffiffiffiffiffiffiffi
KYnY

p
is actually an upper bound for the ratio mY=sY

for a given input type, because we have neglected a number of

factors that would increase fluctuations for a given mean. These

include (1) correlations among inputs which, even if weak, can

significantly boost the input SD, sY, without altering input

mean; (2) variance in the weights, JY, which would increase the

estimate of sY by a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CJ2YD=CJYD

2
q

(where CxD indicates the

average value of x); and (3) network effects that can amplify input
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Figure 3. Loose versus tight balance
(A) Simulation of a rate model, the stabilized su-
pralinear network (SSN). The plot shows the
external input (blue), the recurrent or within-
network input (green), and the net input (orange,
equal to external plus recurrent) to the excitatory
cell receiving the peak stimulus. At all biological
ranges of external input (stimulus) strength, the
balance is loose, as exhibited by the left set of
three arrows (representing the external, recurrent,
and net inputs): the net input is comparable in size
to the other two. The balance systematically
tightens with increasing external input (right set of
arrows), as the net input grows only sublinearly
with increasing external input strength. At high
(possibly non-biological) levels of external input,
the balance will become tight, with the net input
much smaller in magnitude than the external and
recurrent inputs. The neurons were arranged in a
ring topology (there was an E/I neuronal pair at
each position on the ring), with position on the ring
corresponding, for example, to preferred direc-
tion, as in Ahmadian et al. (2013) and Rubin et al.
(2015). The strength of synaptic connections
decreased with distance over the ring, and
external (stimulus-driven) input peaked at the
stimulus direction.
(B) Simulations of a randomly connected network
of NE = 9600 excitatory and NI = 2400 inhibitory
integrate-and-fire spiking neurons, in the asyn-
chronous irregular regime, receiving increasing
levels of external input. The network had ring to-
pology, as in (A), with probability rather than
strength of connections decreasing with distance,
Top: spike rasters of 80 excitatory and 20 inhibi-
tory neurons (randomly chosen from the portion of
the ring approximately tuned to the stimulus). The
gray bars on top denote the three stages with
different levels of external input, mX, which for the
stimulus-tuned neurons were at 0.5, 1.5, and 4, in
units of the rest-to-threshold distance (which was
20 mV), respectively (other key parameters:
sX = 0:2 in same units, all KAB = 480 on average,
and for existing connections JEE = 0:63 mV,
JIE = 0:6 mV, JEI = 0:32 mV, JII = 0:25 mV). Middle:

voltage trace of a randomly chosen E cell from the sub-population shown in the top rasters. Bottom: E, I, and net input to the same cell. The balance tightens with
growing external input strength; in the first two stages (up to t = 0:5 s) the network is in a loose balance regime (0:1< b< 1), while in the last stage (t > 0:5 s) it is
tightly balanced (b< 0:1).

ll
Perspective

Please cite this article in press as: Ahmadian and Miller, What is the dynamical regime of cerebral cortex?, Neuron (2021), https://doi.org/10.1016/
j.neuron.2021.07.031
variances by creating firing rate fluctuations, although this ampli-

fication may be small for strong stimuli (Hennequin et al., 2018).

Furthermore, the ratio m=s of total input is expected to be smaller

than the ratio mY=sY for any single type. This is because s2 in-

volves the sum of three variances (Equation 5), while m involves

a difference of one mean from the sum of two others (Equation

4), representing the effect of loose balancing.

Given these considerations, we are concerned primarily with

estimating the overall magnitude of
ffiffiffiffiffiffiffiffiffiffiffi
KEnE

p
rather than detailed

values. If this magnitude is very much larger than the observed

m=s ratio in vivo, then tight balancing may be needed to explain

the in vivo ratio. To estimate the in vivo m=s ratio, we note that,

in anesthetized cat V1, s varies from 1 to 7 mV and m ranges

from 0 to 15 mV (20 mV in one case) for a strong stimulus

(Finn et al., 2007; Sadagopan and Ferster, 2012). Although these

authors did not give the paired m and s values for individual cells,

it seems reasonable to guess from these values that the value of

m=s for the total input to these cells is generally in the range 0–15.

Finn et al. (2007) also reported that, at the peak of a simple cell’s
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voltage modulation to a high-contrast drifting grating, the ratio

s=m had an average value of about 0.15 (here, we are taking m

to be the mean voltage at the peak). This suggests that the

average value of m=s at peak activation is around 1=0:15 = 6:7.

How large is
ffiffiffiffiffiffiffiffiffiffiffi
KEnE

p
? In a study of input to excitatory cells in

layer 4 of rat S1 (Schoonover et al., 2014), the EPSP decay

time tE was about 20 ms. From 1,800 to 4,000 non-thalamic-

recipient spines were found on studied cells which, with an esti-

mated average of 3.4 synapses per connection between layer 4

cells (Feldmeyer et al., 1999), corresponds to a KE—the number

of other cortical cells providing input to one cell—of 530 to 1,200.

If rE is expressed in Hz, then
ffiffiffiffiffiffiffiffiffiffiffi
KEnE

p
ranges from 3:3

ffiffiffiffi
rE

p
to

4:9
ffiffiffiffi
rE

p
. Thus, even if average input firing rates were 10 Hz, which

would be very high for rodent S1 (Barth and Poulet, 2012) (note

that the average is over all inputs, not just those that are well

driven in a given situation, and so is likely far below the rate of

a well-driven neuron), these ratios would be 10.4–15.5. For

more realistic rates of 0.01–1Hz (Barth and Poulet, 2012; Brecht

et al., 2003; Manns et al., 2004), these ratios would be 0.33–4.9.



Table 1. Values of
ffiffiffiffiffiffiffiffiffiffiffiffi
KEnE

p
for varying KE and rE, for t = 20ms

KE = 200 KE = 1000 KE = 5000

rE = 0:1 Hz 0.6 1.4 3.2

rE = 1 Hz 2.0 4.5 10.0

rE = 10 Hz 6.3 14.1 31.6
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All of these are comparable in magnitude with observed in vivo

levels of m=s.

More generally, estimates across species and cortical areas

of the number of spines on excitatory cells, and thus of the

number of excitatory synapses they receive, range from 700

to 16,000, with numbers increasing from primary sensory to

higher sensory to frontal cortices (Amatrudo et al., 2012; Elston,

2003; Elston and Fujita, 2014; Elston and Manger, 2014). Esti-

mates of the mean number of synapses per connection be-

tween excitatory cells range from 3.4 to 5.5 across different

areas and layers studied (Fares and Stepanyants, 2009; Feld-

meyer et al., 1999, 2002; Markram et al., 1997). These numbers

yield a KE of 130 to 4,700. In Table 1, we show the value offfiffiffiffiffiffiffiffiffiffiffi
KEnE

p
for KE ranging from 200 to 5,000 (rounded upward to

bias results most in favor of a need for tight balancing) and

for rates rE of 0.1 to 10 Hz. The results are all comparable

with the m=s’s observed in vivo, except for the most extreme

case considered (KE = 5000, rE = 10Hz), and even that case

is off by a factor of only 2. Thus, the numbers strongly argue

that tight balancing is not needed for the ratio of voltage

mean to variance to have values as observed in vivo.

External input is comparable in strength with net input.

Several studies have silenced cortical firingwhile recording intra-

cellularly to determine the strength of external input, with cortex

silenced, relative to the net input with cortex intact. These find

the external input to be comparable with the net input, consistent

with the loose balance scenario, rather than much larger as the

tight balance scenario requires.

Ferster et al. (1996) cooled V1 and surrounding V2 in anesthe-

tized cats to block spiking of almost all cortical cells, both excit-

atory and inhibitory, leaving axonal transmission (e.g., of

thalamic inputs) intact, though with weakened release. By

measuring the size of EPSPs evoked by electrical stimulation

of the thalamic lateral geniculate nucleus (LGN) in thalamic-

recipient cells in layer 4 of V1, they could estimate the degree

of voltage attenuation of EPSPs induced by cooling. Correcting

for this attenuation, they estimated that the first harmonic

voltage response to an optimal drifting luminance grating stim-

ulus of a layer 4 V1 cell was, on average, about one-third as great

with cortex cooled as with cortex intact, suggesting that the

external input to cortex is smaller than the net input with cortex

intact. Chung and Ferster (1998) and Finn et al. (2007) assayed

the same question by using cortical shock to silence the local

cortex for about 150 ms, during which time the voltage response

to an optimal flashed grating was measured. They found that on

average the transient voltage response in layer 4 cells with cortex

silenced was about one-half the size of that with cortex intact

(Chung and Ferster, 1998) and more generally ranged from 0%

to 100% of the intact cortical response (Finn et al., 2007). This

again suggests that the external input to cortex is smaller than
the net input; that is, the external input is Oð1Þ, consistent with

loose but not tight balance.

Total excitatory or inhibitory conductance is comparable

with threshold. The above results suggest that depolarization

due to thalamus alone is less than that induced by the combina-

tion of thalamic and cortical excitation plus cortical inhibition

(i.e., after cortical ‘‘balancing’’ has occurred). One can also

ask what proportion of the total excitation is provided by thal-

amus. This has been addressed in voltage-clamp recordings

in anesthetized mice by silencing cortex through light activation

of parvalbumin-expressing inhibitory cells expressing channelr-

hodopsin. In layer 4 cells of V1 (Lien and Scanziani, 2013; Li

et al., 2013b) and primary auditory cortex (A1) (Li et al.,

2013a), mean stimulus-evoked excitatory conductance with

cortex silenced was estimated to be 30%–40% of that with cor-

tex intact.

This tells us that the external and cortical contributions to exci-

tation are comparable. How large are they compared with the

excitation needed to depolarize the cell from rest to threshold,

which is typically a distance of about 20 mV (Constantinople

and Bruno, 2013)? With cortical spiking intact, these authors

(Lien and Scanziani, 2013; Li et al., 2013a) found mean stim-

ulus-evoked peak excitatory currents ranging from 60 to

150 pA for various stimuli. Even assuming a membrane resis-

tance of 200MU, which seems on the high end for in vivo record-

ings (Li et al., 2013a, reported input resistances of 150� 200

MU), these would induce depolarizations of 12–30 mV; that is,

the total excitatory current is comparable with threshold (i.e., it

is Oð1Þ).
A similar result can be found from decomposition of excitatory

and inhibitory conductances from current-clamp recordings at

varying hyperpolarizing current levels. In neurons in anesthetized

cat V1 for an optimal visual stimulus, peak excitatory and inhibi-

tory stimulus-induced conductances, gE and gI, were typically

<10nS and almost always <20 nS, on top of stimulus-indepen-

dent conductances (gL, for leak conductance) of about 10 nS (An-

derson et al., 2000; Ozeki et al., 2009). A study of response to

whisker stimulation in anesthetized rat barrel cortex found excit-

atory and inhibitory conductances of %5 ns (Lankarany et al.,

2016). The depolarization that the stimulus-induced excitatory

conductance would induce by itself is gE

gE +gL

� �
VE , where VE is

the driving potential of excitatory conductance, about 50 mV at

spike threshold of about �50 mV (e.g., Wilent and Contreras,

2005). Using the cat V1 numbers, this means that the depolariza-

tion driven by excitatory conductance is typically <25 mV and

almost always <33mV. Hyperpolarization driven by the inhibitory

conductance alone would be 0.4–0.6 times these values, given

inhibitory driving force of �20 to �30 mV at spike threshold.

These values are all quite comparable with the distance from

rest to threshold, � 20 mV, that is, they are Oð1Þ.
How large is the expected mean excitatory input?We have

seen that the expected mean depolarization induced by recur-

rent excitation is JEKEnE , where JE is the mean EPSP amplitude.

On the basis of the measurements of Lien and Scanziani (2013)

and Li et al. (2013b), discussed above, total excitation may be

about 1.5 times greater than recurrent excitation. JE can be diffi-

cult to estimate, because some of the KE anatomical synapses
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ll
Perspective

Please cite this article in press as: Ahmadian and Miller, What is the dynamical regime of cerebral cortex?, Neuron (2021), https://doi.org/10.1016/
j.neuron.2021.07.031
may be very weak and not sampled in physiology, and because

synaptic failures, depression, or facilitation can alter average

EPSP size relative to measured EPSP sizes. Furthermore, mea-

surements are variable, for example JE for layer 4 to layer 4 con-

nections in rodent barrel cortex has been estimated to be 1.6 mV

in vitro (Feldmeyer et al., 1999) versus 0.66 mV in vivo (Schoon-

over et al., 2014). If we assume typical values for JE of 0:5� 1mV,

then 1:5JEKEnE would exceed 75 mV for
ffiffiffiffiffiffi
Kn

p
> 7� 10 and

exceed 150mV for
ffiffiffiffiffiffi
Kn

p
> 10� 14 (compare values of

ffiffiffiffiffiffi
Kn

p
in Ta-

ble 1). We can very roughly guess that neural responses may

become better described by tight rather than loose balance

somewhere in this range of mean excitatory input (and corre-

sponding
ffiffiffiffiffiffi
Kn

p
). Although the measurements of excitatory cur-

rents and conductances described above argue that such a

range is not reached in primary sensory cortex, it could conceiv-

ably be reached (Table 1) in areas with higher KE (e.g., frontal

cortex).

Nonlinear behaviors
Sensory cortical neuronal responses display a variety of

nonlinear behaviors that, as we will describe, are expected

from the SSN loosely balanced regime but not from the tightly

balanced regime. A number of these behaviors of the SSNmodel

are shown in Figure 4. Many of these nonlinearities are often

summarized as ‘‘normalization’’ (Carandini and Heeger, 2011),

meaning that responses can be fit by a phenomenological model

of an unnormalized response that is divided by (normalized by)

some function of all of the unnormalized responses of all the neu-

rons within some region. To describe these nonlinear behaviors,

we must first define the classical receptive field (CRF): the local-

ized region of sensory space in which appropriate stimuli can

drive a neuron’s response.

One nonlinear property is sublinear response summation:

across many cortical areas, the response to two stimuli simulta-

neously presented in the CRF is less than the sum of the re-

sponses to the individual stimuli and is often closer to the

average than the sum of the individual responses (reviewed in

Reynolds and Chelazzi, 2004; Carandini and Heeger, 2011). An

additional nonlinearity is that the form of the summation changes

with the strength of the stimulus: summation becomes linear for

weaker stimuli (Heuer and Britten, 2002; T. Ohshiro et al., 2013,

Soc. Neurosci., conference). Although the SSN shows supralin-

ear summation for very weak stimuli (Figures 4A and 4B), the cir-

cuits in multiple cortical areas during spontaneous activity are

ISNs (Sanzeni et al., 2020a), indicating that the external input

driving spontaneous is likely already strong enough to eliminate

the weakly coupled regime of the SSN, in which summation is

supralinear. In experiments, it is often difficult to determine if

such nonlinear behaviors are computed in the recorded area or

involve changes in the inputs to that area. For example, cross-

orientation suppression in V1—suppression of response to a

preferred-orientation grating by simultaneous presentation of

an orthogonal grating—is largely (Priebe and Ferster, 2006; Li

et al., 2006) but not entirely (Sengpiel and Vorobyov, 2005) medi-

ated by changes in thalamic inputs to V1. However, some recent

experiments studied summation of response to an optogenetic

and a visual stimulus, a case in which the inputs driven by

each stimulus should not alter those driven by the other. Sublin-
10 Neuron 109, November 3, 2021
ear summation of responses to these stimuli was found (Nassi

et al., 2015; S. Wang et al., 2019, Cosyne, abstract; but see

Histed, 2018), which became linear for weak stimuli (S. Wang

et al., 2019, Cosyne, abstract).

Another set of nonlinearities involve interaction of a CRF stim-

ulus and a ‘‘surround’’ stimulus, which is located outside the

CRF. Across many cortical areas, surround stimuli can suppress

response to a CRF stimulus (‘‘surround suppression’’; reviewed

in Rubin et al., 2015; Angelucci et al., 2017), but this effect varies

with stimulus strength. When the center stimulus is weak, a sur-

round stimulus can facilitate rather than suppress response

(Ichida et al., 2007; Polat et al., 1998; Sato et al., 2014; Schwabe

et al., 2010; Sengpiel et al., 1997). In one study in V1 (Sato et al.,

2014), the surround stimulus was added intracortically rather

than by a visual stimulus, establishing that this computation

took place in V1. Similarly, the summation field size—the size

of a stimulus that elicits strongest response, before further

expansion yields surround suppression—is largest for weak

stimuli and shrinks with increasing stimulus strength (Anderson

et al., 2001; Cavanaugh et al., 2002; Nienborg et al., 2013; Sce-

niak et al., 1999; Shushruth et al., 2009; Song and Li, 2008; Tsui

and Pack, 2011) (illustrated for the SSN in Figures 4C and 4D).

The summation field size in feature space—the optimal range

of simultaneously presented motion directions in monkey area

MT—similarly shrinks with increasing stimulus strength (Liu

et al., 2018).

Additional nonlinearities include a decrease, with increasing

stimulus strength, in the ratio of excitation to inhibition received

by neurons (Adesnik, 2017; Shao et al., 2013), shown for the SSN

in Figure 4E, and in the wavelength of a characteristic spatial

oscillation of activity (Rubin et al., 2015). In addition, although

multiple cortical areas are ISNs during spontaneous activity,

they become non-ISNs with suppression to sub-spontaneous

levels of activity by optogenetic activation of inhibitory neurons

(Sanzeni et al., 2020a). As discussed above, this is expected in

an SSNwhen activity suppressionmakes the effective excitatory

connections sufficiently weak. However, this is not unique to the

SSN; for example, in a rectified linear network, effective excit-

atory connections weaken as more excitatory neurons reach

zero firing rate.

All of these nonlinear cortical response properties, and more,

follow naturally (Ahmadian et al., 2013; Rubin et al., 2015) from

the two regimes (i.e., weak activation/weak effective synaptic

strengths versus stronger activation/stronger effective synaptic

strengths/loosely balanced regimes) of the scenario with a

supralinear input/output function, along with simple assump-

tions on connectivity (e.g., that connections decrease in strength

and/or probability with spatial distance, e.g., Markov et al., 2011,

or with difference in preferred features, e.g., Ko et al., 2011; Cos-

sell et al., 2015). In contrast, as described previously, the tightly

balanced scenario causes population-averaged responses to be

linear in the input (individual neurons, but not the population

average, may have nonlinear behaviors), and thus appears

inconsistent with these nonlinear cortical behaviors, which in

most cases are consistent enough across neurons that they

should characterize the mean population response. Synaptic

nonlinearities can give nonlinear population-averaged behavior

in the tightly balanced regime (Mongillo et al., 2012), as can



A

C D E

B

Figure 4. Nonlinear neural behaviors in the loosely balanced regime
All panels are based on simulations of a stabilized supralinear network (SSN).
(A and B) Same ring model as in Figure 3A. (A) Three forms of response summation, for three levels of input (indicated by colors, corresponding to arrows in B):
supralinear summation, for very weak stimuli (left); sublinear summation, for stronger stimuli yielding loose balance (middle); and approximately linear summation,
for very strong stimuli yielding tight balance (right). The x axis is position on the ring, unrolled into a line. Black line shows profile of responses across excitatory
population to a 90� stimulus; response to a 270� stimulus is identical except shifted to peak at 270�. Green dotted lines show linear sum of responses to these two
stimuli. Red lines show actual responses when the two stimuli are presented simultaneously. (B) Additivity index is height of peak response to the two stimuli
together (red lines in A, divided by peak height of the linear summation of responses to each stimulus (green dashed lines in A). Index is shown for excitatory
population (red) and inhibitory population (blue). For very weak stimuli, summation is supralinear (index >1); for moderate stimuli yielding loose balance, sum-
mation is sublinear (index <1); and for very strong stimuli that ultimately yield tight balance, summation approaches linear (index = 1). x axis is identical to that in
Figure 3A, fromwhich degree of balance for a given input strength can be seen. The inset is a blow-up of the same plot in the region of weak stimuli. The strength of
supralinearity or sublinearity, and whether themodel approaches tight balance and linear summation for sufficiently high stimulus strength, can vary considerably
with parameters (see Ahmadian et al., 2013).
(C and D) Dependence of surround suppression on stimulus strength. (C) Response of an excitatory neuron to stimuli of different sizes, for increasing stimulus
strength c. (Increasing stimulus strength corresponds to increasing stimulus contrast, as indicated qualitatively by example stimuli shown at right; the quantitative
contrast levels illustrated are arbitrary.) With increasing stimulus strength, surround suppression of increasing strength is seen, and the summation field size—the
size yielding peak response—decreases. (D) Normalized summation field size (normalized to value for very large stimulus strength) versus stimulus strength, for
excitatory (red) and inhibitory (blue) cells, for same model as in (C). Summation field size systematically shrinks with stimulus strength.
(E) With increasing input strength, the ratio of recurrent (network) excitatory input, En, to inhibitory input, I, decreases with increasing stimulus strength, as
observed in Shao et al. (2013), and Adesnik (2017).
(C), (D), and (E) are all from Rubin et al. (2015), used by permission; (E) is from a ring model as in (A) and (B) but with different parameters; (C) and (D) are from a
model of E and I neurons arranged on a line.
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rectification nonlinearities (Baker et al., 2020), but it has not been

claimed or demonstrated that this could produce the specific

nonlinearities we have discussed that are seen in cortical re-

sponses.
Correlations and variability
Across many cortical systems, the correlated component of

neuronal variability is decreased when a stimulus is given, with

variability decrease seen both in neurons that respond to the
Neuron 109, November 3, 2021 11
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stimulus and those that do not respond (Churchland et al., 2010).

This is also naturally explained by the loosely balanced SSN

network (Hennequin et al., 2018). In the strongly coupled regime

of the loosely balanced SSN network, increasing stimulus

strength increases the strength with which correlated patterns

of activity inhibit themselves, thus damping their responses to

input fluctuations. The tightly balanced state represents the

end state of this process: a fully asynchronous regime in which

correlations are completely suppressed (Renart et al., 2010;

van Vreeswijk and Sompolinsky, 1998; with dense connectivity,

the mean correlation is proportional to 1=K, and the SD of the

distribution of correlations is proportional to 1=
ffiffiffiffi
K

p
[Renart

et al., 2010]; recall that K is meant to be a very large number to

achieve the tightly balanced state). Thus, the tightly balanced

state appears incompatible with the observed decrease in corre-

lated variability induced by a stimulus, because the state has

essentially no correlated variability. However, it should be noted

that variants of the tightly balanced network involving structured

connectivity can break the tight balance in structured ways that

yield finite correlated variability among preferentially connected

neurons (Litwin-Kumar et al., 2012; Rosenbaum et al., 2017).

DISCUSSION

We have seen that many independent lines of evidence are all

consistent with cortex being in a loosely balanced regime and

are inconsistent with tight balance. We define balance to mean

that the dynamics yields a systematic cancellation of excitation

by inhibition. A signature of this, for the loosely balanced sce-

nario that we consider, is that the net input a neuron receives af-

ter cancellation grows sublinearly as a function of its external

input. Loose balance means that the net input after cancellation

is comparable in size with the factors that cancel, whereas tight

balance means that the net input is very small relative to the

canceling factors. In both cases, the net input after cancellation

is comparable in size with the distance from rest to threshold so

that neuronal firing can be in the fluctuation-driven regime that

produces irregular firing like that observed in cortex.

One line of evidence for loose balance involves a variety of

measurements on the numbers and/or strengths of the inputs

that cells receive, including spine counts, strengths of external

and total input, and strengths of excitatory and of inhibitory input.

Thesemeasurements show that the expected ratio ofmean toSD

of the network input before any tight balancing is already consis-

tent with the ratios observed for a cell’s net input as judged by its

voltage response. That is, tight cancellation is not needed to

achieve the ratios observed. These measurements further show

that external input and network input are comparable in size

with the net input remaining after cancellation and that they and

the total excitatory and total inhibitory input are all comparable

with the distance from rest to threshold, consistent with loose

but not tight balance. Other lines of evidence include a variety

of nonlinear population response properties of sensory cortical

neurons, aswell as the presence of correlated variability in neural

responses and its decrease uponpresentation of a stimulus, all of

which emerge naturally from loose balance with a supralinear

input/output function but appear largely incompatible with tight

balance.
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It should be emphasized that the number of excitatory synap-

ses received by an excitatory cell, KE , increases from primary

sensory to higher sensory to frontal cortex (e.g., Elston, 2003).

Higher numbers are expected to push in the direction of tighter

balance. The expected ratio of input mean to SD and the ex-

pected size of the mean input both can become high enough

to potentially yield tight balance for the highest KE ’s, particularly

if higher average firing rates rE are assumed (Table 1). Our other

arguments depend largely, but not entirely, on measurements

from sensory cortex. The measurements of net input and

external input are all from primary sensory cortex. The studied

nonlinear response properties are primarily from both lower

and higher visual cortices (reviewed in Rubin et al., 2015). Sup-

pression of correlated variability by a stimulus, however, has

been observed in frontal and parietal as well as sensory cortex

(Churchland et al., 2010). In sum, although the evidence strongly

favors loose balance in sensory cortex, the evidence as to the

regime of motor or frontal cortex is weaker.

All of our analysis has been done in the simplified framework of

a single-compartment or ‘‘point’’ neuron, in which a neuron’s in-

puts simply add, so that excitation and inhibition cancel. This ig-

nores nonlinear aspects of dendritic integration (Palmer et al.,

2016; Poirazi and Papoutsi, 2020; Spruston et al., 2016). For

example, summation may occur within individual dendritic

branches, whose nonlinear outputs may then be summed in

moreproximal branches andultimately in the soma. Furthermore,

modulation of dendritic (Larkum et al., 2001) or somatic (Titley

et al., 2017) excitability may greatly alter the influence of synaptic

inputs on somatic voltage, so that synaptic input may be a poor

predictor of spike output. As noted previously, the strengths of

excitatory and inhibitory synapses appear to remain balanced

on individual dendritic segments (Iascone et al., 2020; Liu,

2004). The mechanisms and functions of such local balancing

remain important outstanding questions. However, theoretical

study must abstract away some details to focus on others. The

approach of simplifying a neuron to a single compartment to

focus on the behavior of circuits of such neurons has been a

very fruitful one for gaining theoretical insights that illuminate ex-

periments, as exemplified by the studies discussed here. In addi-

tion to the theoretical utility of this simplification, it also receives

empirical justification fromafinding that, despite dendritic nonlin-

earities, linear summation gives a very good approximation of

input integration in cortical pyramidal cells in vivo, capturing

more than 90% of the variance of somatic membrane potential

in experimental recordings (Ujfalussy et al., 2018).

We have studied a regime in which the dynamics is asynchro-

nous and goes to a fixed point—a steady rate of firing—for a

steady input. It has been argued that in awake rodent auditory

cortex, spontaneous activity may be driven by correlated bursts

or ‘‘bumps’’ of input on an otherwise quiet or far-from-threshold

background (DeWeese and Zador, 2006; Hromádka et al., 2013;

see also Tan et al., 2014). More generally, as discussed in the

introduction, both synchronous and asynchronous states are

observed in spontaneous activity in awake cortex (e.g., Fergu-

son and Cardin, 2020; McCormick et al., 2015). Stimulus-evoked

responses to commonly used stimuli in both auditory (Hromádka

et al., 2008) and somatosensory (Barth and Poulet, 2012) cortex

tend to be very sparse, with neurons having low mean firing



Box 2. When do balanced solutions arise?

Weconsider a ratemodel in which the neuron’s input/output function is described by some function fðxÞ, which is zero for x% 0 and

monotonically increasing for xR0. Then the network’s steady-state firing rate rSS for a steady input I is

rSS = fðWrSS + IÞ (Equation B1)

where f acts element by element on its argument; that is, fðuÞ is a vector whose ith element is fðmiÞ (the f’s might differ for different

neurons, which we neglect for simplicity). As before, we let j= k W k and c = k I k. We define the dimensionless and Oð1Þ matrix

J=W=j and vector g = I=c, so that J and g represent the relative synaptic strengths and relative input strengths, respectively,

while their overall magnitudes and dimensions are in c and c. Then, as in Ahmadian et al. (2013), we can define the dimensionless

variable y = j
c r, and Equation B1 can be rewritten

ySS =
j

c
fðcðJySS + gÞÞ (Equation B2)

Note that this equation ensures that ySSR0. Note also that, when fðxÞ= kðxÞp+ (ðxÞ+ = x, xR0; = 0, otherwise), then this equation

can be rewritten ySS =aðJySS +gÞp+ where a = kjcp�1. This is the origin of the dimensionless constant amentioned in themain text.

If we define f�1ð0Þ = 0, then because f is monotonically increasing for non-negative arguments, it is invertible over that range; that

is, f�1ðxÞ is defined for xR0. We can then rewrite Equation B2 as

1

c
f�1

�
c

j
ySS

�
= ðJySS +gÞ+ (Equation B3)

If we assume

ðJySS +gÞiR0 for all i; (Equation B4)

that is, if ðJySSÞiR� ðgÞi for all i, then we can replace the right side of Equation B3 with JySS +g (without the ðÞ+ ). This condition,

Equation B4, is a condition on the solution ySS, which we must check is self-consistently met for any solution we derive under this

assumption. Note also that, from Equation B2, the condition ðJySS +gÞi > 0 is met if and only if ðySSÞi > 0, so if we find a solution ySS
that has all positive elements, it will automatically satisfy Equation B4. Given this assumption, a bit of further manipulation then

yields

ySS = � J�1g+
1

c
J�1f�1

�
c

j
ySS

�
(Equation B5)

The first term, y0SSh� J�1g, is the balancing term, which cancels the external input g; that is, ðJy0SS +gÞ = 0. If the second term

becomes small relative to the first in some limit, then the tightly balanced solution, ySSz� J�1g or equivalently rSSz�W�1I, ex-

ists in that limit, while a loosely balanced solution (balance indexOð1Þ) arises when the second term is comparable in size with the

first. (More careful analysis is needed to ensure that this solution is stable, and that there are not also other solutions.) Note that

Equation B5 gives an equation of the form Equation 12 when we (1) take f�1ðxÞ= ðx=kÞ1=p+ and (2) multiply both sides of Equation B5

by c=j to convert ySS to rSS.

Assuming all the elements of y0SSh� J�1g are >0, a self-consistent solution in which the second term in Equation B5 becomes

small can be found in at least three cases:

1. If c and c are scaled by the same factor, which becomes arbitrarily large, then there is a self-consistent solution in which ySS is

converging to � J�1g. Then the f�1 factor is not changing (except for the small changes due to the changes in ySS as it con-

verges), but it is multiplied by the factor 1
c, which becomes arbitrarily small; thus the second term becomes arbitrarily small,

regardless of the particular structure of f. This is the case studied for the tightly balanced solution, in which both c and c

are taken proportional to
ffiffiffiffi
K

p
, with K very large. (Note that the mean field equations derived in van Vreeswijk and Sompolinsky,

1998, differ from the generic steady-state rate equations, Equation B1, in that they also involve the self-consistently calculated

input fluctuation strengths, sA; the scaling argument given here nevertheless holds in that case too.)

2. Suppose c is scaled for fixed c, which is the biological case in which synaptic strengths are fixed and the strength of the

external input is varied from small to large. Then if f�1ðxÞ growsmore slowly than linearly in increasing x, then the 1
c factor shrinks

faster than the f�1 term grows, so again there is a self-consistent solution in which ySS is converging to�J�1g and the second

(Continued on next page)
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Box 2. Continued

term becomes arbitrarily small with increasing c. This is the case studied for the loosely balanced solution in the SSN, in which

fðxÞ grows supralinearly with x and therefore f�1ðxÞ grows sublinearly with x.

3. We again suppose c is scaled for fixed c, but now imagine that f�1ðxÞ grows faster than linearly in increasing x; that is, fðxÞ is
sublinear (e.g., fðxÞ= ðxÞp+ for 0<p< 1). Then there is a self-consistent solution in which y/� J�1g as c/0, with the second

term in Equation B5 going to zero as c/0. This case is the reverse of the SSN: the strongly coupled, balanced regime arises for

c/0, while the weakly coupled, feedforward-driven regime arises for large c.

In sum, if the elements of �J�1g are positive, then a self-consistent tightly balanced solution arises for any f if c and c are scaled

together by an increasing factor; for supralinear f if c is scaled by an increasing factor; or for sublinear f if c is scaled by a decreasing

factor. In all of these cases, formoderate sizes of the scaled parameter(s) (e.g., for the SSN, for a = Oð1Þ) such that the second term

of Equation B5 is comparable in sizewith the first, a loosely balanced solution should arise. Note that because rSS = ðc =jÞySS, then
from Equation B5 the net input after balancing should grow with increasing external input c as f�1ðcÞ; this is sublinear in c for the

SSN case of supralinear f.

If one considers a two-population model—a population of E cells and a population of I cells, with each population’s average rate

represented by a single variable—then conditions on J and g can be defined such that the elements of�J�1g are positive and the

balanced fixed point is stable and is the only fixed point (Ahmadian et al., 2013; Kraynyukova and Tchumatchenko, 2018; van

Vreeswijk and Sompolinsky, 1998). On the other hand, when the E element of �J�1g is negative, Equation B5 cannot serve as

a basis for an asymptotic expansion with the leading term �J�1g, and the tightly balanced state does not exist. (Given

ð�J�1gÞE < 0, if the tightly balanced state existed—meaning that the second term of Equation B5 becomes much smaller than

the first while Equation B5 is applicable—then ySS must have crossed zero to become negative, but once that has happened

we could no longer proceed past Equation B3, and Equation B5 would no longer be applicable, which is a contradiction; hence

the tightly balanced state cannot exist.) However, the loosely balanced state can still arise in this case in a broad parameter regime

of J and g and can be found as the fixed point of the iterative equation, ySSðtÞ = �J�1g+ ð1 =cÞJ�1f�1ððc =jÞySSðt � 1ÞÞ, given
appropriate initial conditions ySSð0Þ; see Ahmadian et al. (2013). In this case, with increasing c, rE grows, but then saturates

and starts decreasing, and eventually is pushed down to 0. However, if we assume that the maximal external input (i.e., the

maximal c; e.g., the maximal firing rate of the thalamic input to a primary sensory cortical area) can only drive rE to saturation

or slightly beyond, this case represents a viable model of cortical systems (Ahmadian et al., 2013; Hennequin et al., 2018; Rubin

et al., 2015; but see Sanzeni et al., 2020c).

A two-population model accurately describes the behavior of an unstructured model with many E and I neurons (i.e., with random

connectivity andwith neurons in each population receiving comparable stimulus inputs). In some cases, this model also can form a

good approximation to the behavior of a multi-neuron circuit with structured connectivity and stimulus selectivity (Ahmadian et al.,

2013). More generally, though, in such a structured circuit with localized connectivity, for larger/stronger localized stimuli, some set

of neurons (e.g., neurons not selective for the stimulus) may eventually receive a net inhibition and become silent, meaning that the

condition of Equation B4 is notmet and Equation B5 does not apply. (However, if the connectivity is translation invariant—the same

at any position in the model—and the external input extends more narrowly than the network connections, then a balanced fixed

point can still be attained; Rosenbaum and Doiron, 2014.) Nonetheless, we find in simulations (Ahmadian et al., 2013; Hennequin

et al., 2018; Rubin et al., 2015) that for reasonable stimulus input strengths, SSN behavior is reasonably described by the two-pop-

ulation model, in that (1) there is a transition with increasing input strength from a weakly coupled, feedforward-driven regime to a

strongly coupled, loosely balanced regime in which the input to excited neurons grows sublinearly as a function of the external

input strength, and (2) if we define the W and g of the two-population model as describing the net input received by a cell in

the larger, structured model (e.g.,WEE represents the mean summed synaptic strength from excitatory cells to a single excitatory

cell, and gE represents the mean external input received by stimulus-selective excitatory cells) then reasonably good insight into

the operating regime of the larger model can be obtained from the analysis of the two-population model presented here and, in

much more detail, in Ahmadian et al. (2013); Kraynyukova and Tchumatchenko (2018).

We believe the same overall analysis of a transition from a weakly coupled regime to a strongly coupled, loosely balanced regime

will apply to multi-population models incorporating multiple subtypes of inhibitory cells (e.g., Garcia Del Molino et al., 2017; Ku-

chibhotla et al., 2017; Litwin-Kumar et al., 2016), but more detailed aspects of the analysis of the two-population model (Ahmadian

et al., 2013; Kraynyukova and Tchumatchenko, 2018) need to be generalized to that case.
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rates, although a given neuron may respond vigorously to partic-

ular stimuli. Very low firing rates may also suggest a regime

sitting far from threshold with occasional input ‘‘bumps’’ driving

occasional responses, although alternatively they may represent

failure to find optimal stimuli for the cells. Finally, in both of these

systems, natural stimuli and responses to them may be rapidly
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changing rather than sustained, requiring analysis of time-

dependent network dynamics rather than steady states. In the

tightly balanced network, the mean population response follows

the mean input close to instantaneously, although this could be

changed by incorporating more biophysical details of cells and

synapses. In the loosely balanced network, the population
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dynamics can be more complex and more model dependent. It

remains to be seen how useful the concepts discussed here

will be for understanding cortical systems that are synchronously

firing, driven by occasional synchronous inputs, or dynamically

responding to dynamically changing stimuli.

The seminal discovery of the tightly balanced network (van

Vreeswijk and Sompolinsky, 1996, 1998) solved a key problem

in theoretical neuroscience: how can neurons remain in the fluctu-

ation-driven regime, so that they have irregular firing with reason-

able firing rates, without requiring fine-tuning of parameters? The

answer was that when external and network inputs were very

large, the network’s dynamics could robustly tightly balance the

excitation and inhibition that neurons receive, leaving a net mean

input after cancellation that isnegligibly small relative to the factors

that cancel. This allows both the mean and SD of the net input to

be comparable with the distance from rest to threshold despite

the very large size assumed for the factors that cancel, yielding

the fluctuation-driven regime. This achievement along with the

model’s mathematical tractability have made it a very influential

model for the theoretical study of neural circuits. However, for all

of the reasons stated above, the tightly balanced regime onwhich

thework focused does not seem tomatch observations of at least

sensory cortical anatomy and physiology.

The loosely balanced solution shows that when neuronal

input/output functions are supralinear, the same dynamical

balancing can arise from network dynamics without fine-tuning,

but in a regime in which external and network inputs are not

large. Instead, the balancing arises when these inputs, and the

net input remaining after cancellation of excitatory and inhibitory

input, are all comparable in size with one another and with the

distance from rest to threshold. Furthermore, for weak inputs

this same scenario produces a weakly coupled, feedforward-

driven regime that can explain the observation that network-level

input summation changes from sublinear for stronger stimuli to

linear or supralinear for weak inputs.

The tightly balanced network demonstrated that a network

could self-consistently generate its own variability. As we

showed in the section ‘‘How large is
ffiffiffiffiffiffi
Kn

p
?’’, the loosely

balanced regime can also generate realistic levels of variability.

However, biologically there is no need for the network to

generate all of its own variability, as all inputs to cortex are noisy

(and there are other sources of noise, such as stochasticity of

cellular and synaptic mechanisms [Mainen and Sejnowski,

1995; O’Donnell and van Rossum, 2014; Schneidman et al.,

1998] and input correlations [DeWeese and Zador, 2006; Ste-

vens and Zador, 1998]). In at least one case (Sadagopan and Fer-

ster, 2012), the noise derived from the cortical area’s input was

argued to be large enough to potentially fully account for the

noise seen in the cortical neurons.

Very recently, other solutions have been proposed to the prob-

lem of having both the input mean and SD be comparable with

the distance from rest to threshold (Khajeh et al., 2021; Sanzeni

et al., 2020b). Based on the evidence we have presented here,

any such solution, to be compatible with biology, should be

loosely rather than tightly balanced.

In conclusion, we believe that at least sensory, and perhaps all

of, cortex operates in a regime in which the inhibition and excita-

tion neurons receive are loosely balanced. This along with the
supralinear input/output function of individual neurons and sim-

ple assumptions on connectivity explains a large set of cortical

response properties. A key outstanding question is the compu-

tational function or functions of this loosely balanced state and

the response properties it creates (e.g., see Echeveste et al.,

2020; G. Barello and Y. Ahmadian, unpublished data).
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