
Nature Neuroscience | Volume 26 | February 2023 | 239–250 239

nature neuroscience

https://doi.org/10.1038/s41593-022-01237-9Article

The geometry of cortical representations of 
touch in rodents

Ramon Nogueira    1,2,3  , Chris C. Rodgers    2,3,4,5, Randy M. Bruno    2,3,4,6 & 
Stefano Fusi    1,2,3,4 

Neurons often encode highly heterogeneous non-linear functions of 
multiple task variables, a signature of a high-dimensional geometry.  
We studied the representational geometry in the somatosensory cortex of 
mice trained to report the curvature of objects touched by their whiskers. 
High-speed videos of the whiskers revealed that the task can be solved by 
linearly integrating multiple whisker contacts over time. However, the 
neural activity in somatosensory cortex reflects non-linear integration of 
spatio-temporal features of the sensory inputs. Although the responses at 
first appeared disorganized, we identified an interesting structure in the 
representational geometry: different whisker contacts are disentangled 
variables represented in approximately, but not fully, orthogonal subspaces 
of the neural activity space. This geometry allows linear readouts to perform 
a broad class of tasks of different complexities without compromising the 
ability to generalize to novel situations.

Making sense of the world often requires the integration of sensory 
evidence across multiple sources of information. In some situations, 
this involves only simple operations like linear summation. For example, 
if we need to determine whether an object is close to our hand or not, 
we can just move our fingers until any of them touches the object1,2. 
Summing the tactile feedback coming from all fingers and compar-
ing it to a threshold would be sufficient to report whether the object 
is present or not. In other words, a linear decoder would be sufficient 
to perform this simple detection task. More difficult tasks, like recog-
nizing the shape of an object by touch, might require more complex 
decoders to process the stimulus, generate the correct response and 
generalize to numerous variations of the sensory experience. These 
tasks might involve active sensing and non-linear integration of the 
sensory inputs coming from multiple fingers3,4. But it is also possible 
that the way we explore these objects by touch leads to spatio-temporal 
input patterns that are simpler than expected. For shape recognition, 
would a linear decoder be sufficient? Would the neural code reflect 
the difficulty of the task? What kind of neural representations would 
allow for generalization? To answer these questions, we investigated 

the problem of shape recognition using recent experimental data5 in 
which mice are trained to report whether an object they touch with 
their whiskers is convex or concave. We found that the task can be 
solved by simple linear integration of whisker features (linear decoder).  
A linear decoder is also a good predictor of the decisions of the animals.

We then analyzed the neural activity recorded in somatosensory 
cortex. We observed that the responses of individual neurons are 
diverse and seemingly disorganized, as typically observed in cogni-
tive areas6,7. In our experiment we could not even observe the soma-
totopic organization that one would expect from the architecture of 
the barrel cortex (see also ref. 5). Interestingly, the neural responses 
are best explained by a process of non-linear spatio-temporal inte-
gration, despite the observation that the task can be solved using  
linear integration.

The lack of organization at the individual neuron level induced us 
to analyze the representational geometry, which is defined by the set of 
distances between all the points in the population activity space that 
represent different sensory stimuli. The geometry is the only aspect 
of the representation that is preserved across individuals, species, 
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points can be separated in any possible way into two groups, which 
might correspond to different required responses. In other words 
this geometry confers flexibility because a linear readout can be easily 
trained to perform any binary task without changing the representa-
tion. For this geometry individual neurons exhibit responses that are 
non-linear functions of multiple task relevant variables (non-linear 
mixed selectivity6,12).

An alternative geometry is illustrated in G1 (Fig. 1a). The points 
representing the four stimuli now define a 2D square, which is lower 
dimensional than the representation in G3. These representations are 
called abstract because different variables are represented in orthogo-
nal subspaces (one axis for C1, whisker 1 contacts, and one axis for C3, 
whisker 3 contacts, in the figure), and thanks to this arrangement they 
have special generalization properties: a linear decoder trained to 
report the value of one variable defines a coding direction in the neural 
activity space, and this direction is the same no matter what the values 
of the other variables are. So a linear decoder can readily generalize to 

and artificial neural networks (see, for example, ref. 8,9), and different 
geometries have different computational properties7,10,11. It is instruc-
tive to discuss a few prototypical geometries (Fig. 1a). The first geom-
etry that we consider (G3) is composed of four points that represent 
different sensory stimuli and define a relatively high-dimensional 
object (four points can span three dimensions at most). Throughout 
the article, when we speak about dimensionality we refer to the embed-
ding dimensionality of the set of points (that is, the minimal number 
of coordinate axes needed to determine the positions of all points). In 
the specific example in the figure each point describes the neuronal 
responses during a sensory experience in which the subject animal 
explores different objects using whiskers. These sensory experiences 
are characterized by different values of two variables (for example, they 
could correspond to low or high number of whisker contacts for two 
different whiskers). These two variables can be decoded even using a 
simple linear decoder, which could be implemented by a downstream 
or a recurrent neuron. But the high dimensionality allows for more: the 
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Fig. 1 | Different geometries of the neuronal representations and the 
whisker-based shape discrimination task. a, Each panel shows the activity 
space spanned by N orthogonal axes that represent the firing rate of N neurons. 
Each point in this space corresponds to a pattern of population activity. 
Low-dimensional representations (G1): the number of contacts C1 and C3 are 
represented along two orthogonal axes. These representations generalize well 
to unseen experimental conditions (Generalization) but lack flexibility—the 
ability to discriminate many different groups of points using a linear decoder 
(Discrimination). A linear decoder trained to report the value of C1 (high vs 
low) for a given value of C3 would generalize to all values of C3. However, a linear 
readout would not be able to separate the green from the orange points. They 
would be separable for high-dimensional representations (G3) which are flexible 
but generalize poorly. Intermediate geometries (G2) could benefit from the 
computational properties of both low- and high-dimensional representations. 

b, Animals were presented with either a convex or a concave shape and after two 
seconds they reported their choice by licking the left (concave) or right (convex) 
lickpipe. c, Whiskers and shape position were monitored with a high-speed 
camera and an image parsing algorithm20–22. Panel adapted from ref. 5.  
d, The probability of making a lick on the correct side increased as a function of 
time. The choice on a given trial was determined by the side of the first lick after 
the response window opened (t = 0). The mean performance across animals 
was ~ 78%. e, The contact rates of all whiskers (C0, C1, C2 and C3) increased as the 
shape came within whisking distance (see Extended Data Fig. S1 for time profiles 
for each shape, and for correct and error trials separately). f, Difference in the 
total number of contacts between concave and convex shapes for all whiskers. 
C1 and C2 made more contacts for convex shapes, while C3 made more contacts 
for concave shapes. See Extended Data Fig. S1 for the distribution across animals. 
Errorbars in (d–f) correspond to s.e.m. across animals (n = 10 mice).
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situations it was never trained on. These representations are called dis-
entangled in the machine learning community13–15 and they have been 
observed in several brain areas7,16,17. In this scenario individual neurons 
respond to a single variable or to a linear combination of the task rel-
evant variables (linear mixed selectivity6,18,19). These representations 
allow for generalization at the expense of the flexibility guaranteed by 
the high-dimensional representations.

Given four experimental conditions, these two geometries are 
idealized examples of low- and high-dimensional representations, but 
there are also intermediate scenarios like the one in G2 (Fig. 1a), in which 
a low-dimensional scaffold is non-linearly distorted. These geometries 
represent a compromise that could have some of the computational 
benefits of both high- and low-dimensional representations, and they 
are the best description of the representations that we observed in 
somatosensory cortex. The low-dimensional scaffold renders the 
whisker features disentangled variables, which allows for enhanced 
generalization. This disentanglement is not a simple consequence 
of somatotopy, which we actually did not observe. The non-linear 
distortions make the representations sufficiently high-dimensional 
to enable a linear readout to perform complex tasks, but they are not 
so high-dimensional that they compromise the robustness to noise 
and capacity to generalize. A geometry that balances complexity and 
generalization, as seen in monkey prefrontal cortex7, may therefore be 
a general feature of the cortex.

Results
The whisker-based object discrimination task
Mice were trained on a whisker-based shape discrimination task (Fig. 1b),  
in which they were asked to report whether an object was concave or 
convex (see ref. 5 for a detailed description of the experiment). Each 
trial began with the object moving toward the whiskers. Objects could 
stop at one of three different distances from the face (far, medium or 
close). When the response window opened, mice had to make a choice 
by licking the left lickpipe for concave objects and the right lickpipe for 
convex objects. The object position and the whiskers were monitored 
using high-speed video and processed with a deep neural network20–22 
(Fig. 1c). Importantly, mice were free to whisk and lick throughout the 
trial (2 seconds). On each trial, the choice of the animal was determined 
by the side of the first lick after the response window opened.

Mice performed the task with a mean accuracy of 77.7% ± 0.9% 
(s.e.m.) (Fig. 1d). The probability of making a correct lick increased 
throughout the trial, indicating that mice based their decision on the 
accumulated sensory evidence gathered by whisking. This implies 
some form of temporal integration. Most contacts were made between 
t = − 1.25 and t = − 0.25, suggesting that this was the most informative 
time window (Fig. 1e). The whiskers contacted the two shapes at differ-
ent rates (Fig. 1f). The contact rate of each whisker followed a similar 
time profile, and mice made more contacts on correct trials (Extended 
Data Fig. S1), suggesting that errors resulted from poorer sensory 
gathering or a lower level of task engagement.

Linear integration is sufficient for object discrimination
We trained a linear decoder to report stimulus shape on a trial-by-trial 
basis. Its input was the observed spatio-temporal pattern of whisker 
contacts (Fig. 2a) and the angular position of the whiskers during con-
tacts. We asked whether a linear decoder could use these data to predict 
the animal’s choice, which on error trials differed from the shape’s 
actual identity. Decoding the stimulus can reveal the whisker features 
that are useful to perform the task, whereas decoding the choice indi-
cates which whisker features are actually used by mice. Both predictions 
were tested on held-out trials (cross-validation; see Methods).

The most informative set of features comprised all the whisker 
contacts and angle of contact across time (Fig. 2b, see also ref. 5). When 
whisker contacts were summed either over time, or across whiskers, 
the performance decreased, indicating that it is important to read out 

the full spatio-temporal pattern of whisker contacts and angles. Unsur-
prisingly, the weights of the classifier trained on contacts summed 
over time (Fig. 2b inset) reflected the difference in total number of 
contacts for convex vs concave objects (Fig. 1f). We also observed 
that the accuracy of the classifiers increased as mice accumulated 
more evidence (Fig. 2c; see Methods). Other features like force at the 
base of the whisker (whisker bending) or duration of contacts were not 
included because we have previously shown that they are less relevant5.

Would non-linear decoders perform better at determining 
the shape of the object and the choice of the animal? We trained 
feed-forward neural networks with non-linear units arranged in mul-
tiple layers to predict stimulus and choice. These decoders are more 
complex, containing more parameters than the linear ones, so they will 
certainly perform better at classifying the patterns in the training set. 
However, the cross-validated performance of the non-linear classifier 
can surpass that of the linear classifier only if non-linear combinations 
of the features are important. Despite the task being significantly more 
complex than other whisker-based tasks (for example, pole detection), 
linear and non-linear decoders performed similarly at classifying stim-
uli (linear: 90.3% ± 1.2%; best non-linear: 91.3% ± 1.1%) (Fig. 2d; green). A 
similar result was observed on both correct and error trials (Extended 
Data Fig. S2a), though for error trials the performance was significantly 
lower for all decoders. This performance decrease is likely due to the 
lower number of contacts and overall lower task engagement in error tri-
als (Extended Data Fig. S1). When predicting choice, a similar trend was 
observed (linear: 72.2% ± 1.6%; best non-linear: 75.6% ± 1.2%) (Fig. 2d;  
blue), suggesting that animals’ decisions were mostly driven by a linear 
combination of the sensory cues across time and whiskers. On error 
trials our ability to predict choice was substantially lower, suggesting 
that these trials were qualitatively different (Extended Data Fig. S2a).

We also fit recurrent neural networks (RNNs) to decode stimulus 
and choice on a trial-by-trial basis, but the performance was not better 
than with feed-forward networks (Extended Data Fig. S3a). Finally, we 
fit the decoders only on trials with a specific stopping position (far, 
medium, close; Extended Data Fig. S2c) and obtained similar results. 
Shapes with lower curvatures were harder to discriminate for our 
decoders (Extended Data Fig. S2d), consistent with the results obtained 
in behaving mice5.

Linear and non-linear discrimination in simulated tasks
We wondered whether non-linear decoders could have an advantage 
for shapes or shape-response associations different from those used 
in our task. We set up a simulation that reproduced several aspects of 
the experiment. We simulated the movement of three flexible whiskers 
that make contacts with the presented shapes (Fig. 3a). We then trained 
linear and non-linear classifiers to perform different tasks using the 
simulated spatio-temporal pattern of whisker contacts and angle of 
contacts. Similar to the behavioral data, linear and non-linear decod-
ers performed equally well at discriminating between the convex and 
concave shapes used in the actual experiment (Fig. 3b).

Interestingly, non-linearities failed to improve the decoding per-
formance also when we considered shapes with a richer micro-structure 
and orientations (Fig. 3c,d). Different shape positions and sizes, and 
shapes with different curvatures, also produced equivalent results 
(Extended Data Fig. S4). A possible explanation is that the decoders are 
reading out a spatio-temporal pattern of whisker contacts and angles, 
which contains information about multiple time steps. Concatenating 
patterns at different time steps is probably equivalent to projecting 
the inputs of individual times into a higher dimensional space, which 
enables a linear decoder to perform as well as a non-linear one. How-
ever, it is possible to design simulated tasks that require non-linear 
combinations of sensory cues (Fig. 3e, see also Extended Data Fig. S4), 
indicating that behaviorally relevant non-linear tasks exist. These tasks 
typically involved complex classifications of groups of simple shapes, 
indicating that the non-linearities are often important when the labels 
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assigned to the shapes (that is, their semantics) are complex, rather 
than the shapes themselves.

Non-linear mixed selectivity in the mouse S1 cortex
To characterize how task variables are represented in the somatosen-
sory cortex (S1), we recorded populations of neurons while mice per-
formed the whisker-based object discrimination task (Fig. 4a). Neurons 
are predictive of shape identity and animal choice on a trial-by-trial basis 
as revealed by the performance of a linear classifier (Fig. 4b left panel, 
see Methods). At the time of the response, shape could be decoded from 
small ensembles of simultaneously recorded neurons (mean popula-
tion size of 25.4 cells) with a performance of 56.8% ± 1.7% (green) and 
the choice of the animal with a performance of 65.4% ± 2.0% (blue). 
The decoding accuracy for both shape and choice was significantly 
higher when we grouped together the activity from different record-
ing sessions (pseudopopulations; see ref. 5). Not suprisingly, S1 neu-
rons encoded the number of contacts for each whisker (high or low,  
Fig. 4b right panel).

To determine whether the neurons also responded to other vari-
ables, we trained encoding models that predicted the firing rate of the 

population of simultaneously recorded neurons from the set of whisk-
ing and behavioral variables for all time steps (100 ms) and trials (Fig. 4c).  
We provided the encoding models with the following regressors: instan-
taneous whisking contacts and angle, lick side and rate, and trial task 
variables (current and previous reward, choice and stimulus) (see Meth-
ods). Stimulus features like force at the base of the whisker (whisker 
bending) or contact duration were not included in the model because 
we have previously shown that they are weakly encoded5.

We considered four different encoding models that were imple-
mented using feed-forward neural networks: one that implements lin-
ear regression, and three feed-forward neural networks with 1-3 hidden 
layers of rectified linear units (ReLU) and linear output. Note that linear 
regression can only generate pure and linear mixed selectivity neurons 
whereas multi-layer networks can respond to non-linear interactions 
between regressors (non-linear mixed selectivity). We found that the 
observed neural activity is best explained by the non-linear mixed 
selectivity encoding model with one hidden layer (R2 = 0.111 ± 0.005 on 
held-out data; see Methods) (Fig. 4d; see also Extended Data Fig. S5a,b).  
The linear model with only pure and linear mixed selectivity was the 
worst at explaining the neural data (R2 = 0.089 ± 0.005). Including one 
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number of contacts between concave and convex shapes (see Fig. 1f).  
c, Decoding performance as a function of time when the decoder reads out the 
full spatio-temporal pattern of contacts and angle from -2 seconds to the time 
indicated on the x-axis. The performance increases gradually for both shape and 
choice, indicating that there is some form of accumulation of evidence.  
d, A multi-layer neural network model is trained to use the full spatio-temporal 
pattern of contacts and angle of contact to predict the stimulus and the choice 
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cues is sufficient to predict both stimulus and choice. In all panels stimulus and 
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intermediate layer in the encoding model increased the explanatory 
power by 24%, a remarkable result given that the non-linearity is not 
necessary to explain the observed behavior. We also used RNNs as 
encoding models but they did not perform better than feed-forward 
encoding models (Extended Data Fig. S3b). The models performed 
better on correct trials, likely due to the the smaller number of contacts 
made on the less frequent incorrect trials (Extended Data Fig. S5c). 
Moreover, they explained better the responses of inhibitory neurons 
and neurons located in deeper layers of the somatosensory cortex 
(Extended Data Fig. S5d,e), possibly due to their higher firing rates.

To assess the importance of each regressor, we calculated 
ΔR2 = R2

Full − R2
Reduced, which quantifies the loss in prediction power on 

held-out data when a particular regressor or group of regressors is set 
to zero (Fig. 5a). We evaluated ΔR2 for different groups of regressors 
and found that whisker contacts and continuous whisker angular posi-
tion were most important variables for explaining the neuronal 
responses (Fig. 5b; see also Extended Data Fig. S6a). Superficial layers 
were more strongly driven by contacts than whisker angular position, 
while deep layers showed the opposite trend (Extended Data  
Fig. S6b-d). ΔR2 for the current and previous time steps (time kernel) 
for the different whisker features showed a recency effect for all whisk-
ers. Population activity was better predicted by C1 and C2 contacts 
than by C3 contacts, and it was less well predicted by the angular posi-
tion of C1 than by the other whiskers (Fig. 5c).

What does somatosensory cortex mix?
The recorded neurons displayed a wide range of response properties: 
while some neurons showed approximate linear mixed selectivity for 

C1, C2 and C3 contacts (Fig. 6a), others showed sub-linear or XOR-like 
responses (Fig. 6b).

To assess the non-linear mixing, we used the neural network  
encoding models because the weights of the intermediate units in  
these models would be automatically tuned to produce the interaction 
terms needed to explain the neuronal responses. We determined the 
contribution of non-linear interactions of specific pairs of variables 
(or pairs of groups of variables) by setting the two variables (or two 
groups) to zero and evaluating: 1) ΔR2, which is the loss in explanatory 
power for the full non-linear model (see Fig. 5b-d) and relies on interac-
tion terms; 2) ΔR2

Linear, which is the analogous loss for the linear model. 
We then computed the difference ΔR2 − ΔR2

Linear  (Extended Data  
Fig. S7a), which quantifies the importance of the particular nonlinear 
interaction that was set to zero. The interaction term is important when 
this difference is large. We found that the most important interaction 
was between whisker angular position and contacts (Fig. 6c), followed 
by interactions between whisker angular position and the other vari-
ables. Similar results were observed in both excitatory and inhibitory 
neurons, and across layers (Extended Data Fig. S7b,c).

We next assessed the importance of the interactions between 
different whiskers (whisker contacts and angular position) for differ-
ent time lags. For contacts, the interactions are strongest not for the 
variables at the current time step, but actually at time-lags of 100ms 
(Fig. 6d left). This was unexpected given that contacts at the current 
time steps are those that most affect the neural activity (see Fig. 5c) 
and could reflect response inhibition between whisker contacts that 
occur within whisk cycles of 50-100 ms. For the angular position of the 
whiskers, the strongest interactions were observed in the current time 
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tasks but not on more complex shapes. a, Three snapshots of the simulated 
whiskers (C1, C2 and C3) making contacts on a moving concave object (green). 
Red dots correspond to contacts made by a whisker on a given time step (see 
Methods). b, The whisker-based discrimination task of the experiment was 
simulated with three whiskers and three different stopping locations for concave 
(green) and convex (orange) shapes (left). Linear and non-linear classifiers 

performed equally well on the simulated shape discrimination task (right), as in 
the experiment. c, Similar results were found when the same shapes had small 
wiggles, and when the task was to discriminate rotated flat objects. d, Non-linear 
classifiers performed better when the task required discriminating curved vs flat 
shapes. Errorbars correspond to s.e.m. across independent simulations (n = 5). 
See also Extended Data Fig. S4.
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bin (Fig. 6d right). We also examined non-linear interactions between 
contacts and whisker position across all whiskers and multiple time 
steps. Interestingly, the strongest non-linear mixing between angular 
position and contacts also occurred with a time lag of 100ms (Extended 
Data Fig. S8; see Discussion for the implications of these observations).

The disentangled geometry of neural representations in S1
To characterize the recorded representational geometry, we studied 
how it could be used by a downstream linear readout. This is a standard 
approach in machine learning in which “linear probes" (that is, linear 
decoders) are used to characterize the representations of hidden layers 
of deep networks23. We trained a linear decoder to perform synthetic 
classification tasks on recorded neural activity. Different tasks required 
different geometrical properties. The labels of the synthetic tasks (the 
outputs of the decoder) were decided on the basis of the observed 
total number of whisker contacts for two whiskers at a time. The inputs 
were constructed by combining together the recorded activity of all 
the neurons from different sessions (same or different animals) and by 

concatenating the activity vectors of all time bins within a trial (pseu-
dopopulations; see Methods).

We considered complex and easy tasks: for the easy task the 
desired output was the thresholded weighted sum of the number 
of contacts for two whiskers (C1 and C3, as in “Easy Task" in Fig. 7a). 
Weights were random, and each weight vector corresponded to a 
different implementation of an easy task. In Fig. 7a we illustrate one 
sample easy task by showing the space of whisker contacts. Each point 
corresponds to a pair of C1 and C3 contacts, and its color (green and 
orange) denotes the desired output. The two regions containing differ-
ent colored points are separated by a line (not shown) whose orienta-
tion depends on the random weights. By construction, the easy task is 
linearly separable. For the complex task, the space of whisker contacts 
was divided into 4 regions by two orthogonal separating lines, again in 
random directions. The labels were chosen so that the inputs of diago-
nally opposed regions require the same desired output ("Complex 
Task" in Fig. 7a). This task is similar to a XOR task, which is non-linearly 
separable and requires high-dimensional representations to be solved.
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To benchmark the ability to generalize, we computed the 
cross-condition generalization performance (CCGP)7 for all the three 
whiskers. CCGP was evaluated as a linear decoder’s ability to report the 
number of contacts (high vs low) of one whisker, say C3, for example, for 
a certain value of the whisker count for a different whisker (for example, 
when C1 is high). The decoder was trained only on the other values of the 
different whisker (for example, low C1, see “Generalization" in Fig. 7a). 
If C1 and C3 contacts are represented in approximately orthogonal sub-
spaces, then the CCGP is high and the C1 and C3 variables are disentan-
gled. The three different idealized geometries of Fig. 1a lead to a different 
performance on the easy and complex tasks and the generalization  
benchmark (Fig. 7b).

The linear decoder could perform the easy task with high accu-
racy (left bar in Fig. 7c). The performance for the complex task 
was relatively low, but still above chance (central bar in Fig. 7c; see 
Methods). Interestingly, CCGP was high for all the variables rep-
resenting the number of contacts of different whiskers (right bars  
in Fig. 7c).

This means that the coding direction for the number of contacts of 
each whisker does not depend much on the number of contacts of the 
other whiskers. In other words, the coding directions for each whisker 
are approximately parallel to each other when one considers different 
values of the number of contacts of the other whiskers. The fact that 
CCGP was high for all the variables excludes the high-dimensional 
geometry depicted in Fig. 7b (G3). The fact that the performance on 

the complex task was above chance indicates that the non-linear com-
ponent of the neural responses is not negligible, and hence that the 
representational geometry is not compatible with the low-dimensional 
one illustrated in Fig. 7b (G1). An intermediate geometry, which could 
be described as a non-linearly distorted low-dimensional scaffold, is 
the best description of the data (G2).

For these representations the elevated CCGP relies on the linear 
component of the responses, whereas the distortions needed to solve 
the complex task require non-linear components. This can be seen 
directly by generating synthetic neural data using the encoding mod-
els described above: the complex task could be better solved when 
the non-linear component was preserved, whereas linear synthetic 
representations slightly outperformed non-linear ones on the easy 
task and CCGP (Fig. 7d).

Disentanglement is not a simple consequence of somatotopy. One 
possible explanation for the elevated CCGP is that there are segregated 
populations of neurons, each encoding the number of contacts for 
one whisker. This specialized representation might reflect the soma-
totopic architecture of the barrel cortex. However, this is not the case 
because we analyzed separately the populations of neurons in different 
columns and we found that: 1) C1, C2 and C3 contacts were encoded in 
all the columns (Extended Data Figs. S6e-h, S9), as observed in ref. 5; 2) 
CCGP is elevated for all the whiskers in all the columns (inset in Fig. 7d;  
see also Extended Data Fig. S9).
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Task difficulty modulates RNNs’ representational geometry
As seen in the previous sections, the task is linear but the neural rep-
resentations contain a non-linear component. There are at least two 
possible explanations. First, S1 is employed in multiple tasks, some of 
which may be complex enough to require a non-linear component. 
When trained on these complex tasks, S1 could also perform easy 
tasks, though the generalization performance might be reduced. 
Second, the non-linearities may be unavoidable even when the task 
is easy and does not require them. For example, it is possible that the 
type of temporal integration needed to perform the task requires 
some form of non-linearities as in echo state machines or liquid 
state machines24. The results thus far cannot exclude the second 
possibility because the models that we used to predict the stimu-
lus, the choice of the animal and the neural activity use inputs from 
different time steps that are concatenated together. This is a pos-
sible way of implementing temporal integration, but it is not clear 
whether and how it can be realized by a neural circuit, like a recurrent  
neural network.

To answer these questions we simulated a recurrent neural net-
work (RNN) trained to perform tasks with different levels of difficulty 
that are similar to the shape discrimination task (Fig. 8a). Notice that 
the RNNs were only required to generate the correct response in the 
artificial tasks, and not to reproduce the neural data as in ref. 25,26.

The synthetic tasks had the following structure: each trial lasted 30 
time steps, and at each time step we fed the RNN with a vector contain-
ing three binary variables (each representing contacts made by one 
of three whiskers). Each binary variable was random (an independent 
Bernoulli process) with either a high or low success rate λ, for a total of 8 
different conditions. The desired outputs defined two tasks with differ-
ent levels of difficulty: easy (Fig. 8b,d,f), and complex (Fig. 8c,e,g) (see 
Methods). The easy task could be solved by linearly mixing information 
across input channels whereas the complex task required non-linear 

mixing. RNNs were trained on either the easy or the complex task to 
determine the input, recurrent, and readout weights (see Extended 
Data Figs. S10 for results on a third very complex task).

We then froze the trained network and studied the geometry of the 
neural representations using the same approach adopted for real data: 
we trained a linear readout to perform tasks with two different levels 
of complexity. We finally asked how well the representations learned 
for one task could be used to perform the other task. Specifically, we 
trained each network on either the easy or the complex task, froze the 
recurrent and input weights, and then optimized linear readouts to 
use those representations to perform different tasks (easy, easy other, 
and complex task) (Fig. 8d,e; see Methods). To study the generalization 
properties of the neural representations we estimated the CCGP for 
different dichotomies (ways of dividing the points into two groups) 
that correspond to different easy tasks (CCGP easy, CCGP other in  
Fig. 8f,g; see Methods).

Networks trained on an easy task produced a high discrimination 
and generalization performance (high CCGP) for the easy task only 
(dark brown; Fig. 8d,f). The complex task could not be performed 
indicating that in this case the non-linearities are weak and the  
dimensionality of the representations is relatively low. These results 
show that the non-linearities are not necessary to perform temporal 
integration.

Training a network on the complex task produced representations 
that allowed a linear readout to perform both the easy and complex 
tasks (Fig. 8e) and interestingly the easy task could be performed better 
than the task the network was trained on. This flexibility is provided by 
the non-linear components of the responses, as shown in Extended Data 
Fig. S10e. Importantly, CCGP was well above chance for the variable 
defined by the easy task: this means that the non-linearities needed 
to perform the complex task have a relatively low impact on the abil-
ity to generalize. In other words, training on the complex task leads to 
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Linear) for the interaction between the different groups of task 
variables. The interaction between the groups whisker contacts and angular 
position was the most important non-linear contribution to the encoding model. 

Diagonal elements account for the strength of the non-linearity between a 
particular task variable and the activity of the neuronal population. d, Non-linear 
mixed selectivity contribution for different time steps and whisker contacts (left) 
and angular position (right). The interaction between contacts made by whiskers 
in the previous time step (100 ms time lag) (for example, C(−1)
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explanatory power on S1 population activity than the interaction on the current 
time step (0 ms time lag) (for example, C(0)3  vs C(0)2 ). For angular position, the 
interaction between whiskers at the current time step (for example, Θ(0)

C3  vs Θ(0)
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had more explanatory power in S1 than on previous time steps.
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non-linear components in the neural responses and allows the network 
to perform a broad class of different tasks, with a modest cost in terms 
of generalization (see also Extended Data Fig. S10). This is probably 
why we observed a non-linear component in the neural responses of 
S1, despite the fact that the task does not require them.

Discussion
The neural responses in somatosensory cortex are diverse and 
seemingly disorganized non-linear functions of multiple variables 
describing whisker features (non-linear mixed selectivity). The mixed 
variables characterize multiple whiskers at different times, leading to 
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decoder is trained to discriminate between high and low C3 on low C1 (Train), and 
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idealized geometries of Fig. 1a. For low-dimensional representations (G1), both 
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is poor for complex tasks. High-dimensional representations (G3) allow for 
high performance in complex tasks, but generalization is poor. Intermediate 

geometries (G2) benefit from the computational properties of both low- and 
high-dimensional representations. c,d, Performance on the easy task, complex 
task, and generalization benchmark (CCGP) when we used the real neural data (c) 
(pseudosimultaneous recordings) or the surrogate data generated by the linear 
(pale green) and non-linear (one hidden layer; darker green) encoding models (d) 
(fit on simultaneously recorded populations). For the easy task, performance was 
high for real (c) and surrogate data (d). For the complex task, the performance 
was above chance for real and surrogate data, except for the linear surrogate 
representations. For the generalization benchmark, CCGP is high for all 
whisker contact variables (C1, C2, and C3) for the real and the surrogate data 
across all columns in S1 (inset; see also Extended Data Fig. S9). Errorbars in (c) 
correspond to the standard deviation across cross-validation iterations (n = 10) 
(see Methods), whereas in (d) they correspond to s.e.m. across populations of 
simultaneously recorded neurons (n = 23 recording sessions).
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an interesting form of spatio-temporal mixed selectivity. Strikingly, the 
non-linearity is observed despite the fact that the task can be solved 
by linearly integrating the same task-relevant variables. The non-linear 
responses appear to lack any evident organization - even somatotopy 
(see also ref. 5). However, an interesting organization appeared when 
we analyzed the representational geometry: whisker contacts, which 
are important features for performing the shape discrimination task, 
are represented in subspaces that are approximately orthogonal. This 
geometry is not a simple reflection of the anatomical organization of 
the somatosensory cortex. Indeed, the representational geometry in 
three different columns is similar, with neurons that respond to features 
of all the three whiskers used by the animal. This kind of factorized 
or disentangled representation has been observed in the prefrontal 
cortex7,27, hippocampus7,17, infero-temporal cortex and perirhinal  
cortex16,19,28, and motor cortex of monkeys29. It is known to have impor-
tant computational properties for generalization13,14.

Why non-linear neuronal responses when the task is linear?
As the non-linearity detracts from robustness to noise, why are the 
representations non-linear even if the shape discrimination task is 
linear? We showed that the observed geometry actually represents a 
good compromise between the ability of a linear readout to perform 
complex discrimination tasks - which is typical of high-dimensional 
representations - and the robustness to noise and the ability to general-
ize to novel situations - which is typical of low-dimensional representa-
tions. This interesting compromise can be reproduced in a simulation 
of a RNN trained to perform several different tasks that are similar to 
the shape discrimination task. In these simulations we also observed 
that the non-linear component of the representations is progressively 
more important in more complex tasks, and that its cost in terms of 
noise robustness and generalization is relatively small. This suggests 
that the somatosensory cortex operates in an interesting regime that 
is probably the result of training on a variety of tasks and allows for 
flexibility and generalization.

Encoding models to characterize the population response
Previous studies showed that the dimensionality of neural representa-
tions can be maximal (monkey PFC6), very high (rodent visual cortex30), 
or as high as it can be given the task’s structure31. More recently, in 
ref. 7 the authors showed that representations can have the maximal 
dimensionality required to separate all possible groups of stimuli with 
a linear decoder (shattering dimensionality) and, at the same time, 
exhibit a low-dimensional scaffold which allows for cross-condition 
generalization. These studies focused on computationally relevant 
properties of the representational geometry, ignoring the detailed 
information about the individual neurons’ response. Other studies 
looked more closely at the components of responses that are impor-
tant for characterizing this geometry, focusing on the two important 
ingredients for getting high dimensionality: mixing and diversity32,33. 
Sometimes the responses of individual neurons can be well described 
by linear mixed selectivity16,18,19, indicating that the representations are 
low-dimensional, or disentangled14.

Here we adopted a new approach to characterize both collec-
tive properties of the representations and the dynamic response of 
individual neurons. Using the neural network encoding models we 
could characterize the response of a population of simultaneously 
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curves correspond to the mean across random realizations of input patterns and 
tasks (n = 50) (see Methods).
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recorded neurons. This is more than reproducing the responses of all 
the individual neurons, because the encoding models can also capture 
the correlations between the activities of different neurons, which can 
affect the geometry of the representations and their consequences on 
information encoding and behavior (see, for example, ref. 34–38). This 
approach was motivated by the fact that the task involves active sens-
ing, which is closer to natural behavior but more difficult to analyze. 
In contrast to the aforementioned monkey experiments32, the trial 
temporal structure is highly variable as it depends on how the animal 
moves the whiskers. Because the sensory input in this kind of behavior 
involves a larger set of variables which are continuous, we used a more 
unbiased approach to identify those variables that could be important 
to predict the animal’s behavior and neural activity. We started from 
this larger set of variables that characterize complex spatio-temporal 
patterns and let the encoding model find those that are most important.

Limitations on assessing non-linearity of mixed selectivity
One important issue is that mixed selectivity is always defined with 
respect to a set of variables39 and this is one of the limitations of all 
the analyses that focus on the responses of individual neurons. For 
example, neurons could respond to a non-linear combination of two 
variables x and y, say xy. If one considers z = xy as an additional variable, 
then the non-linearity disappears, as all the neurons can be described 
as a linear combination of x, y, z. It is possible that for a different choice 
of variables, the observed mixed selectivity would be less non-linear 
than what we observed. However, the choice of the variables was actu-
ally dictated by the analysis of the whisker features and interestingly, a 
linear combination of these features is sufficient to predict shape and 
choice, but not the neural activity. Even when we considered additional 
variables (for example, whisker angles were used to predict the activity 
but not the stimulus or the behavior), we still needed non-linear inter-
actions. This is significant because these additional variables could be 
related to non-linear interactions between other variables. Neverthe-
less, a linear encoding model that has access to all these variables still 
performs worse than a non-linear one.

Mixed selectivity and the architecture of the neural circuit
Our analysis showed that non-linear interactions are an important 
component of the neuronal responses. The strongest interactions 
are between the variables representing the angular position of the 
whiskers at the current time and the whisker contacts that occurred 
in the preceding 100 ms time step. The interactions between contacts 
of different whiskers affect the current neural activity if the contacts 
happened in the preceding time bin. Although the interactions are 
delayed, the information about the whisker contacts is not, and the 
strongest contribution to the neural activity comes from the con-
tacts of the current time step. This means that the first information to 
arrive in the somatosensory cortex is more linear, and the interaction 
terms affect the neural activity with a delay of the order of 100 ms. 
We speculate that the whisker contact information arrives first from 
segregated inputs containing information about separate whiskers. 
The interaction terms appear later and could originate from some 
non-linear recurrent neural circuit which might be local, within soma-
tosensory cortex, or long-range, involving other areas such as sec-
ondary somatosensory, motor, frontal cortex or secondary thalamic 
nuclei (for example, ref. 40–42). For the information about whisker 
position (expressed as angles in our analysis) the dominant interac-
tion terms are instead between angles at the current time. It is possible 
that this information is already non-linearly mixed in other brain areas 
(downstream, like motor cortex, or upstream like primary thalamus  
and brainstem43,44).

New analytical methods for naturalistic experiments
Our general framework for analyzing behavioral and electrophysiologi-
cal data is particularly valuable in experiments in which the animals 

perform natural tasks, which are becoming increasingly popular45–48. 
Fitting neural networks to predict stimulus identity and animal choice 
from features extracted from high-speed videos is useful to identify 
the most important variables to perform the task successfully and 
the behavioral strategy actually followed by the animal, especially for 
naturalistic behavior, in which we have limited control over the strate-
gies adopted by the animals. Moreover, using neural networks to fit 
neuronal activity from the recorded task variables can be understood 
as an unbiased multi-dimensional generalization of a population tuning 
curve. Even though the tuning information is implicitly contained in 
the architecture and weights of the encoding model, it can still provide 
crucial insights about the coding properties and geometrical structure 
of the recorded neuronal population. In our case the animals actively 
sample the objects by moving the whiskers, and this can greatly com-
plicate the study of the geometry of the neural representations. For 
example, some of the quantities used in the past to characterize the 
representational geometry like the shattering dimensionality require 
lengthy calculations, involving a number of operations that scales expo-
nentially with the number of experimental conditions. This becomes 
prohibitive in an experiment like the one we analyzed where we need 
to consider complex spatio-temporal patterns to characterize the 
sensory input. Our method can still inform us about the geometry of 
the representations (it considers the activity of a population of neu-
rons), but with a more favorable scaling. For all these reasons we believe 
that the method we propose here can be applied to a number of more 
natural tasks which are becoming progressively more feasible in the 
neuroscience community.

Online content
Any methods, additional references, Nature Portfolio reporting  
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author  
contributions and competing interests; and statements of data 
and code availability are available at https://doi.org/10.1038/
s41593-022-01237-9.
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Methods
Behavioral task and recordings
This experiment has been described in detail5. Here we provide a brief 
summary of the behavioral setup and data acquisition. Mice in our 
colony were continuously backcrossed to C57BL/6J wild-type mice from 
Jackson Laboratories, and all mice reported here were bred in-house. 
They were kept on a 12 hour, non-reversed light cycle and were typically 
tested during the day. We used males and females arbitrarily and in 
roughly equal proportion (6 females and 4 males).

Ten head-fixed mice were trained to perform a shape discrimina-
tion task in the dark by making contacts with whiskers C0, C1, C2 and 
C3 (Fig. 1). On each trial, either a concave or convex shape (custom 
designed and 3D-printed) was moved within reach of the mouse’s whisk-
ers with a linear actuator. All trials started at t = − 2 seconds when the 
shapes started moving. Shapes were moved with the same speed in all 
trials and they could stop at three different locations: far, medium and 
close, which occurred at t = − 0.9, − 0.7 and − 0.5 seconds, respectively. 
Including three different final positions was important to prevent ani-
mals from using simpler strategies based on distance to the shape and 
to force them to integrate contacts across whiskers and time to perform 
the discrimination task. All trials had a fixed duration of 2 seconds. At 
t = 0 the response window opened and mice had to report their choice 
by licking either on the left or right lickpipe for concave and convex 
shapes, respectively. Licks were monitored by infrared beams or capaci-
tive touch sensors. Even though mice were free to lick throughout the 
trial, the choice on each trial was determined by the side of the first lick 
after the response window opened (t = 0). The behavioral performance 
for each animal was determined as the percentage of correct choices.

Whisker and shape position were recorded with a high-speed cam-
era (200 frames/second). Whisker tracking was based on a modified 
version of ’pose-tensorflow’ package20,21, which is the ’feature detector’ 
network used in the first version of DeepLabCut22. The network was 
trained to track eight equally spaced joints per whisker. Whisker con-
tacts were identified when the distance between the tip of a particular 
whisker and the edge of the shape was smaller than 10 pixels. Angular 
position was defined as the angle of the line between the tip and the 
base of each whisker.

Populations of individual neurons (single units) were simulta-
neously recorded in mouse somatosensory cortex (S1) during the 
whisker-based shape discrimination task (Fig. 4). Mice were implanted 
with a custom-designed stainless steel headplate between postnatal 
day 90 and 180. We removed the scalp and fascia covering the dorsal 
surface of the skull and positioned the headplate over the skull and 
affixed it. To permit electrophysiological recording we used a den-
tal drill to thin the cement and skull over S1, rendering it optically 
transparent, and coated it with cyanoacrylate glue. We used intrinsic 
optical signal imaging to locate the cortical columns of the barrel field 
corresponding to the whiskers on the face. We then used a scalpel to 
cut a small craniotomy directly over the columns of interest. Between 
recording sessions, the craniotomy was sealed with silicone gel. To 
record neural activity, we head-fixed the mouse in the behavioral arena. 
We lowered an electrode array using a motorized micromanipulator. 
We used an OpenEphys acquisition system with two digital headstages 
to record 64 channels of neural data at 30 kHz at the widest possi-
ble bandwidth (1 Hz to 7.5 kHz). We used KiloSort50 to detect spikes 
and to assign them to putative single units. We identified inhibitory 
neurons from their waveform half-width, that is the time between 
maximum negativity and return to baseline on the channel where this 
waveform had highest power. Neurons with a half-width below 0.3 ms 
were deemed narrow-spiking and putatively inhibitory. We measured 
the laminar location of each neuron based on the manipulator depth 
and the channel on which the waveform had greatest RMS power.

A total of 584 neurons were recorded from 23 sessions that 
included 7 different mice. The mean number of simultaneously 
recorded neurons was 25.4. From these 584 neurons, 68 were recorded 

in layer 2/3, 157 in layer 4, 249 in layer 5 and 96 in layer 6. Also, from the 
total number of neurons 16% were categorized as inhibitory and 84% 
as excitatory neurons. All experiments were conducted under the 
supervision and approval of the Columbia University Institutional 
Animal Care and Use Committee.

Decoding Behavior
On each trial, we built a matrix that contained behaviorally relevant 
variables through time. In the following, we will refer to this matrix as 
the spatio-temporal whisking pattern gathered by the behaving mice. 
We used 20 time bins per feature after dividing 2 seconds into time 
bins of 100 ms. For whiskers C0, C1, C2 and C3 we included number 
of contacts and angle of contact (Fig. 2a), since these were shown to 
be the most informative whisker features for both decoding shape 
and lick side5. In main text and figures, we will use C0, C1, C2 and C3 
when referring to whisker identity, and C0, C1, C2 and C3 when referring 
to the contacts made by each of these whiskers. The total amount of 
features on each trial was 160, 8 whisker features (contacts and angle 
of contacts for each whisker) times 20 time bins. All features for each 
individual session were normalized to null mean and unit standard 
deviation. For each mouse, we concatenated all recording sessions 
into a single super-session, which significantly increased the number 
of trials used to fit each model. Trials that did not register any lick within 
the first 500 ms after response time (t = 0) were discarded from the 
analysis. In total we used 10 mice, with a mean of 1266 trials per mouse 
(super-sessions). All analysis were performed with custom written 
python and pytorch scripts.

We decoded the identity of the presented shape (stimulus; green) 
or lick side (choice; blue) on a trial-by-trial basis. In Fig. 2b,c the model 
was trained after balancing correct and incorrect trials and the quantity 
to be decoded (stimulus or choice). For instance, when the decoder was 
trained to predict stimulus identity, we randomly sampled (without 
replacement) trials from the train set such that correct, incorrect, 
concave shape and convex shape trials were equally populated. By 
balancing correct and incorrect trials we ensured that stimulus and 
choice were uncorrelated. Otherwise, information about choice would 
have been artificially boosted by stimulus information. We refer to 
this balancing as decorrelation, and it was repeated 10 times. In Fig. 
2b,c the data was split into train, test and validation (2 nested KFold, 
k = 4) in order to optimize the l2 regularization strength over the range 
[10−7, 103] (20 steps log-evenly spaced). The reported decoding per-
formances corresponds to the mean across cross-validations and 
decorrelations on the validation set after optimizing regularization 
strength on the test set. In Fig. 2b,c we used logistic regression (sklearn).

For Fig. 2b we gradually increased the complexity of the behavio-
ral features to decode stimulus and choice by considering: sum of all 
contacts across time and whiskers (Sum all), sum of all contacts across 
whiskers (Sum whisker), sum all contacts across time (Sum time), all 
contacts across whiskers and time (All contacts) and all contacts and 
angles of contact across whiskers and time (Contacts + Angle). The 
inset in 2b corresponds to the weights of the classifier trained after 
summing contacts across time. Information about stimulus and choice 
across time was calculated by linearly decoding the cumulative num-
ber of features (contacts and angle of contacts) up to that particular  
time (Fig. 2c).

We analyzed the complexity of the whisker-based shape discrimi-
nation task by decoding the spatio-temporal whisking pattern with 
different decoding models (multilayer feedforward networks with 
0, 1, 2 or 3 hidden layers of 100 ReLU units). In the following, because 
a feedforward network with 0 hidden layers is equivalent to a linear 
classifier, we will use these two terms synonymously. The models 
in Fig. 2d were trained and tested following the same steps than for  
Figs. 2b,c. However, instead of using logistic regression (sklearn) we 
fit the feedforward networks with stochastic gradient descent (batch 
size 64, 100 epochs) on pytorch, where the optimal learning rate η was 
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obtained following the same procedure than for the regularization 
strength ([10−7, 1], 20 steps log-evenly spaced). We used cross-entropy 
loss and ADAM optimizer. The reported decoding performances on cor-
rect and error trials (Extended Data Fig. S2a) correspond to the mean 
performance on the validation set (see above) after splitting trials into 
correct and error. In Extended Data Fig. S3c we followed the exact same 
procedure using 20 and 200 units in the hidden layers, which produced 
equivalent results to Fig. 2d. We also used recurrent neural networks 
(RNNs) as decoding models in Extended Data Fig. S3a with 5, 10, 60 
and 100 recurrent units. Instead of fitting the classifier with the whole 
spatio-temporal pattern of whisker contacts and angles of contacts 
(8 features × 20 time steps = 160) on each trial, the input to the RNNs 
on each time step on each trial consisted of the vector of contacts and 
angle of contact for whiskers C0, C1, C2 and C3 on that time step and 
trial. We used backpropagation through time to fit the RNNs (ADAM). 
The optimal learning rate and regularization was obtained in the same 
way as for the feedforward decoding models. RNNs as decoding mod-
els showed similar or lower decoding performance than feedforward 
decoding models.

In Extended Data Fig. S2c we performed the same analysis as in 
Fig. 2d but we only used trials that corresponded to the three different 
stopping distances separately ("Far", “Medium", and “Close"). We also 
analyzed datasets where three mice were presented with flatter shapes 
instead of the standard ones used in whisker-based discrimination task 
(Extended Data Fig. S2d). One of these mice was also part of the pool of 
10 mice used in all the presented behavioral analysis whereas the other 
two were only used to analyze the flatter version of the task. Mice and 
decoding models had lower performances for flatter shapes (Extended 
Data Fig. S2d, see also ref. 5).

In order to discard the possibility that the results in Fig. 2d were a 
consequence of a low number of trials, linear and non-linear decoders 
were also trained on synthetic tasks of whisker contacts with different 
levels of difficulty (Extended Data Fig. S2b). We created two ad-hoc 
tasks from the spatio-temporal whisking patterns gathered by the 
animals, the easy and the very complex tasks. Mice were never trained 
on these tasks, they correspond to tasks that have been defined on 
the whisker contact space for whiskers C1, C2 and C3 a posteriori. 
For each mouse we first summed contacts through time on each trial 
(total contact space). The easy task was defined by splitting the trials 
in the super-session into two linearly separable classes on the total 
contact space (orange vs green in Extended Data Fig. S2b). For the very 
complex task, trials were split into two non-linearly separable classes 
(3D-parity) also on the total contact space. In both tasks the contact 
space was first transformed by a unitary random rotation. Impor-
tantly, for both the easy and the very complex task, the two classes 
were equally populated. This was achieved by adding Gaussian noise 
(standard deviation of 0.1) on each whisker total counts on each trial 
so that a median split was uniquely defined. Therefore, each trial on a 
super-session was assigned either to class 1 or class 2 for the easy task, 
and either to class 1 or class 2 for the complex task. For each mouse, the 
easy or very complex task were performed by reading out the feature 
matrix that contained whiskers C0, C1, C2 and C3 contacts across time 
(20 time bins of 0.1 seconds, 80 features in total). The procedure for 
fitting the different models was the same as in Fig. 2d, with the only 
difference that we did not need to balance correct and error trials. The 
l2 regularization strength and the learning rate η exploration intervals 
were [10−6, 1] and [10−4, 1] respectively, log-evenly spaced in 10 steps. 
Unsurprisingly, linear and non-linear decoders performed equally well 
on simple integration tasks, whereas non-linear decoders were neces-
sary to perform complex tasks that require non-linear integration of 
sensory evidence (Extended Data Fig. S2b).

Simulation of the whisker discrimination task
In order to gain additional insights of the whisker-based discrimination 
task, we built a simulation of the experiment and analyzed the 

simulated data like we did for the real data. On each trial we simulated 
the movement of three whiskers C1, C2 and C3. The size of the simulated 
box was 12x12 (a.u.), and the base of all three whiskers was placed at the 
origin of the two axes (0,0) (Fig. 3a). Like in the real experiment, each 
trial consisted of 2 seconds, and we simulated time steps of 0.1 seconds 
(20 steps in total), which was also the same time window used to analyze 
the real experiments. The angular position of whisker C1 (longest 
whisker, pale grey) at the beginning of each trial ϕ0,C1 was sampled from 
a von Mises distribution (μ = 0, κ = 10) and the position of C2 (middle; 
grey) and C3 (shortest; black) were determined by adding 1/3 and 2/3 
of a radian with respect to the position of C1, respectively. The angular 
position of whisker Ci on time step t was ϕt,Ci = sin(ωt + ϕ0,C1 + i/3), where 
ω was drawn from a gaussian distribution (μ = 3, σ = 0.1) on each trial. 
Hence, the position on the (x, y) plane of whisker Ci on each time step 
was (lx, ly)t,Ci = (Li cos(ϕt,Ci), Li sin(ϕt,Ci)) , where L = {10, 8.5, 7} were the 
lengths of the three whiskers.

Shapes with different curvatures were modelled as circle seg-
ments with different radius. In Fig. 3a-c the shapes had a radius of 
R = 11, whereas in Fig. 3e (and Extended Data Fig. S4g) we used R = 6 
(green) and R = 50 (orange) (see also Extended Data Fig. S4f for 
R = {6, 11, 22, 50}). On each time step the shape moved by 0.2 units 
towards the origin, and three different stopping times were used after 
the beginning of the trial: 9, 10 and 11 time steps. The wiggles on Fig. 3c  
were obtained by adding a sinusoidal function of amplitude 0.2 and 
frequency 10 to the shape in the y-axis direction.

In order to incorporate the flexibility of the real whiskers in our 
models, on each time step the tip of each whisker was obtained by add-
ing gaussian noise (σ = 0.3) to the position of the rigid whisker (solid 
circles) (Fig. 3a). On each time step, we evaluated whether the noisy 
tip of the whisker made contact with the shape (red dot when contact 
occurred). Following the same approach we used for the real data, on 
each trial we constructed a matrix where each column corresponded 
to a time step (20 columns) and each row corresponded to contacts (0 
no contact, 1 contact) and angle of contact for each whisker (6 rows in 
total). Each simulation consisted of 2000 trials. We also fit linear and 
non-linear classifiers (multilayer perceptrons with 0, 1, 2 and 3 hidden 
layers) to predict whether a particular trial corresponded to a concave 
or a convex shape or other variants of the task. For Fig. 3e and Extended 
Data Fig. S4g,h, the shapes were static throughout the trial.

We also simulated variants of the experiment in which we modi-
fied the size and position of the shapes, among others. In particular, we 
used more distant stopping locations (7, 11 and 13 time steps) (Extended 
Data Fig. S4a); smaller shapes (Extended Data Fig. S4b); further shapes 
(2 a.u. further) (Extended Data Fig. S4c); closer shapes (1 a.u. closer) 
(Extended Data Fig. S4d); and flatter shapes (R = 24) (Extended Data 
Fig. S4e). We also used rotated and flat shapes (θ = 0.1 and R = 100) (Fig. 
3d). In all cases linear and non-linear decoders produced qualitatively 
equivalent results, although performances were overall lower for flat-
ter, further and smaller shapes.

Encoding Models
On each trial we built a matrix that contained all the experimental vari-
ables that we considered could affect the firing rate of S1 populations. 
We analyzed the time interval t = [ − 2.1, 1.0] seconds in time bins of 100 
ms, which spanned from the beginning of the trial to one second after 
response window opened (31 time steps per trial). The experimental 
variables used in the encoding models were: contacts, angle of contact 
and angular position of whiskers C0, C1, C2 and C3; lick side and lick 
rate; current and previous reward, stimulus, shape position and choice. 
We will refer to whisker and lick variables as continuous-variables 
and previous and current reward, stimulus, position and choice as 
trial-variables. Other features like force at the base of the whisker 
(whisker bending) or contact duration were not included in the model 
because they have been shown to be weakly encoded in S1 during the 
whisker-based shape discrimination task (see5). For each recording 
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session we concatenated all the time steps across all trials (Fig. 4c). On 
each time step S1 population activity was regressed against the cur-
rent continuous-variables and up to five time steps backwards in time 
(500 ms = 5 steps × 100 ms). Trial-variables were arranged as indicator 
variables throughout the length of the trial. Population activity was 
regressed using a total of 70 continuous-variables (70 = 14 variables × 5 
time steps) plus 248 trial-variables (248 = 8 variables × 31 time steps). 
Both neuronal activity and regressors were normalized to null mean 
and unit variance. Trials that did not register any lick within the first 
500 ms after response time (t = 0) were discarded from the analysis. 
In total we used 23 recording sessions from 7 different mice, with 25.4 
mean number of simultaneously recorded neurons and 4883 mean 
number of effective trials used to fit the models (trials × time steps).

We analyzed the encoding properties of populations of neurons in 
mouse S1 by regressing the neuronal activity against the experimental 
variables described above. Similar to behavior, we used different encod-
ing models with different levels of flexibility (multilayer feedforward 
networks with 0, 1, 2 or 3 hidden layers of 100 ReLU units). Similar to 
classification, an encoding model with 0 hidden layers is equivalent 
to a linear regression. We fit the encoding models by minimizing the 
mean-squared-error (MSE-loss) between the predicted and the real fir-
ing rate (stochastic gradient descent, batch size 64, 100 epochs; Fig. 4). 
To validate our results with a different loss function, Poisson-loss was 
also used to fit the models, which produced qualitatively equivalent 
results (Extended Data Fig. S5f,g). The linear model can only implement 
pure and linear mixed selectivity, while encoding models that include 
at least one hidden layer can implement non-linear mixed selectiv-
ity6,12. On each recording session, models were fit by splitting the data 
into train, test and validation (2 nested KFold, k = 4). The partition was 
performed based on the real trials of the experiment so that time steps 
from the same trial were always grouped in the same partition. Other-
wise, due to the correlation between the neuronal activity on consecu-
tive time steps, performances on the validation set could have been 
artificially boosted. The optimal regularization strength l2 and learning 
rate η were obtained by identifying the values that produced the highest 
performance on the test set over the ranges [10−7, 102] and [10−7, 10−1] 
respectively (20 steps log-evenly spaced). As goodness-of-fit for the 
different encoding models, we used the metric R2 = 1 − Loss/Variance. 
The reported R2 corresponded to the mean across cross-validations on 
the validation set after optimizing regularization strength and learn-
ing rate on the test set. As expected, when all models were tested on 
training data, more parameters entailed better firing rate prediction 
(Extended Data Fig. S5b). All the encoding models were implemented 
in pytorch and optimized with the ADAM algorithm. The reported 
performance on correct and error trials correspond to the mean CV 
R2 on the validation set (see above) after splitting trials into correct 
and error (Extended Data Fig. S5c). Errorbars in Fig. 4 correspond to 
s.e.m. across recorded neurons. In Extended Data Fig. S3d, we followed 
the exact same procedure with 20 and 200 units in the hidden layers 
as encoding models, which produced equivalent results to Fig. 4. We 
also used recurrent neural networks (RNNs) as encoding models in 
Extended Data Fig. S3b with 5, 10, 60 and 100 recurrent units. Instead 
of fitting the encoding model with the current and the last 500ms of 
the whisking spatio-temporal and licking pattern, and task variables, 
the input to the RNNs on each time step consisted of the value of all 
these variables on the current time step. We used backpropagation 
through time to fit the RNNs (ADAM). The optimal learning rate and 
regularization was obtained in the same way as for the feedforward 
encoding models. RNNs as encoding models produced lower R2 than 
feedforward encoding models.

In order to evaluate the individual contributions of regressor (or 
group of regressors) xi to the predictability of the population’s firing 
rate, we evaluated the quantity ΔR2 = R2

Full − R2
Reduced (Fig. 5a), where R2

Full 
corresponds to the performance of the full model and R2

Reduced corre-
sponds to the performance of the model when regressor (or group of 

regressors) xi is set to zero. For instance, in Fig. 5b ΔR2 for Contacts was 
calculated by setting to zero the variables C0, C1, C2, and C3 for the cur-
rent and up to five time steps in the past (4 whiskers × 5 time steps = 20 
regressors). This method is preferred over re-training the whole model 
without regressor xi because of the correlations between regressors xi 
and xj, so that we make sure that the reported contribution takes into 
account the correlation with the rest of regressors.

For each pair of regressors (or pairs of groups of regressors) xi and 
xj, we evaluated the pure non-linear interaction (contribution) to the 
encoding model by evaluating ΔR2 − ΔR2

Linear (Fig. 6 and Extended Data 
Fig. S7a). Here ΔR2 corresponds to the loss in predictive power for the 
non-linear model when both xi and xj are set to zero and ΔR2

Linear is the 
equivalent for the linear encoding model. Because non-linear models 
also include the linear terms, subtracting the contribution from the 
pure linear model was necessary in order to isolate pure non-linear 
interactions.

Similar to the synthetic tasks presented in Extended Data Fig. S2b, 
we also created two synthetic tasks based on whisker contacts: the easy 
and the complex tasks. Additionally, to benchmark the ability to gen-
eralize, we evaluated the cross-condition generalization performance 
(CCGP). The easy and the complex tasks corresponded to a linear and an 
XOR task with respect to the contacts of pairs of whiskers, respectively, 
whereas the CCGP tested how well a linear classifier trained to perform 
a simple discrimination task on a set of trials would generalize to an 
unseen set of trials. Given that the encoding models were fit using 5 time 
steps (100 ms × 5 times steps = 500 ms) for all the continuous-variables, 
for each time step we first summed the number of contacts across the 
current and previous four time steps for each whisker independently. 
Gaussian white noise was also introduced in all whisker contacts to 
obtain a well defined median to create the different tasks (standard 
deviation of 10−3). All tasks were defined as 2D tasks on the summed 
number of contacts across 5 time steps, so they were constructed from 
the three different pairs that could be built from the set {C1,C2,C3}: 
(C1,C2), (C1,C3) and (C2,C3). Importantly, all the time steps in which no 
whisker contacts were registered for the sum across these 5 time steps 
were discarded from this analysis. On the easy task, the coloring of the 
different regions in the whisker contact space (for example, C1 vs C3) 
was defined by a linear boundary, whereas for the complex task it cor-
responded to an XOR task (Fig. 7a). In both cases the task boundaries 
were obtained by performing a random unitary rotation on the whisker 
contact space and splitting each dimension with respect to the median. 
For the generalization benchmark (CCGP), the process was slightly dif-
ferent. By splitting all the trials into low and high number of contacts 
for each whisker, we created four different conditions. Cross-condition 
generalization performance (CCGP)7 was evaluated as the performance 
of a linear classifier to discriminate between low and high number of 
contacts for whisker i when trained only on low contacts for whisker 
j and tested on high contacts on whisker j. For instance, for the (C1,C3) 
pair, a linear classifier was trained to discriminate between low and high 
number of C1 contacts using only trials of low C3 contacts and tested 
on high number of C3 contacts (and viceversa). CCGP for whisker C1 
corresponded to the mean across training on C2 low and testing on C2 
high, training on C2 high and testing on C2 low, and the same process 
conditioning on whisker C3. CCGPs for whiskers C2 and C3 were evalu-
ated equivalently but conditioning on C1,C3 and C1,C2, respectively.

Once the three tasks were defined for each time step, we generated 
surrogate representations for each encoding model by introducing the 
pair of whisker contact variables into the different encoding models. 
This procedure was only performed on the validation partition. For 
instance, for the pair (C1,C3) we generated surrogate activity on each 
time step by introducing in the different encoding models only the 
experimental variables contacts C1 and C3 for the current and previ-
ous four time steps. From these surrogate representations, linear 
classifiers (cross-validated logistic-regression) were fit to perform all 
three tasks. The reported performance in Fig. 7d corresponds to the 

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-022-01237-9

mean performance across cross-validations of the encoding models 
and pairs of regressors.

To evaluate whether the performance on the easy and complex 
tasks were significantly above chance, we compared them with their 
null distributions. For each element of the null distribution we shuf-
fled the class labels for each pattern of surrogate activity and fit linear 
classifiers to perform the easy and complex tasks as described above. 
Each element of the null distribution corresponded to the mean across 
cross-validations of the encoding models and pairs of regressors. The 
null distribution was obtained by repeating this process 1000 times. To 
evaluate whether the reported CCGPs for the surrogate patterns were 
significantly above chance, we compared it with the null distribution. 
We followed a similar procedure to that described in ref. 7. In short, 
each experimental condition was randomly rotated in the surrogate 
activity space by shuffling each trial with respect to the identity of 
the neurons. The same random shuffle was used for all trials in a given 
condition. This procedure destroys the geometrical structure of the 
representation but approximately maintains the distance between the 
different conditions. The null distribution was obtained by repeating 
this process 1000 times. Performance on the easy and complex tasks 
and CCGP in Fig. 7d are significantly above from chance (P < 0.05), 
besides for the complex task using surrogate populations generated 
with the linear encoding models.

We also evaluated contact information for the different whiskers 
and columns by decoding whether a set of trials corresponded to a high 
or low number of contacts for each whisker using neurons recorded 
from only a particular column of S1 (Extended Data Fig. S9a). CCGPs for 
the different columns and whiskers was evaluated following the same 
process described above (Extended Data Fig. S9a). Given that different 
population sizes were recorded for the different columns of the S1, in 
order to compare information across columns, all the performances 
in Extended Data Figs. S9a were obtained using 10 neurons, which is 
the smallest number of simultaneously recorded neurons across all 
columns. Errorbars in Fig. 7 and Extended Data Fig. S9 correspond to 
s.e.m. across recording sessions.

Population Decoding
Populations of mouse S1 neurons were recorded during the 
whisker-based shape discrimination task. Linear classifiers were fit to 
predict different experimental variables on a trial-by-trial basis. Infor-
mation about a particular variable for a given time step was calculated 
using the entire population activity from the beginning of the trial to 
that particular moment (Fig. 4b). Time bins of 200 ms were used and 
population activity was normalized to null mean and unit variance. Tri-
als that did not register any lick within the first 500 ms after response 
time (t = 0) were discarded from the analysis. The mean number of 
simultaneously recorded neurons and trials per session was 25.4 and 
157.5, respectively. In total 23 recording sessions from 7 different mice 
were analyzed. In all panels the data was split into train, test and valida-
tion (2 nested KFold, k = 4) in order to optimize the l2 regularization 
strength over the range [10−4, 104] (10 steps log-evenly spaced). In all 
cases, logistic regression was used as our linear classification model 
(sklearn).

Shape identity (stimulus; green) and lick side (choice; blue) were 
predicted on each trial by reading out the population activity (left panel 
in Fig. 4b). Similar to decoding from the spatio-temporal pattern of 
whisker features, the classifiers were trained after balancing correct 
and incorrect trials and the quantity to be decoded (stimulus or choice). 
We refer to this balancing as decorrelation, and it was repeated 10 times. 
The reported decoding performances correspond to the mean across 
cross-validations and decorrelations on the validation set after optimiz-
ing regularization strength on the test set. From population activity we 
also decoded whether a particular trial corresponded to a high or low 
number of contacts for the different whiskers (right panel in Fig. 4b). 
For each whisker we summed the total number of contacts made up to 

a particular point in time and labeled each trial according to whether it 
was below or above the median number of contacts. Gaussian noise was 
added in all trials (standard deviation of 0.1) to obtain a unique median. 
The reported decoding performances correspond to the mean across 
cross-validations on the validation set after optimizing regularization 
strength on the test set.

Populations of recorded neurons were also used to perform the 
easy and the complex tasks and the generalization benchmark (Fig. 7c) 
(see previous section). From all the neuronal recordings, pseudopopu-
lations of neurons were constructed and linear classifiers (logistic 
regression) were fit to perform these three tasks. To define the easy 
and complex tasks and the generalization benchmark (CCGP) on each 
recording session, we first summed the number of contacts throughout 
the entire trial (2 sec). Similar to the equivalent analysis on surrogate 
representations (see previous section), all three analysis were defined 
with respect to pairs of whisker contacts variables: (C1,C2), (C1,C3) and 
(C2,C3). For the easy and complex tasks, a random unitary rotation was 
performed on the whisker contact space for a given pair and all those 
trials that did not include whisker contacts were discarded from the 
analysis. Four experimental conditions corresponding to low and high 
number of contacts for two whisker variables were defined. From each 
experimental condition, 200 trials were sub-sampled with replacement 
for both the train and test set. The simultaneously recorded activity 
of S1 neurons across a particular trial was flattened with respect to the 
time axis (200ms time bins; 10 time bins per trial). For a given record-
ing session we constructed the train and test matrices with dimensions 
800 (200 trials per condition × 4 experimental conditions) and number 
of neurons × 10 time bins. It is important to note that with this proce-
dure the train and test matrix did not share any trials, which would 
artificially boost the estimated performance for the different tasks. 
For each recording session we repeated this procedure and stacked 
the different train and test matrices along the dimension of neurons. A 
total of 584 neurons were recorded across all sessions, which produced 
a train and a test matrix with 5840 columns (584 × 10 time bins). Two 
different linear classifiers were fit on the train matrix and tested on 
the test matrix to perform the easy and the complex task, respectively. 
The reported performances on the easy and complex tasks in Fig. 7c 
corresponds to the mean across pairs of whiskers and 10 iterations of 
this process. To evaluate whether the performance on the easy and 
complex tasks were significantly above chance, we compared them 
to the null distribution. For each element of the null distribution we 
shuffled the class labels for each recorded pattern, built the train and 
test pseudopopulation matrices, and fit linear classifiers to perform 
the easy and complex tasks as described above. Each element of the 
null distribution corresponded to the mean across pairs of whiskers 
and 10 iterations of this process with the same shuffled labels. The 
null distribution was obtained by repeating this process 1000 times. 
Performance on the easy and complex tasks in Fig. 7c are significantly 
above chance (P < 0.05).

In order to evaluate the generalization properties of the recorded 
neurons (CCGP), we proceeded in a similar way but we worked on the 
original whisker contact space instead (no unitary rotation). Also, given 
that the cross-validation is performed across conditions when evaluat-
ing the CCGP, only one matrix of pseudopopulation activity was con-
structed by sub-sampling with replacement from each experimental 
condition (200 trials per condition). Similarly, the reported CCGP in Fig 
7c corresponds to the mean across 10 iterations of this process. To eval-
uate whether the reported CCGPs for the real recordings were signifi-
cantly above chance, for each panel we constructed a null-hypothesis 
distribution and evaluated the probability of obtaining the real CCGP 
when sampling from it. We followed the same procedure described 
in7. In short, each experimental condition was randomly rotated in 
the activity space by shuffling each trial with respect to the identity of 
the neurons. The same random shuffle was used for all trials in a given 
condition. This procedure destroys the geometrical structure of the 
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representation but approximately maintains the distance between the 
different conditions. We performed 1000 iterations and computed the 
probability of obtaining the real CCGPs. In Extended Data Fig. S9b, we 
used pseudopopulations of neurons from specific columns to decode 
high or low number of contacts for whiskers C1, C2, and C3 (top), as well 
as the generalization benchmark (CCGP) (bottom). In both cases, we 
followed the same procedures described above.

Recurrent Neural Networks
Recurrent neural networks (RNNs) were trained to perform a task 
similar to the whisker-based shape discrimination task. The recurrent 
network consisted of 60 ReLU units whose activity at time t (ht) was 
determined by the following equation:

ht = ϕ (Jrecht−1 + Jinxt + σξt) , (1)

where ϕ() is the ReLU non-linearity, ξt is independent and unitary Gauss-
ian noise on each time step and σ is the strength of this noise (σ = 1 in 
all our units).

The stimulus xt consisted of three channels that on each time 
step could be either 0 or 1, an artificial analogy of whiskers C1, C2 and 
C3 making contacts or not. On each trial, each input channel corre-
sponded to a random realization of a Bernoulli process (T time steps) 
with two possible underlying mean values λlow or λhigh. This made a total 
of 8 different experimental conditions (2 conditions per channel and 
3 channels) (Fig. 8). From these 8 experimental conditions we defined 
three different tasks, the easy, the complex and the very complex task. 
For Fig. 8 we only show the easy and complex tasks, see Extended 
Data Fig. S10 for results on the very complex task. For all tasks, the 
input information was transformed by an unitary random rotation 
(same rotation in all time steps and trials). We fit a different RNN for 
each task, and in each RNN input, recurrent and output weights were 
trained. The easy task was defined as a task that linearly separated the 
8 experimental conditions into 2 groups of 4 (left panel in Extended 
Data Fig. S10); the complex task corresponded to an XOR with respect 
to C1 and C2 (middle panel in Extended Data Fig. S10); and the very 
complex task was defined as a 3D-parity with respect to all channels 
C1, C2 and C3 simultaneously (right panel in Extended Data Fig. S10). 
Given 8 experimental conditions, there were 3 different easy tasks: 
separation with respect to the C1 axis only (easy task 1); C2 axis only 
(easy task 2); and C3 axis only (easy task 3). There were also 3 differ-
ent complex tasks: separation with respect to a 2D-XOR on (C1,C2) 
(complex task 1); on (C1,C3) (complex task 2); and on (C2,C3) (complex 
task 3). There was only one very complex task, a 3D-Parity task with 
respect to all channels. In Fig. 8, easy task, easy other, and complex 
task corresponded to easy task 1, the mean across easy tasks 2 and 3, 
and complex task 1, respectively.

To recreate the experimental conditions, inputs lasted for 20 time 
steps but a random delay of Δt = [0, 9] time steps was introduced at the 
beginning of each trial. All networks were trained to make a decision 
at T = 20. The three networks were trained on datasets of 400 trials 
per experimental condition and for all channels λlow = 0 and λhigh = 1. 
We used cross-entropy as loss function, the l2 regularization strength 
was set to 10−3 and the learning rate η = 0.005. We used the ADAM opti-
mizer, batches of 20 trials and as many epochs as necessary to reach 
10−3 error on the loss function ( ~ 10 epochs for the easy task, ~ 20 for 
the complex, and ~ 50 epochs for the very complex task). Once trained, 
networks were tested on 40 trials per experimental condition and for 
all channels λlow = 0.35 and λhigh = 0.65 for the easy task, λlow = 0.3 and 
λhigh = 0.7 for the complex task and λlow = 0.23 and λhigh = 0.77 for the 
very complex task.

For each network, input, recurrent and output weights were 
learned. Additionally, for each network, recurrent and input weights 
were frozen and readout weights for the other tasks were also trained 
on the activity of the artificial units (logistic regression). For instance, 

for the network trained on the easy task (easy task 1) in Fig. 8b, all learn-
able weights were optimized for the easy task using backpropagation 
through time (dark brown). However, additional readout weights on the 
artificial units’ activity were also trained for the orthogonal other easy 
task (easy tasks 2 and 3; pale brown), and the complex task (complex 
task 1; black). These additional readout weights were trained on the 
train set at decision time (T = 20) and tested on the test set on all time 
steps. In Extended Data Fig. S10 we show the performance curves for 
additional readout weights when trained on all tasks (easy and complex 
tasks 1,2,3 and very complex task). For Figs. 8c,e,g all weights were 
trained to perform complex task 1 and additional readout weights 
on the artificial units were trained to perform the the easy, and the 
orthogonal easy (easy other) tasks.

We also evaluated the ability of each network to generalize to 
unseen experimental conditions by means of the cross-condition 
generalization performance (CCGP). A very similar procedure to Fig. 7 
was used to evaluate CCGP for the three different RNNs. For instance, 
in Fig. 8f, a linear classifier was trained to perform the easy task (easy 
task 1; dark brown) by reading out the activity of the artificial units. 
The classifier was trained on the set of trials defined by easy task 2 
= +1 and tested on the set of trials that defined easy task 2 = 0 (and 
vice-versa). The same procedure was followed for the set of trials 
defined by easy task 3 = +1 and tested on trials defined by easy task 3 
= 0 (and vice-versa). The reported CCGP was the mean across these 
four procedures. For the rest of CCGPs, the same train-test procedure 
was followed as defined by the rest of orthogonal easy tasks (see 
Extended Data Fig. S10).

For each panel in Fig. 8, and Extended Data Fig. S10 we trained 
and tested 50 different networks and reported the mean performance 
across test sets. Each network was trained on a different random reali-
zation of the input and rotation. In Extended Data Fig. S10 the low, 
medium and high noise levels corresponded to (λlow = 0.23,λhigh = 0.77), 
(λlow = 0.3, λhigh = 0.7) and (λlow = 0.35,λhigh = 0.65), respectively.

We analyzed the complexity of the different tasks in the same  
way that we analyzed the complexity of the whisker-based 
shape discrimination task (see Fig. 2). For all trained networks, 
we used different classifiers with different levels of flexibility 
(multi-layer feedforward networks with 0, 1, 2 or 3 hidden lay-
ers of 100 ReLU units). These classifiers were trained to predict 
the output of the easy, the complex and the very complex task on 
a trial-by-trial basis by reading out the spatio-temporal pattern 
that was used as input to the networks (Extended Data Fig. S10d).  
The l2 regularization strength and the learning parameter η were opti-
mized over the ranges [10−8, 102] and [10−6, 100] respectively (10 steps 
log-evenly spaced). The errorbars for each panel in Extended Data  
Fig. S10d correspond to the s.e.m. across 4 different network instances.

The encoding properties of the artificial units on each network were 
also analyzed in the same way we analyzed the population activity of 
mouse S1 neurons (Extended Data Fig. S10e), by fitting encoding models 
of feedforward networks of 0, 1, 2 and 3 hidden layers. In this case, the l2 
regularization strength and the learning parameter η were optimized 
over the ranges [10−8, 102] and [10−6, 100] respectively (10 steps log-evenly 
spaced). The errorbars for each panel in Extended Data Fig. S10e cor-
respond to the s.e.m. across 240 neurons (4 networks × 60 units).

RNNs with this architecture were also used to decode stimulus 
and choice on a trial-by-trial basis from the spatio-temporal whisking 
patterns as well as to predict S1 population activity. In particular, we 
used networks of 5, 10, 60 and 100 noise-less units, regularization 
strength of 0.001, and learning rate of 0.001. These RNNs produced 
decoding and encoding performances that were lower or similar to 
their feed-forward counterparts (Extended Data Fig. S3).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.
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Data availability
The datasets analyzed in this study have been deposited to Zenodo: 
https://doi.org/10.5281/zenodo.4743837.

Code availability
The code used for data acquisition and pre-processing is available at 
https://github.com/cxrodgers/Rodgers2021. The code used for all anal-
yses in this study is available at https://github.com/ramonnogueira/
TheGeometryOfS1.
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Extended Data Fig. 1 | Contact rate for convex and concave shapes and for 
correct and error trials for all mice. Contact rate (y-axis) as a function of time 
throughout the trial (x-axis) separately for convex and concave shapes (left), and 
for correct and error trials (right). Contacts were higher for convex than concave 

shapes for whisker C1 and C2, whereas whisker C3 showed the opposite trend. 
Contacts were higher for correct than error trials for all whiskers and animals. 
(a-j) Results for all mice. (k) Mean results across animals (n = 10 mice).
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Extended Data Fig. 2 | Linear and non-linear decoders performed similarly 
for correct and error trials, different stopping locations, and flatter shapes. 
(a) A multi-layer feedforward network model is trained to use the full spatio-
temporal pattern of contacts and angle of contacts to predict the stimulus and 
the choice of the animal on a trial-by-trial basis (see Fig. 2). Models were trained 
using all trials and tested on correct (black) and incorrect (red) trials. Only linear 
and non-linear models with one hidden layer are shown. Stimulus decoding (left) 
produced higher decoding performance for correct trials than errors, probably 
due to the higher number of contacts made by mice on correct trials. On the 
contrary, correct trials conveyed much more information about animals’ choice 
than incorrect trials (right). One possible explanation of these effects is that 
in approximately 60% of the trials animals make very accurate choices that are 
based on properly sampled sensory cues. In the other 40% of the trials, animals 

still sample information properly but their choice is inaccurate and based on a 
hidden variable we do not have access to51,52. (b) Decoding performance (y-axis) 
for the different decoders (x-axis) for the easy (linearly separable; left panel) 
and very complex (non-linearly separable, 3D-parity; right panel) tasks (see 
Methods). Non-linear cue integration is only advantageous when the task itself 
requires complex sensory integration across time and whiskers. (c) Linear and 
non-linear classifiers performed equally well on the shape discrimination task 
from the real spatio-temporal pattern of whisker contacts when conditioned 
on trials corresponding to far, medium and close stopping locations. Error bars 
in panels (a-c) correspond to s.e.m. across mice (n = 10). (d) Similar to behavior 
(see5), flatter shapes were more difficult to discriminate than the standard ones 
from the real spatio-temporal pattern of whisker contacts. Errorbars correspond 
to s.e.m. across mice that were presented both standard and flatter shapes (n = 3).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Different feedforward and recurrent architectures 
were used to decode behavior and fit the S1 encoding models. (a) Stimulus 
(green) and choice (blue) were decoded on a trial-by-trial basis from the spatio-
temporal pattern of whisking contacts using RNNs with different number of 
hidden units. On each time step and trial the input to the RNN decoder was 
the number of contacts and angle of contact for all the whiskers. Errorbars 
correspond to s.e.m. across mice (n = 10). Feed-forward networks performed in 
general better than RNNs for decoding behavior (see Fig. 2). (b) S1 population 
activity was regressed against whisker and task variables (encoding model) 
using RNNs with different number of hidden units. Errorbars correspond to 
s.e.m. across neurons (n = 584). See Extended Data Fig. S5a for the distribution 
of CV R2 across neurons for the linear and the best non-linear (feed-forward with 
one hidden layer of hundred units) encoding models. Feed-forward networks 

performed in general better than RNNs on explaining S1 population activity (see 
Fig. 4). (c) Linear and non-linear feed-forward networks with different number 
of units (artificial neurons) in the hidden layers are equally good at predicting 
the presented shape (stimulus; green) and animal’s choice (choice; blue) on a 
trial-by-trial basis from the spatio-temporal pattern of whisker contacts and 
angle of contacts (see Fig. 2). Errorbars correspond to s.e.m. across mice (n = 10). 
(d) The profile of explanatory power for S1 population activity across models is 
qualitatively equivalent for 20, 100 (see Fig. 4), and 200 units in the hidden layers 
of the feed-forward encoding models. Errorbars correspond to s.e.m. across 
neurons (n = 584). See Extended Data Fig. S5a for the distribution of CV R2 across 
neurons for the linear and the best non-linear (feed-forward with one hidden 
layer of hundred units) encoding models.
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Extended Data Fig. 4 | Linear and non-linear classifiers perform equally 
well on other shapes used in the simulated whisker discrimination task. 
(a-e) Linear and non-linear classifiers performed equally well from the spatio-
temporal pattern of simulated whisker contacts and angles of contact when 
different general parameters of the shapes were used in the simulations: more 
distant stopping locations (a); smaller shapes (b); further shapes (c); closer 
shapes (d); and flatter shapes (e) (see Methods). (f) Flatter shapes (larger radius) 
were more difficult to discriminate than more curved shapes on a simulation 
of the whisker-based discrimination task. (g) Curvature discrimination task: 
discriminate between curved (green) or flat (orange) shapes (first panel).  
Non-linear classifiers substantially outperform linear ones on the simulated 

curvature discrimination task when the full spatio-temporal pattern of contacts 
and angle of contacts is used to discriminate between flatter (orange) and more 
curved (green) shapes (second panel). Total number of contacts for the pair (C1, 
C2) (third panel), (C1, C3) (fourth panel) and (C2, C3) (fifth panel). The boundary 
between the two categories is non-linear. (h) Example of another simulated 
non-linear discrimination task (green vs orange bars). Non-linear classifiers 
substantially outperform linear ones on this task when the full spatio-temporal 
pattern of contacts and angle of contacts is used. The boundary between the two 
categories is non-linear, especially for C1 vs C2. Errorbars in all panels correspond 
to s.e.m. across independent simulations (n = 5).
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Extended Data Fig. 5 | Mean goodness-of-fit across neurons, correct and 
incorrect trials, neuronal types, and S1 layers. (a) Mean goodness-of-fit across 
neurons (y-axis; R2) for the different encoding models (x-axis) on held-out data 
(left), and the distribution of R2 across neurons for the non-linear (one hidden 
layer) (y-axis) and the linear encoding models (x-axis) (right). All models were fit 
on simultaneously recorded populations. For held-out data, the best model is 
a feed-forward fully connected network with only one hidden layer (NonLin-1). 
(b) Mean goodness-of-fit across neurons (y-axis; R2) for the different encoding 
models (x-axis) on the data used for training. For the train data, the more 
complex the model (more parameters), the better the prediction. (c) Mean CV 
R2 (y-axis) across S1 neurons for the different encoding models (x-axis) when 
evaluated in correct (black) and incorrect trials (red). Encoding models explained 

S1 activity better on correct than error trials. Errorbars in panels (a-c) correspond 
to s.e.m. across neurons (n = 584). (d) Mean CV R2 across neurons for the different 
encoding models (x-axis) on held-out data for all neurons (left), only excitatory 
(middle) and only inhibitory neurons (right). (e) Mean CV R2 across neurons for 
the different encoding models on held-out data for neurons across layers for all 
(top), excitatory (middle) and inhibitory neurons (bottom). (f-g) Encoding fits 
when using Poisson loss instead of mean squared error (MSE). The y-axis shows 
the Poisson-loss equivalent of the R2, the Pseudo-R2. The Pseudo-R2 is calculated 
as 1 - PLoss/Variance, where PLoss is the negative Log-likelihood of the Poisson 
model. All models were fit on simultaneously recorded populations. Errorbars 
in all panels correspond to s.e.m. across neurons (all n = 584; excitatory n = 491; 
inhibitory n = 93; layer 2/3 n = 68; layer 4 n = 157; layer 5 n = 249; layer 6 n = 96).
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Extended Data Fig. 6 | Contribution of the different regressors to S1 activity 
across neuronal types, layers, and columns in S1. (a) Distribution of R2 for the 
full model (x-axis; R2 Full Model) vs R2 for the different ablations (y-axis; R2 
Reduced Model) across all recorded neurons. The R2 for the different ablations is 
calculated by testing the model on held-out trials where those features (or groups 
of features) have been set to zero. (b) Mean ΔR2 across all neurons (y-axis; 
ΔR2 = R2

Full − R2
Reduced) for the different groups of variables. Whisker contacts 

(Contacts) and continuous angle (Angle) are the most important groups of 
regressors in predicting S1 activity. Errorbars correspond to s.e.m. across 
neurons (n = 584). (c) ΔR2 separately for excitatory and inhibitory neurons. 
Inhibitory populations show a higher ΔR2 because their R2 is overall higher (see 
Extended Data Fig. S5e). (d) ΔR2 across layers of the somatosensory cortex. 

Whisker contacts have a stronger effect on superficial layers, while whisker angle 
has a stronger effect on deeper layers. (e) The metric ΔR2 reveals that neurons in 
S1 do not strictly obey somatotopy during the whisker-based discrimination task 
(see also5). The contribution to the encoding model’s performance (y-axis; ΔR2) 
for the groups of variables associated with whiskers’ contacts (C0, C1, C2 and C3 for 
all time steps) and angular position (θC0, θC1, θC2, and θC3 for all time steps) for all 
neurons. (f-h) Whisker and angular position encoding strength for C1 column (b), 
C2 column (c) and C3 column (d). While C1 contacts is the strongest driver in C1 
column, C2 and C3 columns are not dominated by C2 and C3 contacts, 
respectively. Errorbars in all panels correspond to s.e.m. across neurons (all  
n = 584; excitatory n = 491; inhibitory n = 93; layer 2/3 n = 68; layer 4 n = 157; layer 5 
n = 249; layer 6 n = 96; C1 column n = 117; C2 column n = 208; C3 column n = 204).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Non-linear mixed selectivity across neuronal types and 
cortical layers for the different groups of task variables. (a) Different coding 
scenarios would produce different values for ΔR2 − ΔR2

Linear. Here we show 
different tuning schemes with respect to C1 and C3 for a fictional neuron (r1). The 
metric ΔR2 − ΔR2

Linear was used to evaluate to what extend the pure non-linear 
terms were important to predict the population’s firing rate. (Left) If the 
relationship between neuronal activity and encoding variables is linear, 
ΔR2

Linear ≠ 0,ΔR2 = ΔR2
Linear and therefore ΔR2 − ΔR2

Linear = 0. (Middle) If the 

relationship between neuronal activity and encoding variables is purely 
non-linear, ΔR2

Linear = 0, ΔR2 ≠ 0, and ΔR2 − ΔR2
Linear > 0. (Right) If the encoding 

model is composed of both linear and non-linear components, ΔR2
Linear ≠ 0, 

ΔR2 ≠ ΔR2
Linear, and ΔR2 − ΔR2

Linear > 0. (b-c) Pure non-linear mixed selectivity 
contribution (ΔR2 − ΔR2

Linear) for the interaction between the different blocks of 
variables across neuronal types and S1 layers. Results were qualitatively 
equivalent for the excitatory (a) and the inhibitory (b) populations.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Non-linear mixed selectivity for whisker contacts and 
angular position for the different time steps and cortical columns in S1. (a) 
Pure non-linear mixed selectivity (ΔR2 − ΔR2

Linear) contribution for the 
interaction between contacts for the different time steps (time lags) and whiskers 
separately by columnar location (mean across neurons). The strongest 
interactions occur at the time lags of 100 ms (1 time step). Even though C1 column 
shows that C1 terms have the strongest interaction, C2 and C3 columns present a 
more heterogeneous interaction pattern. (b) Equivalent plot for the interaction 
between angular position for the different time steps (time lags) and whiskers. 
The strongest interactions occurs at time lags of 0ms. All columns present strong 
interactions terms with the rest of whiskers. (c) Pure non-linear mixed selectivity 

contribution (ΔR2 − ΔR2
Linear) for the interaction between contacts and angular 

position for the different time steps (time lags) and whiskers (single regressors in 
the encoding models) (mean across neurons). The strongest non-linear 
contribution in whisker angular position occurs on the current time step for all 
whiskers. The strongest non-linear contribution for the interaction between 
contacts and angular position occurs on time lags between angular position (and 
neuronal activity) and contacts of 100 ms (1 time step). (d) Equivalent plot for the 
interaction between contacts for the different time steps (time lags) and 
whiskers. The strongest non-linear contribution in whisker contacts occurs on 
time lags between neuronal activity and contacts of 100 ms (1 time step) for all 
whiskers.
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Extended Data Fig. 9 | Different whiskers are represented across S1 columns 
in approximately orthogonal sub-spaces. (a) Top: Decoding performance 
on whether the sum of whisker contacts across the current and previous four 
time steps corresponded to a high or a low number of contacts with respect to 
the median for each different whisker (decode high vs low number of contacts 
for each whisker) (C1 blue; C2 green; C3 red) and columns (see Methods). 
Information about whisker contacts for all whiskers was present in all columns. 
Decoding Performance was evaluated on surrogate activity generated by the 
best encoding model (NonLin-1) for each recording session. In each recording 
session, activity from only one column was recorded. In order to compare 
information across columns, surrogate activity was generated for 10 neurons, 
which corresponded to the smallest number of simultaneously recorded neurons 
across recording sessions (columns). Bottom: Qualitatively equivalent results 

were found when the CCGP was evaluated (see Methods). All columns encode 
information about all whiskers in approximately orthogonal spaces. Errorbars 
in all panels correspond to s.e.m. across recording sessions (C1 column n = 6; C2 
column n = 9; C3 column n = 6). (b) Top: Decoding performance on whether the 
total number of contacts in a trial (2 sec.) corresponded to a high or a low number 
of contacts with respect to the median for each different whisker (decode high vs 
low number of contacts for each whisker) (C1 blue; C2 green; C3 red) and columns 
using pseudopopulations of neurons (see Methods). All bars are significantly 
above chance. Bottom: CCGP with respect to the total number of contacts 
for the different whiskers and columns. Even though there seems to be some 
somatotopic structure on CCGP for pseudopopulations, the differences are small 
and all bars are significantly above chance. Errorbars correspond to the standard 
deviation across cross-validation iterations (n = 10).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | The geometry of representations and encoding 
properties in RNNs change for the easy, the complex, and the very complex 
tasks. (a) Probability of correct response (y-axis) as a function of time (x-axis) 
when the RNN was trained on the easy task 1 (left panel), the complex task 1 
(central panel) and the very complex task (right panel). RNNs were trained on 
low input noise (λlow = 0.23 and λhigh = 0.77) (see Methods). For each network, 
additional readout weights on the activity of the artificial units were trained to 
perform the rest of the tasks (solid lines). While an RNN trained on easy task 1 
produced the best performance for easy task 1, the neuronal representations 
were not well suited for the rest of tasks (left). When an RNN was trained 
on the complex 1 (central) and the very complex (right) tasks, it produced 
representations that allowed the performance of many different tasks. This 
came at the expense of losing performance for the easy task 1. Generalization 
performance, defined as cross-condition generalization performance (CCGP), 
was also tested for the three easy tasks (dashed lines) when the RNN was trained 
on the easy task 1 (left panel), the complex task 1 (central panel) and the very 
complex task (right panel) (see Methods). While abstraction (CCGP) is high 
for easy task 1 when the RNN was trained on the easy task 1, it is low for easy 
tasks 2 and 3. Since complex task 1 is defined as the 2D-XOR between C1 and 
C2, CCGP was higher for easy task 1 and 2 (C1 and C2) than for easy task 3 (C3). 
For the RNN trained on the very complex task, CCGP was significantly above 
chance for all easy-task variables. (b-c) The same qualitative results were 
obtained when medium (b; λlow = 0.3 and λhigh = 0.7) and high (c; λlow = 0.35 and 
λhigh = 0.65) noise levels were used instead. For all panels in (a-c) the performance 

curves correspond to the mean across random realizations of input patterns 
and tasks (n = 50) (see Methods). (d) Similar to Fig. 2d, linear and non-linear 
classification models that read out the input (x-axis), were trained to perform 
the easy (left panel; easy task 1), the complex (central panel; complex task 1) and 
the very complex tasks (right panel). On the easy task, both linear and non-
linear classifiers performed equally well, as shown by decoding performances 
(y-axis) of the different models. On the contrary, only non-linear classifiers that 
allow for complex cue combination, performed above chance on the complex 
(central) and very complex (right) tasks. The behavioral results obtained on 
the whisker-based discrimination task (see Fig. 2) are aligned with the easy task 
(left panel). In all panels errorbars correspond to the s.e.m. across different 
network realizations (n = 4). (e) Similar to Fig. 4d, CV R2 on explaining artificial 
units activity (y-axis), is plotted against the different encoding models (x-axis). 
RNNs trained to perform tasks that require non-linear integration of sensory 
cues are better explained by an encoding model that allows for non-linear mixed 
selectivity (central and right panels), while a non-linear encoding scheme provide 
marginal additional explanatory power for the easy task RNN (left panel). The 
higher the complexity of the trained task, the higher the advantage of non-linear 
encoding models on explaining the activity of the artificial units. In contrast 
to (d), the encoding properties of S1 are aligned with those of RNNs trained to 
perform tasks that require non-linear combination of sensory evidence (see 
Fig. 4). Errorbars correspond to the s.e.m. across artificial units (n = 240; 4 
networks × 60 units).
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Ethics oversight All experiments were conducted under the supervision and approval of the Columbia University Institutional Animal Care and Use 

Committee

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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