nature neuroscience

Article

https://doi.org/10.1038/s41593-022-01237-9

The geometry of cortical representations of

touchinrodents

Received: 17 September 2021

Accepted: 16 November 2022

Published online: 9 January 2023

Ramon Nogueira® >3
Stefano Fusi®'>%*

, Chris C. Rodgers ® >345, Randy M. Bruno ®2%4¢ &

% Check for updates

Neurons often encode highly heterogeneous non-linear functions of
multiple task variables, a signature of a high-dimensional geometry.

We studied the representational geometry in the somatosensory cortex of
mice trained toreport the curvature of objects touched by their whiskers.
High-speed videos of the whiskers revealed that the task can be solved by
linearly integrating multiple whisker contacts over time. However, the
neural activity in somatosensory cortex reflects non-linear integration of
spatio-temporal features of the sensory inputs. Although the responses at
firstappeared disorganized, we identified an interesting structurein the
representational geometry: different whisker contacts are disentangled
variables represented in approximately, but not fully, orthogonal subspaces
of the neural activity space. This geometry allows linear readouts to perform
abroad class of tasks of different complexities without compromising the
ability to generalize to novel situations.

Making sense of the world often requires the integration of sensory
evidence across multiple sources of information. In some situations,
thisinvolves only simple operations like linear summation. For example,
if we need to determine whether an object is close to our hand or not,
we can just move our fingers until any of them touches the object".
Summing the tactile feedback coming from all fingers and compar-
ing it to a threshold would be sufficient to report whether the object
is present or not. In other words, alinear decoder would be sufficient
to perform this simple detection task. More difficult tasks, like recog-
nizing the shape of an object by touch, might require more complex
decoders to process the stimulus, generate the correct response and
generalize to numerous variations of the sensory experience. These
tasks might involve active sensing and non-linear integration of the
sensory inputs coming from multiple fingers®*. But it is also possible
that the way we explore these objects by touch leads to spatio-temporal
input patterns that are simpler than expected. For shape recognition,
would a linear decoder be sufficient? Would the neural code reflect
the difficulty of the task? What kind of neural representations would
allow for generalization? To answer these questions, we investigated

the problem of shape recognition using recent experimental data’ in
which mice are trained to report whether an object they touch with
their whiskers is convex or concave. We found that the task can be
solved by simplelinear integration of whisker features (linear decoder).
Alinear decoderisalso agood predictor of the decisions of the animals.

We then analyzed the neural activity recorded in somatosensory
cortex. We observed that the responses of individual neurons are
diverse and seemingly disorganized, as typically observed in cogni-
tive areas®”. In our experiment we could not even observe the soma-
totopic organization that one would expect from the architecture of
the barrel cortex (see also ref. 5). Interestingly, the neural responses
are best explained by a process of non-linear spatio-temporal inte-
gration, despite the observation that the task can be solved using
linear integration.

Thelack of organization at theindividual neuronlevelinduced us
toanalyzetherepresentational geometry, whichis defined by the set of
distances between all the points in the population activity space that
represent different sensory stimuli. The geometry is the only aspect
of the representation that is preserved across individuals, species,
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Fig.1| Different geometries of the neuronal representations and the
whisker-based shape discrimination task. a, Each panel shows the activity
space spanned by N orthogonal axes that represent the firing rate of N neurons.
Each pointin this space corresponds to a pattern of population activity.
Low-dimensional representations (G1): the number of contacts C;and C; are
represented along two orthogonal axes. These representations generalize well
to unseen experimental conditions (Generalization) but lack flexibility—the
ability to discriminate many different groups of points using alinear decoder
(Discrimination). A linear decoder trained to report the value of C, (high vs

low) for agiven value of C; would generalize to all values of C;. However, alinear
readout would not be able to separate the green from the orange points. They
would be separable for high-dimensional representations (G3) which are flexible
but generalize poorly. Intermediate geometries (G2) could benefit from the
computational properties of both low- and high-dimensional representations.

Time (s)

b, Animals were presented with either a convex or a concave shape and after two
seconds they reported their choice by licking the left (concave) or right (convex)
lickpipe. ¢, Whiskers and shape position were monitored with a high-speed
camera and an image parsing algorithm?*?2, Panel adapted from ref. 5.

d, The probability of making alick on the correct side increased as a function of
time. The choice onagiven trial was determined by the side of the first lick after
the response window opened (¢ = 0). The mean performance across animals

was ~ 78%. e, The contact rates of all whiskers (CO, C1, C2 and C3) increased as the
shape came within whisking distance (see Extended Data Fig. S1 for time profiles
for each shape, and for correct and error trials separately). f, Difference in the
total number of contacts between concave and convex shapes for all whiskers.
Cland C2 made more contacts for convex shapes, while C3 made more contacts
for concave shapes. See Extended Data Fig. S1 for the distribution across animals.
Errorbarsin (d-f) correspond to s.e.m. across animals (n =10 mice).

and artificial neural networks (see, for example, ref. 8,9), and different
geometries have different computational properties”*". Itis instruc-
tiveto discuss afew prototypical geometries (Fig.1a). The first geom-
etry that we consider (G3) is composed of four points that represent
different sensory stimuli and define a relatively high-dimensional
object (four points can span three dimensions at most). Throughout
thearticle, whenwe speak about dimensionality we refer to the embed-
ding dimensionality of the set of points (that is, the minimal number
of coordinate axes needed to determine the positions of all points). In
the specific example in the figure each point describes the neuronal
responses during a sensory experience in which the subject animal
explores different objects using whiskers. These sensory experiences
are characterized by different values of two variables (for example, they
could correspond to low or high number of whisker contacts for two
different whiskers). These two variables can be decoded even using a
simplelinear decoder, which could beimplemented by adownstream
orarecurrent neuron. But the high dimensionality allows for more: the

points can be separated in any possible way into two groups, which
might correspond to different required responses. In other words
thisgeometry confers flexibility because alinear readout can be easily
trained to perform any binary task without changing the representa-
tion. For this geometry individual neurons exhibit responses that are
non-linear functions of multiple task relevant variables (non-linear
mixed selectivity®'?).

An alternative geometry is illustrated in G1 (Fig. 1a). The points
representing the four stimuli now define a 2D square, which is lower
dimensional thanthe representationin G3. These representations are
called abstract because different variables are represented in orthogo-
nal subspaces (one axis for C;, whisker 1 contacts, and one axis for C,,
whisker 3 contacts, inthe figure), and thanks to this arrangement they
have special generalization properties: a linear decoder trained to
reportthevalue of one variable defines acoding direction in the neural
activity space, and this direction is the same no matter what the values
ofthe other variablesare.Soalinear decoder canreadily generalize to
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situationsit was never trained on. These representations are called dis-
entangled in the machine learning community”™ and they have been
observed inseveral brainareas”®". In this scenario individual neurons
respond to asingle variable or to a linear combination of the task rel-
evant variables (linear mixed selectivity®'®'’). These representations
allow for generalization at the expense of the flexibility guaranteed by
the high-dimensional representations.

Given four experimental conditions, these two geometries are
idealized examples of low- and high-dimensional representations, but
therearealsointermediate scenarios like the onein G2 (Fig. 1a),inwhich
alow-dimensional scaffoldis non-linearly distorted. These geometries
represent a compromise that could have some of the computational
benefits of both high- and low-dimensional representations, and they
are the best description of the representations that we observed in
somatosensory cortex. The low-dimensional scaffold renders the
whisker features disentangled variables, which allows for enhanced
generalization. This disentanglement is not a simple consequence
of somatotopy, which we actually did not observe. The non-linear
distortions make the representations sufficiently high-dimensional
to enable alinear readout to perform complex tasks, but they are not
so high-dimensional that they compromise the robustness to noise
and capacity to generalize. A geometry that balances complexity and
generalization, as seen in monkey prefrontal cortex’, may therefore be
ageneral feature of the cortex.

Results

The whisker-based object discrimination task

Miceweretrained onawhisker-based shape discriminationtask (Fig. 1b),
in which they were asked to report whether an object was concave or
convex (see ref. 5 for a detailed description of the experiment). Each
trial began with the object moving toward the whiskers. Objects could
stop at one of three different distances from the face (far, medium or
close). When the response window opened, mice had to make a choice
by licking the left lickpipe for concave objects and the right lickpipe for
convexobjects. The object position and the whiskers were monitored
using high-speed video and processed with a deep neural network* 2
(Fig.1c). Importantly, mice were free to whisk and lick throughout the
trial (2 seconds). On eachtrial, the choice of the animal was determined
by the side of the first lick after the response window opened.

Mice performed the task with a mean accuracy of 77.7% + 0.9%
(s.e.m.) (Fig. 1d). The probability of making a correct lick increased
throughout the trial, indicating that mice based their decision on the
accumulated sensory evidence gathered by whisking. This implies
some form of temporalintegration. Most contacts were made between
t=-1.25and t=- 0.25, suggesting that this was the most informative
time window (Fig. 1e). The whiskers contacted the two shapes at differ-
ent rates (Fig. 1f). The contact rate of each whisker followed a similar
time profile, and mice made more contacts on correct trials (Extended
Data Fig. S1), suggesting that errors resulted from poorer sensory
gathering or alower level of task engagement.

Linear integration s sufficient for object discrimination
Wetrained alinear decoder toreport stimulus shape onatrial-by-trial
basis. Its input was the observed spatio-temporal pattern of whisker
contacts (Fig. 2a) and the angular position of the whiskers during con-
tacts. We asked whether alinear decoder could use these datato predict
the animal’s choice, which on error trials differed from the shape’s
actualidentity. Decoding the stimulus can reveal the whisker features
thatare useful to perform the task, whereas decoding the choice indi-
cates which whisker features are actually used by mice. Both predictions
were tested on held-out trials (cross-validation; see Methods).

The most informative set of features comprised all the whisker
contacts and angle of contactacross time (Fig. 2b, see also ref. 5). When
whisker contacts were summed either over time, or across whiskers,
the performance decreased, indicating thatitisimportant toread out

the full spatio-temporal pattern of whisker contacts and angles. Unsur-
prisingly, the weights of the classifier trained on contacts summed
over time (Fig. 2b inset) reflected the difference in total number of
contacts for convex vs concave objects (Fig. 1f). We also observed
that the accuracy of the classifiers increased as mice accumulated
more evidence (Fig. 2c; see Methods). Other features like force at the
base of the whisker (whisker bending) or duration of contacts were not
included because we have previously shown that they are less relevant®.

Would non-linear decoders perform better at determining
the shape of the object and the choice of the animal? We trained
feed-forward neural networks with non-linear units arranged in mul-
tiple layers to predict stimulus and choice. These decoders are more
complex, containing more parameters than the linear ones, so they will
certainly performbetter at classifying the patternsin the training set.
However, the cross-validated performance of the non-linear classifier
cansurpass that of the linear classifier only if non-linear combinations
ofthefeatures areimportant. Despite the task being significantly more
complex than other whisker-based tasks (for example, pole detection),
linear and non-linear decoders performed similarly at classifying stim-
uli (linear:90.3% + 1.2%; best non-linear: 91.3% + 1.1%) (Fig. 2d; green). A
similar result was observed onboth correct and error trials (Extended
DataFig.S2a), though for error trials the performance was significantly
lower for all decoders. This performance decrease is likely due to the
lower number of contacts and overall lower task engagementin error tri-
als (Extended Data Fig. S1). When predicting choice, a similar trend was
observed (linear: 72.2% + 1.6%; best non-linear: 75.6% + 1.2%) (Fig. 2d;
blue), suggesting that animals’ decisions were mostly driven by alinear
combination of the sensory cues across time and whiskers. On error
trials our ability to predict choice was substantially lower, suggesting
that these trials were qualitatively different (Extended Data Fig. S2a).

We also fit recurrent neural networks (RNNs) to decode stimulus
and choice onatrial-by-trial basis, but the performance was not better
than with feed-forward networks (Extended Data Fig. S3a). Finally, we
fit the decoders only on trials with a specific stopping position (far,
medium, close; Extended Data Fig. S2c) and obtained similar results.
Shapes with lower curvatures were harder to discriminate for our
decoders (Extended Data Fig. S2d), consistent with the results obtained
in behaving mice’.

Linear and non-linear discrimination in simulated tasks
We wondered whether non-linear decoders could have an advantage
for shapes or shape-response associations different from those used
inour task. We set up a simulation that reproduced several aspects of
the experiment. We simulated the movement of three flexible whiskers
that make contacts with the presented shapes (Fig. 3a). We then trained
linear and non-linear classifiers to perform different tasks using the
simulated spatio-temporal pattern of whisker contacts and angle of
contacts. Similar to the behavioral data, linear and non-linear decod-
ers performed equally well at discriminating between the convex and
concave shapes used in the actual experiment (Fig. 3b).
Interestingly, non-linearities failed to improve the decoding per-
formance also whenwe considered shapes with aricher micro-structure
and orientations (Fig. 3¢,d). Different shape positions and sizes, and
shapes with different curvatures, also produced equivalent results
(Extended DataFig.S4). A possible explanationis that the decoders are
reading out aspatio-temporal pattern of whisker contacts and angles,
which contains information about multiple time steps. Concatenating
patterns at different time steps is probably equivalent to projecting
the inputs of individual times into a higher dimensional space, which
enables alinear decoder to perform as well as a non-linear one. How-
ever, it is possible to design simulated tasks that require non-linear
combinations of sensory cues (Fig. 3e, see also Extended Data Fig. S4),
indicating that behaviorally relevant non-linear tasks exist. These tasks
typically involved complex classifications of groups of simple shapes,
indicating that the non-linearities are oftenimportant when the labels
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Fig.2| The whisker-based shape discrimination task can be solved by linearly
integrating whisker contacts across time. a, The spatio-temporal pattern of
contacts and angle of contacts across time and whiskers was used to classify
shapeidentity (green) and animal choice (blue) on a trial-by-trial basis.

b, Stimulus and choice decoding performance when different input features were
used. Sum all: the linear decoder used only the sum of whisker contacts across

all time bins and whiskers; Sum whiskers: sum across whiskers, but the temporal
structure of the sumis retained; Sum time: the decoder considers the vector of
the total number of contacts for each whisker; All contacts: the decoder reads out
the full spatio-temporal pattern of all contacts from all time bins and whiskers;
Contacts+Angle: all contacts and the angle of the whisker at time of contacts,
which produces the highest decoding accuracy for both stimulus and choice.
Decoding stimulus is expected to be easier than the animal choice because
choice depends also on the internal state of the animal. (Inset) The weights
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obtained by a classifier trained to decode shape identity match the difference in
number of contacts between concave and convex shapes (see Fig. 1f).

¢, Decoding performance as a function of time when the decoder reads out the
full spatio-temporal pattern of contacts and angle from -2 seconds to the time
indicated on the x-axis. The performance increases gradually for both shape and
choice, indicating that there is some form of accumulation of evidence.

d, Amulti-layer neural network model is trained to use the full spatio-temporal
pattern of contacts and angle of contact to predict the stimulus and the choice
of the animal. Non-linear, multi-layer neural networks perform similarly to the
linear network with no intermediate layer. Thus, linear integration of the sensory
cues is sufficient to predict both stimulus and choice. In all panels stimulus and
choice were decorrelated by fitting the classifiers with batches of trials that

have an equal number of correct and incorrect trials. Error barsin all panels
correspond to s.e.m. across animals (n =10 mice).

assigned to the shapes (that is, their semantics) are complex, rather
than the shapes themselves.

Non-linear mixed selectivity in the mouse S1 cortex
To characterize how task variables are represented in the somatosen-
sory cortex (S1), we recorded populations of neurons while mice per-
formed the whisker-based object discrimination task (Fig. 4a). Neurons
are predictive of shapeidentity and animal choice on atrial-by-trial basis
asrevealed by the performance of alinear classifier (Fig. 4b left panel,
seeMethods). At the time of the response, shape could be decoded from
small ensembles of simultaneously recorded neurons (mean popula-
tion size of 25.4 cells) with a performance of 56.8% +1.7% (green) and
the choice of the animal with a performance of 65.4% +2.0% (blue).
The decoding accuracy for both shape and choice was significantly
higher when we grouped together the activity from different record-
ing sessions (pseudopopulations; see ref. 5). Not suprisingly, S1 neu-
rons encoded the number of contacts for each whisker (high or low,
Fig. 4bright panel).

To determine whether the neurons also responded to other vari-
ables, we trained encoding models that predicted the firing rate of the

population of simultaneously recorded neurons from the set of whisk-
ingandbehavioralvariablesforalltime steps (100 ms) and trials (Fig. 4c).
We provided the encoding models with the following regressors: instan-
taneous whisking contacts and angle, lick side and rate, and trial task
variables (currentand previous reward, choice and stimulus) (see Meth-
ods). Stimulus features like force at the base of the whisker (whisker
bending) or contact duration were notincluded inthe model because
we have previously shown that they are weakly encoded”.

We considered four different encoding models that were imple-
mented using feed-forward neural networks: one thatimplements lin-
earregression, and three feed-forward neural networks with 1-3 hidden
layers of rectified linear units (ReLU) and linear output. Note that linear
regression canonly generate pure and linear mixed selectivity neurons
whereas multi-layer networks can respond to non-linear interactions
between regressors (non-linear mixed selectivity). We found that the
observed neural activity is best explained by the non-linear mixed
selectivity encoding model with one hidden layer (R*= 0.111+ 0.0050n
held-out data; see Methods) (Fig. 4d; see also Extended Data Fig. S5a,b).
The linear model with only pure and linear mixed selectivity was the
worst at explaining the neural data (R*= 0.089 + 0.005). Including one
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Fig.3|Non-linear classifiers outperform linear classifiers on more complex
tasks but not on more complex shapes. a, Three snapshots of the simulated
whiskers (C1, C2 and C3) making contacts on a moving concave object (green).
Red dots correspond to contacts made by a whisker ona given time step (see
Methods). b, The whisker-based discrimination task of the experiment was
simulated with three whiskers and three different stopping locations for concave
(green) and convex (orange) shapes (left). Linear and non-linear classifiers

performed equally well on the simulated shape discrimination task (right), asin
the experiment. ¢, Similar results were found when the same shapes had small
wiggles, and when the task was to discriminate rotated flat objects. d, Non-linear
classifiers performed better when the task required discriminating curved vs flat
shapes. Errorbars correspond to s.e.m. across independent simulations (n = 5).
See also Extended Data Fig. S4.

intermediate layer in the encoding model increased the explanatory
power by 24%, a remarkable result given that the non-linearity is not
necessary to explain the observed behavior. We also used RNNs as
encoding models but they did not perform better than feed-forward
encoding models (Extended Data Fig. S3b). The models performed
better on correcttrials, likely due to the the smaller number of contacts
made on the less frequent incorrect trials (Extended Data Fig. S5c).
Moreover, they explained better the responses of inhibitory neurons
and neurons located in deeper layers of the somatosensory cortex
(Extended DataFig. S5d,e), possibly due to their higher firing rates.

To assess the importance of each regressor, we calculated
AR? = R} |, — R%. ..cor Which quantifies theloss in prediction power on
held-out data whenaparticular regressor or group of regressorsis set
to zero (Fig. 5a). We evaluated AR? for different groups of regressors
and found that whisker contacts and continuous whisker angular posi-
tion were most important variables for explaining the neuronal
responses (Fig. 5b; see also Extended Data Fig. S6a). Superficial layers
were more strongly driven by contacts than whisker angular position,
while deep layers showed the opposite trend (Extended Data
Fig. S6b-d). AR’ for the current and previous time steps (time kernel)
for the different whisker features showed a recency effect for all whisk-
ers. Population activity was better predicted by C1 and C2 contacts
than by C3 contacts, and it was less well predicted by the angular posi-
tion of C1than by the other whiskers (Fig. 5¢).

What does somatosensory cortex mix?
Therecorded neurons displayed awide range of response properties:
while some neurons showed approximate linear mixed selectivity for

Cl1, C2and C3 contacts (Fig. 6a), others showed sub-linear or XOR-like
responses (Fig. 6b).

To assess the non-linear mixing, we used the neural network
encoding models because the weights of the intermediate units in
these models would be automatically tuned to produce the interaction
terms needed to explain the neuronal responses. We determined the
contribution of non-linear interactions of specific pairs of variables
(or pairs of groups of variables) by setting the two variables (or two
groups) to zero and evaluating: 1) AR?, which is the loss in explanatory
power for the fullnon-linear model (see Fig. 5b-d) and relies oninterac-
tionterms;2) ARLmea’ whichis the analogousloss for the linear model.
We then computed the difference AR? — AR}, .~ (Extended Data
Fig.S7a), which quantifies the importance of the particular nonlinear
interactionthat was settozero. Theinteractiontermisimportant when
this differenceis large. We found that the mostimportantinteraction
was between whisker angular position and contacts (Fig. 6¢), followed
by interactions between whisker angular position and the other vari-
ables. Similar results were observed in both excitatory and inhibitory
neurons, and across layers (Extended Data Fig. S7b,c).

We next assessed the importance of the interactions between
different whiskers (whisker contacts and angular position) for differ-
ent time lags. For contacts, the interactions are strongest not for the
variables at the current time step, but actually at time-lags of 100ms
(Fig. 6d left). This was unexpected given that contacts at the current
time steps are those that most affect the neural activity (see Fig. 5c)
and could reflect response inhibition between whisker contacts that
occur within whisk cycles of 50-100 ms. For the angular position of the
whiskers, the strongest interactions were observed inthe current time

Nature Neuroscience | Volume 26 | February 2023 | 239-250

243


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-022-01237-9

0.8

Decoding performance &

S1

-2 -1 0
Time in trial (s)

Fig. 4| Populations of neurons in the mouse somatosensory cortex (S1)
exhibit non-linear mixed selectivity for task variables. a, Multiple S1 neurons
were simultaneously recorded while mice performed the whisker-based
discrimination task described in Fig.1. b, Decoding performance of a linear
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time indicated on the x-axis (simultaneously recorded neurons). As expected,
the decoding performance s at chance early in the trial when mice do not
make contacts and it reaches ~ 65% at the end of the trial for choice (blue),
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contacts onagiven trial could be decoded more accurately than shape identity.
Errorbars correspond to s.e.m. across simultaneously recorded populations

of neurons (n =23 recording sessions). ¢, Slactivity was regressed against task
variables. Linear and non-linear neural network models with a different number
of intermediate layers were used to reproduce the observed neural activity.

d, Cross-validated R? on populations of S1 neurons for the different encoding
models. A fully connected neural network with one hidden layer (NonLin-1)
outperforms the linear model and other neural networks with more intermediate
layers. Errorbars correspond to s.e.m. across neurons (n = 584). See Extended
DataFig. S5a for the distribution of R across neurons.

bin (Fig. 6d right). We also examined non-linear interactions between
contacts and whisker position across all whiskers and multiple time
steps. Interestingly, the strongest non-linear mixing between angular
positionand contactsalso occurred withatimelag of 100ms (Extended
DataFig. S8; see Discussion for theimplications of these observations).

The disentangled geometry of neural representationsin S1

To characterize the recorded representational geometry, we studied
how it could be used by adownstream linear readout. Thisis astandard
approach in machine learning in which “linear probes” (that is, linear
decoders) are used to characterize the representations of hidden layers
of deep networks™. We trained a linear decoder to perform synthetic
classification tasks on recorded neural activity. Different tasks required
different geometrical properties. The labels of the synthetic tasks (the
outputs of the decoder) were decided on the basis of the observed
total number of whisker contacts for two whiskers atatime. Theinputs
were constructed by combining together the recorded activity of all
the neurons from different sessions (same or different animals) and by

concatenating the activity vectors of all time bins within a trial (pseu-
dopopulations; see Methods).

We considered complex and easy tasks: for the easy task the
desired output was the thresholded weighted sum of the number
of contacts for two whiskers (C1 and C3, as in “Easy Task" in Fig. 7a).
Weights were random, and each weight vector corresponded to a
different implementation of an easy task. In Fig. 7a we illustrate one
sample easy task by showing the space of whisker contacts. Each point
corresponds to a pair of C1 and C3 contacts, and its color (green and
orange) denotes the desired output. The two regions containing differ-
ent colored points are separated by a line (not shown) whose orienta-
tiondepends on the random weights. By construction, the easy task is
linearly separable. For the complex task, the space of whisker contacts
was divided into 4 regions by two orthogonal separating lines, againin
randomdirections. Thelabels were chosen so that the inputs of diago-
nally opposed regions require the same desired output ("Complex
Task"inFig.7a). This taskis similar to a XOR task, whichis non-linearly
separable and requires high-dimensional representations to be solved.
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Fig. 5| Contacts and whisker angular position are the variables that
contribute the most to the prediction of S1 population activity. a, We used an
encoder model to explain the population’s firing rate (r,,r,, ..., ry; simultaneously
recorded) as anon-linear function of task variables like whisker C1, C2and C3
contacts (thatis C;, C,and G;), and calculated R%uu' the goodness-of-fit of the full
model (top). To assess the importance of each regressor, we set the input data for
thatregressor (or group of regressors) to zero (gray) and assessed the goodness-
of-fit of the reduced model, Rfeeduced (bottom). Theimportance of each

regressor can be quantified as the resulting decrease in goodness-of-fit
AR? = Rﬁu” - szeduced. b, Whisker contacts and angular position were the most
important groups of regressors on Slactivity as revealed by the decrease in

model accuracy AR? (see Extended Data Fig. Sé6a for the distributions ofRfEu” and

R;Zzeduced across all recorded neurons). ¢, Decrease in model accuracy (AR?) for
whisker contacts (left panel), angular position (central panel) and angle of
contact (right panel) for different time lags with respect to current time step.
Neural activity was better explained by variables in the current time step.

d, Previous reward (pale red) was predictive of neuronal activity (AR?) early
during the trial whereas theimportance of current reward (red) peaked after
mice made their choice. Additionally, although current stimulus (green) and
choice (blue) followed a similar trend throughout the course of the trial, current
choice had astronger effect on the population’s firing at response time (¢ = 0).
Similar task variable time profiles have been reported in previous studies in other
animals and brain regions®. Errorbars in all panels correspond to s.e.m. across
neurons (n =584).See Extended Data Fig. S6a for the distribution across neurons.

To benchmark the ability to generalize, we computed the
cross-condition generalization performance (CCGP)’ for all the three
whiskers. CCGP was evaluated asalinear decoder’s ability toreport the
number of contacts (high vs low) of one whisker, say C3, for example, for
acertainvalue of the whisker count for a different whisker (for example,
when Clis high). The decoder wastrained only onthe other values of the
different whisker (for example, low C1, see “Generalization" in Fig. 7a).
IfCland C3 contacts arerepresented in approximately orthogonal sub-
spaces, thenthe CCGPis high and the Cland C3 variables are disentan-
gled. Thethreedifferentidealized geometries of Fig. 1alead toadifferent
performance on the easy and complex tasks and the generalization
benchmark (Fig. 7b).

The linear decoder could perform the easy task with high accu-
racy (left bar in Fig. 7c). The performance for the complex task
was relatively low, but still above chance (central bar in Fig. 7c; see
Methods). Interestingly, CCGP was high for all the variables rep-
resenting the number of contacts of different whiskers (right bars
inFig.7c).

This means that the coding direction for the number of contacts of
eachwhisker does not depend much on the number of contacts of the
other whiskers. In other words, the coding directions for each whisker
areapproximately parallel to each other when one considers different
values of the number of contacts of the other whiskers. The fact that
CCGP was high for all the variables excludes the high-dimensional
geometry depicted in Fig. 7b (G3). The fact that the performance on

the complex task was above chance indicates that the non-linear com-
ponent of the neural responses is not negligible, and hence that the
representational geometry is not compatible with the low-dimensional
oneillustratedinFig. 7b (G1). Anintermediate geometry, which could
be described as a non-linearly distorted low-dimensional scaffold, is
the best description of the data (G2).

For these representations the elevated CCGP relies on the linear
component oftheresponses, whereas the distortions needed to solve
the complex task require non-linear components. This can be seen
directly by generating synthetic neural data using the encoding mod-
els described above: the complex task could be better solved when
the non-linear component was preserved, whereas linear synthetic
representations slightly outperformed non-linear ones on the easy
task and CCGP (Fig. 7d).

Disentanglement is not a simple consequence of somatotopy. One
possible explanation for the elevated CCGPis that there are segregated
populations of neurons, each encoding the number of contacts for
one whisker. This specialized representation might reflect the soma-
totopic architecture of the barrel cortex. However, thisis not the case
because we analyzed separately the populations of neuronsin different
columns and we found that:1) C1, C2 and C3 contacts were encoded in
allthe columns (Extended Data Figs. S6e-h, S9), as observed inref. 5; 2)
CCGPiselevated for all the whiskers in all the columns (insetin Fig. 7d;
see also Extended Data Fig. S9).
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had more explanatory power in S1than on previous time steps.

Task difficulty modulates RNNs’ representational geometry
As seen in the previous sections, the task is linear but the neural rep-
resentations contain a non-linear component. There are at least two
possible explanations. First, S1is employed in multiple tasks, some of
which may be complex enough to require a non-linear component.
When trained on these complex tasks, S1 could also perform easy
tasks, though the generalization performance might be reduced.
Second, the non-linearities may be unavoidable even when the task
is easy and does not require them. For example, it is possible that the
type of temporal integration needed to perform the task requires
some form of non-linearities as in echo state machines or liquid
state machines®. The results thus far cannot exclude the second
possibility because the models that we used to predict the stimu-
lus, the choice of the animal and the neural activity use inputs from
different time steps that are concatenated together. This is a pos-
sible way of implementing temporal integration, but it is not clear
whether and how it can be realized by a neural circuit, like arecurrent
neural network.

To answer these questions we simulated a recurrent neural net-
work (RNN) trained to perform tasks with different levels of difficulty
that are similar to the shape discrimination task (Fig. 8a). Notice that
the RNNs were only required to generate the correct response in the
artificial tasks, and not to reproduce the neural data as inref. 25,26.

The synthetic tasks had the following structure: each trial lasted 30
time steps, and at each time step we fed the RNN with a vector contain-
ing three binary variables (each representing contacts made by one
of three whiskers). Each binary variable was random (anindependent
Bernoulli process) with either a high or low success rateA, foratotal of 8
different conditions. The desired outputs defined two tasks with differ-
entlevels of difficulty: easy (Fig. 8b,d,f), and complex (Fig. 8c,e,g) (see
Methods). The easy task could be solved by linearly mixing information
across input channels whereas the complex task required non-linear

mixing. RNNs were trained on either the easy or the complex task to
determine the input, recurrent, and readout weights (see Extended
Data Figs. S10 for results on a third very complex task).

Wethenfrozethe trained network and studied the geometry of the
neural representations using the same approach adopted for real data:
we trained a linear readout to perform tasks with two different levels
of complexity. We finally asked how well the representations learned
for one task could be used to perform the other task. Specifically, we
trained each network on either the easy or the complex task, froze the
recurrent and input weights, and then optimized linear readouts to
use those representations to perform different tasks (easy, easy other,
and complex task) (Fig. 8d,e; see Methods). To study the generalization
properties of the neural representations we estimated the CCGP for
different dichotomies (ways of dividing the points into two groups)
that correspond to different easy tasks (CCGP easy, CCGP other in
Fig. 8f,g; see Methods).

Networks trained on an easy task produced a high discrimination
and generalization performance (high CCGP) for the easy task only
(dark brown; Fig. 8d,f). The complex task could not be performed
indicating that in this case the non-linearities are weak and the
dimensionality of the representations is relatively low. These results
show that the non-linearities are not necessary to perform temporal
integration.

Training anetwork on the complex task produced representations
that allowed a linear readout to perform both the easy and complex
tasks (Fig. 8e) and interestingly the easy task could be performed better
thanthe task the network was trained on. This flexibility is provided by
the non-linear components of the responses, asshownin Extended Data
Fig. S10e. Importantly, CCGP was well above chance for the variable
defined by the easy task: this means that the non-linearities needed
to perform the complex task have a relatively low impact on the abil-
ity togeneralize. In other words, training on the complex task leads to
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Fig.7| The geometry of representations observed in S1. a, Synthetic tasks and
tests used to probe the geometry. Easy task: the linear classifier should output
1(orange) if the (random) weighted sum of C,and C; s larger than a threshold,
and O otherwise (green). The two classes are linearly separable. The values of
C,and G; (or other pairs of whisker contacts; see Methods) are taken from the
experiment. Complex task: the (C,,C;) space is divided into 4 regions by two
orthogonal random directions. The two classes are colored in orange and green.
Thetaskis not linearly separable. Generalization test (example for C;): alinear
decoder is trained to discriminate between high and low C; onlow C, (Train), and
itis tested on high C, (Test). CCGP for C, and C, were evaluated equivalently (see
Methods). b, Expected performance on the synthetic tasks for the three different
idealized geometries of Fig. 1a. For low-dimensional representations (G1), both
the easy task performance and generalization (CCGP) are high. The performance
is poor for complex tasks. High-dimensional representations (G3) allow for

high performance in complex tasks, but generalization is poor. Intermediate

geometries (G2) benefit from the computational properties of both low- and
high-dimensional representations. ¢,d, Performance on the easy task, complex
task, and generalization benchmark (CCGP) when we used the real neural data (c)
(pseudosimultaneous recordings) or the surrogate data generated by the linear
(pale green) and non-linear (one hidden layer; darker green) encoding models (d)
(fit on simultaneously recorded populations). For the easy task, performance was
high for real (c) and surrogate data (d). For the complex task, the performance
was above chance for real and surrogate data, except for the linear surrogate
representations. For the generalization benchmark, CCGP is high for all

whisker contact variables (C,, C,, and G;) for the real and the surrogate data
across all columnsin S1 (inset; see also Extended Data Fig. S9). Errorbars in (c)
correspond to the standard deviation across cross-validationiterations (n = 10)
(see Methods), whereas in (d) they correspond to s.e.m. across populations of
simultaneously recorded neurons (n =23 recording sessions).

non-linear componentsinthe neural responses and allows the network
to performabroad class of different tasks, withamodest costin terms
of generalization (see also Extended Data Fig. S10). This is probably
why we observed a non-linear component in the neural responses of
S1, despite the fact that the task does not require them.

Discussion

The neural responses in somatosensory cortex are diverse and
seemingly disorganized non-linear functions of multiple variables
describing whisker features (non-linear mixed selectivity). The mixed
variables characterize multiple whiskers at different times, leading to
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aninteresting form of spatio-temporal mixed selectivity. Strikingly, the
non-linearity is observed despite the fact that the task can be solved
by linearly integrating the same task-relevant variables. The non-linear
responses appear to lack any evident organization - even somatotopy
(seealsoref.5). However, aninteresting organization appeared when
we analyzed the representational geometry: whisker contacts, which
areimportant features for performing the shape discrimination task,
arerepresented in subspaces that are approximately orthogonal. This
geometry is not a simple reflection of the anatomical organization of
the somatosensory cortex. Indeed, the representational geometry in
three different columnsis similar, with neurons that respond to features
of all the three whiskers used by the animal. This kind of factorized
or disentangled representation has been observed in the prefrontal
cortex”?, hippocampus’", infero-temporal cortex and perirhinal
cortex'*"**, and motor cortex of monkeys®. It is known to have impor-
tant computational properties for generalization™.
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Why non-linear neuronal responses when the task is linear?

As the non-linearity detracts from robustness to noise, why are the
representations non-linear even if the shape discrimination task is
linear? We showed that the observed geometry actually represents a
good compromise between the ability of a linear readout to perform
complex discrimination tasks - which is typical of high-dimensional
representations - and the robustness to noise and the ability to general-
ize tonovelsituations- whichis typical of low-dimensional representa-
tions. Thisinteresting compromise can bereproducedinasimulation
of aRNN trained to perform several different tasks that are similar to
the shape discrimination task. In these simulations we also observed
that the non-linear component of the representationsis progressively
more important in more complex tasks, and that its cost in terms of
noise robustness and generalization is relatively small. This suggests
that the somatosensory cortex operates in an interesting regime that
is probably the result of training on a variety of tasks and allows for
flexibility and generalization.

Encoding models to characterize the population response
Previous studies showed that the dimensionality of neural representa-
tions can be maximal (monkey PFC®), very high (rodent visual cortex’),
or as high as it can be given the task’s structure’. More recently, in
ref. 7 the authors showed that representations can have the maximal
dimensionality required to separate all possible groups of stimuli with
alinear decoder (shattering dimensionality) and, at the same time,
exhibit alow-dimensional scaffold which allows for cross-condition
generalization. These studies focused on computationally relevant
properties of the representational geometry, ignoring the detailed
information about the individual neurons’ response. Other studies
looked more closely at the components of responses that are impor-
tant for characterizing this geometry, focusing on the two important
ingredients for getting high dimensionality: mixing and diversity*>*.
Sometimes the responses of individual neurons can be well described
by linear mixed selectivity'*'®", indicating that the representations are
low-dimensional, or disentangled™.

Here we adopted a new approach to characterize both collec-
tive properties of the representations and the dynamic response of
individual neurons. Using the neural network encoding models we
could characterize the response of a population of simultaneously

Fig. 8| The geometry of representations in RNNs is modulated by the
difficulty of the task. a, We simulated and analyzed the representations of a
recurrent neural network model (RNN) performing a synthetic task that is similar
to the shape discrimination task. A set of noisy and fully connected ReLU units
receive input from three independent channels (C1, C2 and C3). The state of

the network at agiven time step (h,) is determined by its state at the previous
timesstep (h,,), the input at the current time step (x,) and independent Gaussian
noise (§) (see Methods). b, The easy task is a linear integration task across input
channels. RNNs in panels (d),(f) were trained on the easy task. ¢, The complex
task consists of a non-linear integration task with respect to two input channels
(XOR).RNNs in panels (e),(g) were trained on the complex task (see Methods). d,
The performance on the easy task (dark brown) as a function of time within a trial
for RNNs trained on the easy task. Performance increased as a function of elapsed
time in all networks and tasks. A readout unit fails at performing an orthogonal
easy (easy other; pale brown), and the complex task (black). e, Probability
correct on the easy (dark brown), orthogonal easy (easy other; pale brown), and
complex tasks as a function of time within a trial for RNNs trained on the complex
task. f, Generalization ability, estimated as the cross-condition generalization
performance (CCGP), is high for the easy task and low for the orthogonal other
easy task for RNNs trained on the easy task. g, Generalization (CCGP) for RNNs
trained on the complex task is overall lower than for RNNs trained on the easy
task. See Extended Data Fig. S10 for results also on a very complex task. Different
levels of input noise produced qualitatively equivalent results for all networks,
tasks and generalization (Extended Data Fig. S10). For all panels, the performance
curves correspond to the mean across random realizations of input patterns and
tasks (n=>50) (see Methods).
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recorded neurons. This is more than reproducing the responses of all
theindividual neurons, because the encoding models canalso capture
the correlations between the activities of different neurons, which can
affect the geometry of the representations and their consequences on
informationencoding and behavior (see, for example, ref. 34-38). This
approach was motivated by the fact that the task involves active sens-
ing, which is closer to natural behavior but more difficult to analyze.
In contrast to the aforementioned monkey experiments®, the trial
temporal structure is highly variable as it depends on how the animal
moves the whiskers. Because the sensory inputin this kind of behavior
involves alarger set of variables which are continuous, we used amore
unbiased approachtoidentify those variables that could be important
to predict the animal’s behavior and neural activity. We started from
thislarger set of variables that characterize complex spatio-temporal
patternsand let the encoding model find those that are mostimportant.

Limitations on assessing non-linearity of mixed selectivity
One important issue is that mixed selectivity is always defined with
respect to a set of variables®” and this is one of the limitations of all
the analyses that focus on the responses of individual neurons. For
example, neurons could respond to a non-linear combination of two
variablesxandy,say xy.If one considers z = xyas anadditional variable,
then the non-linearity disappears, as all the neurons can be described
asalinear combinationofix, y, z.Itis possible that for a different choice
of variables, the observed mixed selectivity would be less non-linear
than what we observed. However, the choice of the variables was actu-
ally dictated by the analysis of the whisker features and interestingly, a
linear combination of these features is sufficient to predict shape and
choice, but not the neural activity. Even when we considered additional
variables (for example, whisker angles were used to predict the activity
butnot the stimulus or the behavior), we still needed non-linear inter-
actions. Thisissignificant because these additional variables could be
related to non-linear interactions between other variables. Neverthe-
less, alinear encoding model that has access to all these variables still
performs worse than anon-linear one.

Mixed selectivity and the architecture of the neural circuit

Our analysis showed that non-linear interactions are an important
component of the neuronal responses. The strongest interactions
are between the variables representing the angular position of the
whiskers at the current time and the whisker contacts that occurred
inthe preceding 100 ms time step. The interactions between contacts
of different whiskers affect the current neural activity if the contacts
happened in the preceding time bin. Although the interactions are
delayed, the information about the whisker contacts is not, and the
strongest contribution to the neural activity comes from the con-
tacts of the current time step. This means that the firstinformation to
arrive inthe somatosensory cortex is more linear, and the interaction
terms affect the neural activity with a delay of the order of 100 ms.
We speculate that the whisker contact information arrives first from
segregated inputs containing information about separate whiskers.
The interaction terms appear later and could originate from some
non-linear recurrent neural circuit whichmight belocal, within soma-
tosensory cortex, or long-range, involving other areas such as sec-
ondary somatosensory, motor, frontal cortex or secondary thalamic
nuclei (for example, ref. 40-42). For the information about whisker
position (expressed as angles in our analysis) the dominant interac-
tionterms areinstead between angles at the current time. Itis possible
that thisinformationis already non-linearly mixed in other brain areas
(downstream, like motor cortex, or upstream like primary thalamus
and brainstem***),

New analytical methods for naturalistic experiments
Our general framework for analyzing behavioral and electrophysiologi-
cal datais particularly valuable in experiments in which the animals

perform natural tasks, which are becoming increasingly popular*%,

Fitting neural networks to predict stimulusidentity and animal choice
from features extracted from high-speed videos is useful to identify
the most important variables to perform the task successfully and
the behavioral strategy actually followed by the animal, especially for
naturalistic behavior, in which we have limited control over the strate-
gies adopted by the animals. Moreover, using neural networks to fit
neuronal activity from therecorded task variables can be understood
asanunbiased multi-dimensional generalization of a population tuning
curve. Even though the tuning information is implicitly contained in
thearchitecture and weights of the encoding model, it can still provide
crucialinsights about the coding properties and geometrical structure
of the recorded neuronal population. In our case the animals actively
sample the objects by moving the whiskers, and this can greatly com-
plicate the study of the geometry of the neural representations. For
example, some of the quantities used in the past to characterize the
representational geometry like the shattering dimensionality require
lengthy calculations, involving anumber of operations that scales expo-
nentially with the number of experimental conditions. This becomes
prohibitive in an experiment like the one we analyzed where we need
to consider complex spatio-temporal patterns to characterize the
sensory input. Our method can still inform us about the geometry of
the representations (it considers the activity of a population of neu-
rons), but withamore favorable scaling. For all these reasons we believe
that the method we propose here can be applied to anumber of more
natural tasks which are becoming progressively more feasible in the
neuroscience community.

Online content

Any methods, additional references, Nature Portfolio reporting
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author
contributions and competing interests; and statements of data
and code availability are available at https://doi.org/10.1038/
$41593-022-01237-9.
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Methods

Behavioral task and recordings

This experiment has been described in detail’. Here we provide abrief
summary of the behavioral setup and data acquisition. Mice in our
colony were continuously backcrossed to C57BL/6) wild-type mice from
Jackson Laboratories, and all mice reported here were bred in-house.
Theywerekeptonal2hour, non-reversed light cycle and were typically
tested during the day. We used males and females arbitrarily and in
roughly equal proportion (6 females and 4 males).

Ten head-fixed mice were trained to perform a shape discrimina-
tion task in the dark by making contacts with whiskers CO, C1, C2 and
C3 (Fig. 1). On each trial, either a concave or convex shape (custom
designed and 3D-printed) was moved withinreach of the mouse’s whisk-
ers with alinear actuator. All trials started at t = - 2 seconds when the
shapes started moving. Shapes were moved with the same speedinall
trials and they could stop at three different locations: far, medium and
close, whichoccurredatt=-0.9, - 0.7and - 0.5seconds, respectively.
Including three different final positions wasimportant to prevent ani-
mals from using simpler strategies based on distance to the shape and
toforce themtointegrate contacts across whiskers and time to perform
the discrimination task. All trials had a fixed duration of 2 seconds. At
t=0theresponse window opened and mice had to report their choice
by licking either on the left or right lickpipe for concave and convex
shapes, respectively. Licks were monitored by infrared beams or capaci-
tive touch sensors. Even though mice were free to lick throughout the
trial, the choice on each trial was determined by the side of the first lick
after theresponse window opened (¢ = 0). The behavioral performance
for each animal was determined as the percentage of correct choices.

Whisker and shape position were recorded with a high-speed cam-
era (200 frames/second). Whisker tracking was based on a modified
version of ‘pose-tensorflow’ package’®”, whichis the ‘feature detector’
network used in the first version of DeepLabCut®’. The network was
trained to track eight equally spaced joints per whisker. Whisker con-
tacts wereidentified when the distance between the tip of a particular
whisker and the edge of the shape was smaller than 10 pixels. Angular
position was defined as the angle of the line between the tip and the
base of each whisker.

Populations of individual neurons (single units) were simulta-
neously recorded in mouse somatosensory cortex (S1) during the
whisker-based shape discrimination task (Fig. 4). Mice wereimplanted
with a custom-designed stainless steel headplate between postnatal
day 90 and 180. We removed the scalp and fascia covering the dorsal
surface of the skull and positioned the headplate over the skull and
affixed it. To permit electrophysiological recording we used a den-
tal drill to thin the cement and skull over S1, rendering it optically
transparent, and coated it with cyanoacrylate glue. We used intrinsic
optical signalimaging to locate the cortical columns of the barrel field
corresponding to the whiskers on the face. We then used a scalpel to
cutasmall craniotomy directly over the columns of interest. Between
recording sessions, the craniotomy was sealed with silicone gel. To
record neural activity, we head-fixed the mouse in the behavioral arena.
We lowered an electrode array using a motorized micromanipulator.
We used an OpenEphys acquisition system with two digital headstages
to record 64 channels of neural data at 30 kHz at the widest possi-
ble bandwidth (1 Hz to 7.5 kHz). We used KiloSort*® to detect spikes
and to assign them to putative single units. We identified inhibitory
neurons from their waveform half-width, that is the time between
maximum negativity and return to baseline on the channel where this
waveform had highest power. Neurons with a half-width below 0.3 ms
were deemed narrow-spiking and putatively inhibitory. We measured
the laminar location of each neuron based on the manipulator depth
and the channel on which the waveform had greatest RMS power.

A total of 584 neurons were recorded from 23 sessions that
included 7 different mice. The mean number of simultaneously
recorded neurons was 25.4. Fromthese 584 neurons, 68 wererecorded

inlayer2/3,157 inlayer 4,249 inlayer 5and 96 in layer 6. Also, from the
total number of neurons 16% were categorized as inhibitory and 84%
as excitatory neurons. All experiments were conducted under the
supervision and approval of the Columbia University Institutional
Animal Care and Use Committee.

Decoding Behavior

On each trial, we built a matrix that contained behaviorally relevant
variables through time. In the following, we will refer to this matrix as
the spatio-temporal whisking pattern gathered by the behaving mice.
We used 20 time bins per feature after dividing 2 seconds into time
bins of 100 ms. For whiskers CO, C1, C2 and C3 we included number
of contacts and angle of contact (Fig. 2a), since these were shown to
be the most informative whisker features for both decoding shape
and lick side’. In main text and figures, we will use CO, C1, C2 and C3
whenreferring to whisker identity, and C,, C;, C,and C;whenreferring
to the contacts made by each of these whiskers. The total amount of
features on each trial was 160, 8 whisker features (contacts and angle
of contacts for each whisker) times 20 time bins. All features for each
individual session were normalized to null mean and unit standard
deviation. For each mouse, we concatenated all recording sessions
into a single super-session, which significantly increased the number
oftrials used to fiteachmodel. Trials that did not register any lick within
the first 500 ms after response time (¢ = 0) were discarded from the
analysis. In total we used 10 mice, withamean of 1266 trials per mouse
(super-sessions). All analysis were performed with custom written
python and pytorch scripts.

We decodedtheidentity of the presented shape (stimulus; green)
orlick side (choice;blue) onatrial-by-trial basis. In Fig. 2b,c the model
was trained after balancing correct and incorrect trials and the quantity
tobedecoded (stimulus or choice). Forinstance, when the decoder was
trained to predict stimulus identity, we randomly sampled (without
replacement) trials from the train set such that correct, incorrect,
concave shape and convex shape trials were equally populated. By
balancing correct and incorrect trials we ensured that stimulus and
choice were uncorrelated. Otherwise, information about choice would
have been artificially boosted by stimulus information. We refer to
this balancing as decorrelation, and it was repeated 10 times. In Fig.
2b,c the data was split into train, test and validation (2 nested KFold,
k=4)inorder to optimize the [2 regularization strength over the range
[107,10%] (20 steps log-evenly spaced). The reported decoding per-
formances corresponds to the mean across cross-validations and
decorrelations on the validation set after optimizing regularization
strengthonthetestset.InFig.2b,c we used logistic regression (sklearn).

ForFig.2bwe gradually increased the complexity of the behavio-
ral features to decode stimulus and choice by considering: sum of all
contacts across time and whiskers (Sumall), sum of all contacts across
whiskers (Sum whisker), sum all contacts across time (Sum time), all
contacts across whiskers and time (All contacts) and all contacts and
angles of contact across whiskers and time (Contacts + Angle). The
inset in 2b corresponds to the weights of the classifier trained after
summing contacts across time. Information about stimulus and choice
across time was calculated by linearly decoding the cumulative num-
ber of features (contacts and angle of contacts) up to that particular
time (Fig. 2c).

We analyzed the complexity of the whisker-based shape discrimi-
nation task by decoding the spatio-temporal whisking pattern with
different decoding models (multilayer feedforward networks with
0,1,2 or 3 hidden layers of 100 ReLU units). In the following, because
afeedforward network with 0 hidden layers is equivalent to a linear
classifier, we will use these two terms synonymously. The models
in Fig. 2d were trained and tested following the same steps than for
Figs. 2b,c. However, instead of using logistic regression (sklearn) we
fit the feedforward networks with stochastic gradient descent (batch
size 64,100 epochs) on pytorch, where the optimal learning rate p was
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obtained following the same procedure than for the regularization
strength ([107, 1], 20 steps log-evenly spaced). We used cross-entropy
lossand ADAM optimizer. The reported decoding performances on cor-
rect and error trials (Extended Data Fig. S2a) correspond to the mean
performance on the validation set (see above) after splitting trialsinto
correctand error. In Extended Data Fig. S3c we followed the exact same
procedure using 20 and 200 unitsin the hidden layers, which produced
equivalent results to Fig. 2d. We also used recurrent neural networks
(RNNs) as decoding models in Extended Data Fig. S3a with 5,10, 60
and 100 recurrent units. Instead of fitting the classifier with the whole
spatio-temporal pattern of whisker contacts and angles of contacts
(8 features x 20 time steps = 160) on each trial, the input to the RNNs
oneachtimestep oneachtrial consisted of the vector of contacts and
angle of contact for whiskers CO, C1, C2 and C3 on that time step and
trial. We used backpropagation through time to fit the RNNs (ADAM).
The optimal learning rate and regularization was obtained in the same
way as for the feedforward decoding models. RNNs as decoding mod-
els showed similar or lower decoding performance than feedforward
decoding models.

In Extended Data Fig. S2c we performed the same analysis as in
Fig.2d but we only used trials that corresponded to the three different
stopping distances separately ("Far", “Medium", and “Close"). We also
analyzed datasets where three mice were presented with flatter shapes
instead of the standard ones used in whisker-based discrimination task
(Extended Data Fig.S2d). One of these mice was also part of the pool of
10 mice usedinall the presented behavioral analysis whereas the other
two were only used to analyze the flatter version of the task. Mice and
decoding models had lower performances for flatter shapes (Extended
DataFig.S2d, see alsoref.5).

Inorder todiscard the possibility that theresultsin Fig.2d were a
consequence of alow number of trials, linear and non-linear decoders
were also trained on synthetic tasks of whisker contacts with different
levels of difficulty (Extended Data Fig. S2b). We created two ad-hoc
tasks from the spatio-temporal whisking patterns gathered by the
animals, the easy and the very complex tasks. Mice were never trained
on these tasks, they correspond to tasks that have been defined on
the whisker contact space for whiskers C1, C2 and C3 a posteriori.
For each mouse we first summed contacts through time on each trial
(total contact space). The easy task was defined by splitting the trials
in the super-session into two linearly separable classes on the total
contactspace (orange vsgreenin Extended Data Fig.S2b). For the very
complex task, trials were split into two non-linearly separable classes
(3D-parity) also on the total contact space. In both tasks the contact
space was first transformed by a unitary random rotation. Impor-
tantly, for both the easy and the very complex task, the two classes
were equally populated. This was achieved by adding Gaussian noise
(standard deviation of 0.1) on each whisker total counts on each trial
so that amedian split was uniquely defined. Therefore, each trialona
super-session was assigned either to class1or class 2 for the easy task,
and eithertoclass1orclass 2 for the complex task. For each mouse, the
easy or very complex task were performed by reading out the feature
matrix that contained whiskers CO, C1, C2 and C3 contacts across time
(20 time bins of 0.1 seconds, 80 features in total). The procedure for
fitting the different models was the same as in Fig. 2d, with the only
difference that we did not need to balance correctand error trials. The
[2regularization strength and the learning rate n explorationintervals
were [107%,1] and [107*, 1] respectively, log-evenly spaced in 10 steps.
Unsurprisingly, linear and non-linear decoders performed equally well
onsimpleintegration tasks, whereas non-linear decoders were neces-
sary to perform complex tasks that require non-linear integration of
sensory evidence (Extended Data Fig. S2b).

Simulation of the whisker discrimination task
Inorder to gainadditional insights of the whisker-based discrimination
task, we built a simulation of the experiment and analyzed the

simulated data like we did for the real data. On each trial we simulated
themovement of three whiskers C1,C2 and C3. The size of the simulated
box was 12x12 (a.u.), and the base of all three whiskers was placed at the
origin of the two axes (0,0) (Fig. 3a). Like in the real experiment, each
trial consisted of 2 seconds, and we simulated time steps of 0.1seconds
(20 stepsintotal), whichwas also the same time window used to analyze
the real experiments. The angular position of whisker C1 (longest
whisker, pale grey) at the beginning of each trial ¢, , was sampled from
avon Mises distribution (z = 0, k =10) and the position of C2 (middle;
grey) and C3 (shortest; black) were determined by adding 1/3 and 2/3
ofaradianwithrespect to the position of C1, respectively. The angular
position of whisker Ciontimesteptwas ¢, ¢; = sin(wt + ¢ i + i/3)where
w was drawn from a gaussian distribution (z =3, 0=0.1) on each trial.
Hence, the position on the (x, y) plane of whisker Ci on each time step
was (, ly)[,a = (L; coS(¢,ci), L; sin(@, ;) , where L = {10, 8.5, 7} were the
lengths of the three whiskers.

Shapes with different curvatures were modelled as circle seg-
ments with different radius. In Fig. 3a-c the shapes had a radius of
R =11, whereas in Fig. 3e (and Extended Data Fig. S4g) we used R=6
(green) and R =50 (orange) (see also Extended Data Fig. S4f for
R=1{6,11,22,50}). On each time step the shape moved by 0.2 units
towards the origin, and three different stopping times were used after
thebeginning of the trial: 9,10 and 11time steps. The wiggles on Fig. 3¢
were obtained by adding a sinusoidal function of amplitude 0.2 and
frequency 10 to the shape in the y-axis direction.

In order to incorporate the flexibility of the real whiskers in our
models, oneachtimestep the tip of each whisker was obtained by add-
ing gaussian noise (o = 0.3) to the position of the rigid whisker (solid
circles) (Fig. 3a). On each time step, we evaluated whether the noisy
tip of the whisker made contact with the shape (red dot when contact
occurred). Following the same approach we used for the real data, on
each trial we constructed a matrix where each column corresponded
toatimestep (20 columns) and each row corresponded to contacts (O
no contact,1contact) and angle of contact for each whisker (6 rowsin
total). Each simulation consisted of 2000 trials. We also fit linear and
non-linear classifiers (multilayer perceptrons with 0,1,2and 3 hidden
layers) to predict whether a particular trial corresponded to aconcave
oraconvexshapeorother variants of the task. For Fig. 3e and Extended
DataFig. S4g,h, the shapes were static throughout the trial.

We also simulated variants of the experiment in which we modi-
fied the size and position of the shapes, among others. In particular, we
used more distant stoppinglocations (7,11and 13 time steps) (Extended
DataFig.S4a); smaller shapes (Extended Data Fig. S4b); further shapes
(2 a.u. further) (Extended Data Fig. S4c); closer shapes (1 a.u. closer)
(Extended Data Fig. S4d); and flatter shapes (R = 24) (Extended Data
Fig.S4e). We also used rotated and flat shapes (6 = 0.1and R =100) (Fig.
3d).Inall caseslinear and non-linear decoders produced qualitatively
equivalentresults, although performances were overall lower for flat-
ter, further and smaller shapes.

Encoding Models

Oneachtrial we built amatrix that contained all the experimental vari-
ables that we considered could affect the firing rate of S1 populations.
Weanalyzed thetimeinterval ¢t =[ - 2.1, 1.0] seconds in time bins 0of 100
ms, which spanned from the beginning of the trial to one second after
response window opened (31 time steps per trial). The experimental
variables usedin the encoding models were: contacts, angle of contact
and angular position of whiskers CO, C1, C2 and C3; lick side and lick
rate; currentand previous reward, stimulus, shape position and choice.
We will refer to whisker and lick variables as continuous-variables
and previous and current reward, stimulus, position and choice as
trial-variables. Other features like force at the base of the whisker
(whisker bending) or contact duration were notincluded in the model
because they have been shown to be weakly encoded in S1 during the
whisker-based shape discrimination task (see’). For each recording
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session we concatenated all the time steps across all trials (Fig. 4c).On
each time step S1 population activity was regressed against the cur-
rent continuous-variables and up to five time steps backwards intime
(500 ms =5steps x 100 ms). Trial-variables were arranged as indicator
variables throughout the length of the trial. Population activity was
regressed using a total of 70 continuous-variables (70 = 14 variables x 5
time steps) plus 248 trial-variables (248 = 8 variables x 31 time steps).
Both neuronal activity and regressors were normalized to null mean
and unit variance. Trials that did not register any lick within the first
500 ms after response time (¢ = 0) were discarded from the analysis.
Intotal we used 23 recording sessions from 7 different mice, with 25.4
mean number of simultaneously recorded neurons and 4883 mean
number of effective trials used to fit the models (trials x time steps).

We analyzed the encoding properties of populations of neuronsin
mouse S1by regressing the neuronal activity against the experimental
variables described above. Similar to behavior, we used different encod-
ing models with different levels of flexibility (multilayer feedforward
networks with 0,1, 2 or 3 hidden layers of 100 ReLU units). Similar to
classification, an encoding model with O hidden layers is equivalent
to a linear regression. We fit the encoding models by minimizing the
mean-squared-error (MSE-loss) between the predicted and the real fir-
ingrate (stochastic gradient descent, batch size 64,100 epochs; Fig. 4).
To validate our results with a different loss function, Poisson-loss was
also used to fit the models, which produced qualitatively equivalent
results (Extended DataFig. S5f,g). The linear model canonlyimplement
pure and linear mixed selectivity, while encoding models thatinclude
at least one hidden layer can implement non-linear mixed selectiv-
ity®'2. On eachrecording session, models were fit by splitting the data
intotrain, test and validation (2 nested KFold, k = 4). The partition was
performed based on the real trials of the experiment so that time steps
from the same trial were always grouped in the same partition. Other-
wise, due to the correlation between the neuronal activity on consecu-
tive time steps, performances on the validation set could have been
artificiallyboosted. The optimal regularization strength 2 and learning
rate nwere obtained by identifying the values that produced the highest
performance on the test set over the ranges [107,10%] and [107,107"]
respectively (20 steps log-evenly spaced). As goodness-of-fit for the
different encoding models, we used the metric R>=1- Loss/Variance.
Thereported R?corresponded to the mean across cross-validations on
the validation set after optimizing regularization strength and learn-
ing rate on the test set. As expected, when all models were tested on
training data, more parameters entailed better firing rate prediction
(Extended DataFig. S5b). All the encoding models were implemented
in pytorch and optimized with the ADAM algorithm. The reported
performance on correct and error trials correspond to the mean CV
R?on the validation set (see above) after splitting trials into correct
and error (Extended Data Fig. S5c). Errorbars in Fig. 4 correspond to
s.e.m.across recorded neurons. In Extended Data Fig. S3d, we followed
the exact same procedure with 20 and 200 units in the hidden layers
as encoding models, which produced equivalent results to Fig. 4. We
also used recurrent neural networks (RNNs) as encoding models in
Extended Data Fig. S3b with 5,10, 60 and 100 recurrent units. Instead
of fitting the encoding model with the current and the last 500ms of
the whisking spatio-temporal and licking pattern, and task variables,
the input to the RNNs on each time step consisted of the value of all
these variables on the current time step. We used backpropagation
through time to fit the RNNs (ADAM). The optimal learning rate and
regularization was obtained in the same way as for the feedforward
encoding models. RNNs as encoding models produced lower R? than
feedforward encoding models.

In order to evaluate the individual contributions of regressor (or
group of regressors) x; to the predictability of the population’s firing
rate, we evaluated the quantity AR? = R? (Fig.5a), where R?

—R?
Full Reduced Full

corresponds to the performance of the full modeland RZ ,  corre-

sponds to the performance of the model when regressor (or group of

regressors) x;is set to zero. For instance, in Fig. 5b AR*for Contacts was
calculated by setting to zero the variables C,, C,, C,, and C, for the cur-
rentand up tofive time stepsinthe past (4 whiskers x 5 time steps =20
regressors). This method is preferred over re-training the whole model
withoutregressor x;because of the correlations between regressors.x;
and x;, so that we make sure that the reported contribution takes into
account the correlation with the rest of regressors.

For each pair of regressors (or pairs of groups of regressors) x;and

X;, we evaluated the pure non-linear interaction (contribution) to the
encoding model by evaluating AR? - AR?,  (Fig.6and Extended Data
Fig.S7a). Here AR? corresponds to the loss in predictive power for the
non-linear model when both x;and x; are set to zero and AR?,  isthe
equivalent for the linear encoding model. Because non-linear models
also include the linear terms, subtracting the contribution from the
pure linear model was necessary in order to isolate pure non-linear
interactions.

Similar to the synthetic tasks presented in Extended Data Fig.S2b,
we also created two synthetic tasks based on whisker contacts: the easy
and the complex tasks. Additionally, to benchmark the ability to gen-
eralize, we evaluated the cross-condition generalization performance
(CCGP). The easy and the complex tasks correspondedtoalinearand an
XORtask with respectto the contacts of pairs of whiskers, respectively,
whereas the CCGP tested how well alinear classifier trained to perform
a simple discrimination task on a set of trials would generalize to an
unseen set of trials. Given that the encoding models were fit using 5 time
steps (100 ms x 5times steps = 500 ms) for all the continuous-variables,
for eachtimestep we first summed the number of contacts across the
current and previous four time steps for each whisker independently.
Gaussian white noise was also introduced in all whisker contacts to
obtain a well defined median to create the different tasks (standard
deviation of 107). All tasks were defined as 2D tasks on the summed
number of contacts across 5 time steps, so they were constructed from
the three different pairs that could be built from the set {C1,C2,C3}:
(C1,C2),(C1,C3)and (C2,C3). Importantly, all the time stepsin which no
whisker contacts were registered for the sumacross these 5 time steps
were discarded from this analysis. Onthe easy task, the coloring of the
different regions in the whisker contact space (for example, C, vs C;)
was defined by alinear boundary, whereas for the complex task it cor-
responded to an XOR task (Fig. 7a). In both cases the task boundaries
were obtained by performing arandomunitary rotation on the whisker
contact space and splitting each dimension withrespect to the median.
Forthe generalization benchmark (CCGP), the process was slightly dif*-
ferent. By splitting all the trials into low and high number of contacts
for each whisker, we created four different conditions. Cross-condition
generalization performance (CCGP)’ was evaluated as the performance
of alinear classifier to discriminate between low and high number of
contacts for whisker i when trained only on low contacts for whisker

Jjand tested on high contacts on whisker . For instance, for the (C,,C;)
pair, alinear classifier was trained to discriminate between low and high
number of C1 contacts using only trials of low C3 contacts and tested
on high number of C3 contacts (and viceversa). CCGP for whisker C1
corresponded tothe meanacross training on C2 low and testing on C2
high, training on C2 high and testing on C2 low, and the same process
conditioning on whisker C3. CCGPs for whiskers C2 and C3 were evalu-
ated equivalently but conditioning on C1,C3 and C1,C2, respectively.

Oncethethreetasks were defined for each time step, we generated
surrogate representations for eachencoding model by introducing the
pair of whisker contact variables into the different encoding models.
This procedure was only performed on the validation partition. For
instance, for the pair (C1,C3) we generated surrogate activity on each
time step by introducing in the different encoding models only the
experimental variables contacts C1 and C3 for the current and previ-
ous four time steps. From these surrogate representations, linear
classifiers (cross-validated logistic-regression) were fit to perform all
three tasks. The reported performance in Fig. 7d corresponds to the
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mean performance across cross-validations of the encoding models
and pairs of regressors.

To evaluate whether the performance on the easy and complex
tasks were significantly above chance, we compared them with their
null distributions. For each element of the null distribution we shuf-
fled the class labels for each pattern of surrogate activity and fit linear
classifiers to perform the easy and complex tasks as described above.
Each element of the null distribution corresponded to the mean across
cross-validations of the encoding models and pairs of regressors. The
null distribution was obtained by repeating this process 1000 times. To
evaluate whether the reported CCGPs for the surrogate patterns were
significantly above chance, we compared it with the null distribution.
We followed a similar procedure to that described in ref. 7. In short,
each experimental condition was randomly rotated in the surrogate
activity space by shuffling each trial with respect to the identity of
the neurons. The same random shuffle was used for all trialsinagiven
condition. This procedure destroys the geometrical structure of the
representation but approximately maintains the distance between the
different conditions. The null distribution was obtained by repeating
this process 1000 times. Performance on the easy and complex tasks
and CCGP in Fig. 7d are significantly above from chance (P < 0.05),
besides for the complex task using surrogate populations generated
with the linear encoding models.

We also evaluated contact information for the different whiskers
and columns by decoding whether aset of trials corresponded to a high
or low number of contacts for each whisker using neurons recorded
fromonly a particular column of S1 (Extended Data Fig. S9a). CCGPs for
the different columns and whiskers was evaluated following the same
process described above (Extended Data Fig. S9a). Given that different
population sizes were recorded for the different columns of the S1, in
order to compare information across columns, all the performances
in Extended Data Figs. S9a were obtained using 10 neurons, which is
the smallest number of simultaneously recorded neurons across all
columns. Errorbarsin Fig. 7 and Extended Data Fig. S9 correspond to
s.e.m.across recording sessions.

Population Decoding

Populations of mouse S1 neurons were recorded during the
whisker-based shape discrimination task. Linear classifiers were fit to
predict different experimental variables on a trial-by-trial basis. Infor-
mationabout aparticular variable for agiven time step was calculated
using the entire population activity from the beginning of the trial to
that particular moment (Fig. 4b). Time bins of 200 ms were used and
populationactivity was normalized to null mean and unit variance. Tri-
als that did not register any lick within the first 500 ms after response
time (¢ =0) were discarded from the analysis. The mean number of
simultaneously recorded neurons and trials per session was 25.4 and
157.5, respectively. Intotal 23 recording sessions from 7 different mice
were analyzed. Inall panels the datawas splitinto train, testand valida-
tion (2 nested KFold, k=4) in order to optimize the {2 regularization
strength over the range [10™,10*] (10 steps log-evenly spaced). In all
cases, logistic regression was used as our linear classification model
(sklearn).

Shapeidentity (stimulus; green) and lick side (choice; blue) were
predicted on eachtrial by reading out the population activity (left panel
in Fig. 4b). Similar to decoding from the spatio-temporal pattern of
whisker features, the classifiers were trained after balancing correct
andincorrecttrialsand the quantity tobe decoded (stimulus or choice).
Werefer to thisbalancing as decorrelation, and it was repeated 10 times.
Thereported decoding performances correspond to the mean across
cross-validations and decorrelations on the validation set after optimiz-
ingregularization strength on the test set. From population activity we
also decoded whether a particular trial corresponded to a high or low
number of contacts for the different whiskers (right panel in Fig. 4b).
For each whisker we summed the total number of contacts made up to

aparticular pointintime and labeled each trial according to whether it
was below or above the median number of contacts. Gaussian noise was
addedinalltrials (standard deviation of 0.1) to obtain aunique median.
Thereported decoding performances correspond to the mean across
cross-validations on the validation set after optimizing regularization
strength on the test set.

Populations of recorded neurons were also used to perform the
easy and the complex tasks and the generalization benchmark (Fig. 7c)
(see previous section). Fromall the neuronal recordings, pseudopopu-
lations of neurons were constructed and linear classifiers (logistic
regression) were fit to perform these three tasks. To define the easy
and complex tasks and the generalization benchmark (CCGP) oneach
recordingsession, we first summed the number of contacts throughout
the entire trial (2 sec). Similar to the equivalent analysis on surrogate
representations (see previous section), all three analysis were defined
with respect to pairs of whisker contacts variables: (C,,G,), (C,,C;) and
(C,,G;).Forthe easy and complex tasks, arandom unitary rotation was
performed on the whisker contact space for a given pair and all those
trials that did not include whisker contacts were discarded from the
analysis. Four experimental conditions corresponding to low and high
number of contacts for two whisker variables were defined. From each
experimental condition, 200 trials were sub-sampled with replacement
for both the train and test set. The simultaneously recorded activity
of S1neuronsacross a particular trial was flattened with respect to the
time axis (200ms time bins; 10 time bins per trial). For a given record-
ing sessionwe constructed the trainand test matrices with dimensions
800 (200 trials per condition x 4 experimental conditions) and number
of neurons x 10 time bins. It is important to note that with this proce-
dure the train and test matrix did not share any trials, which would
artificially boost the estimated performance for the different tasks.
For each recording session we repeated this procedure and stacked
the different train and test matrices along the dimension of neurons. A
total of 584 neurons were recorded across all sessions, which produced
atrain and a test matrix with 5840 columns (584 x 10 time bins). Two
different linear classifiers were fit on the train matrix and tested on
the test matrix to performthe easy and the complex task, respectively.
The reported performances on the easy and complex tasks in Fig. 7c
corresponds to the mean across pairs of whiskers and 10 iterations of
this process. To evaluate whether the performance on the easy and
complex tasks were significantly above chance, we compared them
to the null distribution. For each element of the null distribution we
shuffled the class labels for each recorded pattern, built the train and
test pseudopopulation matrices, and fit linear classifiers to perform
the easy and complex tasks as described above. Each element of the
null distribution corresponded to the mean across pairs of whiskers
and 10 iterations of this process with the same shuffled labels. The
null distribution was obtained by repeating this process 1000 times.
Performance onthe easy and complex tasks in Fig. 7c are significantly
above chance (P < 0.05).

Inorderto evaluate the generalization properties of the recorded
neurons (CCGP), we proceeded in a similar way but we worked on the
original whisker contact spaceinstead (no unitary rotation). Also, given
thatthe cross-validationis performed across conditions when evaluat-
ing the CCGP, only one matrix of pseudopopulation activity was con-
structed by sub-sampling with replacement from each experimental
condition (200 trials per condition). Similarly, the reported CCGP in Fig
7ccorrespondstothe meanacross10iterations of this process. To eval-
uate whether the reported CCGPs for the real recordings were signifi-
cantly above chance, for each panel we constructed a null-hypothesis
distribution and evaluated the probability of obtaining the real CCGP
when sampling from it. We followed the same procedure described
in’. In short, each experimental condition was randomly rotated in
the activity space by shuffling each trial with respect to the identity of
the neurons. The same random shuffle was used for all trialsinagiven
condition. This procedure destroys the geometrical structure of the
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representation butapproximately maintains the distance between the
different conditions. We performed 1000 iterations and computed the
probability of obtaining the real CCGPs. In Extended Data Fig. S9b, we
used pseudopopulations of neurons from specific columns to decode
high or low number of contacts for whiskers C1, C2,and C3 (top), as well
as the generalization benchmark (CCGP) (bottom). In both cases, we
followed the same procedures described above.

Recurrent Neural Networks

Recurrent neural networks (RNNs) were trained to perform a task
similar to the whisker-based shape discrimination task. The recurrent
network consisted of 60 ReLU units whose activity at time ¢ (h,) was
determined by the following equation:

ht = ¢(Irecht—1 +.Iinxt + oft) B (1)

where ¢() isthe ReLU non-linearity, £isindependent and unitary Gauss-
ian noise on each time step and ¢ is the strength of this noise (6=1in
all our units).

The stimulus x, consisted of three channels that on each time
step could be either O or1, an artificial analogy of whiskers C1,C2 and
C3 making contacts or not. On each trial, each input channel corre-
sponded toarandomrealization of a Bernoulli process (T time steps)
withtwo possible underlying mean values A,,, or A,,,.. This made atotal
of 8 different experimental conditions (2 conditions per channel and
3 channels) (Fig. 8). From these 8 experimental conditions we defined
three different tasks, the easy, the complex and the very complex task.
For Fig. 8 we only show the easy and complex tasks, see Extended
Data Fig. S10 for results on the very complex task. For all tasks, the
input information was transformed by an unitary random rotation
(same rotation in all time steps and trials). We fit a different RNN for
eachtask, andineach RNNinput, recurrent and output weights were
trained. The easy task was defined as atask that linearly separated the
8 experimental conditions into 2 groups of 4 (left panel in Extended
DataFig.S10); the complex task corresponded to an XOR with respect
to Cland C2 (middle panel in Extended Data Fig. S10); and the very
complex task was defined as a 3D-parity with respect to all channels
Cl1, C2and C3 simultaneously (right panelin Extended Data Fig. S10).
Given 8 experimental conditions, there were 3 different easy tasks:
separation with respect to the C1 axis only (easy task 1); C2 axis only
(easy task 2); and C3 axis only (easy task 3). There were also 3 differ-
ent complex tasks: separation with respect to a 2D-XOR on (C1,C2)
(complex task1); on (C1,C3) (complex task 2); and on (C2,C3) (complex
task 3). There was only one very complex task, a 3D-Parity task with
respect to all channels. In Fig. 8, easy task, easy other, and complex
task corresponded to easy task 1, the mean across easy tasks 2 and 3,
and complex task 1, respectively.

Torecreate the experimental conditions, inputs lasted for 20 time
stepsbutarandom delay of At =[0, 9] time steps was introduced at the
beginning of each trial. All networks were trained to make a decision
at T=20. The three networks were trained on datasets of 400 trials
per experimental condition and for all channels A, = 0 and A, = 1.
We used cross-entropy as loss function, the [2 regularization strength
was set to 102 and the learning rate = 0.005. We used the ADAM opti-
mizer, batches of 20 trials and as many epochs as necessary to reach
107 error on the loss function ( ~ 10 epochs for the easy task, ~ 20 for
the complex, and ~ 50 epochs for the very complex task). Once trained,
networks were tested on 40 trials per experimental condition and for
all channels A, = 0.35 and A, = 0.65 for the easy task, A,,,= 0.3 and
Anign = 0.7 for the complex task and A;,,,= 0.23 and A, = 0.77 for the
very complex task.

For each network, input, recurrent and output weights were
learned. Additionally, for each network, recurrent and input weights
were frozen and readout weights for the other tasks were also trained
ontheactivity of the artificial units (logistic regression). For instance,

for the network trained on the easy task (easy task 1) in Fig. 8b, all learn-
able weights were optimized for the easy task using backpropagation
throughtime (dark brown). However, additional readout weights onthe
artificial units’ activity were also trained for the orthogonal other easy
task (easy tasks 2 and 3; pale brown), and the complex task (complex
task 1; black). These additional readout weights were trained on the
train set at decision time (7=20) and tested on the test set on all time
steps. In Extended Data Fig. S10 we show the performance curves for
additional readout weights when trained on all tasks (easy and complex
tasks 1,2,3 and very complex task). For Figs. 8c,e,g all weights were
trained to perform complex task 1 and additional readout weights
on the artificial units were trained to perform the the easy, and the
orthogonal easy (easy other) tasks.

We also evaluated the ability of each network to generalize to
unseen experimental conditions by means of the cross-condition
generalization performance (CCGP). A very similar procedure to Fig. 7
was used to evaluate CCGP for the three different RNNs. For instance,
inFig. 8f, alinear classifier was trained to perform the easy task (easy
task 1; dark brown) by reading out the activity of the artificial units.
The classifier was trained on the set of trials defined by easy task 2
=+1and tested on the set of trials that defined easy task 2 = 0 (and
vice-versa). The same procedure was followed for the set of trials
defined by easy task 3 =+1and tested on trials defined by easy task 3
=0 (and vice-versa). The reported CCGP was the mean across these
four procedures. For the rest of CCGPs, the same train-test procedure
was followed as defined by the rest of orthogonal easy tasks (see
Extended Data Fig. S10).

For each panelin Fig. 8, and Extended Data Fig. S10 we trained
and tested 50 different networks and reported the mean performance
across test sets. Each network was trained on a different randomreali-
zation of the input and rotation. In Extended Data Fig. S10 the low,
mediumand high noiselevels corresponded to (4, = 0.23,A,, = 0.77),
(A= 0.3, Ay, = 0.7) and (A5, = 0.35,A5, = 0.65), respectively.

We analyzed the complexity of the different tasks in the same
way that we analyzed the complexity of the whisker-based
shape discrimination task (see Fig. 2). For all trained networks,
we used different classifiers with different levels of flexibility
(multi-layer feedforward networks with O, 1, 2 or 3 hidden lay-
ers of 100 ReLU units). These classifiers were trained to predict
the output of the easy, the complex and the very complex task on
a trial-by-trial basis by reading out the spatio-temporal pattern
that was used as input to the networks (Extended Data Fig. S10d).
The 2 regularization strength and the learning parameter n were opti-
mized over the ranges [1078,10%] and [107%, 10°] respectively (10 steps
log-evenly spaced). The errorbars for each panel in Extended Data
Fig.S10d correspondtothe s.e.m.across 4 different network instances.

Theencoding properties of the artificial units on each network were
also analyzed in the same way we analyzed the population activity of
mouse S1neurons (Extended DataFig. S10e), by fitting encoding models
of feedforward networks of 0,1,2 and 3 hidden layers. In this case, the [2
regularization strength and the learning parameter n were optimized
overtheranges[10°%,10%]and [10°%,10°] respectively (10 steps log-evenly
spaced). The errorbars for each panel in Extended Data Fig. S10e cor-
respond to the s.e.m. across 240 neurons (4 networks x 60 units).

RNNs with this architecture were also used to decode stimulus
and choice on atrial-by-trial basis from the spatio-temporal whisking
patterns as well as to predict S1 population activity. In particular, we
used networks of 5,10, 60 and 100 noise-less units, regularization
strength of 0.001, and learning rate of 0.001. These RNNs produced
decoding and encoding performances that were lower or similar to
their feed-forward counterparts (Extended Data Fig. S3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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(a-j) Results for all mice. (k) Mean results across animals (n =10 mice).
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Extended Data Fig. 2| Linear and non-linear decoders performed similarly
for correct and error trials, different stopping locations, and flatter shapes.
(a) Amulti-layer feedforward network model is trained to use the full spatio-
temporal pattern of contacts and angle of contacts to predict the stimulus and
the choice of the animal on a trial-by-trial basis (see Fig. 2). Models were trained
using all trials and tested on correct (black) and incorrect (red) trials. Only linear
and non-linear models with one hidden layer are shown. Stimulus decoding (left)
produced higher decoding performance for correct trials than errors, probably
due to the higher number of contacts made by mice on correct trials. On the
contrary, correct trials conveyed much more information about animals’ choice
thanincorrect trials (right). One possible explanation of these effects is that
inapproximately 60% of the trials animals make very accurate choices thatare
based on properly sampled sensory cues. In the other 40% of the trials, animals

stillsample information properly but their choice is inaccurate and based on a
hidden variable we do not have access to*"*. (b) Decoding performance (y-axis)
for the different decoders (x-axis) for the easy (linearly separable; left panel)

and very complex (non-linearly separable, 3D-parity; right panel) tasks (see
Methods). Non-linear cue integration is only advantageous when the task itself
requires complex sensory integration across time and whiskers. (c) Linear and
non-linear classifiers performed equally well on the shape discrimination task
from the real spatio-temporal pattern of whisker contacts when conditioned
ontrials corresponding to far, medium and close stopping locations. Error bars
in panels (a-c) correspond to s.e.m. across mice (n=10). (d) Similar to behavior
(see’), flatter shapes were more difficult to discriminate than the standard ones
from the real spatio-temporal pattern of whisker contacts. Errorbars correspond
to s.e.m. across mice that were presented both standard and flatter shapes (n=3).
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Extended Data Fig. 3| See next page for caption.
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Extended Data Fig. 3| Different feedforward and recurrent architectures
were used to decode behavior and fit the S1 encoding models. (a) Stimulus
(green) and choice (blue) were decoded on a trial-by-trial basis from the spatio-
temporal pattern of whisking contacts using RNNs with different number of
hidden units. On each time step and trial the input to the RNN decoder was

the number of contacts and angle of contact for all the whiskers. Errorbars
correspond to s.e.m. across mice (n=10). Feed-forward networks performed in
general better than RNNs for decoding behavior (see Fig. 2). (b) S1population
activity was regressed against whisker and task variables (encoding model)
using RNNs with different number of hidden units. Errorbars correspond to
s.e.m. across neurons (n=584). See Extended Data Fig. S5a for the distribution
of CV R*across neurons for the linear and the best non-linear (feed-forward with
one hidden layer of hundred units) encoding models. Feed-forward networks

performed in general better than RNNs on explaining S1 population activity (see
Fig.4). (c) Linear and non-linear feed-forward networks with different number
of units (artificial neurons) in the hidden layers are equally good at predicting
the presented shape (stimulus; green) and animal’s choice (choice; blue) on a
trial-by-trial basis from the spatio-temporal pattern of whisker contacts and
angle of contacts (see Fig. 2). Errorbars correspond to s.e.m. across mice (n =10).
(d) The profile of explanatory power for S1 population activity across models is
qualitatively equivalent for 20,100 (see Fig. 4), and 200 units in the hidden layers
of the feed-forward encoding models. Errorbars correspond to s.e.m. across
neurons (n=584). See Extended Data Fig. S5a for the distribution of CV R*across
neurons for the linear and the best non-linear (feed-forward with one hidden
layer of hundred units) encoding models.
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ofthe whisker-based discrimination task. (g) Curvature discrimination task:
discriminate between curved (green) or flat (orange) shapes (first panel).
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curvature discrimination task when the full spatio-temporal pattern of contacts
and angle of contactsis used to discriminate between flatter (orange) and more
curved (green) shapes (second panel). Total number of contacts for the pair (C1,
C2) (third panel), (C1, C3) (fourth panel) and (C2, C3) (fifth panel). The boundary
between the two categories is non-linear. (h) Example of another simulated
non-linear discrimination task (green vs orange bars). Non-linear classifiers
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categories is non-linear, especially for C1vs C2. Errorbarsin all panels correspond
tos.e.m.across independent simulations (n=>5).
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tos.e.m.across neurons (n=584). (d) Mean CV R? across neurons for the different
encoding models (x-axis) on held-out data for all neurons (left), only excitatory
(middle) and only inhibitory neurons (right). (€) Mean CV R?across neurons for
the different encoding models on held-out data for neurons across layers for all
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when using Poisson loss instead of mean squared error (MSE). The y-axis shows
the Poisson-loss equivalent of the R?, the Pseudo-R% The Pseudo-R?is calculated
as1-PLoss/Variance, where PLoss is the negative Log-likelihood of the Poisson
model. Allmodels were fit on simultaneously recorded populations. Errorbars
inall panels correspond to s.e.m. across neurons (all n = 584; excitatory n=491;
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Extended Data Fig. 7| Non-linear mixed selectivity across neuronal types and
cortical layers for the different groups of task variables. (a) Different coding
scenarios would produce different values for AR? — AR? j,car- Here we show
different tuning schemes with respect to C,and C; for afictional neuron (r,). The
metric ARZ — ARZ, .., Was used to evaluate to what extend the pure non-linear
terms were important to predict the population’s firing rate. (Left) If the
relationship between neuronal activity and encoding variablesis linear,

AR? i near # 0, AR? = AR?;..rand therefore AR? — AR?jcor = 0. (Middle) If the

relationship between neuronal activity and encoding variables is purely
non-linear, AR?|jear = 0,AR*#0,and AR? — AR?|jeor > O. (Right) If the encoding
model is composed of both linear and non-linear components, AR?jpear # O,

AR? # ARZ iy car,and AR? — ARZ;c.r > 0. (b-c) Pure non-linear mixed selectivity
contribution (AR — ARZ ..., for the interaction between the different blocks of
variables across neuronal types and S1layers. Results were qualitatively
equivalent for the excitatory (a) and the inhibitory (b) populations.
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Extended Data Fig. 8 | Non-linear mixed selectivity for whisker contacts and
angular position for the different time steps and cortical columnsinS1. (a)
Pure non-linear mixed selectivity (AR? — AR? | j.e;) contribution for the
interaction between contacts for the different time steps (time lags) and whiskers
separately by columnar location (mean across neurons). The strongest
interactions occur at the time lags of 100 ms (1 time step). Even though C1 column
shows that C1terms have the strongest interaction, C2 and C3 columns present a
more heterogeneous interaction pattern. (b) Equivalent plot for the interaction
between angular position for the different time steps (time lags) and whiskers.
The strongest interactions occurs at time lags of Oms. All columns present strong
interactions terms with the rest of whiskers. (c) Pure non-linear mixed selectivity

contribution (AR? — AR? ;... for the interaction between contacts and angular
position for the different time steps (time lags) and whiskers (single regressorsin
the encoding models) (mean across neurons). The strongest non-linear
contribution in whisker angular position occurs on the current time step for all
whiskers. The strongest non-linear contribution for the interaction between
contacts and angular position occurs on time lags between angular position (and
neuronal activity) and contacts of 100 ms (1 time step). (d) Equivalent plot for the
interaction between contacts for the different time steps (time lags) and
whiskers. The strongest non-linear contribution in whisker contacts occurs on
time lags between neuronal activity and contacts of 100 ms (1 time step) for all
whiskers.
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Extended Data Fig. 9 | Different whiskers are represented across S1columns
in approximately orthogonal sub-spaces. (a) Top: Decoding performance
onwhether the sum of whisker contacts across the current and previous four
time steps corresponded to a high or alow number of contacts with respect to
the median for each different whisker (decode high vs low number of contacts
for each whisker) (C1blue; C2 green; C3 red) and columns (see Methods).
Information about whisker contacts for all whiskers was present in all columns.
Decoding Performance was evaluated on surrogate activity generated by the
best encoding model (NonLin-1) for each recording session. In each recording
session, activity from only one columnwas recorded. In order to compare
information across columns, surrogate activity was generated for 10 neurons,
which corresponded to the smallest number of simultaneously recorded neurons
across recording sessions (columns). Bottom: Qualitatively equivalent results
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were found when the CCGP was evaluated (see Methods). All columns encode
information about all whiskers in approximately orthogonal spaces. Errorbars
inall panels correspond tos.e.m. across recording sessions (C1 columnn=6; C2
columnn=9;C3 columnn=6). (b) Top: Decoding performance on whether the
total number of contactsinatrial (2 sec.) corresponded to a high or alow number
of contacts with respect to the median for each different whisker (decode high vs
low number of contacts for each whisker) (C1 blue; C2 green; C3 red) and columns
using pseudopopulations of neurons (see Methods). All bars are significantly
above chance. Bottom: CCGP with respect to the total number of contacts

for the different whiskers and columns. Even though there seems to be some
somatotopic structure on CCGP for pseudopopulations, the differences are small
and all bars are significantly above chance. Errorbars correspond to the standard
deviation across cross-validation iterations (n=10).
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Extended Data Fig.10 | The geometry of representations and encoding
properties in RNNs change for the easy, the complex, and the very complex
tasks. (a) Probability of correct response (y-axis) as a function of time (x-axis)
when the RNN was trained on the easy task 1 (left panel), the complex task 1
(central panel) and the very complex task (right panel). RNNs were trained on
lowinputnoise (A;,,, = 0.23 and A, = 0.77) (see Methods). For each network,
additional readout weights on the activity of the artificial units were trained to
performthe rest of the tasks (solid lines). While an RNN trained on easy task 1
produced the best performance for easy task 1, the neuronal representations
were not well suited for the rest of tasks (left). When an RNN was trained

onthe complex1 (central) and the very complex (right) tasks, it produced
representations that allowed the performance of many different tasks. This
came at the expense of losing performance for the easy task 1. Generalization
performance, defined as cross-condition generalization performance (CCGP),
was also tested for the three easy tasks (dashed lines) when the RNN was trained
onthe easy task 1 (left panel), the complex task 1 (central panel) and the very
complex task (right panel) (see Methods). While abstraction (CCGP) is high

for easy task1when the RNN was trained on the easy task 1, itis low for easy
tasks 2 and 3. Since complex task 1is defined as the 2D-XOR between Cland

C2, CCGP was higher for easy task 1and 2 (C1and C2) than for easy task 3 (C3).
For the RNN trained on the very complex task, CCGP was significantly above
chance for all easy-task variables. (b-c) The same qualitative results were
obtained when medium (b; A, = 0.3 and A,;,, = 0.7) and high (c; A,,,,= 0.35and
Anign = 0.65) noise levels were used instead. For all panels in (a-c) the performance

curves correspond to the mean across random realizations of input patterns
and tasks (n=50) (see Methods). (d) Similar to Fig. 2d, linear and non-linear
classification models that read out the input (x-axis), were trained to perform
the easy (left panel; easy task 1), the complex (central panel; complex task 1) and
the very complex tasks (right panel). On the easy task, both linear and non-
linear classifiers performed equally well, as shown by decoding performances
(y-axis) of the different models. On the contrary, only non-linear classifiers that
allow for complex cue combination, performed above chance on the complex
(central) and very complex (right) tasks. The behavioral results obtained on

the whisker-based discrimination task (see Fig. 2) are aligned with the easy task
(left panel). Inall panels errorbars correspond to the s.e.m. across different
network realizations (n =4). (e) Similar to Fig. 4d, CV R? on explaining artificial
units activity (y-axis), is plotted against the different encoding models (x-axis).
RNNs trained to perform tasks that require non-linear integration of sensory
cues are better explained by an encoding model that allows for non-linear mixed
selectivity (central and right panels), while a non-linear encoding scheme provide
marginal additional explanatory power for the easy task RNN (left panel). The
higher the complexity of the trained task, the higher the advantage of non-linear
encoding models on explaining the activity of the artificial units. In contrast

to (d), the encoding properties of S1are aligned with those of RNNs trained to
perform tasks that require non-linear combination of sensory evidence (see
Fig.4).Errorbars correspond to the s.e.m. across artificial units (n=240; 4
networks x 60 units).
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Sample size A total of 584 neurons were recorded in this study and used to analyze the geometry of representations in S1. 10 mice were used to analyze
the shape discrimination task and behavior. The results of the encoding and decoding models were robust across neurons and mice.

Data exclusions  Mice that did not learn the task well were discarded from all analysis (3 discarded)

Replication The reported performance of the decoding and encoding models correspond to the performance on validation trials, which were not used for
training the models. See the Methods section for a detailed description of how cross-validation was implemented in the analysis of this

manuscript.

Randomization  When training the decoding end encoding models, data was randomly split into train, test and validation (cross-validation). See the Methods
section for a detailed description of how cross-validation was implemented.

Blinding Decoding and encoding models were cross-validated. Trials were randomly assigned to train, test and validation groups. See the Methods
section for a detailed description of how cross-validation was implemented in the analysis of this manuscript.
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Laboratory animals Mice C57BL/6J, bred at Columbia University from Jackson lines. 10 mice in total. Mice began behavioral training between postnatal
days 90 and 180.

Wild animals No wild animals were used in the study

Reporting on sex We used males and females arbitrarily and in roughly equal proportion (6 females and 4 males). Female mice typically weighed less
than male mice and drank correspondingly less water, but we adjusted the reward size based on weight to achieve roughly equal trial
counts. Because we observed no other differences, we pooled the data from both sexes.

Field-collected samples  No field collected samples were used in this study

Ethics oversight All experiments were conducted under the supervision and approval of the Columbia University Institutional Animal Care and Use
Committee

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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