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Abstract

Motivation: The automatic discovery of sparse biomarkers that are associated with an outcome of interest is a
central goal of bioinformatics. In the context of high-throughput sequencing (HTS) data, and compositional data
(CoDa) more generally, an important class of biomarkers are the log-ratios between the input variables. However,
identifying predictive log-ratio biomarkers from HTS data is a combinatorial optimization problem, which is compu-
tationally challenging. Existing methods are slow to run and scale poorly with the dimension of the input, which has
limited their application to low- and moderate-dimensional metagenomic datasets.

Results: Building on recent advances from the field of deep learning, we present CoDaCoRe, a novel learning algo-
rithm that identifies sparse, interpretable and predictive log-ratio biomarkers. Our algorithm exploits a continuous re-
laxation to approximate the underlying combinatorial optimization problem. This relaxation can then be optimized
efficiently using the modern ML toolbox, in particular, gradient descent. As a result, CoDaCoRe runs several orders
of magnitude faster than competing methods, all while achieving state-of-the-art performance in terms of predictive
accuracy and sparsity. We verify the outperformance of CoDaCoRe across a wide range of microbiome, metabolite
and microRNA benchmark datasets, as well as a particularly high-dimensional dataset that is outright computational-
ly intractable for existing sparse log-ratio selection methods.

Availability and implementation: The CoDaCoRe package is available at https://github.com/egr95/R-codacore. Code
and instructions for reproducing our results are available at https://github.com/cunningham-lab/codacore.

Contact: eg2912@columbia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput sequencing (HTS) technologies have enabled the
relative quantification of the different bacteria, metabolites or genes,
that are present in a biological sample. However, the nature of these
recording technologies results in sequencing biases that complicate
the analysis of HTS data. In particular, HTS data come as counts,
whose totals are constrained to the capacity of the measuring device.
These totals are an artifact of the measurement process, and do not
depend on the subject being measured. Hence, HTS counts arguably
should be interpreted in terms of relative abundance; in statistical
terminology, it follows that HTS data are an instance of compos-
itional data (CoDa) (Calle, 2019; Gloor et al., 2016, 2017; Quinn
et al., 2018, 2019).

Mathematically, CoDa can be defined as a set of non-negative
vectors whose totals are uninformative. Since the seminal work of
Aitchison (1982), the statistical analysis of CoDa has become a dis-
cipline in its own right (Pawlowsky-Glahn and Buccianti, 2011;

Pawlowsky-Glahn and Egozcue, 2006). But why does CoDa deserve
special treatment? Unlike unconstrained real-valued data, the com-
positional nature of CoDa results in each variable becoming nega-
tively correlated to all others (increasing one component of a
composition implies a relative decrease of the other components). It
is well known that, as a result, the usual measures of association and
feature attribution are problematic when applied to CoDa
(Filzmoser et al., 2009; Lovell et al., 2015; Pearson, 1896).
Consequently, bespoke methods are necessary for a valid statistical
analysis (Gloor et al., 2017). Indeed, the application of CoDa meth-
odology to HTS data, especially microbiome data, has become in-
creasingly popular in recent years (Calle, 2019; Fernandes et al.,
2013, 2014; Quinn et al., 2021; Rivera-Pinto et al., 2018).

The standard approach for analyzing CoDa is based on applying
log-ratio transformations to map our data onto unconstrained
Euclidean space, where the usual tools of statistical learning apply
(Pawlowsky-Glahn and Egozcue, 2006). The choice of the log-ratio
transform offers the necessary property of scale invariance, but in
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the CoDa literature, it holds primacy for a variety of other technical
reasons, including subcompositional coherence (Aitchison, 1982;
Pawlowsky-Glahn and Buccianti, 2011). Log-ratios can be taken
over pairs of input variables (Aitchison, 1982; Bates and Tibshirani,
2019; Greenacre, 2019b) or aggregations thereof, typically geomet-
ric means (Aitchison, 1982; Egozcue, 2003; Egozcue and
Pawlowsky-Glahn, 2005; Rivera-Pinto et al., 2018) or summations
(Greenacre, 2019a, 2020; Quinn and Erb, 2020). The resulting fea-
tures work well empirically, but also imply a clear interpretation: a
log-ratio is a single composite score that expresses the overall quan-
tity of one sub-population as compared with another. For example,
in microbiome HTS data, the relative weights between sub-
populations of related microorganisms are commonly used as clinic-
al biomarkers (Crovesy et al., 2020; Magne et al., 2020; Rahat-
Rozenbloom et al., 2014). When the log-ratios are sparse, meaning
they are taken over a small number of input variables, they define
biomarkers that are particularly intuitive to understand, a key desid-
erata for predictive models that are of clinical relevance (Goodman
and Flaxman, 2017).

Thus, learning sparse log-ratios is a central problem in CoDa.
This problem is especially challenging in the context of HTS data,
due to its high dimensionality (ranging from 100 to over 10 000 vari-
ables). Existing methods rely on stepwise search (Greenacre, 2019b;
Rivera-Pinto et al., 2018) or evolutionary algorithms (Prifti et al.,
2020; Quinn and Erb, 2020), which scale poorly with the dimension
of the input. These algorithms are prohibitively slow for most HTS
datasets, and thus there is a new demand for sparse and interpretable
models that scale to high dimensions (Cammarota et al., 2020; Li,
2015; Susin et al., 2020).

This demand motivates the present work, in which we present
CoDaCoRe, a novel learning algorithm for Compositional Data via
Continuous Relaxations. CoDaCoRe builds on recent advances
from the deep learning literature on continuous relaxations of dis-
crete latent variables (Jang et al., 2017; Linderman et al., 2018); we
design a novel relaxation that approximates a combinatorial opti-
mization problem over the set of log-ratios. In turn, this approxima-
tion can be optimized efficiently using gradient descent, and
subsequently discretized to produce a sparse log-ratio biomarker,
thus dramatically reducing runtime without sacrificing interpretabil-
ity nor predictive accuracy. The main contributions of our method
can be summarized as follows:

• Computational efficiency. CoDaCoRe scales linearly with the di-

mension of the input. It runs several orders of magnitude faster

than its competitors.
• Interpretability. CoDaCoRe identifies a set of log-ratios that are

sparse, biologically meaningful and ranked in order of import-

ance. Our model is highly interpretable, and much sparser, rela-

tive to competing methods of similar accuracy and

computational complexity.
• Predictive accuracy. CoDaCoRe achieves better out-of-sample

accuracy than existing CoDa methods, and performs similarly to

state-of-the-art black-box classifiers (which are neither sparse nor

interpretable).
• Ease of use. We devise an adaptive learning rate scheme that ena-

bles CoDaCoRe to converge reliably, requiring no additional

hyperparameter tuning.

2 Background

Our work focuses on the supervised learning problem xi 7!yi, where
the inputs xi are HTS data (or any CoDa), and the outputs yi are the
outcome of interest. For many microbiome applications, xi repre-
sents a vector of frequencies of the different species of bacteria that
compose the microbiome of the ith subject. In other words, xij
denotes the abundance of the jth species (of which there are p total)
in the ith subject. The response yi is often a binary variable indicat-
ing whether the ith subject belongs to the case or the control groups

(e.g. sick versus healthy). For HTS data, the input frequencies xij
arise from an inexhaustive sampling procedure, so that the totalsPp
j¼1

xij are arbitrary and the components should only be interpreted in

relative terms (i.e. as CoDa) (Calle, 2019; Gloor et al., 2017; Gloor
and Reid, 2016; Quinn et al., 2018). While many of our applications
pertain to microbiome data, our method applies to any high-
dimensional HTS data, including those produced by Liquid
Chromatography Mass Spectrometry (Filzmoser and Walczak, 2014).

2.1 Log-ratio analysis
Our goal is to obtain sparse log-ratio transformed features that can
be passed to a downstream classifier or regression function. As dis-
cussed, these log-ratios will result in interpretable features and scale-
invariant models (that are also subcompositionally coherent), thus
satisfying the key requirements for valid statistical inference in the
context of CoDa. The simplest such choice is the pairwise log-ratio,
defined as logðxijþ=xij� Þ, where jþ and j– denote the indexes of a pair
of input variables (Aitchison, 1982). Note that the ratio cancels out
any scaling factor applied to xi, preserving only the relative informa-
tion, while the log transformation ensures the output is (uncon-
strained) real-valued. There are many such ðjþ; j�Þ pairs (to be
precise, pðp� 1Þ=2 ¼ Oðp2Þ of them). In order to select good pair-
wise log-ratios from a set of input variables, Greenacre (2019b) pro-
posed a greedy step-wise search algorithm. This method produces a
sparse and interpretable set of features, but it is prohibitively slow
on high-dimensional datasets, as a result of the step-wise algorithm
scaling quadratically in the dimension of the input. A heuristic
search algorithm that is less accurate but computationally faster has
been developed as part of Quinn et al. (2017), though its computa-
tional cost is still troublesome (as we shall see in Section 4). The log-
ratio lasso is a computationally efficient alternative for selecting
pairwise log-ratios (Bates and Tibshirani, 2019).

2.1.1 Balances

Recently, a class of log-ratios known as balances (Egozcue and
Pawlowsky-Glahn, 2005) have become of interest in microbiome
applications, due to their interpretability as the relative weight be-
tween two sub-populations of bacteria (Morton et al., 2019; Quinn
and Erb, 2019). Balances are defined as the log-ratios between geo-
metric means of two subsets of the input variables (Note that the ori-
ginal definition of balances includes a “normalization” constant,
which we omit for clarity. This constant is in fact unnecessary, as it
will get absorbed into a regression coefficient downstream.):

Bðxi; Jþ; J�Þ ¼ log
ð
Q

j2Jþ xijÞ
1
pþ

ð
Q

j2J� xijÞ
1
p�

0
@

1
A (1)

¼ 1

pþ

X
j2Jþ

logxij �
1

p�

X
j2J�

logxij;

where Jþ and J– denote a pair of disjoint subsets of the indices
f1; . . . ;pg, and pþ and p– denote their respective sizes. For example,
in microbiome data, Jþ and J– are groups of bacteria species that
may be related by their environmental niche (Morton et al., 2017) or
genetic similarity (Silverman et al., 2017; Washburne et al., 2017).
Note that when pþ ¼ p� ¼ 1 (i.e. Jþ and J– each contain a single
element), Bðx; Jþ; J�Þ reduces to a pairwise log-ratio. By allowing for
the aggregation of more than one variable in the numerator and de-
nominator of the log-ratio, balances provide a far richer set of fea-
tures that allows for more flexible models than pairwise log-ratios.
Insofar as the balances are taken over a small number of variables
(i.e. Jþ and J– are sparse), they also provide highly interpretable
biomarkers.

The selbal algorithm (Rivera-Pinto et al., 2018) has gained popu-
larity as a method for automatically identifying balances that predict
a response variable. However, this algorithm is also based on a
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greedy step-wise search through the combinatorial space of subset

pairs ðJþ; J�Þ, which scales poorly in the dimension of the input and

becomes prohibitively slow for many HTS datasets (Susin et al.,
2020).

2.1.2 Amalgamations

An alternative to balances, known as amalgamation, is defined by

aggregating components through summation:

Aðxi; Jþ; J�Þ ¼ log

P
j2Jþ xijP
j2J� xij

 !
; (2)

where again Jþ and J– denote disjoint subsets of the input compo-
nents. Amalgamations have the advantage of reducing the dimen-

sionality of the data through an operation, the sum, that some

authors argue is more interpretable than a geometric mean
(Greenacre, 2019a; Greenacre et al., 2020). On the other hand,

amalgamations can be less effective than balances for identifying

components that are statistically important, but small in magnitude,

e.g. rare bacteria species (since small terms will have less impact on a
summation than on a product).

Recently, Greenacre (2020) has advocated for the use of expert-

driven amalgamations, using domain knowledge to construct the

relevant features. On the other hand, Quinn and Erb (2020) pro-

posed amalgam, an evolutionary algorithm to automatically identify
amalgamated log-ratios (Equation 2) that are predictive of a re-

sponse variable. However, this algorithm does not scale to high-

dimensional data (albeit, comparing favorably to selbal), nor does it
produce sparse models (hindering interpretability of the results). A

similar evolutionary algorithm can be found in Prifti et al. (2020),
however, their model is not scale invariant, as is required by most

authors in the field (Pawlowsky-Glahn and Egozcue, 2006).
Other relevant log-ratio methodology is briefly reviewed in

Supplementary Material (Supplementary Section SB).

3 Materials and methods

We now present CoDaCoRe, a novel learning algorithm for HTS

data, and more generally, high-dimensional CoDa. Unlike existing
methods, CoDaCoRe is simultaneously scalable, interpretable,

sparse and accurate. In Table 1 from Supplementary Material

(Supplementary Section SC), we summarize the relative merits of
CoDaCoRe and its competitors.

3.1 Optimization problem
In its basic formulation, CoDaCoRe learns a regression function of
the form:

f ðxÞ ¼ aþ b � Bðx; Jþ; J�Þ; (3)

where B denotes a balance (Equation 1), and a and b are scalar
parameters. This regression function can be thought of in two stages:
(i) we take the input and use it to compute a balance score and (ii)
we feed the balance score to a logistic regression classifier. For clar-
ity, we will restrict our exposition to this formulation, but note that
our algorithm can be applied equally to learn amalgamations instead
of balances (see Section 3.6), as well as generalizing straightforward-
ly to non-linear functions (provided they are suitably parameterized
and differentiable).

Let Lðy; f Þ denote the cross-entropy loss, with f 2 R given in
logit space. The goal of CoDaCoRe is to find the balance that is
maximally associated with the response. Mathematically, this can be
written as:

min
ðJþ;J� ;a;bÞ

X
i

L
�
yi; aþ b � Bðxi; Jþ; J�Þ

�
: (4)

This objective function may look similar to a univariate logistic
regression, however, our problem is complicated by the joint opti-
mization over the subsets Jþ and J–, which determine the input varia-
bles that compose the balance. Note that the number of possible
subsets of p variables is 2p, so the set of possible balances is greater
than 2p and grows exponentially in p. Exact optimization is there-
fore computationally intractable for any but the smallest of datasets,
and an approximate solution is required. Selbal corresponds to one
such approximation, offering quadratic complexity in p, which is
practical for low- to moderate-dimensional datasets (p < 100), but
does not scale to high dimensions (p > 1000). As we shall now see,
CoDaCoRe represents a critical improvement, achieving linear com-
plexity in p which dramatically reduces runtime and enables, for the
first time, the use of balances and amalgamations for the analysis of
high-dimensional HTS data.

3.2 Continuous relaxation
The key insight of CoDaCoRe is to approximate our combinatorial
optimization problem (Equation 4) with a continuous relaxation
that can be trained efficiently by gradient descent. Our relaxation is
inspired by recent advances in deep learning models with discrete la-
tent variables (Jang et al., 2017; Linderman et al., 2018; Maddison
et al., 2017; Mena et al., 2018; Potapczynski et al., 2020). However,
we are not aware of any similar proposals for optimizing over

Table 1. Evaluation metrics shown for each method, averaged over 25 datasets � 20 random train/test splits

Runtime (s) Active inputs (%) Accuracy (%) AUC (%) F1 (%)

CoDaCoRe—Balances (ours) 4.5 60.4 1.960.3 75.2 6 2.4 79.56 2.6 73.7 6 2.6

CoDaCoRe—Amalgamations (ours) 4.4 6 0.4 1.96 0.3 71.8 6 2.4 74.56 2.8 69.8 6 2.9

selbal (Rivera-Pinto et al., 2018) 79 033.76 2094.1 2.46 0.2 61.2 6 1.9 80.06 2.4 70.9 6 1.1

Pairwise log-ratios (Greenacre, 2019b) 14 207.0 6 1038.4 2.56 0.4 73.3 6 1.7 75.26 2.4 67.8 6 3.0

Lasso 1.6 6 0.1 4.46 0.6 72.4 6 1.7 75.26 2.3 65.2 6 3.7

CoDaCoRe—balances with k¼0 (ours) 9.8 6 2.2 6.16 0.7 77.6 6 2.2 82.06 2.3 76.0 6 2.5

Coda-lasso (Lu et al., 2019) 1043.0 6 55.4 19.76 2.7 72.5 6 2.3 78.06 2.4 64.2 6 4.4

amalgam (Quinn and Erb, 2020) 7360.5 6 209.8 87.66 2.1 74.4 6 2.5 78.26 2.7 73.9 6 2.8

DeepCoDA (Quinn et al., 2020) 296.5 6 21.4 89.36 0.6 70.6 6 2.9 77.66 2.9 64.7 6 7.4

CLR-lasso (Susin et al., 2020) 2.0 6 0.2 100.0 6 0.0 77.5 6 1.8 81.66 2.2 75.8 6 2.7

Random Forest 10.66 0.4 – 78.0 6 2.2 82.26 2.2 77.3 6 2.5

Log-ratio lasso (Bates and Tibshirani,

2019)*

135.0 6 11.1 0.76 0.0 72.0 6 2.4 76.46 2.3 69.2 6 2.7

Note: Standard errors are computed independently on each dataset, and then averaged over the 25 datasets. The models are ordered by sparsity, i.e. percentage

of active input variables. CoDaCoRe (with balances) is the only learning algorithm that is simultaneously fast, sparse and accurate. The penultimate row shows

the performance of Random Forest, a powerful black-box classifier which can be thought of as providing an approximate upper bound on the predictive accuracy

of any interpretable model. The bottom row is shown separately and marked with an asterisk because the corresponding algorithm failed to converge on 432 out

our 500 runs (averages were taken after imputing these missing values with the corresponding values obtained with pairwise log-ratios, which is the most similar

method). We highlight in bold the CoDa models that are fast to run, as well as the CoDa models that are most sparse and accurate.
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disjoint subsets, nor for learning balances or amalgamations in the
context of CoDa.

Our relaxation is parameterized by an unconstrained vector of
‘assignment weights’, w 2 R

p, with one scalar parameter per input
dimension (e.g. one weight per bacteria species). The weights are
mapped to a vector of ‘soft assignments’ via:

~w ¼ 2 � sigmoidðwÞ � 1 ¼ 2

1þ expð�wÞ � 1; (5)

where the sigmoid is applied component-wise. Intuitively, large posi-
tive weights will max out the sigmoid, leading to soft assignments
close to þ 1, whereas large negative weights will zero out the sig-
moid, resulting in soft assignments close to –1. This mapping is akin
to softly assigning input variables to the groups Jþ and J–,

respectively.
Let us write ~wþ ¼ ReLUð ~wÞ and ~w� ¼ ReLUð� ~wÞ for the (com-

ponent-wise) positive and negative parts of ~w, respectively. We ap-
proximate balances (Equation 1) with the following relaxation:

~Bðxi;wÞ ¼
P

j ~w
þ
j logxijP
j ~w

þ
j

�
P

j ~w
�
j logxijP
j ~w

�
j

(6)

¼ ~wþ � logxi
jj ~wþjj1

� ~w� � log xi
jj ~w�jj1

: (7)

In other words, we approximate the geometric averages over sub-
sets of the inputs, by weighted geometric averages over all compo-
nents (compare Equations 1 and 6).

Crucially, this relaxation is differentiable in w, allowing us to
construct a surrogate objective function that can be optimized jointly
in ðw; a;bÞ by gradient descent:

min
ðw;a;bÞ

X
i

L
�
yi; aþ b � ~Bðxi;wÞ

�
: (8)

Moreover, the computational cost of differentiating this object-
ive function scales linearly in the dimension of w, which overall
results in linear scaling for our algorithm. We also note that the
functional form of our relaxation (Equation 6) can be exploited in
order to select the learning rate adaptively (i.e. without tuning),
resulting in robust convergence across all real and simulated datasets
that we considered. We defer the details of our implementation of
gradient descent to Supplementary Material (Supplementary Section
SC.1).

3.3 Discretization
While a set of features in the form of Equation 6 may perform accur-
ate classification, a weighted geometric average over all input varia-
bles is much harder for a biologist to interpret (and less intuitively
appealing) than a bona fide balance over a small number of varia-
bles. For this reason, CoDaCoRe implements a ‘discretization’ pro-
cedure that exploits the information learned by the soft assignment
vector ~w, in order to efficiently identify a pair of sparse subsets, Ĵ

þ

and Ĵ
�
, which will define a balance.

The most straightforward way to convert the (soft) assignment ~w
into a (hard) pair of subsets is by fixing a threshold t 2 ð0; 1Þ:

~J
þ ¼ fj : ~wj > tg; (9)

~J
� ¼ fj : ~wj < �tg: (10)

Note that given a trained ~w and a fixed threshold t, we can
evaluate the quality of the corresponding balance Bðx; ~Jþ; ~J�Þ (resp.
amalgamation) by optimizing Equation 4 over ða;bÞ alone, i.e. fit-
ting a linear model. Computationally, fitting a linear model is much
faster than optimizing Equation 8, and can be done repeatedly for a
range of values of t with little overhead. In CoDaCoRe, we combine
this strategy with cross-validation in order to select the threshold, t̂ ,
that optimizes predictive performance (see Supplementary Section

SC.2 of Supplementary Material for full detail). Finally, the trained
regression function is:

f̂ ðxÞ ¼ â þ b̂ � Bðx; Ĵþ; Ĵ�Þ; (11)

where Ĵ
þ
and Ĵ

�
are the subsets corresponding to the optimal thresh-

old t̂ , and ðâ; b̂Þ are the coefficients obtained by regressing yi against
Bðxi; Ĵ

þ
; Ĵ

�Þ on the entire training set.

3.4 Regularization
Note from Equations 9 and 10 that larger values of t result in fewer
input variables assigned to the balance Bðx; ~Jþ; ~J�Þ, i.e. a sparser
model. Thus, CoDaCoRe can be regularized simply by making t̂
larger. Similar to lasso regression, CoDaCoRe uses the 1-standard-
error rule: namely, to pick the sparsest model (i.e. the highest t) with
mean cross-validated score within 1 standard error of the optimum
(Friedman et al., 2001). Trivially, this rule can be generalized to a k-
standard-error rule (to pick the sparsest model within k standard
errors of the optimum), where k becomes a regularization hyper-
parameter that can be tuned by the practitioner if so desired (with
lower values trading off some sparsity in exchange for predictive ac-
curacy). In our public implementation, k ¼ 1 is our default value,
and this is used throughout our experiments (except where we indi-
cate otherwise). In practice, lower values (e.g. k ¼ 0) can be useful
when the emphasis is on predictive accuracy rather than interpret-
ability or sparsity, though our benchmarks showed competitive per-
formance for any k 2 ½0; 1�.

3.5 CoDaCoRe algorithm
The computational efficiency of our continuous relaxation allows us
to train multiple regressors of the form of Equation 11 within a sin-
gle model. In the full CoDaCoRe algorithm, we ensemble multiple
such regressors in a stage-wise additive fashion, where each succes-
sive balance is fitted on the residual from the current model. Thus,
CoDaCoRe identifies a sequence of balances, in decreasing order of
importance, each of which is sparse and interpretable. Training ter-
minates when an additional relaxation (Equation 6) cannot improve
the cross-validation score relative to the existing ensemble (equiva-
lently, when we obtain t̂ ¼ 1). Typically, only a small number of bal-
ances is required to capture the signal in the data, and as a result
CoDaCoRe produces very sparse models overall, further enhancing
interpretability. In Supplementary Material, we summarize our pro-
cedure in Supplementary Algorithm S1 (Supplementary Section SC)
and we describe a number of extensions to the CoDaCoRe frame-
work (Supplementary Section SD), including unsupervised learning.

3.6 Amalgamations
CoDaCoRe can be used to learn amalgamations (Equation 2) much
in the same way as for balances (the choice of which to use depend-
ing on the goals of the biologist). In this case, our relaxation is
defined as:

~Aðxi;wÞ ¼ log

P
j ~w

þ
j xijP

j ~w
�
j xij

 !
¼ log

~wþ � xi
~w� � xi

� �
; (12)

i.e. we approximate summations over subsets of the inputs, with
weighted summations over all components (compare Equation 2 and
Equation 12). The rest of the argument follows verbatim, replacing
Bð�Þ with Að�Þ and ~Bð�Þ with ~Að�Þ in Equations 3, 4, 8 and 11.

4 Experiments

We evaluate CoDaCoRe on a collection of 25 benchmark datasets
including 13 datasets from the Microbiome Learning Repo (Vangay
et al., 2019), and 12 microbiome, metabolite and microRNA data-
sets curated by Quinn and Erb (2019). These data vary in dimension
from 48 to 3090 input variables (see Supplementary Section SE of
Supplementary Material for a full description). For each dataset, we
fit CoDaCoRe and competing methods on 20 random 80/20 train/
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test splits, sampled with stratification by case–control (He and Ma,
2013). Competing methods and their implementation are described
in Supplementary Section SF.2 of Supplementary Material.

4.1 Results
We evaluate the quality of our models across the following criteria:
computational efficiency (as measured by runtime), sparsity (as
measured by the percentage of input variables that are active in the
model) and predictive accuracy (as measured by out-of-sample ac-
curacy, ROC AUC and F1 score). Table 1 provides an aggregated
summary of the results; CoDaCoRe (with balances) is performant on
all metrics. Indeed, our method provides the only interpretable
model that is simultaneously scalable, sparse and accurate. Detailed
performance metrics on each of the 25 datasets are provided in
Supplementary Section SF of Supplementary Material, together with
critical difference diagrams for each of our success metrics.

Figure 1 shows the average runtime of our classifiers on each data-
set, with larger points denoting larger datasets. On these common
benchmark datasets, CoDaCoRe trains up to 5 orders of magnitude
faster than existing interpretable CoDa methods. On our larger datasets
(3090 inputs), selbal runs in �100 hours, pairwise log-ratios and amal-
gam both run in �10 hours, and CoDaCoRe runs in under 10 seconds
(full runtimes are provided in Supplementary Table S5 in
Supplementary Material). All runs, including those involving gradient
descent, were performed on identical CPU cores; CoDaCoRe can be
accelerated further using GPUs, but we did not find it necessary to do
so. It is also worth noting that the outperformance of CoDaCoRe is not
merely as a result of the other methods failing on high-dimensional data-
sets. Supplementary Section SF.1.1 and Supplementary Figure S4 in
Supplementary Material show that CoDaCoRe performs consistently
across low- and high-dimensional datasets, and enjoys better sample ef-
ficiency than competing methods. Better sample efficiency could repre-
sent a particular advantage in biomedical studies, where most datasets
have low n and high p.

Not only is CoDaCoRe sparser and more accurate than other in-
terpretable models, it also performs on par with state-of-the-art
black-box classifiers. By simply reducing the regularization param-
eter, from k ¼ 1 to k ¼ 0, CoDaCoRe (with balances) achieved an
average 77.6% out-of-sample accuracy of and 82.0% AUC, on par
with Random Forest (penultimate row of Table 1), while only using
5.9% of the input variables, on average. This result indicates, first,
that CoDaCoRe provides a highly effective algorithm for variable

selection in high-dimensional HTS data. Second, the fact that
CoDaCoRe achieves similar predictive accuracy as state-of-the-art

black-box classifiers, suggests that our model may have captured a

near-complete representation of the signal in the data. At any rate,

we take this as evidence that log-ratio transformed features are in-
deed of biological importance in the context of HTS data, corrobo-

rating previous microbiome research (Crovesy et al., 2020; Magne

et al., 2020; Rahat-Rozenbloom et al., 2014).

4.2 Interpretability
The CoDaCoRe algorithm offers two kinds of interpretability. First,

it provides the analyst with sets of input variables whose aggregated

ratio predicts the outcome of interest. These sets are easy to under-
stand because they are discrete, with each component making an

equivalent (unweighted) contribution. They are also sparse, usually

containing fewer than 10 features per ratio, and can be made sparser

by adjusting the regularization parameter k. Such ratios have a pre-
cedent in microbiome research, for example the Firmicutes-to-

Bacteroidetes ratio is used as a biomarker of gut health (Crovesy

et al., 2020; Magne et al., 2020). Second, CoDaCoRe ranks predict-

ive ratios hierarchically. Due to the ensembling procedure, the first
ratio learned is the most predictive, the second ratio predicts the re-

sidual from the first, and so forth. Like principal components, the

balances (or amalgamations) learned by CoDaCoRe are naturally
ordered in terms of their explanatory power. This ordering aids

Fig. 1. Gain in classification accuracy (relative to the “majority vote” baseline classi-

fier) plotted against runtime. Each point represents one of 25 datasets, with size pro-

portional to the input dimension. Note the x-axis is drawn on the log-scale.

CoDaCoRe (with balances) is the only method that scales effectively to our larger

datasets, while consistently achieving high predictive accuracy. Moreover, its per-

formance is broadly consistent across smaller and larger datasets

Table 2. Evaluation metrics for the liquid biopsy data (Best et al.,

2015), averaged over 20 independent 80/20 train/test splits

Runtime (s) Vars (#) Acc. (%) AUC (%) F1 (%)

CoDaCoRe 3162.2 3 6 1 91.0 6 1.9 93.6 6 2.6 94.4 6 1.2

Lasso 2360.2 226 4 87.8 6 1.3 94.7 6 1.5 92.7 6 0.7

RF 38368.6 – 89.0 6 1.6 94.1 6 1.8 93.1 6 1.0

XGBoost 10861.6 – 90.6 6 1.9 95.9 6 1.5 94.1 6 1.1

Note: CoDaCoRe (with balances) achieves equal predictive accuracy as

competing methods, but with much sparser solutions. Note that sparsity is

expressed as an (integer) number of active variables in the model (not as a per-

centage of the total, as was done in Table 1). We highlight in bold the sparsest

and most accurate models.

Fig. 2. CoDaCoRe variable selection for the first (most explanatory) log-ratio on the

Crohn disease data (Rivera-Pinto et al., 2018). For each of 10 independent boot-

straps of the training set (80% of the data randomly sampled with stratification by

case–control), we show which variables are selected in the numerator (blue) and de-

nominator (orange) of the balance. CoDaCoRe learns remarkably consistent log-

ratios across independent training sets
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interpretability by decomposing a multivariable model into compre-
hensible ‘chunks’ of information.

Notably, we find a high degree of stability in the log-ratios
selected by the model. We repeated CoDaCoRe on 10 independent
training set splits of the Crohn disease data provided by Rivera-
Pinto et al. (2018), and found consensus among the learned models.
Figure 2 shows which bacteria were included for each split.
Importantly, the bacteria that were selected consistently by
CoDaCoRe—notably Dialister, Roseburia and Clostridiales—were
also identified by Rivera-Pinto et al. (2018). In Supplementary
Material (Supplementary Section SF), we also present a comparison
of Figure 2 when using CoDaCoRe to learn amalgamations instead
of balances. The amalgamations tend to select more abundant bac-
teria species like Faecalibacterium rather than rarer species like
Roseburia (due to the geometric mean being more sensitive to small
numbers than the summation operator).

4.3 Scaling to liquid biopsy data
HTS data generated from from clinical blood samples can be
described as a ‘liquid biopsy’ that can be used for cancer diagnosis
and surveillance (Alix-Panabières and Pantel, 2016; Best et al.,
2015). These data can be very high-dimensional, especially when
they include all gene transcripts as input variables. In a clinical con-
text, the use of log-ratio predictors is an attractive option because
they automatically correct for inter-sample sequencing biases that
might otherwise limit the generalizability of the models (Dillies
et al., 2013). Unfortunately, existing log-ratio methods like selbal
and amalgam simply cannot scale to liquid biopsy datasets that con-
tain as many as 50 000 or more input variables.

The large dimensionality of such data has restricted its analysis
to overly simplistic linear models, black-box models that are scalable
but not interpretable, or suboptimal hybrid approaches where input
variables must be pre-selected based on univariate measures (Best
et al., 2015; Sheng et al., 2018; Zhang et al., 2017). Owing to its lin-
ear scaling, CoDaCoRe can be fitted to these data at a similar com-
putational cost to a single lasso regression, i.e. under a minute on a
single CPU core. Thus, CoDaCoRe can be used to discover interpret-
able and predictive log-ratios that are suitable for liquid biopsy can-
cer diagnostics, among other similar applications.

We showcase the capabilities of CoDaCoRe in this high-
dimensional setting, by applying our algorithm to the liquid biopsy
data of (Best et al., 2015). These data contain p ¼ 58 037 genes
sequenced in n ¼ 288 human subjects, 60 of whom were healthy
controls, the others having been previously diagnosed with cancer.
Averaging over 20 random 80/20 train/test splits of this dataset, we
found that CoDaCoRe achieved the same predictive accuracy as
competing methods (within error), but obtained a much sparser
model. Remarkably, CoDaCoRe identified log-ratios involving just
3 genes, that were equally predictive to both black-box classifiers
and linear models with over 20 active variables. This case study
again illustrates the potential of CoDaCoRe to derive novel biologic-
al insights, and also to develop learning algorithms for cancer diag-
nosis, a domain in which model interpretability—including
sparsity—is of paramount importance (Wan et al., 2017).

4.4 Simulation study
In addition to the above previous experiments, we provide a simula-
tion study in Section G of Supplementary Material. For simulated
HTS datasets of dimensionality ranging from 100 to 10 000 input
variables, we find that CoDaCoRe is able to recover the true bio-
markers used in the data-generating process, and does so with simi-
lar or higher accuracy (and orders of magnitude faster) than its
competitors.

5 Conclusion

Our results corroborate the summary in Table 1: CoDaCoRe is the
first sparse and interpretable CoDa model that can scale to high-
dimensional HTS data. It does so convincingly, with linear scaling
that results in runtimes similar to linear models. Our method is also

competitive in terms of predictive accuracy, performing comparably
to powerful black-box classifiers, but with interpretability. Our find-
ings suggest that CoDaCoRe could play a significant role in the fu-
ture analysis of high-throughput sequencing data, with broad
implications in microbiology, statistical genetics and the field of
CoDa.
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