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Abstract

Neural circuits exhibit complex activity patterns, both spontaneously and evoked by external
stimuli. Information encoding and learning in neural circuits depend on how well time-varying
stimuli can control spontaneous network activity. We show that in firing-rate networks in the
balanced state, external control of recurrent dynamics, i.e., the suppression of internally-
generated chaotic variability, strongly depends on correlations in the input. A distinctive fea-
ture of balanced networks is that, because common external input is dynamically canceled
by recurrent feedback, it is far more difficult to suppress chaos with common input into each
neuron than through independent input. To study this phenomenon, we develop a non-sta-
tionary dynamic mean-field theory for driven networks. The theory explains how the activity
statistics and the largest Lyapunov exponent depend on the frequency and amplitude of the
input, recurrent coupling strength, and network size, for both common and independent
input. We further show that uncorrelated inputs facilitate learning in balanced networks.

Author summary

Information in the brain is processed by a deeply-layered structure of local recurrent neu-
ral circuits. Recurrent neural networks often exhibit spontaneous irregular activity pat-
terns that arise generically through the disordered interactions between neurons.
Understanding under which conditions one circuit can control the activity patterns in
another circuit and suppress spontaneous, chaotic fluctuations is crucial to unravel infor-
mation flow and learning input-output tasks.

Here we find that when different neurons receive identical input, a larger input modu-
lation amplitude is necessary to suppress chaos and facilitate learning in balanced firing-
rate networks compared to different neurons receiving distinct input. This counterintui-
tive behavior is explained by a dynamic cancellation of common external input by recur-
rent currents—a feature previously described in balanced networks of binary neurons.
We systematically study the scaling of this effect with different network parameters,
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describe high- and low-frequency limits analytically, and develop a novel non-stationary
dynamic mean-field theory that predicts when chaos gets suppressed by correlated time-
dependent input. Finally, we investigate the implications for learning in balanced firing-
rate networks.

Introduction

Neural circuits are highly interconnected, which generates complex activity dynamics both
spontaneously and in response to incoming stimuli. Identifying mechanisms by which time-
varying stimuli can control circuit dynamics is important for understanding information
transmission, learning reliable input-output functions, and designing optogenetic stimulation
protocols.

Recurrent neural networks provide a framework for understanding the interaction between
external input and internally-generated dynamics. These networks can exhibit rich chaotic
dynamics in the absence of external input [1]. External input can suppress chaotic dynamics,
thus controlling the internal state of the network [2-4]. Such control of the recurrent dynamics
appears necessary for reliable task learning [5-8].

Fundamental features of biological neural network dynamics include operation in continu-
ous time, nonnegative firing rates and segregation of excitation and inhibition. Here we
address input-driven network dynamics that adhere to these biological constraints. Excitation
and inhibition in most biological circuits are conveyed by separate sets of neurons with a pre-
dominance of recurrent inhibitory feedback, a property known as ‘inhibition dominance’ [9-
12]. Moreover, neurons in local populations receive time-dependent input that is correlated
across neurons and can trigger a time-dependent population response. It is important to inves-
tigate how such biological features shape network dynamics, response to external inputs, and
learning.

A class of recurrent network models originally proposed to explain the origins of asynchro-
nous irregular activity is termed ‘balanced’ [13, 14]. In these networks, large excitatory inputs
are dynamically canceled by strong recurrent inhibitory feedback. Firing-rate networks in the
balanced state can exhibit chaotic activity fluctuations [15, 16], giving rise to complex activity
patterns. How the dynamic cancellation described in balanced networks of binary neurons
[13, 14] extends to firing-rate models and how it affects the suppression of chaotic dynamics
has not yet been addressed. Previous dynamic mean-field theory (DMFT) approaches to
input-driven rate networks assumed that the mean of the external input across neurons does
not depend on time, which facilitates DMFT [2-4].

It remains unclear how external input should be structured to suppress chaos and control
the network state effectively in rate networks satisfying biological constraints. To address this
gap, we study stimulus-induced suppression of chaos in balanced rate networks with two types
of time-dependent external input. Specifically, we study time-dependent input that is either
identical across network neurons (referred to as common input) or that varies independently
between the neurons (referred to as independent input).

We show that much larger input modulations are necessary to suppress chaos in networks
that are driven by common input, because common input is canceled by strong recurrent inhi-
bition in balanced networks. Conventional DMFT methods [1, 4, 15, 16] are not adequate to
fully capture the effects of time-varying common input. Therefore, we developed a DMFT that
is non-stationary, meaning that the order parameters can explicitly depend on time. This
novel technique accurately captures the time-dependent mean and variance, the two-time
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autocorrelation function and the largest Lyapunov exponent of input-driven network dynam-
ics. Specifically, we calculate the smallest input modulation amplitude required to suppress
chaos, referred to as the critical input amplitude. Using both theory and simulations, we exam-
ine differences in the effect of common and independent input across a wide range of frequen-
cies of the sinusoidal input modulation, weight heterogeneity and network sizes. We also
provide approximations at low and high input frequencies. All the theoretical results match
those from network simulations, provided the networks are sufficiently large.

Our findings have important implications for learning in balanced models and for fitting
rate networks that obey biological constraints to neural data. We quantify how successful
learning performance requires chaos suppression. As a result of residual chaotic fluctuations,
common input that is used to suppress chaos during learning in a number of schemes [5-8]
meets with limited success in balanced networks unless it has a very large amplitude. We show
how the use of independent input resolves this problem.

Results
Chaos suppression with common vs independent input

We study how suppression of chaos depends on input correlations in balanced rate networks
with time-dependent external input. For simplicity, we begin our analysis by studying a single
inhibition-dominated population, where the recurrent inhibitory feedback dynamically bal-
ances a positive external input rather than recurrent excitation. The excitatory-inhibitory case
is considered in a later section. Thus, we study a network of N nonlinear rate units (‘neurons’)
with dimensionless synaptic currents h; and firing rates ¢(h;) that obey

B 3 el + VL + 510, O

with i.i.d. Gaussian-distributed random couplings J;, ~ N (—J,/ VN, g*/N), where the gain
parameter g controls the weight heterogeneity of the network. The transfer function ¢ is set to
a threshold-linear function ¢(x) = max(x, 0). The 1/v/N scaling of the negative mean coupling
results in strongly negative recurrent feedback that dynamically cancels the constant input
term \/N1,. In addition to this constant positive term, the external input contains a time-
dependent component S8I(t).

Throughout, we distinguish between two types of time-dependent inputs, ‘common’ vs
‘independent’. In both cases, the time-dependence is sinusoidal, but for common input,

OI(t) = 81(t) = I sin(2nft), which is identical across network neurons (Fig 1A). For indepen-
dent input, 8I,(t) = I; sin(27nft + 0;) has an independent random phase for each neuron (Fig
1B), with phase 0; drawn independently from a uniform distribution between 0 and 27z. We
assume that N is large enough or the phases are appropriate so that we can take the average of
OI(t) across the population to be zero in the independent case. The amplitude of 8Ii(¢) is
denoted by I}, and fis the input frequency. We will investigate in the following how large I;
has to be, and how it has to scale with network size, in order to control the dynamics of recur-
rent networks and suppress chaotic fluctuations for the two input types. Therefore, we do not
a assume priori any particular scaling of I; with network size in Eq 1.

For firing-rate networks in the balanced state, suppression of chaos strongly depends on the
correlations of the input (Fig 1). One might expect that driving all neurons with a common
input would be an effective way to suppress chaos, but input that is shared across neurons
recruits strong recurrent inhibitory feedback that is anti-correlated with the common input
(Fig 1C). This means that the time-varying external input is dynamically canceled by recurrent
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Fig 1. Suppression of chaos in balanced networks with common vs independent input. A) Common input: External input I""(t) = /NI, + I(t) consist of a
positive static input and a sinusoidally time-varying input with identical phase across neurons. B) Independent input: External input I (t) = /NI, + d1,(¢)
consist of a positive static input and a sinusoidally time-varying input with a random phase for each neuron. C) External inputs (top), recurrent feedback I}** =
> J;6(h;) and their population average (thick line) (middle), and synaptic currents (bottom) for three example neurons. Recurrent feedback has a strong time-

varying component that is anti-correlated with the external input, resulting in cancellation. D) Same as in C, but for independent input. Here, no cancellation
occurs and the network is entrained into a forced limit cycle. Throughout this work, green (violet) refers to common (independent) input. Model parameters:
N=5000,g=2,f=001/7,lo=Jo=1,I, =6

https://doi.org/10.1371/journal.pcbi.1010590.9001

feedback, leaving behind only a small fraction of the time-dependent common input for chaos
suppression. In contrast, for independent input, which is randomly phase-offset across neu-
rons, no such cancellation occurs (Fig 1D), and thus weaker external input is required to sup-
press chaotic fluctuations in the network.

To understand how this discrepancy arises in the model, it is useful to rewrite Eq 1 by

decomposing h, = m + h, into a mean component m and residual fluctuations k,. We decom-
pose J; = —J,/VN + fij, where the entries of f,.j are Gaussian with variance ¢°/N and mean
zero. For common input, this results in

r‘;—’:' = —m — /NJ,v(t) + VNI, + 8I(t) (2a)
dh, L. .
= —hi+21ﬁ¢(m+hj) (2b)
p=

with mean population firing rate v(t) = 1> ¢(h,(t)). Here 8I(t) directly enters the expression
for m, because it is identical across all neurons. It thus directly impacts v(t) and recruits,

through the negative recurrent mean coupling —J, /v/N, strong recurrent feedback —v/NJ,v
that is anti-correlated with the input and cancels most of both the positive static input and

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010590 December 5, 2022 4/23


https://doi.org/10.1371/journal.pcbi.1010590.g001
https://doi.org/10.1371/journal.pcbi.1010590

PLOS COMPUTATIONAL BIOLOGY Input correlations impede suppression of chaos and learning in balanced rate networks

the time-dependent common component of the total external input. Solving Eq 2a for the pop-
ulation firing rate v(t) yields:

I, 1 dm

v(t):]()—l—m(él(t)—ra—m). (3)

In the absence of time-dependent input, this equation is commonly referred to as the ‘balance
equation’ [14-16]. Note that the impact of 5I(¢) on the population firing rate is reduced by a

factor of 1/\/N
With independent input, Eq 1 can be written as
dm
Ty S M- VNJv(t) + VNI, (4a)
dh, Y -
v = ht > Jd(m+ hy) + 01,(1). (4b)

j=1

In this case, 8I(t) enters the equation for the fluctuations 4. Thus, the strong recurrent feed-
back only cancels the positive static input term, v/NI,. Chaos, in this case, is suppressed

through the influence of 8I,(t) on the fluctuations h »» similar to what happens in the case of
random non-balanced networks [2-4].

We quantify chaos in the network dynamics by the largest Lyapunov exponent A;. This
quantity measures the average exponential rate of divergence or convergence of nearby net-
work states [17] and is positive if the network dynamics is chaotic. We computed A, analyti-
cally using non-stationary DMFT (Materials and Methods) and confirmed the results by
simulations of the full network dynamics. For both common and independent input, ; is a
decreasing function of the input amplitude I; and crosses zero at a critical input amplitude I{™
(Fig 2). With common input, a much larger value of I; is required for A; to become negative
and thus for chaos suppression.

Dependence on network parameters

Next, we explore how I varies between networks driven by common and independent input.
As suggested by Eqs 2 and 4, the discrepancy between common and independent input grows

with network size N. For common input, I is proportional to /N for large N, while it satu-
rates as a function of N for independent input (Fig 3A). Thus, an ever-increasing I; is required
to suppress chaotic activity in larger networks that are driven by common input. Note that the
agreement between theory and simulations is good for large N (Fig 3A).

In balanced networks, the network size N acts as a scale factor for the mean of the coupling
weights and the magnitude of the constant external input (Eq 1). Mean-field theory describes
the limit when the number of neurons goes to infinity, but it still contains N as a parameter
multiplying these terms (Materials and Methods). To separate these two different aspects, we
introduce a ‘tightness of balance’ parameter K by scaling both J, and I, with a factor /K/N.
This removes the N-dependence in the DMFT equations. K mimics the effect of changing the
number of synapses per neuron on the mean current m in a random sparse network [13, 15,
16]. This allows us to vary the ‘tightness of balance’ [18, 19], while still studying networks with
large enough N so that mean-field theory applies (Fig 3B).

We observe that for sufficiently large K, the dependence on K matches that on N in the
unscaled model (Fig 3A): for common input, I is proportional to /K and for independent
input, I'™ is independent of K. However, the qualitative difference between independent and
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Fig 2. Largest Lyapunov exponent shows different chaos suppression for common vs independent input. Largest
Lyapunov exponent A; as a function of input modulation amplitude I; for common (green) and independent (violet)
input. I{™ are the zero-crossings of A; and thus the minimum I; required to suppress chaotic dynamics. With common
input, A, crosses zero at a much larger I;. Dots with error bars are numerical simulations, dashed lines are largest
Lyapunov exponents computed by dynamic mean-field theory (DMFT). Error bars indicate +2 std across 10 network

realizations. Model parameters: N = 5000, g = 2, f=0.2/7, Iy = Jo = 1.
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Fig 3. Difference in chaos suppression increases with network size, tightness of balance, and near the transition to chaos. A) Dependence of I{™ on network size N.
With common input, I{™ o V/N for large N, but is constant for independent input. Error bars indicate interquartile range around the median. B) Dependence of I it on
‘tightness of balance’ parameter K, which scales both I, and J,. Results for large K are the same as in A but for small K, the network is no longer in the balanced regime,
and results for common and independent input become similar. Error bars indicate +2 std. C) Dependence of I{™ on gain parameter g for low input frequency f. Close to
&> an arbitrarily small independent input can suppress chaos; this is not the case with common input. The quasi-static approximation (dotted) and DMFT (dashed)
results coincide. Error bars indicate +2 std. Model parameters: Iy=Jo =1 in Aand C; g=2,f=02/rin Aand B; I, = J, = v/K/N, in B; f=0.01/7in C, N = 5000 in B

and C.

https://doi.org/10.1371/journal.pcbi.1010590.9003
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common input vanishes for small values of K because the network is no longer in the regime
of the balanced state. In the balanced regime, we expect the qualitative difference to be largely
independent of the transfer function ¢. For non-balanced networks with zero mean couplings
and tanh transfer function, we also found no qualitative difference between common and inde-
pendent input (Materials and Methods).

In balanced networks, the difference in I for common and independent input increases
for decreasing gain parameter g. With independent input, I{™* becomes arbitrarily small as g

approaches g_.. = /2 (Fig 3C). At this critical gain parameter, the network with constant
external input transitions from a fixed point to chaos [16]. At low frequency, I{™ remains
of order /N even near g_, for common input (Fig 3C). We note that if N is fixed but g is
increased to large values, I!™ for independent input becomes larger than I™ for common
input. The reason is that the variance of the synaptic currents h,(t) grows faster for indepen-
dent input than for common input as the network approaches a global instability where the
dynamics diverges.

Mechanism of chaos suppression for slowly varying common input

An intuitive picture of chaos suppression by common sinusoidal input can be provided in
the limit of low frequency, where the input varies more slowly than the intrinsic network
fluctuations. We call this limit the quasi-static approximation. In this limit, when I, exceeds

the static external input /NI, recurrent activity is periodically silenced (Fig 4A and 4B).

A 200

—200

A (1/7)

T 1
0 100 200
t(7)
Fig 4. Mechanism of chaos suppression with slowly varying common input. A) External input
I"(t) = /NI, + SI,(t) (dashed) and recurrent input I*(t) = > J;6(h;(t)) (solid) for three example neurons. B)
Synaptic currents h; for four example neurons. C) Local Lyapunov exponent from network simulation, which reflects
the local exponential growth rates between nearby trajectories (solid), and Lyapunov exponent from stationary DMFT

(dashed) used in quasi-static approximation. When I, > /NI, external input periodically becomes negative and
silences the recurrent activity (gray bars). During these silent episodes, the network is no longer chaotic and

A = —1/1. When the input is positive, dynamics remains chaotic and 1 > 0 on average. Model parameters:
N=5000,g =2, f=0.01/1,I=Jo = 1.

https://doi.org/10.1371/journal.pcbi.1010590.g004
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During these silent episodes, all neurons intermittently approach the locally stable dynamics
h,(t) = v/NI, + 6I(t) < 0. On the other hand, when g > g_. any positive external input result
in chaos [16]. Thus, in a quasi-static approximation, A, is given by averaging the local Lyapu-
nov exponent ' across the silent and chaotic episodes, weighted by their respective dura-
tions (Fig 4C; Materials and Methods; 1\ is approximated using DMFT). During the silent
episodes, A" = —1/7. In the chaotic episodes, 1" > 0 depends on how far the network is
from the transition to chaos, i.e., on the gain parameter g. As a result, I is determined by the
duration of the silent episodes that is required to compensate the remaining transiently chaotic
dynamics, and it grows monotonically with g (Fig 3C) because longer silent episodes are neces-
sary to compensate for the stronger chaotic activity.

This quasi-static perspective might suggest that chaos can only be suppressed by common
input when I, > /NI, so that there exist ‘silent episodes’ where the total input into neurons
V/NI, + 3I(t) is intermittently negative and firing rates are zero. That finding is however only
correct in the limit f — 0. For finite input frequency, chaos can be suppressed by a common
input even when the external input is always positive.

Frequency-dependent chaos suppression

We next explore the effects of the frequency of the sinusoidal input on I{"™. For both common
and independent input, we observe a ‘resonant frequency’ at which the input is most effective
at suppressing chaos (Fig 5A). For common input, at low frequency, I:™ is insensitive to the
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Fig 5. Dynamic mean-field theory captures frequency-dependent effects on the suppression of chaos. A) I as a function of input frequency f (¢ = 1.6 light color,
g =2 dark color). I has a minimum that is captured by the non-stationary DMFT (dashed green line) but not by the quasi-static approximation (dotted green line),
which does not depend on frequency f. At high f, the low-pass filter effect of the leak term attenuates the external input modulation for both cases, thus resulting in a
linearly increasing I{™. B) Dependence of I{"™ on the gain parameter g for high input frequency (f = 0.2/7), showing a monotonic increase. The non-stationary DMFT
results are in good agreement with numerical simulations. For comparison, we include the result of the quasi-static approximation (dotted green line), which shows a
more gradual dependence on g and applies only at low frequencies (see Fig 3). Error bars indicate +2 std. Model parameters: N = 5000, g =2, f=0.2/7, Iy =J, = 1.

https://doi.org/10.1371/journal.pcbi.1010590.9005
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frequency and is thus well approximated by the quasi-static approximation described above.
However, for increasing frequencies, I exhibits a minimum in f, which can only be captured
by non-stationary DMFT (Materials and Methods). For both common and independent input,
when the frequency is high, low-pass filtering originating from the leak term in Eq 1 attenuates

the effective input modulation amplitude by a factor of 1/4/1 + (27f1)*. As a result, a stronger

input modulation amplitude is required to compensate the effect of this attenuation, and I™
exhibits a linear increase with f (Fig 5A). We find that also for independent input, I{™ exhibits
aminimum in f, an effect previously reported for networks that have zero mean couplings, J, =
0, and a sigmoidal transfer function [3]. The resonant frequency originates from a superposi-
tion of two distinct effects: for increasing frequency, the input decorrelates subsequent Jacobi-
ans, which makes the network less chaotic and thus leads to smaller I¥*[4, 17]. For ever-
increasing frequencies, however, the input is increasingly attenuated by the filtering effect of
the leak term, which overcompensates the decorrelation effect for large f.

We also examined the effect of the coupling gain g on the critical input amplitude I™. For
low input frequencies, a finite value I{™ occurred near the onset of chaos at g = g, (Fig 3C).
At a higher frequency, f = 0.2/, this is no longer the case (Fig 5B), which is captured by the
non-stationary DMFT. Close to g_,, the critical input amplitude is small for both common and
independent input.

Collectively, these results demonstrate that a larger input amplitude is necessary to suppress
chaotic dynamics when balanced networks are driven by common, as opposed to independent
input, and that non-stationary DMFT successfully captures this effect in large networks.

Chaos suppression in balanced two-population E-I network

The effect that we report for a fully-connected random network of neurons with negative
mean coupling extends to a sparsely-connected two population excitatory-inhibitory network
in the balanced state. We calculate the largest Lyapunov exponent A, as a function of input
amplitude I; in network simulations and find that, consistent with our earlier observations, a
much stronger input is required for common input to reduce A, to zero and consequently sup-
press the chaotic activity (Fig 6).

Because of the additional parameters, two population excitatory-inhibitory network can
exhibit more complex behaviors [13, 15, 16, 20]. Here we consider a one-dimensional parame-
trization by the excitatory efficacy @, a parameter that multiplies all excitatory couplings as
described in [16]. We observe numerically that increasing the excitatory efficacy a increases A,
for both common and independent input (Fig 6). We leave a detailed theoretical analysis of
two population excitatory-inhibitory network, including the effect of different time constants
that is known to affect chaos [15], for future work.

Training balanced networks with common vs independent input

Our results on the impact of common versus independent input have important implications
for learning in recurrent networks. To address this issue, we considered a target-based
approach for task learning, called full-FORCE [6, 8]. In this learning procedure, a ‘student net-
work’ (S) learns a task by matching its recurrent inputs to those of a ‘teacher network’ (Fig
7A). The teacher network is randomly connected and driven by the desired output to generate
the target currents. The synaptic coupling matrix of the student network is then trained by

an online learning algorithm to autonomously generate the desired output (Materials and
Methods).
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Fig 6. Difference in chaos suppression in sparsely-connected E-I network. A, as a function of I; for common and
independent inputs, showing a monotonic decrease with I; and a larger zero-crossing for common input. This result is
qualitatively similar to that obtained in the single population network with negative mean coupling (Fig 2). Error bars
indicate +2 std, lines are a guide for the eye. Increasing the excitatory efficacy a increases A, for both common and
independent input (a € {0, 0.5, 0.7}). Model parameters (parameters defined as in [16] for constant input and Wy, and
WE; are the modulation amplitudes of the input to the excitatory and inhibitory population): Ny = Ny = 3500, K = 700,

g=16J = g2/VK, J; = —1.11g/VK, I, = g2/VK, ], = —g/VK, W, = ga/K, W, = 0.44gV/K, Wy, = gal,,
Wy, = 0.44g],, f= 0.2/,

https://doi.org/10.1371/journal.pcbi.1010590.g006

We consider a case in which the task of the student network is to autonomously generate
the target output F**'(¢) = sin (27ft). In the standard student-teacher network setup [6, 8], an
input proportional to this desired output, 8I,(t) = I;sin(27nft), would be injected into each unit
of the teacher network. However, in a balanced network, as we have shown, this is not an effi-
cient way to suppress chaos within the teacher network; an input of the form I, sin(2nft + 6,)
with varying phases will be far more effective.

We examine learning using teacher networks set up according to Eq 1 with each neuron i
driven by SI(t) = I, sin(27ft + 0;). We systematically studied the influence of common input
(same 0; across the teacher network) and independent input (random 6; across the teacher net-
work) on learning performance in the student network. In both cases, test error drops when
chaos is suppressed in the teacher network, as signaled by the zero-crossing of A, (Fig 7B), but
a much larger value of I; is required to obtain the same test error with common input than
with independent input.

In Fig 7D, we show examples of firing rates in both the teacher and student network, for
two different values of input amplitude I; during testing. The readout z(t) = X; w; ¢ (h,(1)) is
also shown. When the teacher network dynamics is chaotic, the readout z(t) quickly deviates
from the target output. Crucially, chaos suppression in the teacher network is not induced by
intermittent silencing of the whole teacher network: a reliable readout z can be produced when

the external input v/NI, 4+ 8I(t) > 0 at all times.
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Fig 7. Common input impedes learning in balanced networks. A) Schematic of the training setup. A ‘student network’ (S) is trained to autonomously generate the
output F*(t) =sin(2nft), by matching its recurrent inputs to those of a driven ‘teacher network’, whose weights are not changed during training. B) A, in the teacher
network as a function of I;. C) Test error in the student network as a function of I;. Critical input amplitude I;™ is indicated by vertical dashed lines. Consistent with
the difference in I7™, the teacher networks driven with common input require a larger I; to achieve small test errors in the student network. Error bars indicate
interquartile range around the median. D) Top: Target output F** (green) and actual output z (dashed orange) for two input amplitudes I; € {5, 15}. Bottom: Firing
rate ¢(h;) for two example neurons in teacher network with common input (green full line) and student network (orange dotted line) for two input amplitudes. E)
Scatter plot of test error as a function of A for each network realization in A and B, with both common and independent input. When chaos in the teacher network is
not suppressed (A, > 0), test error is high. Training is successful (small test error) when targets are strong enough to suppress chaos in the teacher network. Training is
terminated when error reaches below 1072, Model parameters: N = 500, g = 2, Iy = Jo = 1, ¢(x) = max(x, 0) in both teacher and student networks; f= 0.2/7 in the teacher
network inputs and target F*".

https://doi.org/10.1371/journal.pcbi.1010590.9007

The impact of chaos on task performance is more striking when the test error is plotted
against A, for individual network realizations (Fig 7D), demonstrating that trained networks
with small test error correspond to ones where the time-varying inputs suppresses chaos in the
teacher network. Interestingly, in some cases, the student network can learn to approximately
reproduce the prescribed dynamics even when the teacher network is slightly in the chaotic
regime (small but positive ;).

Firing rates and autocorrelations of balanced networks with common and
independent input
The non-stationary DMFT also accurately describes the mean population rate v(¢) and the

two-time autocorrelation function of the residual fluctuations A, in the case of common input.
In Fig 8, we compare non-stationary DMFT and numerical neural network simulations with
common input in both the chaotic (cyclostationary) and stable (periodic) regimes. We con-
sider the population-averaged autocorrelation function

Coolt + 1,8 +5) = (S (¢ + D)o (h(E +5))) (5)

of the fluctuating single neuron rates ¢(h;), temporally averaged over ¢ making C,,(t — s) a
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Fig 8. Activity, population firing rate and autocorrelations of balanced networks with common input. A) Firing rates ¢;(t) = ¢(h(t))
of three example units. B) Mean population firing rate v(t). C) Time-averaged two-time autocorrelation function (Eq 5) as a function of

time difference with no external input (I; = 0). D-F) Same as A-C but for input amplitude I, = 0.8v/N ~ 56.5; activity remains chaotic.

G-I Same as A-C but for stronger input (I, = 10v/N = 707.1); activity is entrained by the external input and is no longer chaotic.
Dashed lines (middle and right columns) are results of non-stationary DMFT, full lines are median across 10 network realizations.
Model parameters: N = 5000, g =2, f=0.05/7, Iy = Jo = 1.

https://doi.org/10.1371/journal.pchi.1010590.9008

function of the time difference ¢ — s. Here the angular bracket represent either an population
average or the stochastic average according to DMFT. Code for the non-stationary DMFT is
made available here.

The excellent agreement also holds for independent input (Fig 9), extending previous
results of stationary DMFT for driven networks [3] to balanced networks.

Discussion

We investigated how correlations in the external input influence suppression of chaos and
learning in balanced networks. Stronger input modulations are required to suppress chaos
when the inputs are correlated across neurons. The discrepancy between common and inde-
pendent input increases for large network size, deep in the balanced regime, and in the vicinity
of the transition to chaos of the autonomous dynamics. We developed a non-stationary
dynamic mean-field theory to explain the dynamical effects of time-varying input (Materials
and Methods). Furthermore, we demonstrated that this discrepancy affects task learning in
balanced networks.

Our study is relevant in light of recent advances in optogenetics that allow for time-depen-
dent stimulation of a selected population of neurons. Theoretical models that distinguish
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Fig 9. Activity, population firing rate and autocorrelations of balanced networks with independent input. A) Firing rates

¢:(t) = p(hi(t)) of three example units. B) Mean population firing rate v(¢). C) Autocorrelation function with no external input (I; = 0).
D)-F) Same as A-C but for input amplitude of I; = 0.8; activity remains chaotic. G)-I) Same as A-C but for stronger input (I; = 10);
activity is fully controlled by the external input and is no longer chaotic. Dashed lines (middle and right columns) are results of
stationary DMFT, full lines are median across 10 network realizations. Model parameters: N = 5000, g = 2, f= 0.05/7, Iy = Jo = 1.

https://doi.org/10.1371/journal.pcbi.1010590.9009

between different network dynamic regimes are of interest for this purpose [10, 19, 21]. Our
work addresses this question through the spatiotemporal structure of the feedforward input.
One experimental prediction of our work is that, if cortical circuits are in the balanced state,
time-varying stimulation that is common across neurons will not suppress response firing-rate
variability of firing rates as effectively as independently time-varying stimulation.

For multi-layered networks, common feedforward input from one balanced neural popula-
tion with asynchronous activity into another population results in a time-averaged current
that is proportional to v/N [14] but its temporal fluctuations would be small and according to
our theory unsuitable to suppress rate chaos. In contrast, if the driving population has syn-
chronous rate fluctuations, the mean of the current fluctuations would be proportional to v/N
and thus be suitable to suppress rate chaos. We conclude that common input in biological neu-
ral circuits is not able to control a downstream population state unless the driving population
is in a synchronous state.

Previous studies on suppression of chaos in rate networks were limited to independent
inputs in the form of stochastic [2, 4] and sinusoidal [3] time-dependent drive, but the net-
works were not balanced, and their connectivity had zero mean coupling. In these previous
studies, the distribution of the inputs across neurons in the population is time-independent
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[2-4] and stationary DMFT was sufficient to describe the results. In contrast, the treatment of
common input is only possible by the non-stationary dynamic mean-field approach intro-
duced here.

The dynamic cancellation of time-varying input through recurrent inhibitory feedback has
been previously studied in balanced networks with binary [14, 22, 23] and spiking neurons
[24, 25]. Chaos in balanced firing-rate networks was studied previously [4, 15, 16, 20], but the
dynamic cancellation of correlated input and its implications on chaos suppression in rate net-
works were not investigated, nor were the implications for learning. It would be interesting to
investigate the influence of input correlations on chaos in alternative models of the balanced
state [10, 21] and recurrent networks with low-rank structure [26-29].

The different underlying mechanisms of chaos suppression for common and independent
input we report here are not specific to periodic input modulations and a threshold-linear
transfer function, which we merely chose for the sake of simplicity and analytical tractability.
Balanced rate networks driven by stochastic inputs, such as an Ornstein-Uhlenbeck (OU) pro-
cess, exhibit a qualitatively similar discrepancy between common and independent inputs
(Materials and Methods). In that case, common input corresponds to a situation where all neu-
rons receive the same realization of the OU process, with the intensity of the noise serving as
the input amplitude. Moreover, a similar qualitative difference between independent and com-
mon input is expected in spiking balanced networks with sufficiently slow synaptic dynamics
[15].

The ability to control the dynamics of recurrent networks is closely linked to the problem
of learning. A target-based approach to supervised learning in recurrent networks provides a
convenient framework for studying the link between chaos and trainability. This is because in
this approach, as opposed to backpropagation through time for example, learning-induced
changes in connectivity are uncoupled from the dynamics: whether chaos is suppressed in the
teacher network does not depend on synaptic changes in the student network. We found that
the reduced impact of common input on chaos suppression is reflected in learning perfor-
mance: when the targets fail to suppress chaos in the teacher network, target trajectories can-
not be learned reliably and, as a result, the student network fails to learn the task. This is not
only relevant for computational studies of training recurrent neural networks in the balanced
state [6-8], but also for fitting recurrent network models to neural data [30, 31] when imposing
biological constraints such as inhibition-dominance, non-negative firing rates and correlated
external inputs.

Based on our analysis, we propose two strategies to overcome this problem. One strategy is
to time-offset the time-varying input into the teacher network across neurons (as in indepen-
dent input explored in this study) so that their population average is approximately zero. An
alternative approach is to project the target through input weights with significant variability
across neurons in the population. Both solutions avoid a large time-varying mean component
in the external input that would otherwise be dynamically canceled by recurrent feedback. In
sum, the uncovered discrepancy can help to harness the computational capabilities of balanced
networks for learning stable trajectories.

Materials and methods

We analyze the dynamics of Eq 1 with time-varying common or independent external input.
For common input, we develop a novel non-stationary dynamic mean-field theory (DMFT)
yielding time-dependent population firing rates, two-time autocorrelation functions of the
activity fluctuations and the largest Lyapunov exponents. For independent input, we calculate
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autocorrelation functions and Lyapunov exponents using stationary DMFT [1, 4, 15, 16],
extending previous work [3].
We consider a single population of neurons with negative mean coupling, with the dynamic
equation (see Eq 1) that we repeat here for convenience,
d

h,
T—=—h+ Y J.olh )+ VNI, +dL(¢).
dt Z 4 (,) 0

As mentioned in the main text, we decompose h, = m + h, and Ji =)/ V/N + ], where

ij?
the entries of ] ; are i.i.d. Gaussian with variance &/N and mean zero. For convenience, we

include here the decompositions of Eq 1 for common input,

dm

Ty S M- VNJv(t) + /NI, + dI(t), (7a)
dh, - . .

Ty :—h+2;hﬂm+h) (7b)

and for independent input,

dm

Ty S Mo VNJv(t) + /NI, , (8a)
dh, . . .

TE =—h+ ijqj)(m + hj) + 0L(t). (8b)

with the network-averaged (population) firing rate v(t) = 3" ¢ (m(t) +h ,.(t)) .

Common input

After developing a non-stationary DMFT for the dynamics given above with common input,
we analyze the small and large frequency limits.

Non-stationary dynamic mean-field theory. In this section, we derive a non-stationary
DMFT for common input starting from Eq 2. With time-dependent common input to all
units, the mean component m(t) and the autocorrelations of the residual fluctuations &, ()
change over time. Therefore, the statistics of h; are not stationary, in contrast to what is
assumed in conventional DMFT approaches [1, 3, 4, 15, 16, 18, 32, 33].

The basic idea of DMFT is that for large N, the distribution of the recurrent input for
different neurons becomes Gaussian and pairwise uncorrelated, according to the central limit
theorem. To this end, we characterize the distribution of the residual fluctuations &, (t) by con-
sidering the (linear) stochastic dynamics

pfz—ﬁ+mg, 9)

where 7(¢) is a Gaussian process with mean (17(t)) = 0 and autocorrelation

q(t,s) = (n(t)n(s)) = g(S(m(t) + h())d(mls) + h(s))). (10)

Here and in the following, angular brackets denote expectation values over the distribution

of the stochastic process fl( t), which approximates population averages in the full network.
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The mean-field estimate for the mean component m(t) of h; therefore evolves according to Eq

2 with v(t) = (¢(m(t) + h(t))), the mean-field estimate of the mean population firing rate.
We derive coupled equations for the time evolution of the two-time autocorrelation func-

tion c(t,s) = (h(t)h(s)), which explicitly depends on the two times ¢ and s. Taking the tempo-
ral derivative of c(t, s) with respect to s and using Eq 9, we obtain

r%c(t, s) = —c(t,s) +r(t,s), (11)

where r(t,s) = (h(t)n(s)), which we take as an auxiliary function. Taking the temporal deriva-
tive of r(t, s) with respect to t we arrive at an expression for the time evolution of the function
r(t, s):

r%r(t, s) = —r(t,s) +q(t,s), (12)

where g(t,s) = g2(¢(m(t) + h(t))p(m(s) + h(s))) (see Eq 10). The idea of considering an
auxiliary function r has been proposed for a discrete-time model previously [34]. Together, the
dynamic mean-field equations for m(t), c(t, s) and r(t, s) form a closed system of self-consistent
dynamic equations and can be solved forward in time, both in s and ¢, by integrating them on
a two-dimensional grid from some initial condition for m, ¢ and r. The integration requires
q(t, s), which can be calculated by evaluating a Gaussian double integral that depends on c(t, s),
c(t, 1), c(s, s), m(t) and m(s). For the threshold-linear transfer function ¢(x) = max(x, 0), one
integral can be evaluated analytically, which allows for an efficient numerical implementation
using adaptive Gauss-Kronrod integration [35-37]. The non-stationary DMFT accurately
captures the time-dependent mean population rate v(f) and the two-time autocorrelation func-
tion (Fig 8) both in the (cyclostationary) chaotic and in the (periodic) driven stable regime.

To quantify chaos, we calculate the largest Lyapunov exponent using DMFT by considering
the distance between the states of two replicas of the system with identical realization of the
network couplings J;;, identical external input 6(t), but different initial conditions [4, 14, 38].
The squared distance between the two systems can be expressed in terms of their two-time
autocorrelations ¢'!, ¢**, and the cross-correlations ¢'%, ¢*' between them [4],

d(t,s) = c''(t,s) + 2(t,s) — c(t,s) — '(t,s), (13)

with ¢2'(t, s) = ¢'*(s, ). We next linearize the dynamics of the cross-correlation function and
thereby of the squared distance around the solution that is perfectly correlated between the
two replicas: c'*(t, s) = c(t, s) + € k(t, s), ¢ < 1. This yields a linear partial differential equation
for the temporal evolution of the squared distance d(t) between infinitesimal perturbations [4]:

(20, + 1)(z0, + 1) k(t,5) = 4y (£, 5)k(£,5) , (14)

with d(f) = -2 k(t, ) and q,., (t,5) = g2(¢/(m(t) + h(£))¢ (m(s) + h(s))).

In contrast to earlier approaches [1, 4, 16], where the statistics were stationary, for common
input, the two-time autocorrelation function is required to evaluate Eq 14, which makes gy (%,
s) explicitly dependent on ¢ and s and not only on the difference ¢ — 5. Eq 14 can be solved by
integrating forward on a two-dimensional grid, similarly to the solution of the two-time auto-
correlation function.
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Specifically, similar to the case of the equations for ¢ and r, we solve Eq 14 by rewriting it as
two differential equations for k and an auxiliary variable /,

r%k(t, s) = —k(t,s) + 1(t,s), (15)
and
Til(i’, s) = —l(t,s) +k(t,5)q,,(t,s)- (16)

dt

The function gg(t, s) can be calculated by evaluating a Gaussian double integral that
depends on c(t, s), c(t, t), c(s, s), m(t) and m(s), which we obtained above (Eqs 10-12).

The largest Lyapunov exponent is given by the the average exponential growth rate of k(t, 1),
discarding an initial transient:

1 k(D)
A =1lim—1 .
LT R 8 Tk(0,0)

(17)

Example code in Julia 1.8 for solving the non-stationary DMFT and calculating autocorrela-
tions and the largest Lyapunov exponent is available at github.com/RainerEngelken/
NonstationaryDynamicMeanField Theory.

Quasi-static approximation for low-frequency input. We consider very slow common
input modulations with 7 f < 1. In this case, the network can be approximately described by
stationary DMFT which, for g > g . = /2, yields chaotic dynamics for any constant positive
external input [16]. However, when dI(¢) < —+/NI,, neurons are driven by negative input and
the network becomes silent. During these silent episodes, because of the dissipation coming
from the leak of the individual neurons, the dynamics is transiently very stable. In other
words, for silenced networks, the largest Lyapunov exponent is A'*“' = —1/1 as the Jacobian
matrix of the dynamics is — 10,

The critical input amplitude If"™ occurs when these silent episodes on average compensate
transiently chaotic episodes. Since the Lyapunov exponent of the chaotic episodes is small for g
close to g, very short silent episodes suffice to suppress chaos. Therefore, the critical input
amplitude in the limit of small g — g in the quasi-static approximation is expected to be

I = /NI, (18)

For increasing g, the positive input episodes become locally more chaotic, which increases
I Thus, in the quasi-static approximation, the largest Lyapunov exponent depends on g and
the distribution of the time-varying input

1

7L1(g7 Il) = lim

T
local
lim — /O A<, VNI, + SI(t)) dt (19)

— [ warim [ pwar (20

where A;"™(g) is the largest Lyapunov exponent for constant input [16], and I is integrated
over the probability distribution of 61(t) + /NI, In the second equality, we used the fact that,
for constant positive external input, the Lyapunov exponent is independent of the input value
I for threshold-linear transfer function due to its positive homogeneity. For 8I(¢) = I, sin(27nft),
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Eq 20 becomes

1 NI NI
hgd) ~ - asccos ({ °)+x;°"“<g>(1—arccos ({)) (21)
1 1

Solving A,(g, I;) = 0 for I, yields

) 7_[kconst (g)
IR ~ NI, — L= 22
1 (g) \/_” 0 sec (1/1_ _|_ xjonst(g)) ( )

A, is calculated analytically using stationary DMFT [15, 16]. This is the quasi-static approxima-
tion plotted as dotted lines in Figs 3C and 5. Note that ™ diverges when g is so large that

A" = 1/1. For larger g, arbitrary strong slow inputs cannot suppress chaos. For g close to the
autonomous transition g, ,,, we can use the analytical approximation A" (g) = ¢(g — g.:.)[16],
where c is a constant of order 1. Thus,

2.2

19 ~ VEL(1+5 g 23)

In the case of time-varying common input modulations generated by an OU process
$40I(t) = — LoI(t) + v2DE(t), where () is Gaussian white noise with zero mean and unit

variance, a similar calculation based on p(I) = ﬁ e =0 leadsto
T

VNI,
erfc
1 ml[] const \% 2T5D
erfc +AX 9l -—
\/2t.D 2

Solving A, (g, D) = 0 by D determines the critical input amplitude
NI?
5.
const 2 5
2t | erfc ! F%T(S‘t@ (25)
s

Again, when g is sufficiently large such that the largest Lyapunov exponent during the cha-

Dcrit ( g) ~

otic episodes reaches A" = 1, OU-input of any amplitude cannot suppress chaos.
High-frequency limit. For high input frequencies, the leak term in the network dynamics
acts as a low-pass filter of the external input effectively attenuating it by a factor of

1/4/1 + (2nf7)’. Thus, common input is low-pass filtered in Eq 2a. Analyzing the attenuation
in Eq 2a, we find a linear dependence for high input frequencies,

I(f) o tf . (26)

The expected high-frequency scaling is visible in Fig 5A. The crossover to the linear scaling

. . NI . . .
regime of I;"™ occurs at f, o @ . We observed such a behavior of the crossover also in numeri-
cal simulations.
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Independent input

Stationary dynamic mean-field theory. In the case of independent input, we obtain sta-
tionary autocorrelations and constant mean currents self-consistently similar to [3], but addi-
tionally also taking a mean component m into account [15, 16]. Moreover, we obtain the
largest Lyapunov exponent in a similar way to previous dynamic mean-field approaches [1, 4,
16]. The stationary DMFT accurately captures the constant mean population rate v and the sta-
tionary autocorrelation function obtained from numerical simulations (Fig 9), both in the cha-
otic and in the driven stable regime.

Low-frequency limit. In the low-frequency limit, suppression of chaos by independent
input can be understand rather intuitively. The network receives quenched independent (het-

erogeneous) input, which widens the distribution of / and reduces the spectral radius of the
Jacobian of the dynamics and thus results in a suppression of chaos [2, 4]. At values of g close
to the transition to chaos g, = /2, only a very small input amplitude I, of the quenched
input is necessary to suppress chaos. We find that in the low-frequency limit

_ o
I(g) =2V2yn ]—" N/ (27)
0

Thus, close to the transition to chaos, arbitrary small I; can suppress chaos in the indepen-
dent case, while for common input in this limit, I{™ = \/NIO as we have discussed above. This
is consistent with the results in Fig 3C.

High-frequency limit. Similar to common input, for high frequencies, the leak term in

the Eq 4b for h, attenuates the effective input amplitude by a factor of 1/4/1 4 (2zft)’. Thus,

in the high-frequency limit we expect the same linear scaling as in the common input case,
I7(f) o tf . (28)

Unlike the common input case, the crossover to this scaling is not expected to depend on
network size for large N, as the suppression of chaos is not impaired by the cancellation of the
external input by recurrent feedback. This scaling is observed in Fig 5A.

Common vs independent input in networks with zero mean coupling and transfer func-
tion ¢(x) = tanh(x). For completeness, we also numerically studied suppression of chaos by
common vs independent input in standard non-balanced networks with zero mean coupling,
zero mean input, and transfer function ¢(x) = tanh(x) [1]. We considered, as in [3]

N
r% = —h -+ Jyo(h) +oL(t). (29)
j=1

with i.i.d. Gaussian-distributed random couplings J, ~ N'(0,¢*/N), where the gain parameter
g controls the weight heterogeneity of the network. We use an identical definition of the time-
varying common and independent input, as before in Eq 1. The independent input case is
identical to the scenario studied in [3]. As expected, we found that in contrast to balanced net-
works, there is no qualitative difference between I;"™ for common versus independent input
(Fig 10). To our surprise, the difference is small even quantitatively. This suggests that for the
standard, non-balanced networks, the results obtained by considering independently time-
varying inputs [2-4] may also carry over to correlated inputs.

Quantification of chaos. Chaotic systems are sensitive to initial conditions, and almost all
infinitesimal perturbations eu, of the initial condition hy + eu, grow asymptotically exponen-
tially ||eu|| = exp(hit)||euo||- The largest Lyapunov exponent A, measures the average rate of
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Fig 10. No qualitative difference in chaos suppression by common vs independent input in canonical random networks. A) I{™ as a function of input
frequency (g = v/2 light color, g = 2 dark color). I;™ has a minimum for both common and independent input. The independent input case is identical to the
scenario studied in [3]. At high f, the low-pass filter effect of the leak term attenuates the external input for both cases, thus resulting in a linearly increasing I;™. B)
Dependence of I;™ on the gain parameter g for both low input frequency (f= 0.01/7, dark color) and high input frequency (f = 0.2/, light color), showing a
monotonic increase. Error bars indicate +2 std. Model parameters: N = 5000, g € {v/2,2}, f€ {0.01, 0.2}/, I, = Jo = 0.

https://doi.org/10.1371/journal.pchi.1010590.g010

exponential divergence or convergence of nearby initial conditions,

(30)

For dynamics on an ergodic attractor, A; does not depend on the initial condition hy. We
calculated the largest Lyapunov exponent of the networks dynamics in two different ways,
both based on analytical expressions of the Jacobian of the dynamics [17, 39] and with direct
numerical simulations tracking the distance between two nearby trajectories. Based on the
Lyapunov exponent, we determine the critical input amplitude I™ using a bisection method
with a relative precision of one percent.

Target-based learning. We employ a recently developed target-based learning algorithm
called full-FORCE [6, 8]. The learning procedure is the following: a student network (S) learns
a task by matching its total incoming currents 17 (t) = >, i (k5 (t)) + V/NI, to those of a
randomly coupled teacher network (T), that is driven by the desired output signal, i.e.

i (t) =22 J;o(h! (1) + VNI, + 6I,(t); in the special case of a sinusoidal signal

Fo(t) = sin(2x ft), with 8I(¢) = I; sin(27 ft + 6;) (as in the main text). The synaptic matrix J 3
is trained using an online procedure so that the student network can generate the target output
autonomously, z(t) = >, w; ¢(h}(t)), where z(t) is a linear readout of the student network’s
firing rates. Both the recurrent couplings J; and the readout weights w; are trained to produce

the prescribed output signal, i.e., z(¢) & F(¢).
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The incoming currents in the teacher and student network are matched via an online mini-
mization of the following error function for each neuroni € 1,...N,

L= [ artalle) = 3 Rl (0) - VALY + B30 61)

Following [5, 6], recursive least square (RLS) is used to minimize the training error (Eq 31)
and to concurrently learn the readout weight vector w;. We used a balanced initialization for
both the teacher and student network: ],.]T. and ]; are independently initialized as i.i.d. Gaussian

matrices with mean —J,/v/N and variance g’/N. Both networks receive a constant external
input v/N1,. Euler integration was used with a time step of At = 0.01. The regularization
parameter for RLS was 3 = 1.
Test error is computed over a testing period T,
the desired output signal, i.e. T,., = 50/f, as
Jo =t de((=(t) = F (1))

Etest = b . 32
Jo'= de(Fo(r))’ (2

= 50T,

osc?

which we take as 50 periods of

est

For a periodic target F", testing is interleaved with training so that the network state #’(¢)
is usually close to the target trajectory. In this case, a sufficiently low test error usually implies
the presence of a stable limit cycle, and the periodic output is reproduced, up to a phase shift,
starting from any initial condition.
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