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For the brain to recognize local orientations within images, neurons must spontaneously break the
translation and rotation symmetry of their response functions—an archetypal example of unsupervised
learning. The dominant framework for unsupervised learning in biology is Hebb’s principle, but how
Hebbian learning could break such symmetries is a longstanding biophysical riddle. Theoretical studies
argue that this requires inputs to the visual cortex to invert the relative magnitude of their correlations at
long distances. Empirical measurements have searched in vain for such an inversion and report the
opposite to be true. We formally approach the question through the Hermitianization of a multilayer
model, which maps it into a problem of zero-temperature phase transitions. In the emerging phase
diagram, both symmetries break spontaneously as long as (i) recurrent interactions are sufficiently long
range and (ii) Hebbian competition is duly accounted for. A key ingredient for symmetry breaking is
competition among connections sprouting from the same afferent cell. Such a competition, along with
simple monotonic falloff of input correlations with distance, is capable of triggering the broken-
symmetry phase required by image processing. We provide analytic predictions on the relative
magnitudes of the relevant length scales needed for this novel mechanism to occur. These results
reconcile experimental observations to the Hebbian paradigm, shed light on a new mechanism for visual
cortex development, and contribute to our growing understanding of the relationship between learning
and symmetry breaking.
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I. INTRODUCTION

The primary visual cortex (V1)—the first receiv-
ing area in the cerebral cortex for visual sensory

information—receives signals from the lateral geniculate
nucleus of the thalamus (LGN), which in turn receives
signals directly from the eyes. Both LGN and V1 extend
in two dimensions so as to embody a continuous map of
the world as seen through the two eyes. In other words,
these brain regions are arranged “retinotopically,” each
neuron responding to input in the vicinity of a certain
point on the retina, with neighboring areas of the retina
represented by neighboring neural areas. Moreover, cells
in the LGN can be excited either by light onset or by light
offset on the corresponding spot of the retina, and cells of
these two types are known, respectively, as ON-center and
OFF-center cells.
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We think of the instantaneous visual stimulus as pixel
values for each position in the two-dimensional retinotopic
space. The “receptive field” (RF) of a visual neuron is
defined as the linear kernel that best determines its activity
as a function of the visual stimulus. LGN cells, like retinal
cells [1,2], have RFs that are roughly circularly symmetric
[3], while V1 neurons best respond to a particular ori-
entation of a light or dark edge [4,5]. Furthermore, in
response to a drifting periodic luminance grating, the
temporal mean of the total LGN input to a V1 cell is
untuned for orientation, while the size of the temporally
periodic modulation about the mean of this input is
orientation tuned [6,7], which indicates that deviations
from circular symmetry in the RFs of individual LGN cells
do not contribute appreciably to the orientation selectivity of
V1 cells [8]. Instead, rotational symmetry is broken by the
spatial arrangement of the set of LGN cells that make
synaptic connections onto a given V1 neuron. As originally
postulated byHubel andWiesel [5], this spatial arrangement
appears to involve spatially adjacent subregions alternating
between ON-center and OFF-center inputs [6,9] represent-
ing adjacent retinotopic subregions in which light or dark
stimuli, respectively, best drive theV1 cell. Herewe focus on
understanding the origin of this spatial arrangement that
breaks rotational symmetry and endows V1 cells with
selectivity for the orientation of a light or dark edge. We
note that this orientation selectivity is distinct from direction
selectivity—selectivity for the direction ofmotion of such an
edge or of other stimuli. The requirements for development
of direction selectivity are quite different from those for
development of orientation selectivity [10,11].

The orientation preferences of V1 cells are locally
continuous and rotate roughly periodically with movement
along the two dimensions representing retinotopy in all
species that have been studied outside of rodents and
lagomorphs (Ref. [12]; reviewed in Refs. [13,14]). This
arrangement of orientations over cortical space is known as
an “orientation map.” We also address the breaking of
translational symmetry that is necessary for such a map.
The sensitivity to local orientation develops in V1 cells

even when the animal is denied visual experience by
rearing in darkness [12,15–17] but depends on normal
patterns of spontaneous activity (activity without vision,
e.g., in the dark) in the LGN and V1 [18,19]; reviewed in
Ref. [20]. For this and other reasons, V1 orientation
selectivity is thought to arise from a process of activity-
dependent self-organization, most likely instructed by the
spontaneous activity patterns [13,21]. The problem is thus
placed within the general framework of symmetry breaking
during learning, a branch of theoretical physics that
recently achieved substantial progress [22–26].
Activity-dependent self-organization of neural connec-

tions is commonly thought to be guided by “Hebbian”
rules of synaptic plasticity—proposed independently by
Hebb [27] and Konorski [28]—in which synapses are

strengthened by temporal correlation between their pre-
and postsynaptic patterns of activity (“neurons that fire
together, wire together”) [29–31]. This mechanism pro-
vides a concrete biophysical basis for the notion dating
back to the 19th century [32–34], that associating infor-
mation is the quintessential brain function. The develop-
ment of orientation selectivity and other related selectivity
and organization in V1 was one of the earliest testing
grounds for Hebbian learning [35–38].
Many authors have proposed models of the origin of V1

orientation selectivity guided by various forms of Hebbian
plasticity given various forms of structured input. Many
relied on visual input from natural scenes [39–45] or
oriented bars [46,47], which cannot explain development
in the absence of visual experience. Others considered
retinal waves [48] or various combinations of these differ-
ent input ensembles [49–51]. Waves of activity travel
across retina in early spontaneous activity before vision
[52], and the boundaries of these waves are postulated to
serve as oriented edges. However, propagating retinal
waves very largely [53] or entirely [54] disappear before
the major development of V1 orientation selectivity. For
example, in ferrets, which are often used for developmental
studies because they are born relatively early in develop-
ment [18], the waves have disappeared before postnatal day
30 (P30) [54], whereas the major development of orienta-
tion selectivity occurs after P30 [18,55].
Another study proposed that early cortical activity may

occur in large elongated “coarse” patterns, at least several
millimeters long and 1̃ mm wide (which patterns have not
been seen, but see Ref. [56]), while on a fine scale (within
1 mm), activity is confined to periodic patches [57]. Then,
under a Hebbian mechanism, intracortical connections will
come to connect fine patches along a long line, with
different local fine patches connected along differently
oriented lines. This could create orientation selectivity for
long stimuli that extend several millimeters across the
cortex and would provide a scaffolding for the development
of finer-scale orientation selectivity, but no mechanism was
proposed for the latter development except possibly learn-
ing from natural scenes.
Others have shown how normative principles such as

sparse coding or independent components analysis can
yield orientation selectivity, again assuming that these
principles act on an ensemble of natural scenes, oriented
bars, or retinal waves [47,58–62]. Such normative princi-
ples do not address the biological mechanism by which
orientation selectivity develops, although several groups
have shown that biologically plausible local learning
rules could implement such normative principles and
produce orientation selectivity from such input ensembles
[40–43,45,47,49]. But, like the other models discussed
above, these approaches have not addressed the develop-
ment of orientation selectivity from the spontaneous
activity that exists after retinal waves disappear.
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There is weak orientation selectivity in a minority of
cells as early as has been studied, which could result simply
from random connectivity, but their number and degree of
selectivity do not change, and no organization into ori-
entation maps is observed, until after P30 in ferrets [18,55].
It is not impossible that retinal waves guide the develop-
ment of these early orientation-selective cells and that they
somehow seed the rest of the map once development is
biologically opened, but this gives no explanation for how
this guidance occurs. The most straightforward interpreta-
tion is that the development of orientation selectivity is
guided by the spontaneous activity that exists after P30 and
that this development is independent of, and overwrites,
any weak initial orientation selectivity. Here we address the
question of how orientation selectivity could develop under
this interpretation.
One of us proposed an answer several decades ago,

namely, that orientation selectivity and its local continuity
across the cortex could arise through Hebbian dynamics
from a so-calledMexican-hat profile of input correlations, in
which same-center-type inputs are more correlated than
opposite-center type at short separations and the converse is
true at longer separations [63,64]. This correlation structure
was expected because the RFs of ON cells consist of a
circular ON (light-preferring) center and an OFF (dark-
preferring) surround that forms a ring about the center [1–3],
and similarly, OFF cells have an OFF center and an ON
surround. Thus, at small separations where centers strongly
overlap, cells of a given type should be best correlated with
others of their own type, while at larger separations where
the center of one cell overlaps the surround of the other cell,
cells of a given type should be best correlated with others of
the opposite type. Related models include that of Ref. [36]
analyzed in more detail by Refs. [65–67] (see Ref. [64] for a
discussion of the relationships between these models).
With this premise, the model of Ref. [64] predicts that

orientation selectivity will arise via activity-dependent
competition between ON- and OFF-center inputs. Hebbian
plasticity leads an individual cell to receive a well-
correlated set of inputs. This yields a set of inputs to each
cell that alternates between inputs of one center type and
the other, with a spatial period corresponding to the alterna-
tion between same-type and opposite-type pairs being
best correlated. In addition, local excitatory connections
between cortical cells lead nearby cells to develop similar
preferred orientation and similar absolute spatial phase
(the location in visual space of light-preferring or dark-
preferring subregions), eliminating high spatial frequencies
in the map of orientations. At larger distances, different
orientations arise from the random initial conditions, so that
a low-pass map arises. The actual maps are bandpass
(periodic) rather than low pass [13]. Thus, the model does
not produce realistic map structure but does show the
breaking of translational symmetry and elimination of high
spatial frequencies seen in real maps.

This and similar theories of Hebbian development of
orientation selectivity were further studied mathematically
by Refs. [68,69]. In Ref. [69], a rigorous proof was worked
out that, indeed, “in order to get orientation-selective
receptive fields, the spatial correlation function of the
inputs that drive the development must have a zero
crossing.”
This scenario, however, was called into question by

direct measurements of correlations in LGN activity as a
function of retinotopic distance [70]. Experiments on
young ferrets, at the ages over which orientation selectivity
develops, found no Mexican-hat correlation structure in the
LGN. Instead, same-type pairs were more strongly corre-
lated than opposite-type pairs at all retinotopic separations,
and the decay with distance was monotonic. Those authors
suggested that such a correlation function could yield
development of orientation selectivity if there were a
constraint ensuring that a postsynaptic cell received equal
numbers of ON-center and OFF-center input (a similar
constraint played an important role in Ref. [36] as analyzed
in Refs. [65,66]). Without this constraint, a best-correlated
set of inputs would be all of a single-center type, but given
the constraint, it instead consists of ON and OFF inputs
each filling one of two adjacent subregions of visual space,
yielding orientation selectivity. However, no molecular cue
distinguishing ON-center and OFF-center LGN inputs has
ever been demonstrated, so that it seems likely that the two
center types are distinguished only by their patterns of
activity. If so, then there is no biological basis for such a
constraint; instead, the percentages of ON or OFF inputs
received by a cell will be the outcome of activity-dependent
plasticity, rather than being determined a priori.
In sum, despite many points of uncertainty in our

knowledge, we believe that the key outstanding question
for understanding the development of V1 orientation
selectivity is how it can arise from local rules of synaptic
plasticity guided by spontaneous activity with the mono-
tonically decaying correlation functions measured by
Ohshiro and Weliky [70], without any constraint on the
percentage of ON or OFF inputs received by individual V1
cells. Here we provide an answer to this question, including
a complete analysis of the model’s phase space to show
where rotational symmetry is broken, yielding orientation
selectivity, and where translational symmetry is broken, a
necessary condition for orientation maps to form.

II. RESULTS

We address the problem through the model illustrated in
Fig. 1, in which V1 is represented by a single postsynaptic
layer and the LGN by two overlapping layers containing
ON-center and OFF-center cells, respectively. The layers
are modeled as infinite planes endowed with a retinotopic
metric and inhabited by a continuum of cells.
Synapses from a given afferent cell of either type are said

to belong to an “arbor” [71], and the number of them
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targeting a given cortical cell is a function AðrÞ of the
retinotopic distance vector r between the two cells,
decaying over a length scale ρ (“arbor width”). In addition,
cells internal to the cortical layer are connected by recurrent
synapses whose connection strength decreases with reti-
notopic distance over a length scale η. [Note that, for both
analytical and conceptual simplicity, we take the intra-
cortical interactions to be purely excitatory and monoton-
ically decaying with distance, although their nature
biologically is not determined. Anatomically, connections
of excitatory cells are more wide ranging than those of
inhibitory cells (reviewed in Ref. [72]), but biologically
plausible means by which disynaptic inhibition could
create functionally “Mexican-hat” interactions have been
proposed [73].]
Correlations between the activities of two presynaptic

cells of types ðiÞ ¼ ON=OFF and ðjÞ ¼ ON=OFF are

described by a function Cði;jÞðrÞ of the retinotopic distance
vector r. This function must be monotonically decreasing
by the experimental results discussed in the Introduction,
and may be thus assumed to be a Gaussian with a given
correlation length ζ. A similarly Gaussian ansatz is adopted
for the arbor density function (with length scale ρ) and for
the strength of lateral connections between cortical neurons
(with length scale η), as detailed in Appendix A 1. The
phase diagram can thus be plotted using for coordinates
any pair of dimensionless ratios among the three param-
eters ρ, η, ζ.
Let sON and sOFF be the synaptic strength of connections

from ON and OFF cells to the cortex, as per Fig. 1. Taking
synaptic plasticity to be slow on the timescale of neural
activity, we obtain independent equations for their sum
sðSÞ ≡ sON þ sOFF and difference sðDÞ ≡ sON − sOFF (see
Appendix A 1). Our interest is in the development of
orientation selectivity via the formation of alternating RF
subregions in which ON or OFF LGN inputs, respectively,
are dominant. Hence, we are interested in the development
of a pattern in sðDÞ, while sðSÞ is not expected to form
interesting structure. Thus, we focus on computing s≡ sðDÞ
and the symmetry properties of this function.
The possible outcomes are easily inferred from first

principles. A fundamental invariance law for models of
brain vision is that a simultaneous translation or rotation of
the animal and of the image it views will not affect brain
activity [74]. More specifically, a simultaneous translation
or rotation of the primary visual cortex and of its input
source should not affect the resulting RFs. These two
symmetries (translation and rotation) lead to three relevant
symmetry classes of the solution detailed in Table I. It
remains to be understood which phases are allowed by
biological mechanisms.
In the model, we like to incorporate the fact that

correlation-based development is competitive, meaning that
when some synapses grow stronger, others grow weaker.
Beginning with the first model of activity-dependent
development of von der Malsburg [35], theorists have
often modeled this competition as a constraint that the
total synaptic weight received by a neuron is conserved.
Alternatively, it can be modeled as a homeostatic process
thatmaintains the average postsynaptic firing rate of neurons
about some set point, as is seen experimentally [75]. Such a
constraint upon the summed postsynaptic strength will alter
the equation for the sum sðSÞ but not for the difference sðDÞ.

V1

LGN-ON

LGN-OFF

FIG. 1. Schematic depiction of the model. Primary visual
cortex (V1) is the first receiving area in the cerebral cortex for
visual sensory information. Here it is represented by a single
postsynaptic layer of cells depicted by the upper row of larger
circles. Inputs to V1 come from the lateral geniculate nucleus of
the thalamus (LGN), which in turns takes input from the eyes.
LGN cells are excited either by light onset or by light offset on the
corresponding spot of the retina, and these two types of cells are
represented by the two rows of smaller circles. The quantity of
synapses from a LGN location α to a V1 location z is described by
an “arbor density” Aðz − αÞ. Their total synaptic strength is
defined as either of the functions sONðz; αÞ or sOFFðz;αÞ depend-
ing on whether the presynaptic cell is of the ON or OFF type.
Correlations between the activities of two presynaptic cells of
types ðiÞ ∈ fON;OFFg and ðjÞ ∈ fON;OFFg located at retino-
topic positions α and β are described by a set of functions
Cði;jÞðα − βÞ. The effect via lateral connections (brown arrows) of
activity at cortical position x on activity at cortical position y is
characterized by the function Iðx − yÞ.

TABLE I. Symmetry classes of the solution. The labels N, R, T
are defined in the legend of Fig. 2.

Phase label Receptive field Orientation selectivity

N Uniform across the cortex Nonselective
R Uniform across the cortex Selective
T Varies across the cortex Selective
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Since we are concerned with the development of sðDÞ, we
ignore such a constraint here.
Another form of competition is that presynaptic axonal

arbors compete for postsynaptic connections. In many
neural systems, it has been shown that if an arbor loses
overall synaptic strength, it competes more effectively to
retain it, while if it has too much, it competes less
effectively, so that arbor retraction takes place (for reviews,
see Ref. [71] Chap. 8 and Ref. [76]). While the physics of
competition among LGN arbors for cortical innervation is
still unclear, it seems reasonable to assume that, given
statistically equal activity of LGN cells, it cannot be the
case that some arbors lose most of their innervation to the
cortex while others take over. Rather, all arbors should
retain roughly equal innervation. This can also be thought
of as a homeostatic process, maintaining the overall
projection strength of each neuron about some set point.
Since axonal competition will separately constrain the

overall strength of ON innervation and of OFF innervation,

it will constrain the development of sðDÞ. We model this
constraint as a precise conservation of the total strength of
synapses projected by each arbor (see Appendix A 1). The
introduction of homeostatic constraints, which is demanded
by biophysical considerations, considerably complicates
the problem. Indeed, such constrained models have been
predominantly an object of numerical investigations (for
the case of a single V1 cell see also Ref. [77]), and these
happened to miss their most relevant potentiality—the
emergence of a fully symmetry-breaking and hence
orientation-selective and map-forming phase without
Mexican-hat-like functions (which drive development of
periodic patterns) in either correlations or intracortical
interactions.
As detailed in Appendixes A 2 and A 3, after incorpo-

rating the above constraints the time-evolution operator
can be Hermitianized and thus mapped into a quantum-
mechanical Hamiltonian whose low-energy states describe
the long-term relaxation of the system. Quantum-
mechanical tools allow us to see that all three phases listed
in Table I enter the phase diagram, whose structure is
illustrated by Fig. 2(a).
For low values of both ζ=ρ and η=ρ (in a lunette

extending from the lowest stretch of the η axis), the cortex
is in a symmetry-preserving state that we term the “N
phase,” where the RF is identical and unoriented at all
points in retinotopic space. This would mean that, upon
eye opening, a given cell’s responses could indicate
the location of an object in visual space but could not
indicate its orientation. In terms of the cortical position x
and of the difference between pre- and postsynaptic
positions r, a variational approximation to the RF in this
phase is given by

sNðx; rÞ ∝ ðR2 − r2Þ exp
�
−

r2

2ρ̂2

�
; ð1Þ

where ρ̂ ¼ ffiffiffi
2

p
ρ½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4ρ2=η2 þ ζ2Þ

p
�−1=2 and R ∼

ð4þ ffiffiffiffiffi
10

p
=3Þ1=2ρ1=2ðη2 þ ζ2Þ1=4 (see Fig. 3).

For values of η above a critical value which increases as a
function of ζ, the cortex is in a state where rotation
symmetry is spontaneously broken at every point (“R
phase”). Since by contrast, translation symmetry is not
broken, the RFs (including their orientation preferences)
are the same everywhere. To an animal with this visual
cortex, a pencil slanting at the right angle would be
perceivable as such; even shifting it in front of its eyes
would pose no hindrance to vision, but a major handicap
would emerge if the pencil tilted at a different angle, as all
cortical cells would be poorly responsive or unresponsive
to this stimulus.
The receptive field in this phase has a degeneracy of

order 2, which can be represented with the exact basis (see
Fig. 3)

(a)

(b)

(c)

FIG. 2. Phase diagram of the model. (a) Structure of the phase
diagram resulting from analytical investigation of the time
evolution. The model’s parameters are the correlation length ζ
of the inputs from the LGN, the radius of outgoing connections ρ,
and the length scale η of lateral connections in V1. A phase
diagram may use for coordinates any pair of dimensionless ratios
among these parameters; here, ζ=ρ and η=ρ are used. The labels
N, R, T correspond, respectively, to no symmetry breaking,
breaking of rotational symmetry only, and breaking of both
translational and rotational symmetry (cf. Table I). The red dot
marks the inferred location of a triple point. (b) Dominant wave
number of map modulation across the cortex in units of the
inverse arbor radius. The preservation of cortically uniform states
is confirmed in the regions corresponding to the R and N phases.
Clearly visible are the sharp boundaries of the two cortically
uniform phases N and R separated by the nonuniform phase T,
where orientation maps arise. The plots are obtained by diagonal-
izing a discretized version of the operator Lp defined by
Eq. (A36), where RFs are confined to a square of side equal
to six arbor radii represented by a 15 × 15 grid. (c) Larger-scale
view of the phase diagram displaying as a gray dotted line the
asymptotic phase boundary ηc ∼

ffiffiffi
2

p
ζ obtained from an analytic

solution of the model.
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sx;yR ðx; rÞ ∝
�
rx
ry

�
exp

�
−

r2

2ρ̂2

�
: ð2Þ

The qualitatively novel phase reported in this paper
(“T phase”) appears for sufficiently large values of ζ. In
the T phase, a double spontaneous breaking of rotation and
translation symmetries allows the animal to perceive, in
principle, both shifts and rotations of an elongated object.
This biologically plausible phase had previously been found
only in the presence of finely tailored choices of the input’s
correlation function Eq. (A13), such as differences between
Gaussians of different widths [64,69] or similar [36], which
the experiments discussed previously [70] argue against.

A dipole approximation on the relevant time-evolution
operator detailed in the Appendix C 2 reveals that the main
curve partitioning the diagram (RT boundary) is asymp-
totically linear far from the origin [maxðζ; ηÞ ≫ ρ], and
approximated by ηc ∼

ffiffiffi
2

p
ζ [gray dotted line in Fig. 2(b)].

For interaction lengths above that boundary, the system
breaks only rotation symmetry; beneath it, phenomeno-
logically relevant orientation maps emerge.
On the T side of the transition line, the RF is approxi-

mated by a linear combination of the real and imaginary
parts of the function

sTðx; rÞ ∝ e
− r2

2ρ2
−iη

2

μ2
ωrþiωx

× ð1 − e
−1
2
ζ4

μ4
ρ2ω2−iζ

2

μ2
ωrÞ; ð3Þ

where μ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2þζ2

p
and ω≡ jωj ∼ ðμ=ζ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ζ2=η2Þ − 1

p
in the vicinity of the phase boundary.

The long-term behavior described by Eq. (3) is degen-
erate in the direction of the ω vector, and will be summed
over directions made available by the initial condition.
Notice that, because ρ̂ ∼ ρ for large μ=ρ, at the phase
boundary the T-phase functions (3) transform continuously
into the projection of the R-phase eigenfunction (2) on the
axis parallel toω. The point where this phase boundary hits
the ζ ¼ 0 axis is a triple point at which all three phases
coexist.
Finally, the above results are confirmed by numerical

investigation. Figure 2(b) shows the results for the
dominant wave number of map modulation across
the cortex and confirms the preservation of cortically
uniform states in the regions corresponding to the R
and N phases. The different symmetries of the RFs for the
two cortically uniform regions [predicted as in Fig. 2(a)]
are readily confirmed by inspection (see Figs. 6, 9,
and 10).
We further perform numerical simulations of the

equations of motion [Eq. (A6)] both in the absence of
any constraint and while imposing the constraint
[Eq. (A9)]. Simulations are carried out by evolving
random initial conditions and waiting for the configura-
tions to stabilize. The unconstrained case displayed in
Fig. 4(e) leads to a fully symmetric solution, with all RFs
identical and lacking orientation tuning. For parameters
picked in the T phase, dynamical simulations in the
presence of the constraint yield symmetry breaking in
both sON [Fig. 4(a)] and sOFF [Fig. 4(b)] and ultimately
in the quantity of interest, their difference [Figs. 4(c)
and 4(d)].

FIG. 3. Receptive fields by symmetry class. Plots of the receptive fields of Eqs. (1), (2), and (3), respectively, for the N, R, and T
phases. Hue scale ranges between minimum and maximum values, allowing for an arbitrary scaling factor. Functions are evaluated at
representative points P ¼ ðζ=ρ; η=ρÞ in parameter space given by PN ¼ ð0.02; 0.2Þ, PR ¼ ð0.05; 0.7Þ, PT ¼ ð5; 3Þ (see Appendix C for
numerical results with the same parameters). The relative length of an arbor radius ρ for all plots is shown to the left of the figure. The
receptive field for the R phase is plotted with a randomly chosen orientation. For the T phase, the function sT of Eq. (3) is rotated by the
complex angle ϕ0 ¼ arctan ð− R

ℑsT=
R
ℜsTÞ so as to make the imaginary part odd under inversion of the cortical modulation axis

(the real part becomes symmetric as a consequence; see Appendix Sec. B 2), and we separately display its real (left) and imaginary
(right) components. The fastest-growing mode of time evolution is obtained by multiplying receptive field by a modulating phase factor
eiωx, with x being the coordinate for the degenerate direction of modulation in cortical space.
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III. DISCUSSION

Our understanding of unsupervised learning in bio-
logical systems relies crucially on Hebb’s principle that
coactive cells strengthen mutual connections. Visual
processing is a classical testing ground for this hypothesis.
As we discuss in the Introduction, the development
of the quintessential feature of V1, orientation selectivity,
depends on neural activity, occurs in the absence of visual
experience, and very largely occurs at a time after “retinal
waves” have disappeared (see, e.g., Refs. [20,54]). This
motivates the hypothesis that this development occurs via
Hebbian plasticity based on the structure of spontaneous
activity found in LGN and V1 at this time. Existing theories
explained this development by postulating that correlations
in spontaneous LGN activity have a sign switch: At small
separations, cells of a given center type (ON or OFF) are
best correlated with other cells of the same type, while at
larger distances they are best correlated with cells of the
opposite type. However, experimental studies showed no
trace of such a switch [70]. This motivated us to reexamine
the problem with a focus on the role of competition among
LGN inputs to the cortex. We build and solve analytically a
model of receptive field development in which the total
projection strength from each ON or OFF cell in the LGN is
constrained to remain constant. We show that this con-
strained dynamics is able to produce orientation-selective
RFs that vary smoothly across the cortex, even with data-
compatible input correlations that decay monotonically
with distance, without a sign change.
The multilayer model we employ consists of two bottom

layers representing ON or OFF cells in the LGN and a top
layer representing V1. The key dimensionless parameters
are the widths of LGN correlations and of cortical lateral
interactions, in units of the arbor radius. As the model is

translationally and rotationally invariant, possible solutions
can break either symmetry, or both, or none. Orientation
selectivity requires breaking rotation symmetry, while
variation of preferred orientations across the cortex requires
also the breaking of translation symmetry. We ignore the
fact that intracortical connections develop in a pattern that
breaks rotational symmetry [78,79], which yields other
symmetry classes [74].
The uniformly nonselective phase (where neither sym-

metry is broken) prevails for sufficiently small values of the
width parameters. Rotational invariance is broken for
sufficiently long-range cortical interactions, and transla-
tional invariance, for sufficiently long-range LGN corre-
lations. Besides calculating the phase boundaries, we
estimate the functional form of receptive fields in the
various regimes and, for the T phase, which has nonzero
cortical wave number, we evaluate explicitly the preferred
value of this wave number across parameter space.
Why does orientation selectivity develop without zero-

crossing correlations in the inputs to the cortex? The
dynamical equations maximize, subject to the constraint,
the sum of correlations between synapse pairs, weighted by
their synaptic strengths and the cortical interaction between
their postsynaptic cells. Previous analyses [64] focused on
maximizing correlations within one RF, and implicitly
considered interactions between RFs as a perturbation that
coordinates the developing orientations and spatial phases
between cells. For a maximally correlated RF to be
oriented, the sign change in correlations is required.
However, when cortical interactions or input correlations
are sufficiently long range, interactions between RFs can
become equal to or dominant over interactions within RFs.
Our results show that, in this case, correlations are
maximized, given the constraint, by segregating ON and
OFF subregions within RFs so that RF pairs at many

(a) (b) (c) (d) (e)

FIG. 4. Results of dynamical simulations. Simulations of the equations of motion [Eqs. (A7)] are performed on discretized receptive
fields evolving from random initial conditions while waiting for the configurations to stabilize. We use 32 × 32 grids of cortical cells and
of ON and OFF LGN cells, with periodic boundary conditions. Each LGN cell projects an arbor of inputs to the cortex that is nonzero
over a circle of diameter 13 centered on its corresponding point in the cortical grid. (a) Large-time configuration of sON after evolving the
constraint coming from Hebbian competition. Each 13 × 13 square contains the diameter-13 (or smaller) set of ON weights to one
cortical cell. A 32 × 32 grid of cortical cells is illustrated. (b) As in panel (a) but for sOFF, which yields analogous breaking of the
symmetries. (c) Difference between sON and sOFF of panels (a) and (b) with a portion expanded to highlight cell-by-cell structure [panel
(d)]. (e) Large-time state of sON evolved without the competitive constraint [Eq. (A6)] and displaying indeed no trace of either symmetry
breaking. In this fully symmetric solution, all RFs are identical and lacking orientation tuning. Parameters used for all these simulations:
η=ρ ¼ 0.75; ζ=ρ ¼ 0.25; ρ ¼ 6.5.
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distances can achieve overlaps of same-type subregions.
This is favored over the alternative, which is to have a
periodic alternation across the cortex of all-ON and all-OFF
RFs (with the period as large as possible while satisfying
the constraint, as discussed for competition between
inputs from the two eyes in Ref. [38]); this would have
greater within-RF correlations but smaller overall summed
correlations.
The relevance of the study to the current understanding

of cortical development lies in the demonstration that
orientation selectivity and its smooth variation across the
cortex can develop without zero-crossing correlations. This
reinstates the applicability of Hebbian development,
bridges it with advances in our experimental knowledge
of V1, and casts light on the function of competition
among axonal arbors for innervation, the biophysical
mechanisms of which are still far from being properly
understood [80].
We do not consider here proposals that orientation

selectivity may arise without instruction by activity from
random LGN-to-V1 connectivity [81,82]. We consider
these proposals unlikely given the evidence that orientation
selectivity and maps depend on and are instructed by
activity [20,21] and arise through self-organization [13].
In addition, for one proposal based on the spatial pattern of
retinal ganglion cells [81], strong arguments have been
given that it cannot account for observations [83,84]. The
other proposal aimed specifically at mouse V1 [82], argues
that a tight “balancing” of excitation and inhibition cancels
a large untuned component of input, leaving a small,
random, tuned component. However, there is strong evi-
dence against the existence of such tight balancing [85],
and the excitatory input to mouse V1 cells is well tuned for
orientation [7], rather than showing a small-tuned compo-
nent on a large-untuned background.
Ourmodel shares with previousmodels the nonbiological

feature that the developed orientation maps are low pass
rather than bandpass (periodic). This is because lateral
interactions that maximize correlation between RFs of cells
that excite one another, and anticorrelation when one cell
inhibits another (e.g., if intracortical interactions have a
Mexican-hat structure), lead to periodic changes in the
spatial phase of RFs rather than in their preferred orientation
[64]. These periodic phase changes maximize the spatial
overlap of subregions of the same ON or OFF type to
maximize correlations, and of opposite types to maximize
anticorrelations.We argue [86] that, if orientation selectivity
develops in phase-selective cells (simple cells), periodic
maps might develop through interactions between phase-
nonselective cells (complex cells) receiving input from
simple cells of multiple preferred phases; the influence of
the complex cells would propagate back to the phase-
selective cells to organize maps even as the phase-selective
cells are responsible for the development of orientation
selectivity itself. Antolík and Bednar [50] demonstrated

such a scenario, but using some nonbiological assumptions
such as no interactions among developing simple cells.
One direction for future studies lies in the possible

nonlinear complications of Hebbian models of cortical
development #1 (e.g., Ref. [45]), including simultaneous
development of intracortical and input synapses. Nonlinear
variants of Hebbian dynamics may be key to creating
bottom-up models of orientation development that are able
to reproduce band-pass, periodic orientation maps like
those measured in the cortex (e.g., Ref. [87]). This may
further serve to bridge Hebbian theory to Landau-type
models of universal behavior such as those of Ref. [13].
By addressing the riddle of orientation selectivity in

biological networks, our work suggests some possible new
avenues for research on artificial networks, which have
been seen to perform unsupervised learning in a strikingly
brainlike fashion [88]. Future research in this sense may
require two directions: (i) a comparison of the multilayer
dynamics that we demonstrate to the learning trajectories of
units in convolutional networks notably during pretraining
(along the lines of Refs. [89–91]) to shed light on the
degree of universality of the mechanisms discussed, and
(ii) the deployment of the competitive constraints that we
demonstrate toward engineering convolutional networks
for unsupervised learning such as those of Refs. [92–96], in
analogy with performance boosting via cortexlike bottle-
necks in Ref. [97].
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APPENDIX A: FORMULATION
OF THE MODEL EQUATIONS

1. Model setup

Here we derive the dynamical equations of the model.
We label the locations in the presynaptic layers with greek
indices (α; β;…) and the locations in the postsynaptic layer
with letters from the end of the latin alphabet (x; y;…). We
call rðx; τÞ the firing rate of neurons in the cortical layer,
and rONðα; τÞ and rOFFðα; τÞ the firing rates of ON or OFF
neurons in the LGN layers at time τ.
Correlations between the activities of two presynaptic

cells of types ðiÞ ∈ fON;OFFg and ðjÞ ∈ fON;OFFg
located at retinotopic positions α and β are described by
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a function Cði;jÞðα; βÞ≡ Cði;jÞðα − βÞ. Lateral connections
between cortical neurons at positions x and y have synaptic
strength given by a function Wðx; yÞ≡Wðx − yÞ. We
assume both of these to be time independent over the
timescale of orientation map development.
The quantity of synapses from a presynaptic location α

to a postsynaptic location z is described by an arbor density
Aðz;αÞ≡ Aðz − αÞ, which is also assumed to be time
independent. The synaptic strength of the kth individual
synapse from the afferent at location α to the cortical cell at
location x at time τ is called sONk ðx;α; τÞ or sOFFk ðx;α; τÞ
depending on whether the presynaptic cell is of the ON or
OFF type. The index k runs from 1 to Aðx − αÞ.
Finally, let sONðx;α; τÞ ¼ PAðx−αÞ

k¼1 sONk ðz;α; τÞ and

sOFFðx;α; τÞ ¼ PAðx−αÞ
k¼1 sOFFk ðz;α; τÞ be the total synaptic

strengths at time τ from the afferent at location α of type
ON or OFF to the cortical cell at x. For ease of notation, we
omit the time variable from the arguments of the functions.
Applying standard rate dynamics to this model [98], we

can write that the cortical firing rates evolve according to

TðxÞ drðxÞ
dτ

¼ −rðxÞ þ
Z

dyWðx − yÞrðyÞ

þ
X

ðiÞ¼ON;OFF

Z
dα sðiÞðx;αÞrðiÞðαÞ; ðA1Þ

where TðxÞ is a diagonal matrix whose entries are the
timescales of neural activity.
According to Hebb’s rule, synapses are strengthened or

stabilized if there is temporal correlation between their pre-
and postsynaptic patterns of activity. For sufficiently small
variations, this principle can be linearized into the state-
ment that for all k ¼ 1;…; Aðx;αÞ, we have

Tpl
dsðiÞk ðx;αÞ

dτ
∝ rðxÞrðiÞðαÞ; ðA2Þ

where the index (i) distinguishes ON and OFF cells, while
Tpl is the timescale for synaptic plasticity. Notice that we
are also omitting possible constant terms included by
Ref. [36] but not essential to the development of selectivity.
Assuming symmetry of the two center types, any such
constants will disappear when we focus below on the
development of the difference between sON and sOFF.
Once Eq. (A2) is summed over all synapses sharing the

same afferent and target cell, we obtain

Tpl
dsðiÞðx;αÞ

dτ
∝ Aðx − αÞrðxÞrðiÞðαÞ: ðA3Þ

The values of Aðx − αÞ are continuous, as they represent
the local spatial density of arborization from LGN position
α at cortical position x.

We take the timescale Tpl of synaptic plasticity that
figures in Eq. (A2) to be much slower than the timescale of
neural activity as given by the entries of T in Eq. (A1),
which seems consistent with experiments [99]. This allows
us to model synaptic development by relying on the steady
state of the fast dynamics from Eq. (A1), which is given by

rðxÞ ¼
X

ðiÞ¼ON;OFF

Z
dydα Iðx − yÞsðiÞðy;αÞrðiÞðαÞ; ðA4Þ

where Iðx − yÞ − R
dzIðx − zÞWðz − yÞ ¼ δðx − yÞ.

Replacing Eq. (A4) with Eq. (A3) yields

Tpl
dsðiÞðx;αÞ

dτ

∼Aðx−αÞ
X

ðjÞ¼ON;OFF

Z
dydβIðx−yÞsðjÞðy;βÞrðiÞðαÞrðjÞðβÞ:

ðA5Þ

We can now average Eq. (A5) over a timescale suffi-
ciently longer than the typical timescale of firing-rate
dynamics, yet shorter than the typical timescale of synaptic
evolution. The averaging leads to the equation

dsðiÞðx;αÞ
dτ

∼Aðx−αÞ
X

ðjÞ¼ON;OFF

Z
dydβIðx−yÞsðjÞðy;βÞCðijÞðα−βÞ;

ðA6Þ

where CðijÞ
α−β ¼ hrðiÞα rðjÞβ i, and we set the units of time so

that Tpl ¼ 1.
Assuming for simplicity symmetry under interchange of

ON and OFF, so that CðON;ONÞ ¼ CðOFF;OFFÞ, we can
transform coordinates to obtain independent equations
for sðSÞ ≡ sON þ sOFF and sðDÞ ≡ sON − sOFF (superscripts
S and D stand for “sum” and “difference,” respectively).
Our interest is in the development of orientation selectivity
via the formation of alternating RF subregions in which ON
or OFF LGN inputs, respectively, are dominant. Hence, we
are interested in the development of a pattern in sðDÞ, while
sðSÞ is not expected to form interesting structure. Thus, we
focus on the equation for sðDÞ, which is

dsðDÞðx;αÞ
dτ

∼Aðx−αÞ
Z

dydβIðx−yÞsðDÞðy;βÞCðDÞðα−βÞ;

ðA7Þ

whereCðDÞ¼CðON;ONÞ−CðON;OFFÞ is the difference between
same-center-type and opposite-center-type correlations.
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It is characteristic of Hebbian rules that synaptic strengths
tend to increase without limit [98]. Reference [64] modeled
the biological mechanisms for saturation by including
an upper bound and a zero lower bound for all synaptic
strengths (0 ≤ sðiÞ ≤ smax), which becomes a limit on sðDÞ of
−smax ≤ sðDÞ ≤ smax. This turns Eq. (A7) into a nonlinear
equation. However, we imagine development starting from
an initial condition inwhich there are roughly equal strengths
of ON and OFF innervation throughout the receptive field,
and thus in which the values of sðDÞ are small random
perturbations about 0. We can always assume the synaptic
weight bounds large enough so that the principal features of
the sðDÞ dynamics are established before the bounds are
saturated (as in Refs. [36,64]). Once the bounds are reached,
they will simply capture and preserve the existing weight
structure with little subsequent change.
We can therefore extract the long-term behavior of the

synaptic weights simply by analyzing the properties of the
time-evolution operator in the linear regime. As per
Eq. (A7), this will be, in a first approximation, the integral
operator characterized by the kernel

KðDÞðx;α; y; βÞ ¼ Aðx − αÞIðx − yÞCðDÞðα − βÞ: ðA8Þ
We now incorporate the fact that correlation-based

development is competitive. In this framework, indeed, a
mechanism of the order of competition is necessary for
neurons to become selective for certain features. Without
competition, all synapses onto a cell could grow to their
maximum possible value, eliminating all selectivity save the
retinotopic selectivity embodied in the arbor density. As we
discuss in the main text, we model competition by conserv-
ing the total strength of synapses projected by each arbor:

d
dτ

Z
dx sONx;α ¼ d

dτ

Z
dx sOFFx;α ¼ 0 ∀ α; ðA9Þ

where the arguments of functions are written as subscripts
for the sake of compactness.
Together, these imply

d
dτ

Z
dx sDx;α ¼ d

dτ

Z
dx sSx;α ¼ 0 ∀ α: ðA10Þ

Henceforth, we focus only on the development of
sðDÞ. We drop the “D” superscript, simply writing s for
sðDÞ, C for CðDÞ, and K for KðDÞ [Eq. (A8)]. Including the
constraint Eq. (A10), the equation we study is

dsðx;αÞ
dτ

¼
Z

dydβKðx;α; y; βÞsðy; βÞ

−
Aðx − αÞR
dzAðz − αÞ

Z
dydqdβKðq;α; y; βÞsðy; βÞ:

ðA11Þ

To completely specify the model, it remains only to
choose a form for the functions A, I, andC. The assumption
of monotonically decreasing functions reflects a principle
of modeling economy for I and is suggested by the general
decay of arborizations with distance for A and by the
experimental results discussed in the Introduction forC. We
take them for definiteness to have Gaussian dependences
on distances:

Aðx − αÞ ∝ e
−ðx−αÞ2

2ρ2 ; ðA12Þ

Cðα − βÞ ∝ e
−ðα−βÞ2

2ζ2 ; ðA13Þ

Iðx − yÞ ∝ e
−ðx−yÞ2

2η2 ; ðA14Þ

where the arbor radius ρ, the interaction length η, and the
correlation length ζ are the three characteristic length scales
of the model.

2. Hermitian formulation of the constrained problem

The homeostatic constraint mechanism modeled by
Eq. (A9) conserves the total projection strength from each
presynaptic cell. We start by illustrating how this constraint
can be incorporated into the theory, namely, by adding to
the Hebbian law Eq. (A2) a suitable leak term ϵONα . This
yields

dsðiÞk ðx;αÞ
dτ

∝ −ϵðiÞα þ rðxÞrðiÞðαÞ: ðA15Þ

Here, ϵONα and ϵOFFα are unspecified quantities that are
defined in such a way as to implement the conservation
constraints Eq. (A9) of the model.
Summing Eq. (A15) over all synapses with the same

afferent and performing the averaging over time as done for
Eq. (A5), we obtain

d
dτ

sONx;α

¼−ϵONα Ax−αþAx−α

X
y;β

Ix−y½CON;ON
α−β sONy;β þCON;OFF

α−β sOFFy;β �;

ðA16Þ
d
dτ

sOFFx;α

¼−ϵOFFα Ax−αþAx−α

X
y;β

Ix−y½COFF;OFF
α−β sOFFy;β þCOFF;ON

α−β sONy;β �:

ðA17Þ
The crucial step for all that follows is to render the

operation in Eqs. (A16) and (A17) symmetric, which
redefines the time evolution in terms of Hermitian oper-
ators. We do so by defining
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tONx;α ¼ sONx;αffiffiffiffiffiffiffiffiffiffi
Ax−α

p ; tOFFx;α ¼ sOFFx;αffiffiffiffiffiffiffiffiffiffi
Ax−α

p ; ðA18Þ

so that Eqs. (A16) and (A17) become

d
dτ

tONx;α ¼
ffiffiffiffiffiffiffiffiffiffi
Ax−α

p �
−ϵONα þ

X
y;β

Ix−y½CON;ON
α−β

ffiffiffiffiffiffiffiffiffi
Ay−β

p
tONy;β

þ CON;OFF
α−β

ffiffiffiffiffiffiffiffiffi
Ay−β

p
tOFFy;β �

�
; ðA19Þ

d
dτ

tOFFx;α ¼
ffiffiffiffiffiffiffiffiffiffi
Ax−α

p �
−ϵOFFα þ

X
y;β

Ix−y½COFF;OFF
α−β

ffiffiffiffiffiffiffiffiffi
Ay−β

p
tOFFy;β

þ COFF;ON
α−β

ffiffiffiffiffiffiffiffiffi
Ay−β

p
tONy;β �

�
: ðA20Þ

It will be convenient to regard the functions tON and tOFF

as vectors in Hilbert space, so that (in bracket notation)
tONx;α ¼ hx;αjtONi and tOFFx;α ¼ hx;αjtOFFi.
Since ON and OFF cells are subjected to the same

inputs from the retina, we may assume CON;ON ¼ COFF;OFF.
Using this and the fact that CON;OFF ¼ COFF;ON, we rewrite
Eqs. (A19) and (A20) in terms of the sole operators L̂s and
L̂d defined as follows (hats on the names of operators
distinguish them from ordinary variables):

hx;αjL̂sjy; βi ¼
ffiffiffiffiffiffiffiffiffiffi
Ax−α

p
Ix−yC

ON;ON
α−β

ffiffiffiffiffiffiffiffiffi
Ay−β

p
; ðA21Þ

hx;αjL̂djy; βi ¼
ffiffiffiffiffiffiffiffiffiffi
Ax−α

p
Ix−yC

ON;OFF
α−β

ffiffiffiffiffiffiffiffiffi
Ay−β

p
; ðA22Þ

yielding

d
dτ

jtONi ¼ L̂sjtONi þ L̂djtOFFi − ÊONjai; ðA23Þ

d
dτ

jtOFFi ¼ L̂sjtOFFi þ L̂djtONi − ÊOFFjai: ðA24Þ

Here the vector jai is defined by hx;αjai ¼ ffiffiffiffiffiffiffiffiffiffi
Ax−α

p
, while

the operators ÊON and ÊOFF have the form

ÊON ¼
X
β

ϵONβ P̂β; ÊOFF ¼
X
β

ϵOFFβ P̂β; ðA25Þ

where P̂β is the operator that effects projection into the
subspace with basis fjy; βigy, that is,

P̂β ≡
X
y

jy; βihy; βj: ðA26Þ

The expressions for ϵON, ϵOFF can be found from the
conservation laws Eq. (A9), which may be rewritten in the
form

d
dτ

X
y

ffiffiffiffiffiffiffiffiffi
Ay−β

p
tON;OFFy;β ¼ 0 ∀ β; ðA27Þ

or rather

d
dτ

hajP̂βjtONi ¼ 0 ∀ β; ðA28Þ

d
dτ

hajP̂βjtOFFi ¼ 0 ∀ β: ðA29Þ

Substituting Eqs. (A23) and (A24) into the two constraints
(A28) and (A29), and using the expressions (A25) for EON,
EOFF, we finally arrive at

ϵONβ ¼ hajP̂βLsjtONi þ hajP̂βLdjtOFFi
hajP̂βjai

; ðA30Þ

ϵOFFβ ¼ hajP̂βLsjtOFFi þ hajP̂βLdjtONi
hajP̂βjai

: ðA31Þ

For the difference sx;α ≡ sONx;α − sOFFx;α , we have

sx;α ¼
ffiffiffiffiffiffiffiffiffiffi
Ax−α

p
ðtONx;α − tOFFx;α Þ; ðA32Þ

so that we must proceed to compute the time evolution of
jti≡ jtON − tOFFi. From Eqs. (A23) and (A24), we find

d
dτ

jti ¼
�
1 −

X
β

P̂βjaihajP̂β

hajP̂βjai

�
L̂jti; ðA33Þ

where 1 stands for the identity operator, and we define
L̂≡ L̂s − L̂d.

3. Projection operators

To rewrite Eq. (A33) in a more transparent form, we
define the single-arbor ket jaβi ¼ P̂βjai, with elements
hx;αjaβi ¼ δα;β

ffiffiffiffiffiffiffiffiffiffi
Ax−α

p
. Notice that the operator P̂β of

Eq. (A26) is orthogonal, and therefore, being also a
projection, it is self-adjoint. Using this fact, as well as
the idempotence of P̂β, we obtain

d
dτ

jti ¼
�
1 −

X
β

jaβihaβj
haβjjaβi

�
L̂jti: ðA34Þ

Defining P̂ ¼ 1 −
P

βðjaβihaβj=haβjaβiÞ, we have from
Eq. (A34)

d
dτ

jti ¼ P̂ L̂ jti ¼ P̂ L̂ P̂ jti þ P̂ L̂ð1 − P̂Þjti: ðA35Þ

Since we are interested in calculating the final outcome
of development, we must focus on the long-term behavior
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of this dynamics. To do so, we notice that the components
of jti projected away by P̂ cannot be made to grow by the
constrained Hebbian dynamics of Eq. (A35). Therefore,
positive eigenvalues leading to exponential growth must be
found in the space in which P̂ is projecting, and after
waiting a sufficiently long time, one may always approxi-
mate the state of the system as contained in that space.
Noting this, we can drop the last term in Eq. (A35) and
write simply

d
dτ

jti ¼ P̂ L̂ P̂ jti≡ L̂pjti: ðA36Þ

Finally, notice that, since the arbor density AðrÞ has the
meaning of a density, we can define it as being properly
normalized so that

R
drAðrÞ ¼ 1, i.e., haβjjaβi ¼ 1. This

allows us to remove the denominators in the definition of
the projection operator P̂, which becomes simply

P̂ ¼ 1 −
X
β

jaβihaβj: ðA37Þ

The principal eigenspace of the operator Lp of Eq. (A36)
defined in terms of Eq. (A37) is thus the object of our
interest, as it will determine the fastest-growing modes of
the system.

4. Matrix elements of the Hermitianized operator

The matrix elements of the unconstrained operator L̂
appearing in Eq. (A33) are, in the jx;αi basis,

Lðx;α; y; βÞ≡ hx;αjLjy; βi
¼

ffiffiffiffiffiffiffiffiffiffi
Ax−α

p
Ix−yCα−β

ffiffiffiffiffiffiffiffiffi
Ay−β

p
; ðA38Þ

where Cα−β ¼ CON;ON
α−β − CON;OFF

α−β .
The generic matrix element of the operator L̂p of

Eq. (A36) is written, using Eq. (A37), as

Lpðx;α;y;βÞ¼hx;αjL̂pjy;βi

¼
Z

dx1dα1dx2dα2½δðx−x1Þδðα−α1Þ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx−αÞ

p
δðα−α1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx1−α1Þ

p
�Lðx1;α1;x2;α2Þ

× ½δðx2−yÞδðα2−βÞ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx2−α2Þ

p
δðα2−βÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðy−βÞ

p
�:

ðA39Þ

The natural variables in which to express a RF are
the relative coordinates r ¼ α − x, and we abuse the
notation by writing Lpðx; r; y; sÞ≡ Lpðx;α − x; y; β − yÞ
and Lðx; r; y; sÞ≡ Lðx;α − x; y; β − yÞ. Integrating out
the delta functions in Eq. (A39), we obtain

Lpðx; r; y; sÞ ¼ Lðx; r; y; sÞ þ Sðx; r; y; sÞ
þ Tðx; r; y; sÞ þ T̃ðx; r; y; sÞ: ðA40Þ

On the rhs of this equation, the first term is obtained
with a change of variables in the arguments of Eq. (A38),
leading to

Lðx; r; y; sÞ ¼
ffiffiffiffiffiffiffiffiffi
AðrÞ

p ffiffiffiffiffiffiffiffiffi
AðsÞ

p
Iðx − yÞCðx − yþ r − sÞ;

ðA41Þ

while the last three terms are given by

Sðx; r; y; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞAðsÞp ¼

Z
ds1ds2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðs1ÞAðs2Þ

p
× Lðxþ r − s1; s1; yþ s − s2; s2Þ; ðA42Þ

Tðx; r; y; sÞ ¼ −
ffiffiffiffiffiffiffiffiffi
AðrÞ

p Z
du

ffiffiffiffiffiffiffiffiffiffi
AðuÞ

p
Lðxþ r − u; u; y; sÞ;

ðA43Þ

T̃ðx; r; y; sÞ ¼ −
ffiffiffiffiffiffiffiffiffi
AðsÞ

p Z
du

ffiffiffiffiffiffiffiffiffiffi
AðuÞ

p
Lðx; r; yþ s − u; uÞ:

ðA44Þ

In the special case where the functions Iðx − yÞ and
Cðα − βÞ are even under parity, it is seen from Eq. (A41)
that L̂ becomes symmetric under swapping of the LGN and

cortical coordinates, and it follows that Ŝ ¼ ŜT , ˆ̃T ¼ T̂T .

5. Cortical Fourier transform

Noting the translation invariance of L̂ in Eq. (A41) with
respect to the cortical location variable, we can define

Lðx; r; y; sÞ≡
Z

dω
ð2πÞ2 e

−iωðx−yÞLðr; s;ωÞ; ðA45Þ

and similar for L̂p, from the translation invariance seen in
Eq. (A39). This means that the eigenfunctions of L̂p in
Eq. (A40) will be of the form eiωxψωðrÞ, where eiωx

describes an oscillation across the cortical coordinate x,
and ψωðrÞ describes the RF as a function of the LGN
position α relative to x, i.e., r ¼ α − x.

The function ψωðrÞ is complex, and we write it in
the form of real functions as ψωðrÞ ¼ ψR

ωðrÞ þ iψL
ωðrÞ.

Then, this eigenfunction corresponds to the real
functions cosðωxþ ϕÞψR

ωðrÞ þ sinðωxþ ϕÞψR
ωðrÞ for arbi-

trary phase ϕ.
We refer to the spatial frequency vector ω as the

cortical wave vector and to its modulus as the cortical
wave number. The Fourier transform of the constrained
operator Eq. (A39), which determines the RF eigenfunc-
tions ψωðrÞ, is then
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Lpðr; s;ωÞ ¼ Lðr; s;ωÞ −
ffiffiffiffiffiffiffiffiffi
AðrÞ

p Z
dr1

ffiffiffiffiffiffiffiffiffiffiffi
Aðr1Þ

p
Lðr1; s;ωÞe−iωðr−r1Þ −

ffiffiffiffiffiffiffiffiffi
AðsÞ

p Z
ds1

ffiffiffiffiffiffiffiffiffiffiffi
Aðs1Þ

p
Lðr; s1;ωÞe−iωðs1−sÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞAðsÞ

p Z
dr1ds1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðr1ÞAðs1Þ

p
Lðr1; s1;ωÞe−iωðr−s−r1þs1Þ: ðA46Þ

The transform of Eq. (A41) reads

Lðr;s;ωÞ∼Luðr;s;μÞexp
�
−

ω2

2Ω2
− i

η2

μ2
ωðr− sÞ

�
; ðA47Þ

as long as we adopt Eqs. (A13) and (A14) for the
interaction and correlation functions. We neglect here an
overall prefactor that can be absorbed in the definition of
time. The “effective length” μ and “cutoff wave number” Ω
in Eq. (A47) are given by

μ2 ¼ η2 þ ζ2; Ω2 ¼ 1

η2
þ 1

ζ2
; ðA48Þ

and Luðr; s; μÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞAðsÞp

e−½ðr−sÞ2=2μ2�, with the apex u
standing for “unconstrained.” We may refer to the para-
meter μ as the correlation-interaction length, as it is a
Pythagorean combination of the two “intralayer” length
scales of the problem.
We now (i) substitute the Fourier-transformed matrix

element of L̂ as per Eq. (A47) into the expression (A46)
for the matrix element of L̂p, (ii) insert a specific
(Gaussian) assumption for the arbor density function
AðrÞ ¼ ð1=2πρ2Þ exp ½−ðr2=2ρ2Þ�, and (iii) perform the
integration over all intermediate space variables.
We thus arrive at decomposing the constrained operator

of Eq. (A39) into

L̂p ¼ L̂þ Ŝþ T̂ þ T̂†; ðA49Þ
where in the coordinate representation, these are

Lðr; s;ωÞ ¼ exp

�
−

ω2

2Ω2
− i

η2

μ2
ωðr − sÞ

−
r2 þ s2

4ρ2
−
ðr − sÞ2
2μ2

�
; ðA50Þ

Sðr; s;ωÞ ¼ μ2

μ2 þ 2ρ2
exp

�
−

ω2

2Ω2
−

ρ2ζ4ω2

μ2ðμ2 þ 2ρ2Þ

− iωðr − sÞ − r2 þ s2

4ρ2

�
; ðA51Þ

Tðr; s;ωÞ ¼ −
μ2

μ2 þ ρ2
exp

�
−

ω2

2Ω2
−

ρ2ζ4ω2

2μ2ðμ2 þ ρ2Þ

−
1

2

�
1

2ρ2
þ 1

ρ2 þ μ2

�
r2 −

s2

4ρ2

− iω

�
ρ2 þ η2

ρ2 þ μ2
r − s

��
;

T†ðr; s;ωÞ ¼ T�ðs; r;ωÞ; ðA52Þ

and the additive constraint operators Ŝ and T̂ have fully
separable matrix elements.

APPENDIX B: PROPERTIES OF THE
HERMITIANIZED OPERATOR

We analyze here the basic properties of the time-
evolution operator L̂p of Eq. (A36), including (i) its
positive semidefiniteness, (ii) the general structure of its
spectrum, (iii) its commutation properties with translation
and rotation operators, (iv) its symmetry with respect to
parity, complex conjugation, and their combination, and
(v) we finally write down the exact diagonalization of the
unconstrained operator L, which will serve as the starting
point for studying the properties of L̂p in greater detail.

1. Positive semidefiniteness

It will be useful to rely on the positive semidefiniteness
of the Fourier-projected operator L̂pðωÞ for any given wave
number ω.
Consider Eq. (A46), and suppose we regard the direction

of the wave vector ω as fixed (in the following, with no loss
of generality, we take it to be parallel to the x axis). We can
then write

L̂pðωÞ ¼ ð1 − jaωihaωjÞL̂ðωÞð1 − jaωihaωjÞ; ðB1Þ

where hrjaωi ¼
ffiffiffiffiffiffiffiffiffi
AðrÞp

e−iωrx . Thus, even for a given wave
number ω, the constrained operator is nothing but the
unconstrained operator sandwiched between two identical
projection operators.
The unconstrained operator L̂ is clearly positive definite.

This follows from the fact that it is Hermitian with an all-
positive kernel; we see explicitly that its eigenvalues are all
positive but dense in a neighborhood of zero. Recall now
the following lemma: If Ô is a positive-definite operator in
a linear space and P̂ a projection operator on some
subspace, then P̂ Ô P̂ is positive semidefinite—from which
it follows that L̂p is positive semidefinite.

2. Long-term dynamics

Once the operator is diagonalized for an arbitrary cortical
wave number, we expect to find the eigenvalues from a
series of possibly overlapping bands, where each given
band corresponds to a set of eigenfunctions with varying ω.
Different bands may come from different sets of eigenstates
characterized by discrete numbers that we may term
quantum numbers. As we show, for low wave numbers
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these bands correspond to different rotational eigenstates.
The “principal band” of the spectrum is the one that
contains the principal mode, which drives the long-term
dynamics, ΛMðωÞ is the wave-number-dependent eigen-
values of the principal band, and ωM is the position of its
(possibly broad) maximum as a function of ω correspond-
ing to the fastest-growing eigenspace. In the following, we
are interested in the principal eigenspace of the operator Lp,
as this determines the fastest-growing modes. We can gain
insight into long-term behavior by focusing on the principal
band and on the RFs it represents.
Indeed, the developmental process for a given band has a

similar effect as filtering with a spatially isotropic bandpass
with respect to cortical wave number. The function ΛMðωÞ
can be interpreted as the corresponding filter profile, and
the location of the maximum of this filter may depend in
nontrivial ways on the model’s parameters.
If the system lies in parameter space at a point such that

ωM ¼ 0, the dynamics will tend to flatten out any spatial
inhomogeneity in the initial condition. If ωM > 0, on the
other hand, the long-term RF will vary spatially on a
scale of approximately 1=ωM. Since, as will be seen, we
have a broad maximum of a nearly optimal wave vector,
we may expect local but no long-range periodicity.
Anisotropies in the initial conditions can also be magni-
fied by the dynamics.
The evolution of the RF at any given point in the cortex,

finally, may cancel or emphasize whatever degree of
orientation selectivity is possessed by the initial condition,
depending on the structure of the eigenspace associated
with the principal mode.

3. Symmetries of the system: Translations and rotations

Since LGN activity reflects retinal input and we average
at the outset over an isotropic input ensemble, we expect no
change in the dynamics from simultaneously rotating both
the cortical layer and the two LGN sheets by the same
angle. The same is true, as already noted, if we consider
simultaneous translations of the three layers (see Fig. 5).

The time-evolution operator L̂pðωÞ thus has two sym-
metries: (i) Simultaneous shifts of the cortex and of the
LGN do not affect the matrix elements. (ii) If the wave
vector ω is rotated, and the relative coordinates ðr; sÞ are
rotated by the same angle, the matrix elements are also
unchanged. If we consider the null wave number ω ¼ 0, the
latter operation reduces to rotating the r coordinates only,
which therefore does not affect the matrix elements.
Since the time-evolution operator at zero wave number
can be diagonalized simultaneously with the rotation oper-
ator, we occasionally follow [100] in referring to its
eigenstates through the language of atomic orbitals (1s,
nodeless; 2s, one radial node; 2p, one angular node, etc.).
From the discussion in Sec. B 2, it follows that the

problem can be treated analogously to the study of
zero-temperature phase transitions, in which different

phases are often entirely characterized by changes in
symmetry.
Translation symmetry is broken if the principal eigen-

state of the system corresponds to a nonzero wave number.
Rotation symmetry is broken if the principal eigenstate is
not invariant under simultaneous rotations of the wave
vector and of the radial coordinate. For instance, this
happens if the wave number under consideration is ω ¼ 0
and the eigenfunction has angular momentum l ¼ 1 (a “p
wave”) or any other angle-dependent (hence, orientation-
selective) functional form.
It follows that there are multiple symmetry classes for the

solution, and it is convenient to introduce shorthand labels
for the phases that emerge from the analysis. We call the
phase in which no invariance is broken the N phase
(nonselective), the R phase is the phase where rotation
symmetry is broken but translation symmetry is not, and
the T phase is the phase where translation symmetry is
broken, and so is rotation symmetry. A summary of these
phases is given in Table I.

4. Symmetries of the system: Parity and CP symmetry

An important property of the eigenfunctions of L̂p

concerns their behavior under the action of the operators
=Px and =Py defined by

=Pxψðrx; ryÞ ¼ ψð−rx; ryÞ;
=Pyψðrx; ryÞ ¼ ψðrx;−ryÞ: ðB2Þ

As we take the wave vector ω to be aligned with the
x axis, the commutation rule ½L̂p; =Py� ¼ 0 is immediately
verified from Eq. (A39); hence, L̂p and =Px can be
diagonalized simultaneously, and the eigenfunctions of
L̂p may be chosen as either symmetric or antisymmetric
under inversion of the ry coordinate.
On the other hand, the operators L̂p and =Px do not

commute, as can be seen from Eq. (A39). However, L̂p

FIG. 5. Invariances of the theory. Depiction of the two main
transformations under which the model is invariant: simultaneous
rotation and simultaneous translation of the three neuron layers.
Notice that the receptive field coordinate r is left untransformed
by translations.
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does commute with the product =C=Px, where =C is the
antilinear operator such that =CψðrÞ ¼ ψ�ðrÞ.
Writing the complex RF ψðrÞ ¼ uðrÞ þ ivðrÞ as the real-

valued vector function ψðrÞ ¼ ðuðrÞvðrÞÞ, we have that

=C=Px ¼
�
=Px 0

0 −=Px

�
; =C=Py ¼

�
=Py 0

0 −=Py

�
; ðB3Þ

which is a Hermitian operator, so that its eigenvalues must
be real. Since ð=C=PxÞ2 ¼ ð=C=PyÞ2 ¼ 1, it follows that the
eigenvalues are �1.
In this representation, a generic integral operator Ô takes

the matrix form Ô ¼ ðÂB̂ −B̂
Â Þ, where the kernels Aðr; sÞ and

Bðr; sÞ of Â and B̂ are the real and imaginary parts of the
integral kernel Oðr; sÞ of Ô. Such an operator clearly
commutes with multiplications of the wave functions
by an arbitrary “gauge factor” eiθ. Indeed, such a
gauge transformation is represented by the rotation of
the complex plane

R̂θ ¼
�
cos θ − sin θ

sin θ cos θ

�
; ðB4Þ

and we have ½Ô; R̂� ¼ 0.
If ½Ô; =C=P� ¼ 0 for the parity operator =P corresponding to

a given coordinate r, it follows that the eigenfunctions
½uðrÞ; wðrÞ� of Ô can be chosen to be eigenvectors of the
operator =C=P, whose eigenvalues we discuss after Eq. (B3).
That is, they can be chosen to obey the constraint

�
uð−rÞ
−wð−rÞ

�
¼ =C=P

�
uðrÞ
wðrÞ

�

¼ λCP

�
uðrÞ
wðrÞ

�
¼ �

�
uðrÞ
wðrÞ

�
; ðB5Þ

from which we can see that either uðrÞ is symmetric and
wðrÞ is antisymmetric, or vice versa. In both cases, the
symmetric and antisymmetric parts of the function are
separated by a phase shift of magnitude π.
Applying this to the constrained time-evolution operator

L̂p, we conclude that its eigenfunctions will consist of a
component ψS that is symmetric in P̂x and a component ψS
that is antisymmetric, the two components being separated
by a phase shift π.
We can thus write

ψðrÞ ∝ ψSðrÞ � iψAðrÞ; ðB6Þ

where ψS and ψA are real, and ψS (ψA) an even (odd)
function in rx.
Notice that the operator =C=P does not commute with the

gauge operator R̂θ defined by Eq. (B4). This means that by

diagonalizing =C=P we effectively fix the gauge of the wave
functions. Thus, we show that it is possible to write the
eigenfunctions of L̂p in the form ψSðrÞ þ iψAðrÞ. If we
back transform to real space in the cortical coordinates x,
this means that symmetric and antisymmetric RFs will
alternate along the direction of cortical modulation.

5. Diagonalization of the unconstrained dynamics

In Fourier space, the unconstrained two-layer model is
given by Eq. (A50), which can be diagonalized exactly.
Indeed, if we define the basis transformation

ΨðrÞ ¼ exp ½iðη2=μ2Þωrx�χðrx; ryÞ, it is clear that ΨðrÞ is
an eigenfunction of L̂ if and only if χðrÞ is an eigenfunction
with the same eigenvalue of the integral operator with
kernel

Lχðr; sÞ ¼ exp

�
−

ω2

2Ω2
−
r2 þ s2

4ρ2
−
ðr − sÞ2
2μ2

�
: ðB7Þ

The full diagonalization of this operator was first
accomplished in Cartesian coordinates by Wimbauer et al.
[101]. They found that the normalized eigenfunctions have
the form

χnxnyðrÞ ¼ Anx;nye
−ðr2=2γ2ÞHnx

�
rx
γ

�
Hny

�
ry
γ

�
; ðB8Þ

with Anx;ny ¼ ð2ðnxþny=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πnx!ny!

p
γÞ−1, the numbers nx and

ny being non-negative integers, and the functions Hn

Hermite polynomials. The corresponding eigenvalues are

Λnxny ¼ 2πμ2e−
ω2

2Ω2β−nx−ny−1; ðB9Þ

and the two parameters entering these formulas are

γ¼
ffiffiffi
2

p
ρ

�
1þ4ρ2

μ2

�−1=4
; β¼ 1þ μ2

2ρ2
þμ

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

4ρ2

s
:

ðB10Þ

The parameter γ is the width of the receptive fields,
which quantifies how the arbor radius ρ is renormalized by
recurrence and input correlations. For fixed ρ, the width γ
of the eigenfunctions is a monotonically decreasing func-
tion of the ratio ρ=μ. In this representation [having divided
the RFs by

ffiffiffiffiffiffiffiffiffi
AðrÞp

at the outset in Sec. A 2], the
unrenormalized arbor radius is represented by

ffiffiffi
2

p
ρ. It

follows that, if the ratio ρ=μ is very small, no renormaliza-
tion occurs: γ ¼ ffiffiffi

2
p

ρ.
If the ratio ρ=μ tends to infinity (i.e., if the arbors are

comparatively wide, asymptotically extending over all the
cortex), the range of the eigenfunction will be restricted by
the correlation-interaction length scale, becoming equal to
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the geometric mean of the two length scales, namely,
γ ∼ ffiffiffiffiffi

ρμ
p

.
For future reference, we note the three highest-lying

eigenfunctions Ψnx;ny of L̂:

Ψ0;0ðrÞ ¼
1ffiffiffi
π

p
γ
exp

�
i
η2

μ2
ωrx −

r2

2γ2

�
; ðB11Þ

Ψ0;1ðrÞ ¼
rxffiffiffi
π

p
γ2

exp

�
i
η2

μ2
ωrx −

r2

2γ2

�
; ðB12Þ

Ψ1;0ðrÞ ¼
ryffiffiffi
π

p
γ2

exp

�
i
η2

μ2
ωrx −

r2

2γ2

�
: ðB13Þ

Since the operator L̂χ is symmetric with respect to
rotations of the vector r, it can also be diagonalized
simultaneously with the generator of rotations for the
vector r, as done more recently by Davey et al. [102].
This leads to writing the eigenvalues of L̂ in the equivalent
angular form

λN;m ¼ 2πμ2e−ðω2=2Ω2Þβ−2N−m−1; ðB14Þ

where the integer m is the angular momentum, or the
number of angular nodes in the eigenfunctions, of L̂χ while
N is their number of radial nodes, and we define

β≡ 1=q ¼ 1þ η2

2ρ2
þ η

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

4ρ2

s
:

The corresponding eigenfunctions ΦN;m of L̂ are best
written as functions of polar coordinates (r;ϕ). The highest
such eigenfunctions are

Φ0;0ðrÞ ¼ Ψ0;0ðrÞ; ðB15Þ

Φ�
0;1ðrÞ ¼

rffiffiffi
π

p
γ2

exp

�
i
η2

μ2
ωr cosϕ −

r2

2γ2
� iϕ

�
; ðB16Þ

Φ1;0ðrÞ ¼
ðγ2 − r2Þffiffiffi

π
p

γ3
exp

�
i
η2

μ2
ωr cosϕ −

r2

2γ2

�
: ðB17Þ

The eigenfunctions of the angular-momentum represen-
tation with an even (odd) number of angular nodes are built
with appropriate Clebsch-Gordan coefficients from eigen-
functions of the Cartesian representation where nx and ny
have the same (different) parity.
From Eqs. (B9) and (B14), it is seen that the dependence

of the eigenvalue on the wave number lies entirely in the
exponential prefactor. Hence, the optimal wave number is
always ω ¼ 0. Translation symmetry is never broken in the
absence of homeostatic constraints.
Since L̂ is diagonalizable, and the other operators

summed into L̂p have separable matrix elements, each

of the four operators summing up to L̂p in Eq. (A49) is
diagonalizable exactly. Unfortunately, the sum of the four is
not. But while no closed-form solution is available in
general, it will be possible to study the operator separately
in various regions of parameter space.

APPENDIX C: COMPUTATION
OF THE PHASE DIAGRAM

1. Cortically uniform phases

Let us assume that, for some given values of ζ and η, the
principal eigenfunction has the formΨðx; rÞ≡ΨðrÞ, which
is uniform over the cortex, or in other words, that the
principle eigenfunction in that point of parameter space is
ω ¼ 0. We refer to such regions as “uniform phases.” We
would like to know, given a point in parameter space where
such a phase is dominant, whether it will be of the R or
N type.
It can be seen that the operator L̂p of Eq. (A49), acting in

such a case on functions of the single variable r, becomes
equal to the operator L̂f with matrix elements

Lfðr; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞAðsÞp ¼ Iμðr; sÞ þ

Z
dr1ds1Aðr1ÞAðs1ÞIμðr1; s1Þ

−
Z

duAðuÞIμðr; uÞ −
Z

duAðuÞIμðu; sÞ;

ðC1Þ

where Iμ≡ ¼ exp f−½ðx − yÞ2=2μ2�g is a version of the
interaction function in Eq. (A14) corrected by the input.
We can also rewrite Eq. (C1) compactly as

L̂f ¼ L̂μ þ ja0iha0jL̂μja0iha0j − 2HP½L̂μja0iha0j�; ðC2Þ

where “HP” is the Hermitian part of an operator, and the
unconstrained part of the L̂f operator has matrix elements

Lμðr; s; μÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞAðsÞ

p
Iμðr; sÞ: ðC3Þ

The rest of this section is devoted to the diagonalization
of L̂f, which we perform by treating separately the regimes
with large and small values of μ=ρ.

a. Long effective length (μ ≫ ρ)

Although the operator L̂f is not amenable to exact
diagonalization, it is easy to show that, in the regime of
long effective length (μ ≫ ρ), rotation symmetry is broken,
leading to the development of orientation selectivity.
To see this, assume self-consistently that all the radial

variables in the eigenvalue equation for L̂f will be confined
to a region of order ρ. Hence, expanding the unconstrained
operator in Eq. (C62) can be expanded as
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Lμðr; s; μÞ ≈ e
−r2þs2

4ρ2

�
1 −

ðr − sÞ2
2μ2

�
; ðC4Þ

where further corrections inside the square brackets are of
order ðρ=μÞ4.

If we substitute Eq. (C4) into Eq. (C61), we find that in
the asymptotic matrix element the terms of order ðρ=μÞ0
vanish exactly. The terms of order ðρ=μÞ2 cancel each other
leaving only the following:

Lfðr; s; μÞ ≈ r · s
μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞAðsÞ

p
¼ rs

μ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞAðsÞ

p
cosðϕr − ϕsÞ; ðC5Þ

while further corrections are again of order ðρ=μÞ4.
It is clear that the only positive eigenvalue of the operator

defined by the kernel (C5) corresponds to the eigenfunction

ψðrÞ ∝ r
ffiffiffiffiffiffiffiffiffi
AðrÞ

p
cosðϕ − ϕ0Þ; ðC6Þ

the corresponding eigenvalue being just the p-wave eigen-
value λ0;1 of the unconstrained model. The expansion is
self-consistent because indeed the function (C6) vanishes
for r ≫ ρ.
Following a convention in the literature [65,66], we refer

to eigenfunctions ψðrÞ ¼ fðrÞ as “s-wave” states. We call
p-wave states eigenfunctions having angular momentum
m ¼ 1, i.e., with angular dependence cos ½mðϕ − ϕ0Þ� with
m ¼ 1. From Eq. (C5), we see that all s-wave eigenstates
have zero eigenvalue to this order in the expansion. For
sufficiently long effective length μ, the principal eigenspace
is thus composed by the p-wave functions described
in Eq. (C6).

b. Short effective length (μ ≪ ρ)

We argue that p waves dominate the uniform phases in
the limit of long effective length μ ≫ ρ. We would like to
inquire whether there exist regions of parameters where this
is not the case, i.e., where rotation symmetry is not broken
and s waves dominate the uniform phases. These s waves
would describe RFs that are unable to discriminate among
the possible orientations of visual input.
If that is the case, there can be no smooth crossover

between the two regimes. A linear combination of an s
wave (m ¼ 0) and of a p wave (m ¼ 1) could not be an
eigenfunction of L̂f other than at special points of degen-
eracy. Let us tentatively call Θc ¼ μc=ρ the largest value of
h ¼ μ=ρ where the principal eigenfunction is nonselective.
We would like to find if Θc > 0 and, if so, compute the
structure of the receptive field for h < Θc.
A natural tool to address this question is the variational

method for linear operators. We assume a functional
form (trial function) for the principal eigenfunction; we

normalize it, we find the expectation value of our
operator in that state, and we maximize it with respect
to variational parameters. This leads to the best available
approximation of the principal eigenvalue within the given
Hilbert subspace.
The expectation value of the operator L̂f in the trial state

jψi is defined as

E½ψ � ¼ hψ jL̂fjψi
hψ jψi : ðC7Þ

It can be shown by the same arguments as in
Refs. [65,66] that the principal eigenfunction of L̂f in
the s sector must be of the 2s type, i.e., with one radial
node. We thus choose our variational trial function to be a
RF with the same functional form as the 2s eigenfunction
of the unconstrained model, only with the position of the
node unspecified.
The unconstrained 2s wave function is, as per Eq. (B17),

a Gaussian RF of width γ multiplied by the polynomial
ðγ2 − r2Þ, so that the radial node is located at r ¼ γ. We
now replace the nodal radius γ with an unspecified radius
R, obtaining a trial function that is a generalization of
Eq. (B17), and we optimize the expectation value of L̂f

with respect to R over all Hilbert space. Our “movable-
node” trial function is therefore,

ψ ðRÞ
T ðrÞ ¼ Nffiffiffi

π
p

γ
ðR2 − r2Þ exp

�
−

r2

2γ2

�
; ðC8Þ

where the value of γ is given by Eq. (B10), and we introduce
the normalization factor N ¼ ½γ4 þ ðγ2 − R2Þ2�−1=2.
Let us consider the expectation value Eq. (C7) of the

unconstrained operator of Eq. (C62) in the state (C8). This
is given by

E0ðRÞ≡ hψ ðRÞ
T jL̂μjψ ðRÞ

T i

¼
�
N2

πγ2

�
4π2

Z
∞

0

dr rðR2 − r2Þ

×
Z

∞

0

ds sðR2 − s2ÞI0

×

�
rs
μ2

�
e
−ð 1

2ρ2
þ 1

μ2
þ 1

γ2
Þr2þs2

2 ; ðC9Þ

which, after integration, yields

E0ðRÞ ¼
2πμ2

β3
1þ β2ð1 − R2=γ2Þ2
1þ ð1 − R2=γ2Þ2 ðC10Þ

with β defined in Eq. (B10).
To optimize this expectation value, we need to

maximize the function fðxÞ¼ ½ð1þβ2x=1þxÞ, where x¼
ðR2=γ2−1Þ2. The derivative is f0ðxÞ¼ ½β2−1=ð1þxÞ2�,
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always non-negative because β ≥ 1; hence, it is sufficient to
maximize x, which is done by choosing the limit R → ∞.
The result is unsurprising: In the limit R → ∞, the move-
able-node function becomes in fact nodeless, and it is
nothing but the 1s Gaussian of width γ which we know as
the principal eigenfunction of L̂μ.
Let us now consider the expectation value Eq. (C7) of the

full operator L̂f, as described by Eq. (C64), calculated in
the moveable-node state of Eq. (C8). This can be written as

EðRÞ ¼ E0ðRÞ þ
μ2A2

μ2 þ 2ρ2
−

2μ2AB
μ2 þ ρ2

; ðC11Þ

where

A ¼ Nffiffiffi
π

p
γ
× 2π

Z
∞

0

ðR2 − r2Þ exp
�
−
�
1

γ2
þ 1

2ρ2

�
r2

2

�
r dr;

ðC12Þ

B ¼ Nffiffiffi
π

p
γ
× 2π

Z
∞

0

ðR2 − r2Þ

× exp

�
−
�
1

γ2
þ 1

2ρ2
þ 1

ρ2 þ μ2

�
r2

2

�
r dr; ðC13Þ

or, upon integration,

A ¼ 4
ffiffiffi
π

p
Nγρ2

ð2ρ2 þ γ2ÞR2 − 4γ2ρ2

ð2ρ2 þ γ2Þ2 ; ðC14Þ

B¼ 4
ffiffiffi
π

p
Nγρ2ðρ2þμ2Þ

×
2ρ2ðR2−2γ2Þðρ2þμ2ÞþR2γ2ð3ρ2þμ2Þ

½ðρ2þμ2Þð2ρ2þ γ2Þþ2γ2ρ2�2 : ðC15Þ

While expression (C11) with the substitution of
Eqs. (C14) and (C15) is somewhat intricate, we are
ultimately interested only in its maximal value over all
the range of nodal radii R. We thus expand E in h ¼ μ=ρ
with the ansatz R2 ¼ ρ2(k2hþOðh2Þ), yielding

Eðρk ffiffiffi
h

p Þ
2πμ2

¼ 1 − 2fðkÞhþOðh2Þ; ðC16Þ

where fðkÞ ¼ ð8 − 7k2 þ 2k4=2 − 2k2 þ k4Þ. The require-
ments f0ðk̄Þ ¼ 0; f00ðk̄Þ > 0 lead to

k̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ffiffiffiffiffi

10
p

3

s
; ðC17Þ

whichmeans that the node behaves asR∼½ð4þ ffiffiffiffiffi
10

p
=3Þμρ�1=2.

Inserting this into Eq. (C8) and applying Eq. (A32) leads
straight to Eq. (1) in the main text (for a comparison with
numerics, see Fig. 6).

Further substituting into Eq. (C11), we find that the
optimal expectation value is

E ≡ Eðk̄
ffiffiffi
h

p
Þ ¼ 2πμ2½1 − ð5 −

ffiffiffiffiffi
10

p
Þh�: ðC18Þ

We can now compare E with the exact eigenvalue
of the dominant p wave, which is given by Eq. (B14)
as λ0;1 ¼ 2πμ2=β2 ∼ 1–2h. Since ð5 − ffiffiffiffiffi

10
p Þ ∼ 1.83 < 2,

we conclude that the principal s-wave eigenvalue

0 0

Analytics Numerics

FIG. 6. Receptive fields for the N phase. Example of the
variational RF of Eq. (1) in the main text compared to the result of
numerically diagonalizing the full operator L̂p and rescaling the
eigenfunction by Eq. (A32). The parameters used here are
ζ=ρ ¼ 0.02, ηρ ¼ 0.2. A side of the grid has length equal to
5ρ; color scale ranges between min and values.

FIG. 7. Variational landscape for cortically uniform phases.
Expectation values of the constrained time-evolution operator L̂f

(in units of 2πμ2) plotted as a function of R=ρ. The three curves
refer to (i) λ0;1 (expectation value of L̂μ or L̂f in the exact
eigenfunction Ψ0;1) plotted in green; (ii) E0, expectation value of
the unconstrained operator L̂μ in the moveable-node state ψT
plotted in blue; (iii) E, expectation value of the constrained
operator L̂f in the state ψT plotted in purple. The figure refers to
h ¼ ðμ=ρÞ ¼ :01. Values of R for which the moveable-node state
is preferred to the orientation-selective state are different for the
two operators L̂μ and L̂f. Namely, there exists a minimal value R̃,
in this example being approximately equal to 0.14, such that L̂μ

opts for ψT at sufficiently high values of the node radius R > R̃,
while L̂f does so for values of R in a narrow window R≳ R̃.
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approximated by Eq. (C8) lies higher. Therefore, the s
waves do indeed dominate for small h ¼ ðμ=ρÞ.

The eigenvalue landscape leading to dominance of s
waves is displayed in full in Fig. 7 for a fixed (sufficiently
low) value of h ¼ ðμ=ρÞ. As can be seen, choices of the
movable node below a certain threshold R̃ðhÞ would lead
to s dominance, but the optimal R in the presence of
constraints (purple curve) lies beyond that threshold.

c. Phase boundary of the uniform phases

We now like to have a lower bound on the critical value
of the interaction length μc ¼ Θcρ at which rotation
symmetry is first broken. We can define Θc as the largest
value of μ=ρ where the s mode dominates. We proceed by
finding the h for which the expectation value of Eq. (C18) is
equal to the exact 2p eigenvalue. The fact that this will
indeed yield a lower bound on the actual value of the
transition point can be understood as follows.
If the variational method reveals the transition at a point

h ¼ θc, it means that we have found an s-wave state whose
expectation value is larger than the exact eigenvalue of the
principal p wave for all h < θc. Suppose ad absurdum that
the actual critical point Θc is Θc < θc. That means in the
region Θc < h < θc the actual principal state of the
operator is a orientation selective, i.e., m > 0. And since
the m > 0 sector is exactly diagonalizable, this principal p
wave must be the one we already calculated, with eigen-
value λ0;1.

But if that was true, all the s-wave functions would yield
expectation values lower than that eigenvalue. Then it
would not be possible to create a linear combination of
them (our trial function) that yields an expectation value
> λ0;1, as we have done. We deduce that we must have
Θc ≥ θc. That is, the variational method provides a lower
bound on the actual critical point.
Let us proceed with the calculation. We first expand R

to a higher order as R2=ρ2 ¼ c1hþ c2h2 þOðh3Þ. The
coefficient c1 can be determined by maximizing Eq. (C11)
to the order OðhÞ, which gives c1 ¼ k̄2 ¼ ð4þ ffiffiffiffiffi

10
p

=3Þ.
Then we calculate the second term in the expansion of E,
plug in the value of c1 we found, and maximize with
respect to c2. This second-order correction computed at
the optimal value of c2 is then included in the expectation
value, and the whole thing is compared to the eigenvalue
of the leading p waves to see which is dominating. One
obtains

E
2πμ2

∼ 1 − ð5 −
ffiffiffiffiffi
10

p
Þhþ

�
33

2
−

51ffiffiffiffiffi
10

p
�
h2: ðC19Þ

The critical point θc is found where this s-wave expect-
ation value intersects the p-wave eigenvalue given by
Eq. (B14), that is,

λ0;1
2πμ2

∼ 1 − 2hþ 2h2; ðC20Þ

setting E ¼ λ0;1 yields

θc ¼
2ð75 − 8

ffiffiffiffiffi
10

p Þ
997

≈ 0.1; ðC21Þ

which is a rigorous lower bound to the critical point. The
actual value is easiest to find numerically by projecting the
operator L̂f into the m ¼ 0 subspace and thus turned into
an operator LðsÞ acting on functions of the sole radial
variable, whose matrix element is

LðsÞðr; sÞ ¼ I0

�
rs
μ2

�
e
−ð 1

2ρ2
þ 1

μ2
Þr2þs2

2

þ μ2

μ2 þ 2ρ2
e
−r2þs2

4ρ2

−
μ2

μ2 þ ρ2
ðe− r2

4ρ̃2
− s2

4ρ2 þ e
− r2

4ρ2
− s2

4ρ̃2Þ; ðC22Þ

where ρ̃ ¼ ½ð1=ρ2Þ þ ð2=μ2 þ ρ2Þ�−1=2, and I0 is the modi-
fied Bessel function of the first kind. The principal
eigenvalue of LðsÞ must be compared to the exact p-wave
eigenvalue so as to obtain the transition point yield-
ing Θc ≈ 0.34.
The resulting phase diagram for uniform phases is

illustrated in Fig. 8. In terms of the general model (which
allows modulation across the cortex as well), the regions
within and outside the quarter circle of Fig. 8 can be taken
to identify forbidden regions for the R and N phases.
Within the quarter circle (μ < Θcρ), the R phase is
forbidden because, if at any point the optimal wave number
happens to be zero, it must yield an N phase instead.
Outside the quarter circle (μ > Θcρ), the N phase is

FIG. 8. Structure of cortically uniform phases over the phase
diagram. Insets show plots of the principal eigenfunctions,
respectively, the movable-node approximation for the N phase
and the exact eigenfunctions with longitudinal and transverse
alignments for the R phase.
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forbidden because, if the optimal wave number is zero, it
must yield an R phase instead.

d. Degeneracies in the uniform phases

To sum up, we find that if the uniform phase is dominant
(ω ¼ 0), the principal eigenfunction of the operator is
orientation selective if μ > Θcρ and nonselective if
μ < Θcρ, with the critical ratio Θc bounded from below
by the value θc of Eq. (C21).
For μ > Θcρ, there is a two-dimensional degeneracy in

the orientation of the symmetry breaking. The exact
principal eigenfunction as per Eqs. (A16) and (A17) is
given by

Ψðx; rÞ ¼ ðkþeþiϕ þ k−e−iϕÞ exp
�
−

r2

2γ2

�
ðC23Þ

for arbitrary coefficients kþ and k−. We refer in particular to
the combinations

�Ψxðx; rÞ
Ψyðx; rÞ

�
¼

�
rx
ry

�
exp

�
−
r2x þ r2y
2γ2

�
; ðC24Þ

which are the instances of the 2p waves Φ0;1 and Φ1;0

corresponding to uncorrelated input.
Since the cortical wave vector is aligned along the x axis,

Ψx describes RFs aligned parallel to the cortical wave
vector, and Ψy describes the RFs aligned orthogonally to it.
Accordingly, we call Ψx the longitudinal eigenfunction and
Ψy the transverse eigenfunction. Equation (2) of the main
text is obtained from Eq. (C24) by applying Eq. (A32), and
is compared to the numerics in Fig. 9.
These two eigenfunctions share, as per Eq. (B14), the

exact eigenvalue

Λx;y ¼ 2πμ2
�
1þ μ2

2ρ2
þ μ

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

4ρ2

s �−2

: ðC25Þ

2. The long-range limit

a. The long-range limit: Derivation

We call the long-range limit (μ ≫ ρ) the case where
either cortical interactions are long range (η ≫ ρ) or LGN
interactions are (ζ ≫ ρ), or both.
We begin by Taylor expanding Eq. (A50) into

L̂p ∼ L̂0 þ R̂þ Ŝþ T̂ þ T̂† ðC26Þ

with

L0ðr;s;ωÞ¼ exp

�
−

ω2

2Ω2
− i

η2

μ2
ωðr− sÞ− r2þ s2

4ρ̂2

�
; ðC27Þ

Rðr; s;ωÞ ¼
�
risi
μ2

þ rirjsisj
2μ4

þ…

�

× exp

�
−

ω2

2Ω2
− i

η2

μ2
ωðr − sÞ − r2 þ s2

4ρ̂2

�
;

ðC28Þ

where summation over repeated indices is implied. The first
terms in R are the dipole and quadrupole components,
whereas the quantity ρ̂ ¼ ½ð1=ρ2Þ þ ð2=μ2Þ�−1=2 plays the
role of a renormalized “mass.”
We are interested in the structure of the phase diagram in

the leading order in the small parameter of ρ=μ. Since we
are interested in the leading order, it appears from the
equations that we may replace the renormalized ρ̂ with the
bare ρ. Moreover, within expressions (A51) and (A52) for Ŝ
and T̂, denominators of the form μ2 þ ρ2 and μ2 þ 2ρ2 can
be approximated with μ2.
In every integration where this kernel would play a role,

variables representing relative LGN-cortex coordinates are
confined by the arbor densities to a radius of order ρ, and if
we rely on the smallness of ρ=μ, we can also rely on the
smallness of the variables r=μ, s=μ in their absolute values.
However, these variables are also associated with angular
directions which can lead to annihilating whole terms of an
operator, no matter how large ρ=μ, when integrated over the
orthogonal angular component. Thus, the smallness of r=μ,
s=μ cannot be used to discard Eq. (C28) by comparison
with Eq. (C27).

The approximation we pursue is to discard all but the
dipole term in R [first term in expression (C28)]. This is
indeed the simplest restriction of Hilbert space that allows
us to explore whether, anywhere in the phase diagram, the
system breaks out of circular symmetry. Doing so trans-
forms Eq. (C26) into

Analytics Numerics

FIG. 9. Receptive fields for the R phase. Example of the RF of
Eq. (2) compared to the result of numerically diagonalizing the
full operator L̂p and rescaling the eigenfunction by Eq. (A32).
The parameters used here are ζ=ρ ¼ 0.05, ηρ ¼ 0.7. A side of the
grid has length equal to 5ρ; color scale ranges between min and
values.
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Lpðr; s;ωÞ ¼ e−
ω2

2Ω2fa�cðrÞacðsÞ þ A�ðrÞAðsÞ
þ q2a�1ðrÞa1ðsÞ
− q½a�1ðrÞadðsÞ þ a�dðrÞa1ðsÞ�g; ðC29Þ

where c¼ðη=μÞ2, d¼ðη2þρ2=μ2Þ, q¼ exp½−ðζ4ρ2ω2=
2μ4Þ�, and we define the functions

avðrÞ ¼ exp

�
ivωrx −

r2

4ρ2

�
;

AðrÞ ¼ r
μ
exp

�
−

r2

4ρ2
þ i

η2

μ2
ωrx

�
; ðC30Þ

where the index v takes the values 1, c, and d.
We now treat the η ≫ ρ and ζ ≫ ρ cases separately, even

if these assumptions lead to similar results.
The regime η ≫ ρ.—If η ≫ ρ, we have d ∼ c, so the

operator Eq. (C26) becomes

Lpðr;s;ωÞ¼ e−
ω2

2Ω2 ½a�cðrÞacðsÞþA�ðrÞAðsÞ
þq2a�1ðrÞa1ðsÞ−qða�1ðrÞacðsÞþa�cðrÞa1ðsÞÞ�:

ðC31Þ

Given one eigenfunction ψðrÞ, let us now define the two
unknowns Iv ¼

R
avðrÞψðrÞdr for v ¼ 1; c, and the third

unknown K ¼ R
AxðrÞψðrÞdr, and use the self-consistent

assumption that
R
AyðrÞψðrÞdr ¼ 0 (which is checked

below in Sec. C 2 b). The eigenvalue equation for the
operator of Eq. (C31) becomes

λe
ω2

2Ω2ψðrÞ ¼ I1½q2a�1ðrÞ − qa�cðrÞ�
þ Ic½−qa�1ðrÞ þ a�cðrÞ� þ KA�

xðrÞ; ðC32Þ

and computing the three unknown integrals from Eq. (C32)
itself, one obtains

λ

2πρ2
e

ω2

2Ω2I1 ¼ i
ρ2ζ2

μ3
ωqK; ðC33Þ

λ

2πρ2
e

ω2

2Ω2Ic ¼ ðq3 − qÞI1 þ ð1 − q2ÞIc; ðC34Þ

λ

2πρ2
e

ω2

2Ω2K ¼ −q3
iρ2ζ2

μ3
ωI1 þ q2

iρ2ζ2

μ3
ωIc þ

ρ2

μ2
K;

ðC35Þ

from which it follows that we can replace the infinite-
dimensional operator of Eq. (A49) with the 3 × 3 matrix
L̂ ¼ 2πρ2e−ðω2=2Ω2ÞM̂, where

M̂ ¼

0
B@

0 0 Jq

q3 − q 1 − q2 0

−q3J q2J ðρ=μÞ2

1
CA ðC36Þ

for J ¼ iρ2ζ2ω=μ3.
This matrix has only two nonzero eigenvalues, both

positive as we may expect from the discussion in Sec. B 1.
The larger one is

λ¼ πρ2e−
ω2

2Ω2

�
1þρ2=μ2−e−ω

2ζ4ρ2=μ4

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ρ2=μ2−e−ω

2ζ4ρ2=μ4Þ2þ4ρ4ζ4ω2

μ6
e−2ω

2ζ4ρ2=μ4

s �
:

ðC37Þ

The corresponding eigenfunction is obtained from
Eq. (C32) through the principal eigenvector of the
matrix M̂. This is found from Eq. (C36) to be, before
normalization,

I1 ¼ 2J2q3; ðC38Þ

Ic ¼ð1−q2Þ½1− s−q2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− s−q2Þ2−4J2q4

q
�; ðC39Þ

K ¼ Jq2½1þ s − q2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − s − q2Þ2 − 4J2q4

q
� ðC40Þ

with s ¼ ðρ=μÞ2. We now take the long-range limit as
s → 0 while keeping q fixed, which yields

ð I1; Ic; K Þ → ð 0; 1; 0 Þ; ðC41Þ

hence, the principal eigenfunction for the kernel Eq. (C31)
is found to be

ψðrÞ ¼ ψ1ðr;ωMω̂Þ ∝ −qa�1ðrÞ þ a�cðrÞ

¼ e
− r2

4ρ2 ½e−i
η2

μ2
ωMω̂r − e

−iωMω̂r−1
2
ðζ2ρωM

μ2
Þ2 �; ðC42Þ

where ω̂ is an arbitrary unit vector.
The regime ζ ≫ ρ.—For ζ ≫ ρ, the eigenvalue equation

of Eq. (C29) can be written as

λe
ω2

2Ω2ψðrÞ ¼ I1½q2a�1ðrÞ − qa�dðrÞ� þ Ica�cðrÞ
− Idqa�1ðrÞ þ KA�

xðrÞ; ðC43Þ

where we define the three unknown quantities Iv ¼R
avðrÞψðrÞdr (for v ¼ 1; c; d) and the fourth unknown

K ¼ R
AxðrÞψðrÞdr. Again, we are using the self-consistent

assumption that
R
AyðrÞψðrÞdr ¼ 0, which is duly checked

in Sec. C 2 b.
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Define Jx ¼ exp ð− ρ2x2ω2

2
Þ, so that

q ¼ J1−c; ðC44Þ

Z
aαðrÞa�βðrÞdr ¼ 2πρ2Jα−β; ðC45Þ

Z
aβðrÞA�

xðrÞdr ¼ð2πρ2Þi ρ
2ω

μ
ðβ − cÞJβ−c; ðC46Þ

while
R
drAxðrÞA�

xðrÞ ¼ 2πρ4=μ2.
From Eq. (C43), we obtain

λ

2πρ2
e

ω2

2Ω2I1 ¼ ðq2 − qJ1−dÞI1 þ qIc − qId

þ i
ρ2ω

μ
ð1 − cÞqK; ðC47Þ

λ

2πρ2
e

ω2

2Ω2Ic ¼ðq3 − qJd−cÞI1 þ Ic − q2Id; ðC48Þ

λ

2πρ2
e

ω2

2Ω2Id ¼ ðq2J1−d − qÞI1 þ Jd−c − qJ1−dId

þ iωρ4

μ3
qK; ðC49Þ

λ

2πρ2
e

ω2

2Ω2K ¼
�
−i

ωζ2ρ2q3

μ3
þ iq

ωρ4

μ3
Jd−c

�
I1

þ i
ωζ2ρ2

μ3
q2Id þ

ρ2

μ2
K; ðC50Þ

from which it follows that, in this limit, we can replace our
infinite-dimensional operator with the 4 × 4 matrix
L̂ ¼ 2πρ2e−ðω2=2Ω2ÞM̂, where

M̂¼

0
BBBBB@

q2−qJ1−d q −q iωζ2ρ2

μ3
q

q3−qJd−c 1 −q2 0

q2J1−d−q Jd−c −qJ1−d
iωρ4

μ3
q

−iωζ
2ρ2q3

μ3
þ iqωρ4

μ3
Jd−c 0 iωζ

2ρ2

μ3
q2 ρ2

μ2

1
CCCCCA:

ðC51Þ

Now, we have d−c¼ðρ2=μ2Þ and 1−d¼ðζ2−ρ2=μ2Þ.
Since we are considering the regime where ζ ≫ ρ, we can
write 1 − d ∼ ðζ2=μ2Þ, so that J1−d ∼ q. Notice that we are
making no assumption on the magnitude of η. The matrix
thus simplifies to

M̂ ¼

0
BBBBB@

0 q −q iωρ2ζ2

μ3
q

q3 − qJd−c 1 −q2 0

q3 − q Jd−c −q2 iωρ4

μ3
q

−iωζ
2ρ2

μ3
q3 þ iωρ

4

μ3
qJd−c 0 iωζ

2ρ2

μ3
q2 ρ2

μ2

1
CCCCCA:

ðC52Þ

Let us adopt one more self-consistent assumption con-
cerning the optimal wave number, which is immediately
verified once the optimal wave number is computed from
the resulting eigenvalue. Namely, we assume ω ≪ ðμ=ρ2Þ,
so that we can write Jd−c ∼ 1 and neglect the terms in
ωρ4=μ3. The matrix Eq. (C52) becomes

M̂ ¼

0
BBBBB@

0 q −q iωρ2ζ2

μ3
q

q3 − q 1 −q2 0

q3 − q 1 −q2 0

−i ωζ
2ρ2

μ3
q3 0 i ωζ

2ρ2

μ3
q2 ρ2

μ2

1
CCCCCA: ðC53Þ

We reduce an infinite-dimensional problem to a four-
dimensional problem, which we can solve exactly. From
Eq. (C53), we see that

detðM̂ − λÞ ¼ λ2
�
ρ2

μ2
−
ω2ρ4ζ4

μ6
q4 −

ρ2

μ2
q2

þ λ

�
q2 − 1 −

ρ2

μ2

�
þ λ2

�
; ðC54Þ

and from Eq. (C54), we find that the two non-null
eigenvalues correspond to those of Eq. (C36). Hence,
formula (C37) for the eigenvalue still holds true and, in
particular, the optimal wave number will be the same in the
two regimes.

b. The long-range limit: Analysis of results

Phase boundary and critical behavior.—The system is in
the T phase if the wave number maximizing the principal
eigenvalue is positive, while it is in either the R or N phase
if that optimal wave number is null. In terms of the
dimensionless variable x¼ω2ζ4ρ2=μ4 (such that q¼e−x=2),
we can write the principal eigenvalue (C37) as

λ ¼ πρ2fðxÞ; ðC55Þ

fðxÞ ¼ e−αx=2ð1þ s − e−x

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − s − e−xÞ2 þ 4sxe−2x

q
Þ ðC56Þ

with α ¼ ðμη=ζρÞ2.
For η=ζ of order 1 and μ ≫ ρ, α diverges, so the

exponential prefactor in Eq. (C56) confines x to values
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of order 1=α. We can thus expand the expression in
parentheses in x without any assumption on the magnitude
of s, yielding

fðxÞ ∼ 2e−αx=2ðsþ xÞ

with derivative f0ðxÞ ∼ e−αx=2ð2 − αs − αxÞ. Since this
corresponds to a single maximum, the condition for
T-phase dominance is simply f0ð0Þ > 0, i.e.,

ζ > ζcðηÞ ¼
ffiffiffi
1

2

r
η; ðC57Þ

whereas the wave number near the phase boundary is
given by

ω ∼
μ

ζ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ζ2

η2
− 1:

s

Form of the eigenfunction.—Separately pursuing as
above the assumptions η ≫ ρ and ζ ≫ ρ leads, as we
see, to the same eigenfunction (C42). This can be written as

ψðrÞ ∝ e
− r2

4ρ2
−iη

2

μ2
ωrð1 − e

−iζ
2

μ2
ωr−1

2
ζ4

μ4
ρ2ω2Þ: ðC58Þ

Notice that the value of ω to be plugged into Eq. (C58) is
the value that maximizes the eigenvalue (C37). In regimes
where the optimal wave number is null, we must take the
ω → 0 limit in Eq. (C58). Expanding the two complex
exponentials to the first order in ω and keeping only
the lowest order in the result yields the unnormalized
eigenfunction

ψðrÞ ∝ rx exp

�
−

r2

4ρ2

�
ðC59Þ

equal to the orientation-selective eigenfunction we find for
the zero-wave-number region, that is, to an R phase. (In
those parts of the phase diagram, therefore, the homeostatic
constraint is satisfied through the individual selectivity of
cells, and does not need to be satisfied through variations
over cortical space; that is why translation symmetry can be
restored.)
With ψðr;ωÞ given by Eq. (C58), the eigenfunctions

ψðx; rÞ ¼ ψðr;ωÞeiωx for wave vectors ω and −ω are
degenerate and complex conjugates of each other. A real
linear combination of the two is obtained by taking either
the real or imaginary part. From this, via Eq. (A32), Eq. (3)
of the main text is obtained (see Fig. 10).
Normally oriented eigenfunctions.—In order to obtain

Eq. (C42), we make at the very outset [below (Eq. (C31)]
the self-consistent assumption

R
A�
yðrÞψðrÞdR ¼ 0, which

we use to write both Eqs. (C32) and (C43). The subspace
we focus on is indeed orthogonal to Ay, and we find this
subspace to be an asymptotic eigenspace of the system; see

Eq. (C58). Nonetheless, the same system may also possess
eigenfunctions having a nonzero overlap with AyðrÞ. Do
these eigenfunctions correspond to an eigenvalue higher
than those we calculate?
The self-consistency of our initial assumption is

straightforward to check. If we repeat the above by
relaxing the assumption

R
A�
yðrÞψðrÞdR ¼ 0, we have to

diagonalize a 5 × 5 matrix instead of a 4 × 4 one.
However, this matrix is diagonal in its Ay sector. The
resulting extra eigenvalue is a strictly decreasing function
of the wave number; hence, it must be computed at ω ¼ 0,
where we find Λy ¼ 2πρ4=μ2.
Let us compare this eigenvalue with the eigenvalue of the

cortically modulated solution ΛM which we find above. In
the regions of the phase diagram where ωM > 0, we have
Λy < ΛM; hence, the normally oriented solution is sup-
pressed at long times. In the regions where the optimal
wave number is ωM ¼ 0, on the other hand, it can be seen
that Λy ¼ ΛM.
We thus find that, when the RF varies across the cortex, it

tends to vary from negative to positive along the direction
of cortical modulation, so that the orientation is orthogonal
to that direction. When it is uniform across the cortex, its
direction becomes immaterial; hence, we have degeneracy
in the orientation of the RF.
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FIG. 10. Receptive fields for the T phase. Plots of the
symmetric and antisymmetric components of Eq. (3) in the
main text to the Fourier-transformed eigenfunction compared
to the result of numerically diagonalizing the full operator L̂p

and rescaling the principal eigenfunction by Eq. (A32).
Receptive fields s̃ are rotated by the complex angle ϕ0 ¼
arctan ð− R

ℑs̃=
R
ℜs̃Þ so as to make the imaginary part odd

under inversion of the cortical modulation axis (the real part
becomes symmetric as a consequence; see Sec. B 2). The
parameters used here are ζ ¼ 5ρ and η ¼ 3ρ corresponding to
a ground state at ω ≈ 0.48=ρ. A side of the grid has length equal
to 5ρ; color scale ranges between min and values.
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3. The uncorrelated regime

a. The operator with uncorrelated input (ζ ∼ 0)

In order to infer the other main feature of the phase
diagram, i.e., the existence of a triple point, we must focus
on the uncorrelated limit ζ ≪ minðρ; ηÞ. In this limit, it
follows from Eq. (A41) that the matrix element of L̂p in real
space takes the form

Lpðx; r; y; sÞ ¼ δðx − yþ r − sÞLcðr; sÞ; ðC60Þ

where the operator L̂c has the kernel

Lcðr; sÞ ¼
Z

dr1ds1½δðr − r1Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞAðr1Þ

p
�L0ðr1; s1Þ

× ½δðs1 − sÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðs1ÞAðsÞ

p
� ðC61Þ

with

L0ðr; s; ηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞAðsÞ

p
Iðr; sÞ; ðC62Þ

where to write the last equality we apply the delta function
of Eq. (C60) to infer Iðx; yÞ ¼ Iðx − yÞ ¼ Iðr − sÞ.
Implementing the delta functions in Eq. (C61), we have

Lcðr; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞAðsÞp ¼ Iðr; sÞ þ

Z
dr1ds1Aðr1ÞAðs1ÞIðr1; s1Þ

−
Z

duAðuÞIðr; uÞ −
Z

duAðuÞIðu; sÞ:

ðC63Þ

We can also rewrite Eq. (C61) compactly as

L̂c ¼ L̂0 þ ja0iha0jL̂0ja0iha0j − 2HP½L̂0ja0iha0j�; ðC64Þ

where HP is the Hermitian part of an operator.
If we look for eigenfunctions of L̂p in the form

Ψðx; rÞ≡ hx; rjΨi ¼ ψðrÞe−iωðxþrÞ; ðC65Þ

the characteristic equation ΛΨ ¼ L̂pΨ reduces to ΛψðrÞ ¼R
dsLcðr; sÞψðsÞ, which means that ψðrÞ is the correspond-

ing eigenfunction of L̂c, and the eigenvalue is independent
of the cortical wave number. Hence, in the limit of
uncorrelated inputs there is complete degeneracy in the
wave number.
Because of this degeneracy, the principal eigenfunction

could be calculated by focusing solely on the zero-wave-
number sector. The results of Sec. C 1 apply and can be
used to compute ψðrÞ which is then replaced for ψðrÞ in
Eq. (C65), yielding the principal eigenfunction for all wave
numbers at ζ ¼ 0. Thus, we find that if the input is
completely uncorrelated (ζ ¼ 0), the principal eigenfunc-
tion of the operator is orientation selective if η > Θcρ and

nonselective if η < Θcρ, with the critical ratio Θc bounded
from below by the value θc of Eq. (C21).
For ζ ¼ 0 and η < θcρ, in the variational approximation

of Eq. (C8), the principal eigenfunction is

Ψ0ðx; rÞ ∝ ðR2 − r2Þ exp
�
−

r2

2σ2
þ iωðxþ rxÞ

�
; ðC66Þ

where σ is the value of γ as given by Eq. (B10) evaluated
at ζ ¼ 0.
The nodal radius R ∝ ffiffiffiffiffi

ηρ
p

is as calculated in Sec. C 1
and the eigenvalue is λ ∼ ð2πη3=ρÞ½ρ − ð5 − ffiffiffiffiffi

10
p Þη]. While

the eigenfunction depends parametrically on the wave
number ω, the eigenvalue is entirely degenerate in it, as
follows from the divergence of the cutoff wave number Ω
in Eq. (A48).
For ζ ¼ 0 and η > Θcρ, the exact principal eigenfunc-

tion as per Eqs. (B16) and (B17) is given by

Ψðx; rÞ ¼ ðkþeþiϕ þ k−e−iϕÞ exp
�
−iωðxþ rÞ − r2

2σ2

�
ðC67Þ

for any vectorω and arbitrary coefficients kþ and k−. Again
we refer to the longitudinal and orthogonal combinations

�Ψxðx; rÞ
Ψyðx; rÞ

�
¼

�
rx
ry

�
exp

�
−
r2x þ r2y
2σ2

þ iωðxþ rÞ
�
;

ðC68Þ

which are the instances of the 2p waves Φ0;1 and Φ1;0

corresponding to uncorrelated input.
These two eigenfunctions share, as per Eq. (B14), the

exact eigenvalue

Λx;y ¼ 2πη2
�
1þ η2

2ρ2
þ η

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

4ρ2

s �−2

; ðC69Þ

which is independent of the wave number. Thus, the x − y
degeneracy we have for η > Θcρ adds up to the overall
degeneracy in the cortical wave number that exists for any
value of η.

b. Perturbative input correlations

We show that the point P0 ¼ ðζ0 ¼ 0; η0 ¼ ΘcρÞ where
the R and N phases meet is a point of nonanalyticity for the
principal eigenvalue regarded as a function of the param-
eters and thus belongs to a phase boundary. Moreover, this
phase boundary cannot stop there, because it is a boundary
between two phases that have different symmetries—one
that displays orientation selectivity and one that does not.
How is this phase boundary continued for ζ > 0? Will it
curve up or down in the ðζ; ηÞ space?
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Since we possess the exact solution for ζ ¼ 0; η > Θcρ,
perturbation theory is an ideal tool to address this question.
We build a perturbation theory in the small parameter ζ=η.
As we see in Sec. C 3 a, our starting point for perturbation
theory is a highly degenerate set of eigenfunctions, mainly
due to the degeneracy in the wave number. But since the
full operator for ζ > 0 commutes with cortical translations,
different translational eigenstates are not coupled by the
perturbation, and nondegenerate perturbation theory with
respect to wave numbers may be applied.
The theory will prove the following three facts:
(i) The ω degeneracy is removed by an infinitesimal

ζ > 0 for any η, and this happens in such a way that
ω ¼ 0 is always the principal eigenstate.

(ii) The phase boundary starting at the point P0 ¼
ð0;ΘcρÞ has a flat slope at that point in the ζ=η
plane.

(iii) The x − y degeneracy of the p-wave eigenfunctions
survives at finite ζ.

c. Optimal wave number for oriented eigenfunctions:
Transverse orientations

We mention that the perturbation does not couple
degenerate wave numbers. The same is true with the
additional degeneracy in the orientation of selectivity,
and it is possible to study the two 2p eigenfunctions
separately because the full operator L̂p does not couple
them for any value of the parameters. Indeed, we have it by
symmetry that hΨxjL̂pjΨyi ¼ 0 for any ζ and ω. This
means that we can study the effect of a small but finite ζ
separately on the two eigenfunctions (applying nondegen-
erate perturbation theory).
We begin with the y-oriented wave (transverse orienta-

tion). While Ψy is an eigenfunction of L̂ only for ζ ¼ 0, it
can be checked that its generalization

χy0;1ðrÞ ¼
ryffiffiffi
π

p
σ2

exp

�
−

r2

2σ2

�
e−iðη2=μ2Þωr ðC70Þ

is an exact eigenfunction of the full operator L̂p over the
whole phase diagram. Indeed, it is an exact eigenfunction of
L̂ and, being orthogonal to the constraint ket jaωi, it belongs
to the null space of the constraint operators Ŝ and T̂:

hχy0;1jŜjχy0;1i ¼ hχy0;1jT̂jχy0;1i ¼ 0: ðC71Þ

The corresponding eigenvalue of L̂p is given, for every
point in ðζ; ηÞ space, by

Λy ¼ 2πμ2

β2
exp

�
−

ω2

2Ω2

�
ðC72Þ

with β and Ω defined according to Eqs. (B10) and (A48),
respectively.

For ζ ¼ 0, as we know, this eigenvalue is independent of
the wave number. However, for any ζ > 0, Eq. (C72)
describes an eigenvalue that decreases monotonically with
the wave number; hence, the degeneracy is removed. We
can conclude that, in the limit of small ζ, the principal
y-oriented eigenfunction is uniform over the cortex; i.e.,
translation symmetry is not broken.

d. Optimal wave number for oriented eigenfunctions:
Longitudinal orientations

We now turn to considering the x-oriented functionΨx. It
can be checked that Ψx is orthogonal to the constraint state
jaωi, which entails

hΨxjŜjΨxi ¼ hΨxjT̂jΨxi ¼ 0: ðC73Þ

This holds true for any value of ζ. However, Ψx is an
eigenstate only for ζ ¼ 0 and, different from the case
of Ψy seen above, it is not straightforward to build a
generalization of Ψx that will be an eigenstate of L̂p at any
point in parameter space. Therefore, here we restrict our
attention to sufficiently small nonzero values of ζ and build
a perturbation theory in the parameter ϵ ¼ ζ2=η2. Hence,
we write the operator L̂p as L̂p ¼ L̂pðϵ ¼ 0Þ þ Δ̂þOðϵ2Þ,
where Δ̂ includes the first order in ϵ, and we treat Δ̂ as a
perturbation. In the shift operator Δ̂ ¼ ΔL̂þ ΔŜþ ΔT̂þ
ΔT̂†, because of Eq. (C73), we have to compute only the
L̂ term.
We begin by expanding to the first order in ϵ Eq. (A50),

which yields

ΔLðr; s;ωÞ ¼ ϵ

�
−
ω2η2

2
þ iωðrx − sxÞ þ

ðr − sÞ2
2η2

�

× e
−iωðrx−sxÞ−r2þs2

4ρ2
−ðr−sÞ2

2η2 : ðC74Þ

Wekeep only the terms that have a nonvanishing expectation
value inΨx; in particular, we neglect terms that change sign
if we swap the two variables rx and sx, because the integral
would be zero. In addition, we may ignore terms whose
expectation value in Ψx (i.e., whose contribution to
hΨxjΔL̂jΨxi) will bear no dependence on the wave number.
After some algebra, this leaves a single first-order term in
Eq. (C74) that obeys all these requirements, namely,

ΔLðr; s;ωÞ ∼ −
ω2ζ2

2
e
−iωðrx−sxÞ−r2þs2

4ρ2
−ðr−sÞ2

2η2 : ðC75Þ

The corresponding expectation value is

Δ ¼ hΨxjΔL̂jΨxi ¼ −
ω2ζ2

2
Λ2pðζ ¼ 0Þ; ðC76Þ
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a negative shift in the eigenvalue that is minimized by
setting ω ¼ 0.
We thus prove that, for sufficiently small ζ and given η,

the principal eigenstate is always cortically uniform
(ω ¼ 0), as long as the principal eigenstate for the given
η and ζ ¼ 0 is an R phase. This entails that in the limit
ζ → 0, the principal eigenstate of the system has a zero
wave number for any η > Θcρ. Hence, the slope of the
phase boundary at ð0;ΘcρÞ cannot be positive.
While the degeneracy in the wave number is removed by

first-order perturbation theory, the degeneracy between the
x and y orientations is not removed, as seen by comparing
Eqs. (C72) and (C76) to the second order in ω and
using Ω ∼ 1=ζ.

e. Optimal wave number for nonoriented eigenfunctions

The s wave (that is, nonoriented) eigenfunctions of L̂p

are also degenerate in the cortical wave number for ζ ¼ 0.
To see which wave number effectively prevails, we must
build a perturbation theory in ϵ ¼ ζ2=η2 starting from the
(unknown) principal eigenstate of the zero-wave-number
operator, which we call jsi because of it being an s mode.
From the discussion of Sec. C 3 [see Eq. (C65)], we

know that the principal eigenstate at ζ ¼ 0, when an s
wave, must have the form hω; rjsi ¼ ψ sðrÞe−iωrx . We can
thus use Eq. (B1) to write the level shift as

ΔL̂pðωÞ¼ hsjð1− jaωihaωjÞΔL̂ωð1− jaωihaωjÞjsi; ðC77Þ

where the matrix elements of ΔL̂ω have the form given
in Eq. (C74).
We notice now that factors of the type e−iωrx will cancel

in the integrands of all scalar products that appear in
Eq. (C77). As a consequence, the third term in the square
brackets of Eq. (C74) may be ignored, as it adds no
dependence on the cortical wave number.
The first term in the square brackets of Eq. (C74), on the

other hand, yields the level shift

ΔL̂ð1Þ
e ¼ −

ω2ζ2

2
hsjL̂pðζ ¼ 0Þjsi

¼ −
ω2ζ2

2

Z
ψsðrÞLcðr; sÞψ sðsÞdr

¼ −
ω2ζ2Λs

2
; ðC78Þ

where to write the last equality, we use the fact that ψ s is, by
definition, an eigenfunction of L̂c with a positive eigen-
value Λs. The resulting shift is a monotonically decreasing
function of the wave number.
The only remaining term is the second one in the square

brackets of Eq. (C74), namely,

ΔLð2Þðr;s;ωÞ¼ iϵωðrx− sxÞe−iωðrx−sxÞ−
r2þs2

4ρ2
−ðr−sÞ2

2η2 ; ðC79Þ

which also yields a level shift of the form

ΔL̂ð2Þ
e ¼ hsjΔL̂ð2Þjsi þ jhsjaωij2haωjΔL̂ωjaωi

− 2ℜ½hsjaωihaωjΔL̂ð2Þjsi�: ðC80Þ

The ensuing integrals are quickly estimated by symmetry
considerations. The factors e−iωðrx−sxÞ in Eq. (C79) cancel
everywhere in Eq. (C80). While only the real part of these
imaginary exponentials would contribute, the resulting
matrix element is effectively antisymmetric in the swapping
of the r and s coordinates. This makes the first two terms in
Eq. (C80) vanish by symmetry; since the final square
bracket is purely imaginary, the third term is also zero.
Hence, the full eigenvalue shift is given by Eq. (C78) and
decreases monotonically as a function of the wave number.
We conclude that the wave-number degeneracy at ζ ¼ 0 is
removed even by an infinitesimal range of presynaptic
correlations, and the uniform cortical mode is favored for
any η.
Building upon this, we conclude that, to the lowest order

in ζ=η, the principal eigenvalues of the s and p modes are
unchanged from those at ζ ¼ 0, and therefore, the phase
boundary starting from P0 ¼ ð0;ΘcρÞ has a flat slope at
that point (Fig. 11).

FIG. 11. Patching together of phase boundaries. For uncorre-
lated inputs (Sec. C 3), the η axis contains a transition point where
rotation symmetry is broken (red dot). The perturbation theory for
short-range input correlations (Sec. C 3 b) shows that this
transition point is continued by a flat phase boundary. The
asymptotic rank reduction used for the long-range limit (Sec. C 2)
reveals an R-T boundary far away from the origin. We also know
from Sec. C 1 c that the N phase is forbidden outside a quarter
circle containing the red dot on its contour, and the R phase is
forbidden inside it. This leads to predicting an N-T boundary
(orange dashed line) contained within the quarter circle, and an
R-T boundary stretching from the red dot into the long-range
regime. The red dot is a triple point of the system.
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4. The triple point

We point out the existence of a point P on the ζ ¼ 0 axis
where the N phase transitions into the R phase, and show
that this phase boundary continues parallel to the ζ axis for
perturbatively small values of ζ. This finding must be
matched with what is shown about the long-range limit, the
existence of a linear phase boundary between the R and T
phases. These boundary lines cannot terminate, but can
continue only into each other, the reason being that beyond
the termination point of a phase boundary, two different
symmetries would have to merge. The simplest diagram
adhering to this requirement is one where the R region
extending above the T − R boundary for long ranges
connects, at short ranges, to the R region that extends
above the N − R boundary. The missing stretch of phase
boundary is sketched as a dashed red curve in Fig. 11.
The immediate consequence of this scenario is that an

extra boundary located at values of η below the lower limit
of the R phase, must separate the short-rangeN region from
the T region that begins for longer ranges (orange dashed
curve of Fig. 11). In principle, one could expect this second
boundary to start from any point along the lower contour of
the R phase, i.e., at an arbitrary value of ζ. However, it must
be remembered the discontinuity between the R and N
eigenfunctions is only necessary for ζ ¼ 0, where projec-
tive fields from the LGN are decoupled from each other and
there is degeneracy in the wave number. For ζ > 0, a
suitable path through the T phase can always bridge the
N and R eigenfunctions continuously. Variational reason-
ing is sufficient to infer that, where such a transition exists,
it is advantageous over a sharp transition.
It follows that we expect the T region to taper all the way

to point P0, which consequently is a triple point of the
system.
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