

1 **FRONT MATTER**

2 **Title**

3 [A Wearable Textile-Based Pneumatic Energy Harvesting System for Assistive Robotics](#)

4 **Authors**

5 Rachel A. Shveda,¹† Anoop Rajappan,¹† Te Faye Yap,¹ Zhen Liu,¹ Marquise D. Bell,¹
6 Barclay Jumet,¹ Vanessa Sanchez,^{2,3} Daniel J. Preston^{1*}

7 **Affiliations**

8 ¹Department of Mechanical Engineering, William Marsh Rice University, Houston, TX
9 77005, USA.

10 ²John A. Paulsen School of Engineering and Applied Sciences, Harvard University,
11 Cambridge, MA 02138, USA.

12 ³Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
13 02115, USA.

14 *Corresponding author. Email: djp@rice.edu

15 †These authors contributed equally to this work.

16 **Abstract**

17 Wearable assistive, rehabilitative, and augmentative devices currently require bulky power
18 supplies, often making these tools more of a burden than an asset. This work introduces a
19 soft, low-profile, textile-based pneumatic energy harvesting system that extracts power
20 directly from the foot strike of a user during walking. Energy is harvested with a textile
21 pump integrated into the insole of the user's shoe and stored in a wearable textile bladder
22 to operate pneumatic actuators on demand, with system performance optimized based on a
23 mechano-fluidic model. The system recovered a maximum average power of nearly 3 W
24 with over 20% conversion efficiency—outperforming electromagnetic, piezoelectric, and
25 triboelectric alternatives—and was used to power a wearable arm lift device that assists
26 shoulder motion and a supernumerary robotic arm, demonstrating its capability as a
27 lightweight, low-cost, and comfortable solution to support adults with upper body
28 functional limitations in activities of daily living.

29 **Teaser**

30 A lightweight, wearable textile-based system harvests and stores energy during walking to
31 power pneumatic assistive devices.

38 **MAIN TEXT**

39

40 **Introduction**

41 More than 30 million adults in the United States live with an upper body functional
42 limitation (1). The most common limitation reported among adults is difficulty lifting a
43 ten-pound object, with 13 million unable to do so at all, while several million adults also
44 have difficulty grasping, reaching, and pushing or pulling with their hands (1). Upper
45 body function is critical to a person's ability to perform activities of daily living such as
46 eating, dressing, and bathing; limited ability to perform these functions correlates with an
47 increased risk of mortality (2), and employed adults with a disability earn 25% less than
48 adults without a disability (1). Wearable assistive devices that are soft, affordable, low-
49 profile, lightweight, and portable can significantly enhance pathways to recovery and
50 quality of life for individuals with upper body impairments (3, 4).

51 Various assistive and rehabilitative devices have been designed to support individuals with
52 upper body limitations; these devices include soft exogloves for hand support and
53 rehabilitation (5–7), exosuits for back support and rehabilitation (8, 9), and exosleeves for
54 shoulder (10–12), elbow (13–15), forearm (16, 17), and wrist (18–20) support and
55 rehabilitation (21, 22). Such devices can also serve to augment the capabilities of non-
56 disabled adults by, for example, acting as a supernumerary limb (or “third arm”) (23–27),
57 supplementing lifting capacity (28), or providing hip and ankle assistance during loaded
58 walking (29, 30). Supernumerary robotic limbs, in particular, have been effective in
59 supporting, assisting, or enhancing users’ existing capabilities (31–34). Wearable robotic
60 devices are often made from soft and lightweight materials such as elastomers and textiles
61 to promote comfort and safety of the user (3). However, these devices require power, and
62 the weight and bulk of common power supplies such as batteries, compressors, and
63 pumps, as well as accompanying hardware such as valves, cables, and electronics, often
64 make these tools more of a burden than an asset (35). The development of lightweight,
65 portable, and unobtrusive power sources is thus a prerequisite for the emergence of
66 practical wearables that fully leverage the capabilities of soft robotic actuators (35, 36).

67 Integration of energy harvesting capability in clothing offers an attractive substitute for
68 bulky onboard power units and is capable of significantly reducing device weight and size
69 while precluding the need for recharging or refueling as power is generated continuously
70 during use. Body movement, heat, and biochemical potential are all readily available and
71 easily accessible energy sources for wearable devices, with motion of the limbs—
72 specifically, foot strike—representing the most abundant source of power (37–39). Shoe-
73 based energy harvesting devices have been developed to capitalize on this source of power
74 since as early as 1948 (40, 41). Several physical mechanisms have been used to harvest
75 energy during walking: pneumatic, electromagnetic, triboelectric, piezoelectric,
76 hydroelectric, thermoelectric, and pyroelectric approaches have been demonstrated in
77 prior work (38, 39). Recently, advances in thin-film and fiber-based triboelectric
78 nanogenerators and fiber lithium-ion batteries have enabled their direct integration into
79 shoe insoles and woven textiles (42–44). However, the power output of these devices is
80 currently in the milliwatt range which, although suitable for sensors and low-power

81 **electronics, remains inadequate for powering practical assistive actuators during everyday**
82 **use.** In addition, because many soft actuators used in assistive devices rely on pneumatic
83 actuation (5, 45, 46), approaches that generate electricity require an additional conversion
84 step from electrical to pneumatic power for use with these assistive devices, further
85 reducing efficiency and adding bulk by requiring more components (47, 48). Ogawa et al.
86 (49, 50) developed an in-shoe pneumatic energy harvesting device, but still relied on a
87 hard tank for pneumatic energy storage; furthermore, their system was neither modeled to
88 elucidate the underlying physics and thermodynamics of operation, nor was it optimized
89 for maximum performance.

90 In this work, we develop a textile-based energy harvesting system that extracts pneumatic
91 energy using a soft textile pump integrated directly into the insole of the user's shoe; the
92 energy harvested during walking is stored inside a soft, wearable textile bladder until
93 dispensed by the user to power actuators as needed. Our energy harvesting platform thus
94 enables users to comfortably produce and store the power needed to operate the pneumatic
95 actuators found in many common assistive and rehabilitative devices. We built our devices
96 using stacked laminate assembly of heat-sealable textiles, ensuring scalability and ease of
97 manufacturing (3, 36). To optimize the performance of our system, we developed a
98 mechano-fluidic model, validated its predictions against experimental results, and used it
99 to guide the final design of our devices. Our system achieved high conversion efficiencies,
100 recovering more than 20% of the mechanical energy available from walking during
101 experiments; the insole textile pump attained a maximum average power output of 3 W
102 that surpasses the capabilities of existing foot-strike energy harvesting systems based on
103 electrical mechanisms. The direct generation of pneumatic power further eliminates the
104 need for an additional electric-to-pneumatic energy conversion step required by alternate
105 approaches. We demonstrate the use of our system in powering two assistive actuators
106 fabricated entirely from textiles: (i) an arm-lift device that assists shoulder motion, and (ii)
107 a robotic "third arm" that augments user capability.

108 Results

109 *The textile-based pneumatic energy harvesting system*

110 The soft energy harvesting system comprises two key components each built from textiles:
111 an insole pneumatic pump, which we call the "energy harvesting device" or EHD, and a
112 wearable pneumatic accumulator, which we refer to as the "energy storage bladder" or
113 ESB (Fig. 1). Both the EHD and the ESB were fabricated by first laser patterning and then
114 thermally bonding layers of heat-sealable textile, namely nylon taffeta fabric coated on
115 one side with thermoplastic polyurethane (TPU). Our fabrication approach was guided
116 mainly by the need for scalability and ease of manufacturing of our textile devices; laser
117 patterning allows fast and easy customization of devices, and heat sealing of
118 thermoplastic-coated fabric is a widely adopted technique in the commercial production of
119 garments (51). Stacked laminate assembly of carefully designed textile layers yielded
120 durable insole EHDs capable of enduring large applied forces (~ 300 N) and cyclic
121 deformation, and a wearable, low-profile ESB capable of storing air at high pressure (~ 1
122 bar) with no leakage.

124 During walking, the compressive force exerted by the user's foot performs mechanical
125 work on the EHD; the EHD converts this work into free energy of pressurized gas, which
126 is then conveyed to and stored in the ESB for later use. To enable its operation as an air
127 pump, we filled the textile pouch of the EHD with water-blown polyurethane foam (Fig.
128 1A) and added a pair of check valves to enforce unidirectional flow of air from the inlet to
129 the outlet (52) (Fig. 1C). When force applied by the foot depresses the EHD (the "foot
130 strike" or compression phase of the pump cycle), air within the pouch is pressurized and
131 forced through the outlet valve into the ESB. When the foot is raised, relieving the force
132 on the EHD (the "liftoff" or intake phase of the pump cycle), the pouch inflates under the
133 restoring force of the foam and is refilled by ambient air drawn through the inlet valve.
134 We fabricated three different prototypes of the EHD, with pouch volumes of 6 mL, 35
135 mL, and 72 mL; other aspects of the design were kept unchanged. Figure 1C illustrates
136 one possible configuration of the energy harvesting system, and the corresponding
137 placement of the EHD and ESB on the user: the flexible ESB may be worn comfortably
138 around the user's waist, and the soft EHD fits unobtrusively inside the user's shoe. The
139 ESB serves as a portable source of pressurized air for powering pneumatic actuators that
140 assist the user with various functions. The ESB can be repositioned easily, and without
141 affecting system performance, to enhance comfort or facilitate use with commercial
142 assistive and rehabilitative pneumatic devices.

143 To evaluate the performance of our energy harvesting system, we measured the force of
144 foot strike on the EHD and the pressure inside the ESB as a function of time for a 55 kg
145 user walking on a treadmill at 3 mph (4.8 km/h, corresponding to the average walking
146 speed for adults under 30 years old) (53), as shown in Fig. 2A. A video recording of the
147 test using the 35 mL EHD is included as Movie S1. The system successfully extracted and
148 stored pneumatic energy during walking, which was subsequently used to power two
149 textile-based actuators, namely a soft arm-lift assistive device and a supernumerary arm.

150 ***Mechano-fluidic modeling of the textile energy harvesting system***

151 We employed a quasi-static force balance on the pouch to model fluid flow through the
152 EHD and thereby characterize its pumping performance (Fig. 2B). To simplify analysis,
153 air inside the pouch was modeled using the ideal gas equation of state, and the temperature
154 of the gas was assumed constant and equal to the steady-state temperature measured inside
155 the shoe. The pumping cycle of the EHD occurs in four consecutive stages as it undergoes
156 repeated loading and unloading inside the shoe. In stage I, force applied during foot strike
157 compresses the EHD and increases the pressure of the gas within the porous foam. When
158 pressure inside the EHD exceeds that of the ESB, the outlet valve opens, releasing
159 compressed air to the ESB for storage (stage II). Stage III commences with liftoff of the
160 foot; as the stepping force is removed, the EHD expands under the restoring force of the
161 foam, and gas pressure inside the pouch falls. Finally, in stage IV, fresh air is drawn in
162 through the intake valve when the internal pressure drops below that of ambient air. The
163 forces acting on the top wall of the pouch (represented by the "piston" of a pneumatic
164 cylinder) at an arbitrary point during this cycle are shown in Fig. 2B; these include the
165 stepping force F_{step} exerted by the foot, the restoring force F_{spring} from the foam, and the

166 pressure forces F_{atm} and F_{gas} , respectively, resulting from internal and external air pressure
167 acting on the effective contact area of the pouch.

168 Accurate modeling of the pressure within the EHD during the stepping cycle required
169 realistic descriptions of the stepping force, pouch deformation, and reaction force from the
170 foam. To this end, we measured the stepping force on the EHD during walking using
171 force-sensing resistors mounted on the insole of the user's shoe (Fig. S5). The transient
172 force profile could be well-approximated by a trapezoidal waveform with frequency
173 equaling the rate of footfalls during walking (Fig. 2B); the peak force was inferred
174 separately from measurements of the peak gas pressure attained during the compression
175 phase. The flattening of the lenticular EHD pouch when compressed by the foot results in
176 non-linear changes in its internal volume and effective contact area; furthermore, the
177 polyurethane foam behaves as a non-linear spring and its reaction force diverges upon
178 approaching maximum deformation. The change in gas volume as well as the restoring
179 force from the foam were both measured as a function of vertical displacement through
180 simulated compression of the EHD using a universal testing machine (Instron 68SC-2);
181 the internal volume of the EHD was approximated using a quadratic polynomial fit (Fig.
182 S4), whereas the foam reaction force showed good conformance to a neo-Hookean type
183 force function (Fig. S6). We developed a time-stepping routine that solves the non-linear
184 force balance equation numerically to capture the temporal evolution of system
185 parameters—such as the deformation of the EHD and the rate of airflow to the ESB—for
186 any arbitrary choice of the stepping force. A detailed description of our model, including
187 the executable code, is provided in the Supplementary Material. The model predictions for
188 the 6 mL, 35 mL, and 72 mL EHDs are shown alongside experimental data in Figs. 2C
189 and 2D; the predicted pressure traces show good agreement with the experimental
190 pressure measurements for all three prototypes.

191 We used our mechano-fluidic model to determine the maximum average power (i.e., the
192 maximum power that could be continuously supplied to a balanced load optimized for the
193 system) and the overall energy conversion efficiency of our energy harvesting system. At
194 any given pressure, the usable pneumatic energy stored in the ESB is given by the
195 thermodynamic availability (exergy) of the compressed gas contained within it; the
196 availability is equal to the maximum displacement work that can be extracted if the
197 pressurized gas in the ESB is expanded reversibly against the atmosphere (Eq. S24 and
198 Fig. S7A). To determine the average power output of the EHD, we divided the increase in
199 stored energy during each foot strike by the duration of the corresponding step cycle (Fig.
200 S7B). For a 55 kg human user walking at 3 mph, our system achieved maximum average
201 powers of 2.96 W, 1.94 W, and 0.44 W respectively, using the 72 mL, 35 mL, and 6 mL
202 EHDs (Figs. S7B and S8). In Fig. 2E, we compare the maximum average power output of
203 our system with those achieved by previously reported foot-strike energy harvesting
204 devices based on piezoelectric, triboelectric, and electromagnetic mechanisms (38, 50).
205 The comparison reveals that our system outperforms all approaches utilizing electric
206 mechanisms for energy harvesting by over 100% in maximum average power. Additional
207 details on this comparison with extant foot strike energy harvesting devices are provided
208 in the Supplementary Material (Table S6).

We define the conversion efficiency of our device as the ratio of the energy content of the ESB when it reaches full inflation (taken to be 99% of its final steady-state pressure; see Fig. S9) to the cumulative mechanical work performed by the stepping force on the EHD until that point in time. The work input to the EHD was estimated by integrating the stepping force with respect to the displacement of the foot-pouch contact point; the negative work done by the EHD in raising the foot during the reinflation phase was ignored in this calculation, yielding conservative estimates of efficiency. Our optimized 6 mL EHD achieved an energy conversion efficiency of 23% (details are included in the Supplementary Material).

Validating system performance for different users and walking speeds

Figure 3A shows pneumatic energy harvesting using the 35 mL EHD for a 72 kg user walking at different speeds; whereas 3 mph (4.8 km/h) serves as a typical speed for adults under 30 years of age, a slower speed of about 1 mph (1.6 km/h) may be more accessible for older individuals and users with mobility limitations. We observed that the frequency of footfalls (cadence) does not change significantly with the walking speed; the time interval between successive footfalls decreased only by about 30% (from 1.6 s to 1.1 s) even with a threefold increase in speed (from 1 mph to 3 mph). Consequently, the rate of pressurization of the ESB was independent of speed, as indicated by the collapse of experimental pressure traces when normalized by the terminal ESB pressure (Fig 3B). Furthermore, we observed only a slight (~10%) decrease in the maximum ESB pressure with decrease in speed from 3 mph to 1 mph, which may be attributed to the known reduction in the amplitude of the stepping force at slower speeds (54). As neither the final pressure nor the fill rate is sensitive to changes in walking speed within the 1–3 mph range, we believe that our devices may be used effectively at reduced speeds with minimal to no modifications.

We also tested the performance of the 35 mL EHD for five different users with body weights in the range of 52–87 kg (Fig. 4A), walking at a speed of 3 mph; results from these tests are shown in Figs. 4B and 4C. Neglecting small variations that may be attributed to inherent differences in foot size, shoe fit, cadence, and gait between users, we see that the final ESB pressure increases proportionally with the user's body weight on account of the increased maximum heel force exerted on the EHD. This conclusion is further corroborated by our mechano-fluidic model, which predicts a maximum ESB pressure that increases proportionally with the applied heel force (Figs. 4D and 4E). Combining experimental trends (inset to Fig. 4C) with model predictions (Fig. 4E), we infer that approximately 61% of the users' bodyweight is transmitted via their heel to the EHD, which is in excellent agreement with data reported in the literature (54).

Powering assistive actuators using harvested pneumatic energy

We demonstrated the ability of our energy harvesting system to generate sufficient energy to operate two pneumatic actuators made entirely of textiles: (i) an arm-lift assistive device (Fig. 5) and (ii) a supernumerary arm (Fig. 6), similar to devices reported in prior work (25–27, 55). Both actuators were again fabricated by stacked laminate assembly of

heat-sealable textiles in a process identical to that used for the EHD and ESB (Figs. S2 and S3).

The arm-lift assistive device consists of a pneumatic bellow actuator (28, 56) made of six inflatable textile pouches sewn firmly beneath the shoulder of a long-sleeve compression shirt (Fig. 5A). When pressurized with air from the ESB, the actuator exerts a lifting torque at the shoulder to assist the user in raising (abducting) their arm (Fig. 5B). The number of pouches in the actuator determines the angle through which the arm is raised and the volume of air required per actuation cycle. To quantify the torque generated by the arm-lift device, we employed a mannequin with a freely rotating shoulder joint to preclude all influences of muscular effort when testing on a human user. We varied the supply pressure as well as the weight suspended from the arm (Fig. 5C) and measured the angle of rotation of the shoulder joint to infer the assistive torque (Fig. 5D). Our arm-lift actuator can apply a torque greater than 10 N m (Table S7), which is consistent with the demands on current textile-based assistive devices (3). We also demonstrated the use of the arm-lift assistive device, powered solely by energy stored in the ESB, by a human user (Fig. 5A); a video showing the device in operation, on both the mannequin and the human user, is included as Movie S2.

The supernumerary robotic arm (or “third arm”) operates using a dual-bladder system (Fig. 6A). The supporting bladder lends mechanical stiffness to the arm during use; it is mounted on the ESB and remains pressurized at all times. The actuating bladder forms the end effector of the arm and, when pressurized, allows the user to grasp and hold objects of various shapes. When not in use, the arm deflates to a compact size and folds conveniently out of the user’s way (Fig. 6B). We tested our prototype robotic third arm by utilizing it to grasp common household objects of various sizes, shapes, and weights, including a pair of scissors, a cup, and a granola bar (Figs. 6C and S10); these demonstrations were performed solely using pressurized air generated by the energy harvesting system. Fig. 6D shows a human user picking up a 42.6 g granola bar using the third arm and transporting it to the desired target location 3.5 feet away. Fig. 6E further demonstrates the utility of this device when the user’s hands are full, enabling them to pick up and transport a piece of crumpled paper while also holding two large boxes. Operation of the third arm in this work is powered solely by energy harvested with the EHD and stored in the ESB; a video of these demonstrations is included as Movie S3.

Discussion

This work demonstrates a soft, low profile, and comfortable textile-based system that harvests energy during walking to operate pneumatic assistive and rehabilitative devices. A smaller EHD volume results in a slower fill rate but achieves a higher maximum pressure of air stored in the ESB; conversely, a larger EHD volume yields a faster fill rate but achieves a lower maximum pressure (Fig. S9). This behavior occurs because the terminal ESB pressure is determined by the maximum pressure attained in the EHD; the latter, as per the force balance described by Eq. S6, is set by the ratio of the net maximum force on the pouch wall (i.e., the peak heel force minus the spring force) to the effective contact area between the pouch and the foot. For a given heel force, therefore, a smaller

293 EHD yields a higher maximum pressure due to the smaller contact area through which this
294 force is exerted on the pouch wall. This inverse relationship between EHD size and
295 maximum pressure is further corroborated by the predictions of our mechano-fluidic
296 model, as seen in Fig. 2D. On the other hand, a larger EHD volume enables a faster fill
297 rate on account of the greater quantity of gas pumped during each step cycle. The peak
298 operating pressure and the rate of pressurization can be customized, respectively, by
299 modifying the size of the EHD and the ESB, allowing fine-tuning of the energy harvesting
300 system to meet the needs of the user. Our mechano-fluidic model simplifies device
301 optimization by permitting exploration of the design space of possible EHD and ESB
302 configurations before actual fabrication and testing. The textile-based energy harvesting
303 system can thus be tailored, in principle, to support a variety of existing or future
304 pneumatic actuators and soft wearables that users may need to support or augment their
305 capabilities.

306 Our pneumatic energy harvesting system is not without limitations. For instance, the
307 maximum energy that our device can supply in a single rapid draw is limited by the
308 internal volume of the ESB. System capacity may be enhanced by enlarging the ESB, or
309 more appropriately, by sizing the ESB commensurate with the maximum energy demand
310 expected from various assistive actuators. For routine use, we envision sizing the
311 components such that the ESB would enable several actuation cycles in quick succession
312 before the user must wait for the EHD to replenish the expended gas. Although our system
313 is well-suited for powering pneumatic actuators directly, some users may still require
314 actuators or controllers powered electrically, necessitating an onboard generator that runs
315 on compressed air. Fortunately, this conversion step can be completed with an efficiency
316 of approximately 50% (57), yielding a maximum average power output of about 1.5 W
317 which is still competitive with the maximum values reported for direct harvesting of
318 electrical energy from walking (38).

319 All five users who tested our device reported that the EHD felt comfortable during
320 walking, and most users found its firmness comparable to that of commercial insoles or
321 shoe inserts. While the presence of the device inside the shoe was perceptible, none of the
322 users reported discomfort, pain, or soreness after tests. A systematic investigation of user
323 comfort and ergonomics will be helpful in guiding future optimization of our EHD design
324 to minimize its influence on the user's gait and preclude any possibility of injury from
325 long term use. We believe that balancing user effort across the gait cycle by providing
326 EHDs inside both shoes, as well as reshaping the EHDs to support the full area of each
327 foot, will enhance both user comfort and the efficiency of our energy harvesting system.
328 Another useful feature could be the provision of a valve to disconnect the EHD from the
329 ESB, allowing the user to manually disable energy harvesting if desired.

330 In summary, the textile-based energy harvesting system developed in this work will
331 support individuals with upper body functional limitations by powering assistive
332 wearables that facilitate activities of daily living, thereby enabling improved quality of life
333 and lowering barriers to social participation. An assessment of our system showed that it
334 outperformed all other foot strike energy harvesting techniques relying on electric
335 mechanisms by over 100% in maximum average power. During experiments, a maximum

average power output of nearly 3 W was achieved, and an energy conversion efficiency of 23% was demonstrated. Our current system may be used directly by users with different walking speeds or body weights without design modification. Furthermore, our mechano-fluidic model—which we derived from first principles based on a fundamental thermodynamic and fluidic analysis of our system and validated against experimental results—allows further optimization of power, efficiency, and output characteristics to suit the needs of specific users. Our choice of structural materials, namely heat-sealable textiles and foam, renders our devices soft, portable, and affordable, requiring only \$20 in materials to produce all wearable components. The fully assembled system weighs 140 g, which is less than one-tenth of the weight of the power and control infrastructure required to operate a similar textile-based supernumerary arm in prior work (25). Unlike expendable energy sources such as single-use battery packs, our device is capable of continuous power generation, eliminating the need for periodic replacement or refueling. Additionally, the fabrication process is simple and inexpensive, and employs off-the-shelf textile materials and well-developed processes such as heat sealing that may be readily scaled for mass production. We are therefore optimistic that our textile-based system can provide a lightweight, low-cost solution for powering wearable devices that will advance the state of the art beyond the limitations imposed by heavy and bulky power sources which serve the current generation of assistive and rehabilitative technologies.

Materials and Methods

Experimental design

The goals of this work are twofold: (a) design a soft, wearable textile-based system for capturing pneumatic energy during walking, and (b) develop an accurate mechano-fluidic model, validated against experimental data, that can be used to predict and optimize system performance. We also demonstrated two textile-based assistive devices—an assistive device to aid shoulder motion and a supernumerary robotic arm—highlighting the ability of our system to meet the requirements of practical assistive and rehabilitative actuators for users with functional limitations. All our devices are textile-based with the goal of enabling lightweight, unobtrusive, and comfortable wearable system. To allow scalability and facilitate replication of our work, we fabricated all devices from commercially available, inexpensive materials.

Fabrication of the insole EHD

Three different EHD prototypes were fabricated with pouch volumes of 6 mL, 35 mL, and 72 mL, respectively; dimensions of the pouches were chosen to fit comfortably and unobtrusively inside the user's shoe. A desktop laser engraver (K40, Orion Motor Tech) was used to cut the outer layers of heat-sealable textile (FHST, TPU-coated nylon taffeta, Seattle Fabrics Inc.) and an inner layer of silicone-coated non-stick textile (FRC13, 1.3 oz silicone impregnated ripstop, Seattle Fabrics Inc.) as shown in Fig. 1A. The layers were stacked, aligned, then heat sealed using a benchtop heat press (DK20SP, Geo Knight) at a temperature of 208 °C and cylinder air pressure of 50 psi for a duration of 30 seconds. Next, a water-blown polyurethane foam mixture (FlexFoam-iT! X, Smooth-On) was prepared and a premeasured quantity of the mixture, calibrated to achieve the intended

379 pouch volume after expansion, was injected into the textile pouch using a syringe (Fig.
380 1A). The foam was allowed to expand to its final volume and fully cure over a period of at
381 least two hours. Finally, pneumatic connections were glued to the EHD using flexible
382 rubber tubing (9776T1, McMaster-Carr) and check valves were added. The completed
383 EHD is shown in Fig. 1B. Each of the three EHD prototypes weighed less than 27 g and
384 cost less than \$3 to fabricate (even when estimated using retail prices; see Table S1).

385 ***Fabrication of the wearable ESB***

386 The ESB was designed with an internal volume of approximately 744 mL, distributed
387 across four bladder arrays that were pneumatically linked in series via soft rubber tubing
388 (Fig. S1). The textile bladders were formed by laser patterning and heat sealing TPU-
389 coated nylon taffeta fabric by a process identical to that employed for the EHD. A
390 computerized sewing machine (SQ9285, Brother) was used to stitch the bladder array into
391 a wearable belt by adding elastic as well as hook-and-loop (“Velcro”) attachments. Lastly,
392 soft rubber tubing (9776T1, McMaster-Carr) was glued to the bladders to form pneumatic
393 lines and to interconnect different sections of the bladder array. The completed ESB is
394 shown in Fig. 1C; it weighed 91 g and cost \$3 to fabricate (even when estimated using
395 retail prices; see Table S2).

396 The multi-bladder design of the ESB was specifically chosen to avoid pressure on the
397 user’s body during use; the hook-and-loop fasteners and elastic strips permit an adjustable
398 and comfortable fit that accommodates users with different waist sizes, without restricting
399 their range of motion or breathing. Once the bladders are fully inflated at ambient
400 pressure, the ESB behaves as a constant volume tank; pressurization of the stored gas
401 during walking causes no further lateral contraction of the bladders, precluding any feeling
402 of constriction or discomfort to the user.

403 ***Assembly of the energy harvesting system***

404 Two miniature plastic check valves (C-116B-SI-PS, Industrial Specialties Manufacturing)
405 were attached to the EHD to enable its pumping action. The valves were configured to
406 permit unidirectional airflow either (i) from the atmosphere to the EHD, or (ii) from the
407 EHD to the ESB (Fig. 1C). We used soft and flexible EPDM rubber tubing (durometer
408 hardness 60A, minimum bend radius less than $\frac{1}{4}$ ”) to convey pressurized air from the
409 outlet of the insole EHD to the inlet of the ESB (worn at the hip level), and from the ESB
410 to various assistive devices. Tubes were routed along the user’s garment using miniature
411 hook and loop attachments to prevent kinking due to leg motion. User-controlled actuation
412 of assistive devices was accomplished using a three-way valve (62475K42, Master-Carr)
413 for inflating and deflating the pneumatic end effectors. The assembled system is shown in
414 Fig. 1C; the overall system weighed 136 g and cost \$21 to fabricate (even when estimated
415 using retail prices; see Table S3).

416 ***Fabrication of the arm-lift assistive device***

417 The bellow actuator—consisting of six inflatable textile pouches—was formed by
418 stacking and heat sealing 16 layers of TPU-coated nylon taffeta (FHST, Seattle Fabrics
419 Inc.) interspersed with 13 layers of non-stick silicone-impregnated ripstop (FRC13, Seattle

420 Fabrics Inc.), as shown in Fig. S2. Heat sealing was performed using a benchtop heat press
421 (DK20SP, Geo Knight) at a temperature of 200 °C, cylinder pressure of 80 psi, and for a
422 duration of 80 seconds. A computerized sewing machine (SQ9285, Brother) was then used
423 to firmly attach the bellow actuator under the arm of a long-sleeve compression shirt
424 (Figs. 3A and S2). Lastly, soft rubber tubing (9776T1, McMaster-Carr) was glued to the
425 device to provide pneumatic connection to the control valve. The arm-lift assistive device
426 (including the compression shirt) weighed 113 g and cost less than \$23 to fabricate (even
427 when estimated using retail prices; see Table S4). For the experiment shown in Fig. 5C,
428 we used a manual pressure regulator to vary the input pressure to the arm-lift and thereby
429 modulate the angular displacement of the arm.

430 ***Fabrication of the supernumerary robotic arm***

431 We built two prototype third-arm devices—a 30 cm “long” version, as well as an 18 cm
432 “short” version—each consisting of two inflatable textile bladders: one for support and the
433 other for actuating the gripper. Figure 4 shows the long arm in operation, whereas
434 additional results for the short arm are included in Fig. S10. Both devices were made by
435 heat sealing 3 layers each of TPU-coated nylon taffeta (FHST, Seattle Fabrics Inc.),
436 interspersed with 2 layers each of non-stick silicone-impregnated ripstop (FRC13, Seattle
437 Fabrics Inc.), as shown in Fig. S3. Heat sealing was performed using a benchtop heat press
438 (DK20SP, Geo Knight) at a temperature of 208 °C, pressure of 60 psi, and for a duration
439 of 40 seconds. A computerized sewing machine (SQ9285, Brother) was then used to add
440 the textile frame supporting the cantilevered arm and to affix a loop attachment point to
441 the wearable ESB (Fig. S3). Separate pneumatic connections to the support and actuating
442 bladders were made using soft rubber tubing (9776T1, McMaster-Carr). The actuating
443 bladder was connected to the three-way valve for controlled actuation of the
444 supernumerary arm, whereas the support bladder was directly fed from the ESB through a
445 check valve (C-116B-SI-PS, Industrial Specialties Manufacturing) to prevent deflation
446 during operation. Lastly, a thin layer of a soft and tacky elastomer (Ecoflex GEL, Smooth-
447 On) was applied to the gripping surface of the arm to improve grip on objects with smooth
448 and slippery surfaces. The short and long third arm devices weighed 9 g and 14 g,
449 respectively, and cost \$8 each to fabricate (Table S5).

450 ***Experimental evaluation of the performance of the energy harvesting system***

451 Experimental measurements of system performance were conducted with users walking
452 on a treadmill (TR150, Xterra Fitness). We tested our device with users of different body
453 weights (52–87 kg), who were all authors of this work. Except for data shown in Fig. 3,
454 tests were performed at a speed of 3 mph, corresponding to the average walking speed for
455 users under 30 years old (53) (Fig. 2A). For each test, the user walked on the treadmill at a
456 steady pace until the wearable tank was fully inflated. The stepping force applied on the
457 insole EHD during walking was recorded using a force-sensing resistor (FSR 406,
458 Interlink Electronics) mounted inside the user’s shoe and connected to a voltage divider
459 circuit and an analog voltage acquisition system (USB-6211, National Instruments) as
460 shown in Fig. S5. The gas pressure at the inlet of the ESB was monitored using a pressure

461 sensor (ADP5151, Panasonic), also connected to an analog data acquisition system (NI
462 USB-6002, National Instruments).

463

464 References

- 465 1. D. M. Taylor, Americans with Disabilities: 2014. *Curr. Popul. Reports*, 1–32 (2018).
- 466 2. I. M. Majer, W. J. Nusselder, J. P. Mackenbach, B. Klijns, P. H. M. van Baal, Mortality Risk
467 Associated With Disability: A Population-Based Record Linkage Study. *Am. J. Public
468 Health.* **101**, e9–e15 (2011).
- 469 3. V. Sanchez, C. J. Walsh, R. J. Wood, Textile Technology for Soft Robotic and
470 Autonomous Garments. *Adv. Funct. Mater.* **31**, 2008278 (2021).
- 471 4. P. E. Dupont, B. J. Nelson, M. Goldfarb, B. Hannaford, A. Menciassi, M. K. O’Malley, N.
472 Simaan, P. Valdastri, G.-Z. Yang, A decade retrospective of medical robotics research
473 from 2010 to 2020. *Sci. Robot.* **6** (2021).
- 474 5. C.-Y. Chu, R. M. Patterson, Soft robotic devices for hand rehabilitation and assistance: a
475 narrative review. *J. Neuroeng. Rehabil.* **15**, 9 (2018).
- 476 6. P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, C. J. Walsh, Soft robotic glove for
477 combined assistance and at-home rehabilitation. *Rob. Auton. Syst.* **73**, 135–143 (2015).
- 478 7. H. In, B. B. Kang, M. Sin, K.-J. Cho, Exo-Glove: A Wearable Robot for the Hand with a
479 Soft Tendon Routing System. *IEEE Robot. Autom. Mag.* **22**, 97–105 (2015).
- 480 8. G. Agarwal, M. A. Robertson, H. Sonar, J. Paik, Design and Computational Modeling of a
481 Modular, Compliant Robotic Assembly for Human Lumbar Unit and Spinal Cord
482 Assistance. *Sci. Rep.* **7**, 14391 (2017).
- 483 9. D. Govin, L. Saenz, G. Athanasiaki, L. Snyder, P. Polygerinos, Design and Development of
484 a Soft Robotic Back Orthosis, in *2018 Design of Medical Devices Conference* (American
485 Society of Mechanical Engineers, 2018).
- 486 10. C. T. O’Neill, N. S. Phipps, L. Cappello, S. Paganoni, C. J. Walsh, A soft wearable robot
487 for the shoulder: Design, characterization, and preliminary testing, in *2017 International
488 Conference on Rehabilitation Robotics (ICORR)* (IEEE, 2017), pp. 1672–1678.
- 489 11. R. F. Natividad, C. H. Yeow, Development of a soft robotic shoulder assistive device for
490 shoulder abduction, in *2016 6th IEEE International Conference on Biomedical Robotics
491 and Biomechatronics (BioRob)* (IEEE, 2016), pp. 989–993.
- 492 12. C. S. Simpson, A. M. Okamura, E. W. Hawkes, Exomuscle: An inflatable device for
493 shoulder abduction support, in *2017 IEEE International Conference on Robotics and
494 Automation (ICRA)* (IEEE, 2017), pp. 6651–6657.
- 495 13. T. H. Koh, N. Cheng, H. K. Yap, C.-H. Yeow, Design of a Soft Robotic Elbow Sleeve with
496 Passive and Intent-Controlled Actuation. *Front. Neurosci.* **11**, 597 (2017).
- 497 14. V. Oguntosin, W. S. Harwin, S. Kawamura, S. J. Nasuto, Y. Hayashi, Development of a
498 wearable assistive soft robotic device for elbow rehabilitation, in *2015 IEEE International
499 Conference on Rehabilitation Robotics (ICORR)* (IEEE, 2015), pp. 747–752.
- 500 15. D. Chiaradia, M. Xiloyannis, C. W. Antuvan, A. Frisoli, L. Masia, Design and embedded
501 control of a soft elbow exosuit, in *2018 IEEE International Conference on Soft Robotics
502 (RoboSoft)* (IEEE, 2018), pp. 565–571.
- 503 16. J. Realmuto, T. Sanger, A robotic forearm orthosis using soft fabric-based helical actuators,
504 in *2019 2nd IEEE International Conference on Soft Robotics (RoboSoft)* (IEEE, 2019), pp.
505 591–596.
- 506 17. S.-H. Park, J. Yi, D. Kim, Y. Lee, H. S. Koo, Y.-L. Park, A Lightweight, Soft Wearable
507 Sleeve for Rehabilitation of Forearm Pronation and Supination, in *2019 2nd IEEE
508 International Conference on Soft Robotics (RoboSoft)* (IEEE, 2019), pp. 636–641.
- 509 18. N. W. Bartlett, V. Lyau, W. A. Raiford, D. Holland, J. B. Gafford, T. D. Ellis, C. J. Walsh,

510 19. A Soft Robotic Orthosis for Wrist Rehabilitation. *J. Med. Devices* **9**, 030918 (2015).

511 20. D. Serrano, D.-S. Copaci, L. Moreno, D. Blanco, SMA based wrist exoskeleton for
512 rehabilitation therapy, in *2018 IEEE/RSJ International Conference on Intelligent Robots
513 and Systems (IROS)* (IEEE, 2018), pp. 2318–2323.

514 21. B. W. K. Ang, C.-H. Yeow, Design and Characterization of a 3D Printed Soft Robotic
515 Wrist Sleeve with 2 DoF for Stroke Rehabilitation, in *2019 2nd IEEE International
516 Conference on Soft Robotics (RoboSoft)* (IEEE, 2019), pp. 577–582.

517 22. M. A. Gull, S. Bai, T. Bak, A Review on Design of Upper Limb Exoskeletons. *Robotics* **9**,
518 16 (2020).

519 23. S. Lessard, P. Pansodtee, A. Robbins, J. M. Trombadore, S. Kurniawan, M. Teodorescu, A
520 Soft Exosuit for Flexible Upper-Extremity Rehabilitation. *IEEE Trans. Neural Syst.
521 Rehabil. Eng.* **26**, 1604–1617 (2018).

522 24. P. H. Nguyen, C. Sparks, S. G. Nuthi, N. M. Vale, P. Polygerinos, Soft Poly-Limbs:
523 Toward a New Paradigm of Mobile Manipulation for Daily Living Tasks. *Soft Robot.* **6**,
524 38–53 (2019).

525 25. P. H. Nguyen, I. B. Imran Mohd, C. Sparks, F. L. Arellano, W. Zhang, P. Polygerinos,
526 Fabric Soft Poly-Limbs for Physical Assistance of Daily Living Tasks, in *2019
527 International Conference on Robotics and Automation (ICRA)* (IEEE, 2019), pp. 8429–
528 8435.

529 26. X. Liang, H. Cheong, C. K. Chui, C.-H. Yeow, A Fabric-Based Wearable Soft Robotic
530 Limb. *J. Mech. Robot.* **11**, 031003 (2019).

531 27. X. Liang, H. K. Yap, J. Guo, R. C. H. Yeow, Y. Sun, C. K. Chui, Design and
532 characterization of a novel fabric-based robotic arm for future wearable robot application,
533 in *2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)* (IEEE,
534 2017), pp. 367–372.

535 28. X. Liang, H. Cheong, Y. Sun, J. Guo, C. K. Chui, C.-H. Yeow, Design, Characterization,
536 and Implementation of a Two-DOF Fabric-Based Soft Robotic Arm. *IEEE Robot. Autom.
537 Lett.* **3**, 2702–2709 (2018).

538 29. C. M. Thalman, Q. P. Lam, P. H. Nguyen, S. Sridar, P. Polygerinos, A Novel Soft Elbow
539 Exosuit to Supplement Bicep Lifting Capacity, in *2018 IEEE/RSJ International Conference
540 on Intelligent Robots and Systems (IROS)* (IEEE, 2018), pp. 6965–6971.

541 30. F. A. Panizzolo, I. Galiana, A. T. Asbeck, C. Siviy, K. Schmidt, K. G. Holt, C. J. Walsh, A
542 biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded
543 walking. *J. Neuroeng. Rehabil.* **13**, 43 (2016).

544 31. Y. Ding, F. A. Panizzolo, C. Siviy, P. Malcolm, I. Galiana, K. G. Holt, C. J. Walsh, Effect
545 of timing of hip extension assistance during loaded walking with a soft exosuit. *J.
546 Neuroeng. Rehabil.* **13**, 87 (2016).

547 32. M. Al-Sada, T. Höglund, M. Khamis, J. Urbani, T. Nakajima, Orochi: Investigating
548 Requirements and Expectations for Multipurpose Daily Used Supernumerary Robotic
549 Limbs, in *Proceedings of the 10th Augmented Human International Conference 2019*
550 (ACM, New York, NY, USA, 2019), pp. 1–9.

551 33. B. Llorens - Bonilla, F. Parietti, H. H. Asada, Demonstration-based control of
552 supernumerary robotic limbs, in *2012 IEEE/RSJ International Conference on Intelligent
553 Robots and Systems* (IEEE, 2012), pp. 3936–3942.

554 34. F. Wu, H. Asada, Supernumerary Robotic Fingers: An Alternative Upper-Limb Prosthesis,
555 in *Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and
556 Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy
557 Storage, Optimization; Transportation and Grid Applications; Estimation and
558 Identification Method* (American Society of Mechanical Engineers, 2014), V002T16A009.

559 35. I. Hussain, G. Salvietti, G. Spagnolletti, M. Malvezzi, D. Cioncoloni, S. Rossi, D.

Prattichizzo, A soft supernumerary robotic finger and mobile arm support for grasping compensation and hemiparetic upper limb rehabilitation. *Rob. Auton. Syst.* **93**, 1–12 (2017).

A. Rajappan, B. Jumet, D. J. Preston, Pneumatic soft robots take a step toward autonomy. *Sci. Robot.* **6**, 1–3 (2021).

B. Jumet, M. D. Bell, V. Sanchez, D. J. Preston, A Data-Driven Review of Soft Robotics. *Adv. Intell. Syst.* **4**, 2100163 (2021).

T. Starner, J. Paradiso, Human-Generated Power for Mobile Electronics, in *Low-Power Electronics Design*, C. Piguet, Ed. (CRC Press, 2004), ch. 45.

Y.-M. Choi, M. Lee, Y. Jeon, Wearable Biomechanical Energy Harvesting Technologies. *Energies* **10**, 1483 (2017).

H. Shi, Z. Liu, X. Mei, Overview of Human Walking Induced Energy Harvesting Technologies and Its Possibility for Walking Robotics. *Energies* **13**, 86 (2019).

F. A. Matulch, Foot actuated pressure generator. U.S. Patent 2,435,928 (1948).

S. R. Anton, H. A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006). *Smart Mater. Struct.* **16**, R1–R21 (2007).

S. Niu, X. Wang, F. Yi, Y. S. Zhou, Z. L. Wang, A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. *Nat. Commun.* **6**, 8975 (2015).

J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, Z. L. Wang, Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. *Nat. Energy* **1**, 16138 (2016).

J. He, C. Lu, H. Jiang, F. Han, X. Shi, J. Wu, L. Wang, T. Chen, J. Wang, Y. Zhang, H. Yang, G. Zhang, X. Sun, B. Wang, P. Chen, Y. Wang, Y. Xia, H. Peng, Scalable production of high-performing woven lithium-ion fibre batteries. *Nature* **597**, 57–63 (2021).

T. Shahid, D. Gouwanda, S. G. Nurzaman, A. A. Gopalai, Moving toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons. *Biomimetics* **3**, 17 (2018).

P. Polygerinos, N. Correll, S. A. Morin, B. Mosadegh, C. D. Onal, K. Petersen, M. Cianchetti, M. T. Tolley, R. F. Shepherd, Soft Robotics: Review of Fluid-Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human-Robot Interaction. *Adv. Eng. Mater.* **19**, 1700016 (2017).

D. J. Preston, P. Rothemund, H. J. Jiang, M. P. Nemitz, J. Rawson, Z. Suo, G. M. Whitesides, Digital logic for soft devices. *Proc. Natl. Acad. Sci.* **116**, 7750–7759 (2019).

D. J. Preston, H. J. Jiang, V. Sanchez, P. Rothemund, J. Rawson, M. P. Nemitz, W. Lee, Z. Suo, C. J. Walsh, G. M. Whitesides, A soft ring oscillator. *Sci. Robot.* **4**, eaaw5496 (2019).

K. Ogawa, C. Thakur, T. Ikeda, T. Tsuji, Y. Kurita, Development of a pneumatic artificial muscle driven by low pressure and its application to the unplugged powered suit. *Adv. Robot.* **31**, 1135–1143 (2017).

K. Ogawa, T. Ikeda, Y. Kurita, Unplugged Powered Suit for Superhuman Tennis, in *2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics* (IEEE, 2018), pp. 361–364.

I. Jones, The use of heat sealing, hot air and hot wedge to join textile materials, in *Joining Textiles*, I. Jones, G. K. Stylios, Eds. (Woodhead Publishing, 2013), ch. 11, pp. 355–373.

R. S. Diteesawat, T. Helps, M. Taghavi, J. Rossiter, Electro-pneumatic pumps for soft robotics. *Sci. Robot.* **6** (2021).

M. Schimpl, C. Moore, C. Lederer, A. Neuhaus, J. Sambrook, J. Danesh, W. Ouwehand, M. Daumer, Association between Walking Speed and Age in Healthy, Free-Living Individuals Using Mobile Accelerometry—A Cross-Sectional Study. *PLoS One.* **6**, e23299 (2011).

P. R. Cavanagh, M. M. Rodgers, A. Liboshi, Pressure Distribution under Symptom-Free

610 Feet during Barefoot Standing. *Foot Ankle.* **7**, 262–278 (1987).

611 55. J. Fang, J. Yuan, M. Wang, L. Xiao, J. Yang, Z. Lin, P. Xu, L. Hou, Novel Accordion-
612 Inspired Foldable Pneumatic Actuators for Knee Assistive Devices. *Soft Robot.* **7**, 95–108
613 (2020).

614 56. P. H. Nguyen, W. Zhang, Design and Computational Modeling of Fabric Soft Pneumatic
615 Actuators for Wearable Assistive Devices. *Sci. Rep.* **10**, 9638 (2020).

616 57. D. Krähenbühl, C. Zwyssig, H. Weser, J. W. Kolar, Theoretical and experimental results of
617 a mesoscale electric power generation system from pressurized gas flow. *J.*
618 *Micromechanics Microengineering.* **19**, 094009 (2009).

619 58. J. Hayashida, thesis, Massachusetts Institute of Technology (2000).

620 59. M. Duffy, D. Carroll, Electromagnetic generators for power harvesting, in *2004 IEEE 35th*
621 *Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551)* (IEEE,
622 2004), pp. 2075–2081.

623 60. Y. Rao, S. Cheng, D. P. Arnold, An energy harvesting system for passively generating
624 power from human activities. *J. Micromechanics Microengineering.* **23**, 114012 (2013).

625 61. J.-X. Shen, C.-F. Wang, P. C.-K. Luk, D.-M. Miao, D. Shi, C. Xu, A Shoe-Equipped
626 Linear Generator for Energy Harvesting. *IEEE Trans. Ind. Appl.* **49**, 990–996 (2013).

627 62. L. Xie, M. Cai, An In-Shoe Harvester With Motion Magnification for Scavenging Energy
628 From Human Foot Strike. *IEEE/ASME Trans. Mechatronics.* **20**, 3264–3268 (2015).

629 63. A. M. Purwadi, S. Parasuraman, M. K. A. A. Khan, I. Elamvazuthi, Development of
630 Biomechanical Energy Harvesting Device Using Heel Strike. *Procedia Comput. Sci.* **76**,
631 270–275 (2015).

632 64. K. Ylli, D. Hoffmann, A. Willmann, P. Becker, B. Folkmer, Y. Manoli, Energy harvesting
633 from human motion: exploiting swing and shock excitations. *Smart Mater. Struct.* **24**,
634 025029 (2015).

635 65. L. Xie, J. Li, S. Cai, X. Li, Design and experiments of a self-charged power bank by
636 harvesting sustainable human motion. *Adv. Mech. Eng.* **8**, 168781401665137 (2016).

637 66. S. Wu, P. C. K. Luk, C. Li, X. Zhao, Z. Jiao, Y. Shang, An electromagnetic wearable 3-
638 DoF resonance human body motion energy harvester using ferrofluid as a lubricant. *Appl.*
639 *Energy.* **197**, 364–374 (2017).

640 67. Z. Li, X. Jiang, Y. Peng, J. Luo, S. Xie, H. Pu, Design and Experimental Studies of a Heel-
641 Embedded Energy Harvester for Self-Powered Wearable Electronics, in *ASME 2021*
642 *Conference on Smart Materials, Adaptive Structures and Intelligent Systems* (American
643 Society of Mechanical Engineers, 2021), V001T04A006.

644 68. N. S. Shenck, J. A. Paradiso, Energy scavenging with shoe-mounted piezoelectrics. *IEEE*
645 *Micro.* **21**, 30–42 (2001).

646 69. C. A. Howells, Piezoelectric energy harvesting. *Energy Convers. Manag.* **50**, 1847–1850
647 (2009).

648 70. J. G. Rocha, L. M. Goncalves, P. F. Rocha, M. P. Silva, S. Lanceros-Mendez, Energy
649 Harvesting From Piezoelectric Materials Fully Integrated in Footwear. *IEEE Trans. Ind.*
650 *Electron.* **57**, 813–819 (2010).

651 71. J. Zhao, Z. You, A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors.
652 *Sensors* **14**, 12497–12510 (2014).

653 72. R. Meier, N. Kelly, O. Almog, P. Chiang, A piezoelectric energy-harvesting shoe system
654 for podiatric sensing, in *2014 36th Annual International Conference of the IEEE*
655 *Engineering in Medicine and Biology Society* (IEEE, 2014), pp. 622–625.

656 73. W.-S. Jung, M.-J. Lee, M.-G. Kang, H. G. Moon, S.-J. Yoon, S.-H. Baek, C.-Y. Kang,
657 Powerful curved piezoelectric generator for wearable applications. *Nano Energy* **13**, 174–
658 181 (2015).

659 74. H. Kalantarian, M. Sarrafzadeh, Pedometers Without Batteries: An Energy Harvesting

660 Shoe. *IEEE Sens. J.* **16**, 1–1 (2016).

661 75. K. Fan, Z. Liu, H. Liu, L. Wang, Y. Zhu, B. Yu, Scavenging energy from human walking
662 through a shoe-mounted piezoelectric harvester. *Appl. Phys. Lett.* **110**, 143902 (2017).

663 76. A. C. Turkmen, C. Celik, Energy harvesting with the piezoelectric material integrated shoe.
664 *Energy* **150**, 556–564 (2018).

665 77. P. Chaudhary, P. Azad, Energy Harvesting Using Shoe Embedded with Piezoelectric
666 Material. *J. Electron. Mater.* **49**, 6455–6464 (2020).

667 78. M. Ramalingam, E. Chinnavan, R. Puviarasi, N. H. Yu, Assistive technology for harvesting
668 footstep energy in IoT enabled Smart shoe for the visually impaired, in *2021 International
669 Conference on Software Engineering & Computer Systems and 4th International
670 Conference on Computational Science and Information Management (ICSECS-ICOCSIM)*
671 (IEEE, 2021), pp. 115–118.

672 79. N. Wang, R. Daniels, L. Connelly, M. Sotzing, C. Wu, R. Gerhard, G. A. Sotzing, Y. Cao,
673 All-Organic Flexible Ferroelectret Nanogenerator with Fabric-Based Electrodes for Self-
674 Powered Body Area Networks. *Small* **17**, 2103161 (2021).

675 80. S. Y. Jeong, L. L. Xu, C. H. Ryu, A. Kumar, S. Do Hong, D. H. Jeon, J. Y. Cho, J. H. Ahn,
676 Y. H. Joo, I. W. Jeong, W. S. Hwang, T. H. Sung, Wearable Shoe-Mounted Piezoelectric
677 Energy Harvester for a Self-Powered Wireless Communication System. *Energies* **15**, 237
678 (2021).

679 81. T.-C. Hou, Y. Yang, H. Zhang, J. Chen, L.-J. Chen, Z. Lin Wang, Triboelectric
680 nanogenerator built inside shoe insole for harvesting walking energy. *Nano Energy* **2**, 856–
681 862 (2013).

682 82. K. Zhang, X. Wang, Y. Yang, Z. L. Wang, Hybridized Electromagnetic–Triboelectric
683 Nanogenerator for Scavenging Biomechanical Energy for Sustainably Powering Wearable
684 Electronics. *ACS Nano* **9**, 3521–3529 (2015).

685 83. T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang, M. Zhu, Human walking-driven wearable
686 all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride
687 piezoelectric nanofibers. *Nano Energy* **14**, 226–235 (2015).

688 84. R. I. Haque, P.-A. Farine, D. Briand, Fully casted soft power generating triboelectric shoe
689 insole. *J. Phys. Conf. Ser.* **773**, 012097 (2016).

690 85. R. I. Haque, P.-A. Farine, D. Briand, Soft triboelectric generators by use of cost-effective
691 elastomers and simple casting process. *Sensors Actuators A Phys.* **271**, 88–95 (2018).

692 86. Y. Yun, S. Jang, S. Cho, S. H. Lee, H. J. Hwang, D. Choi, Exo-shoe triboelectric
693 nanogenerator: Toward high-performance wearable biomechanical energy harvester. *Nano
694 Energy* **80**, 105525 (2021).

695 87. W. Yuan, C. Zhang, B. Zhang, X. Wei, O. Yang, Y. Liu, L. He, S. Cui, J. Wang, Z. L.
696 Wang, Wearable, Breathable and Waterproof Triboelectric Nanogenerators for Harvesting
697 Human Motion and Raindrop Energy. *Adv. Mater. Technol.* **7**, 2101139 (2022).

698 88. X. Wang, W. Tong, Y. Li, Z. Wang, Y. Chen, X. Zhang, X. Wang, Y. Zhang, Mica-based
699 triboelectric nanogenerators for energy harvesting. *Appl. Clay Sci.* **215**, 106330 (2021).

700 89. X. Yao, A flexible triboelectric nanogenerator based on soft foam for rehabilitation
701 monitor after foot surgery. *Mater. Technol.*, 1–7 (2021).

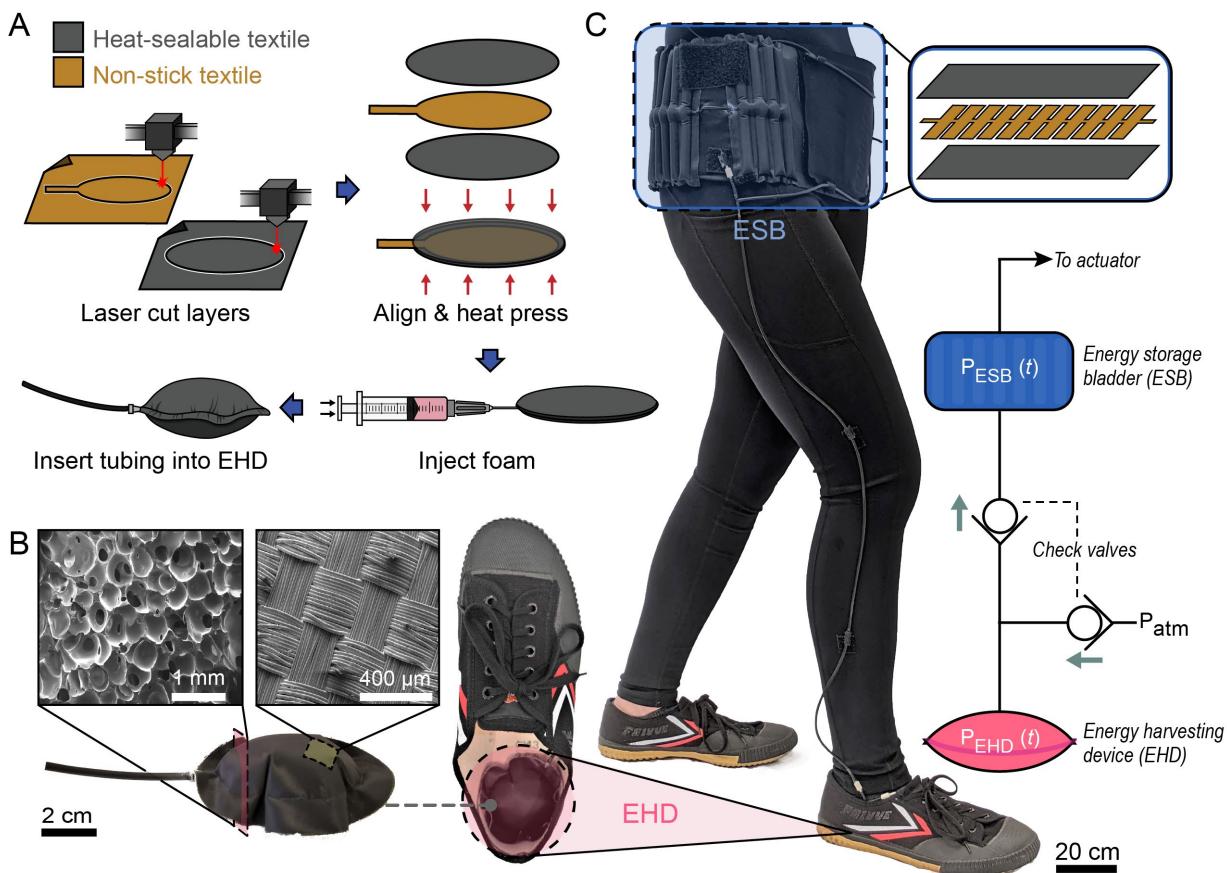
702 90. Y. Gao, Z. Li, B. Xu, M. Li, C. Jiang, X. Guan, Y. Yang, Scalable core–spun coating yarn-
703 based triboelectric nanogenerators with hierarchical structure for wearable energy
704 harvesting and sensing via continuous manufacturing. *Nano Energy* **91**, 106672 (2022).

705 91. D. W. Lee, D. G. Jeong, J. H. Kim, H. S. Kim, G. Murillo, G.-H. Lee, H.-C. Song, J. H.
706 Jung, Polarization-controlled PVDF-based hybrid nanogenerator for an effective
707 vibrational energy harvesting from human foot. *Nano Energy* **76**, 105066 (2020).

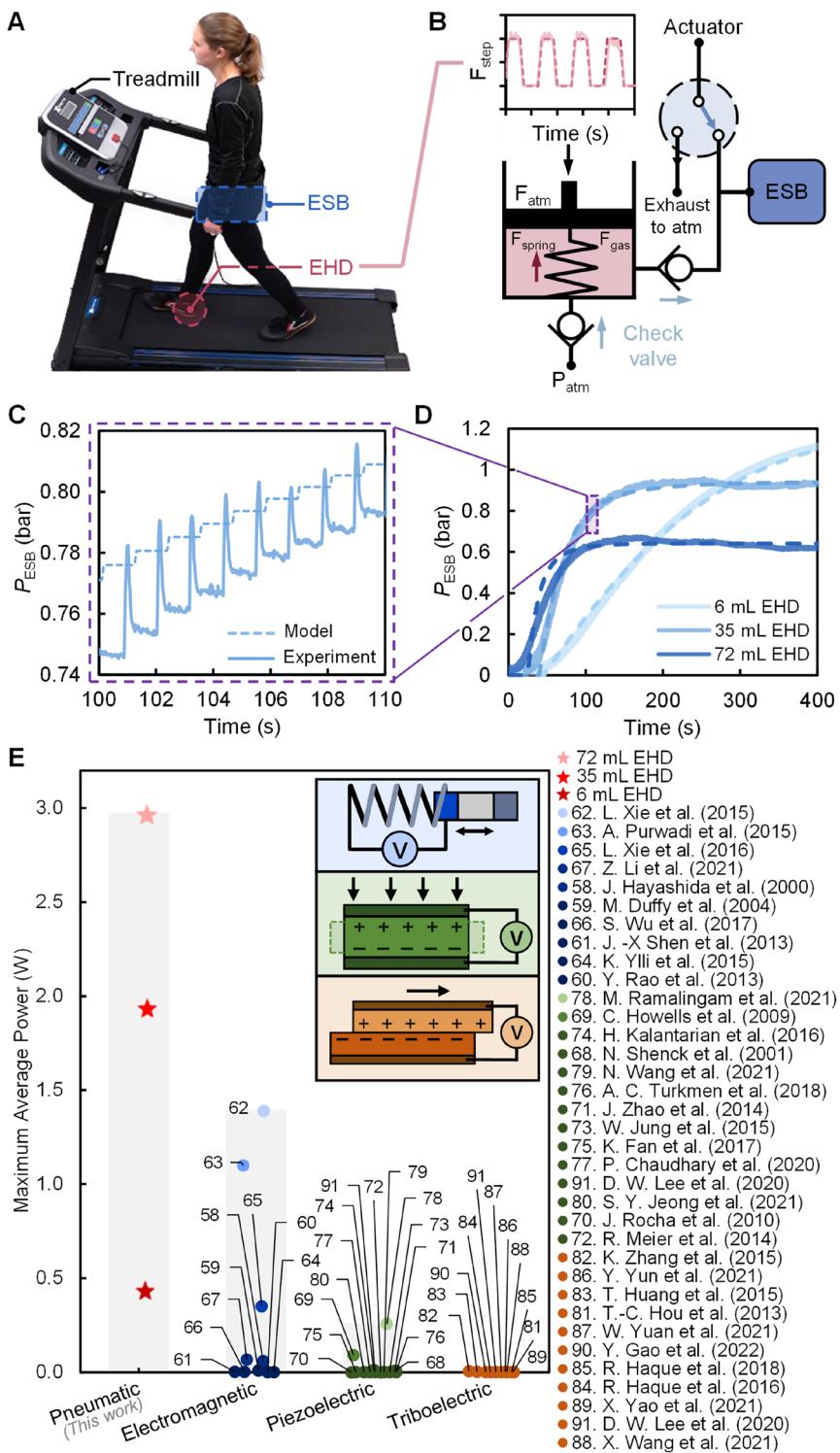
710 **Acknowledgments**

711 Scanning electron micrographs in Fig. 1 were obtained at the Shared Equipment Authority
712 at Rice University. This material is based upon work supported by the National Science
713 Foundation Graduate Research Fellowship Program under Grant No. 1842494. Any
714 opinions, findings, and conclusions or recommendations expressed in this material are those
715 of the authors and do not necessarily reflect the views of the National Science Foundation.
716

717 **Funding:**


718 United States Coast Guard Advanced Education Program (RAS)
719 Rice University Academy of Fellows Program (AR)
720 NASA Space Technology Graduate Research Opportunity Award 80NSSC21K1276 (MDB)
721 National Science Foundation Graduate Research Fellowship Grant No. 1842494 (BJ)
722 National GEM Consortium GEM Fellowship (MDB, VS)
723 National Defense Science and Engineering Graduate Fellowship (VS)

724 **Author contributions:**


725 Conceptualization: RAS, AR, VS, DJP
726 Data curation: RAS, AR, TY, DJP
727 Formal analysis: RAS, AR, DJP
728 Methodology: RAS, AR, TY, ZL, DJP
729 Investigation: RAS, AR, TY, ZL, MDB, BJ, VS, DJP
730 Visualization: RAS, AR, TY, ZL, DJP
731 Software: RAS, AR, DJP
732 Project administration: RAS, DJP
733 Validation: RAS, AR, DJP
734 Supervision: DJP
735 Writing—original draft: RAS, AR, DJP
736 Writing—review & editing: RAS, AR, TY, ZL, MDB, BJ, VS, DJP
737

738 **Competing interests:** Authors declare that they have no competing interests.
739

740 **Data and materials availability:** All data are available in the main text or the
741 supplementary materials.

Fig. 1. Fabrication and donning of the textile-based energy harvesting system. (A) Fabricating the insole EHD from heat-sealable textile layers. **(B)** Scanning electron micrographs of EHD components: open-cell foam interior and textile exterior. **(C)** A user wearing the fully assembled system. The EHD is integrated into the insole of the right shoe, and the textile ESB is worn around the waist. Insets show the textile layers used to fabricate the ESB, and a schematic diagram of the pneumatic circuit linking the EHD and ESB.

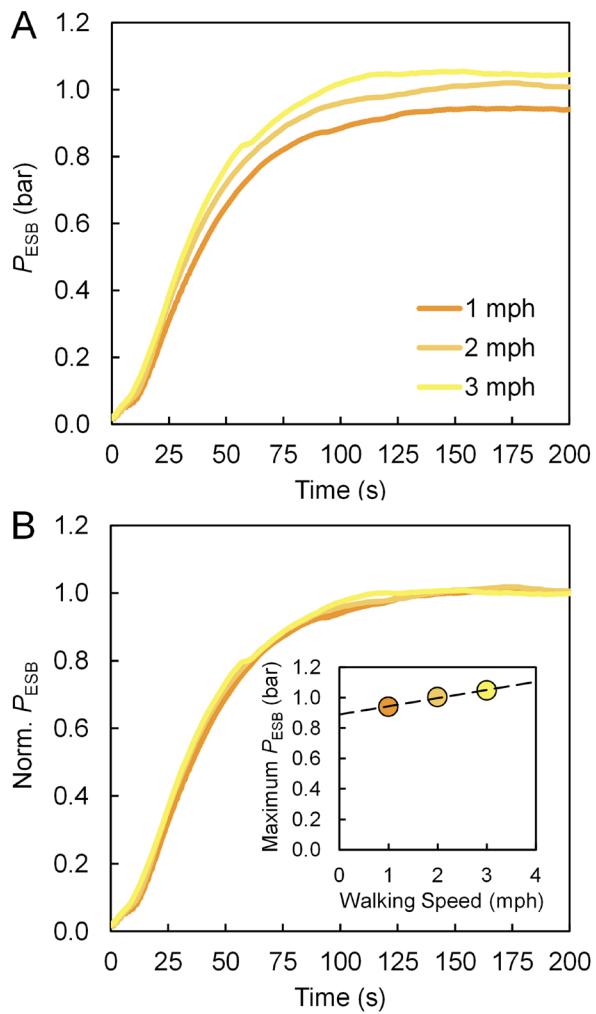
751

752

753

754

755


756

757

758

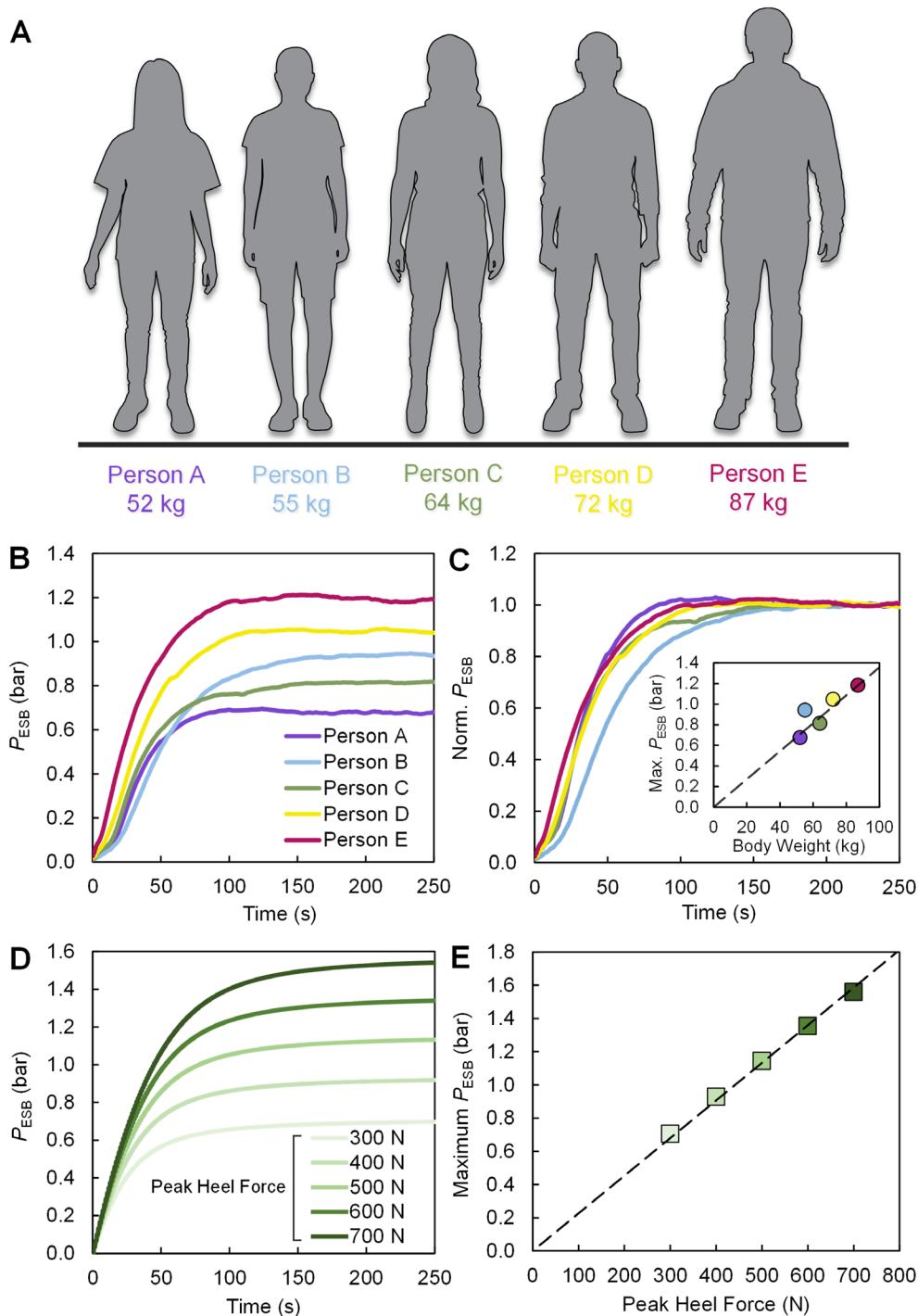
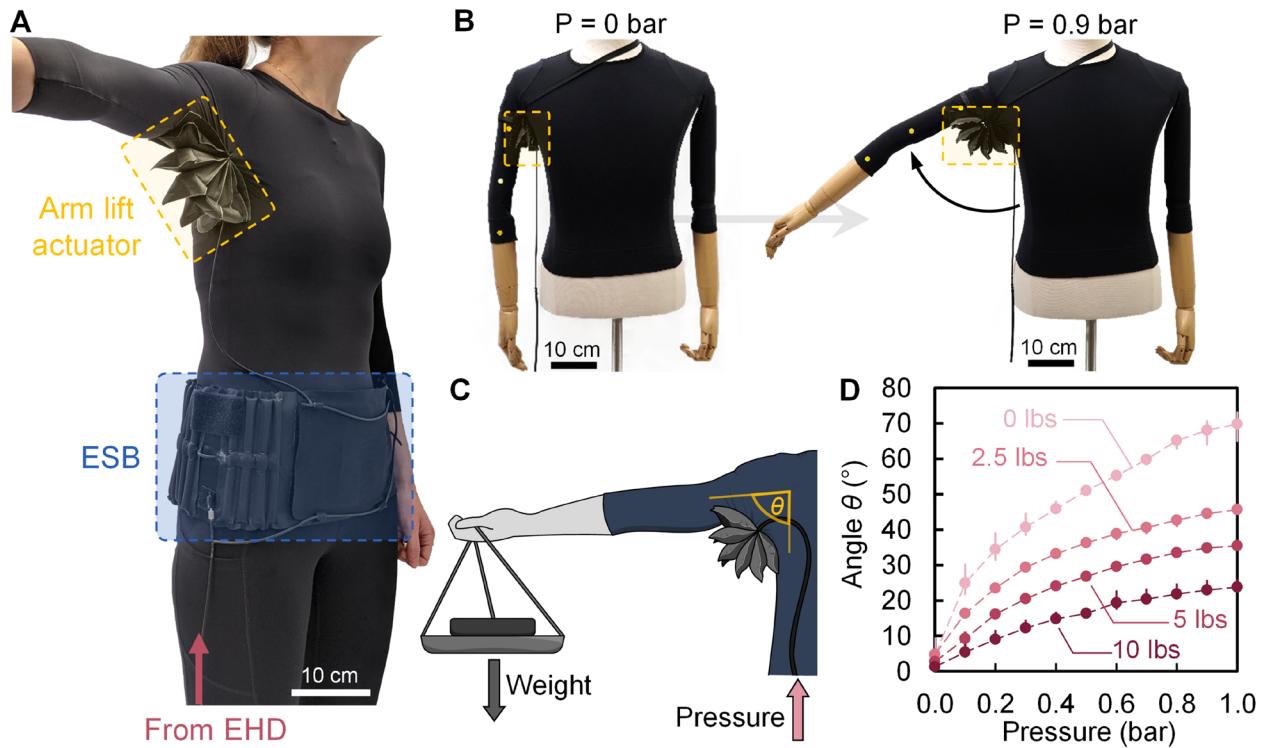
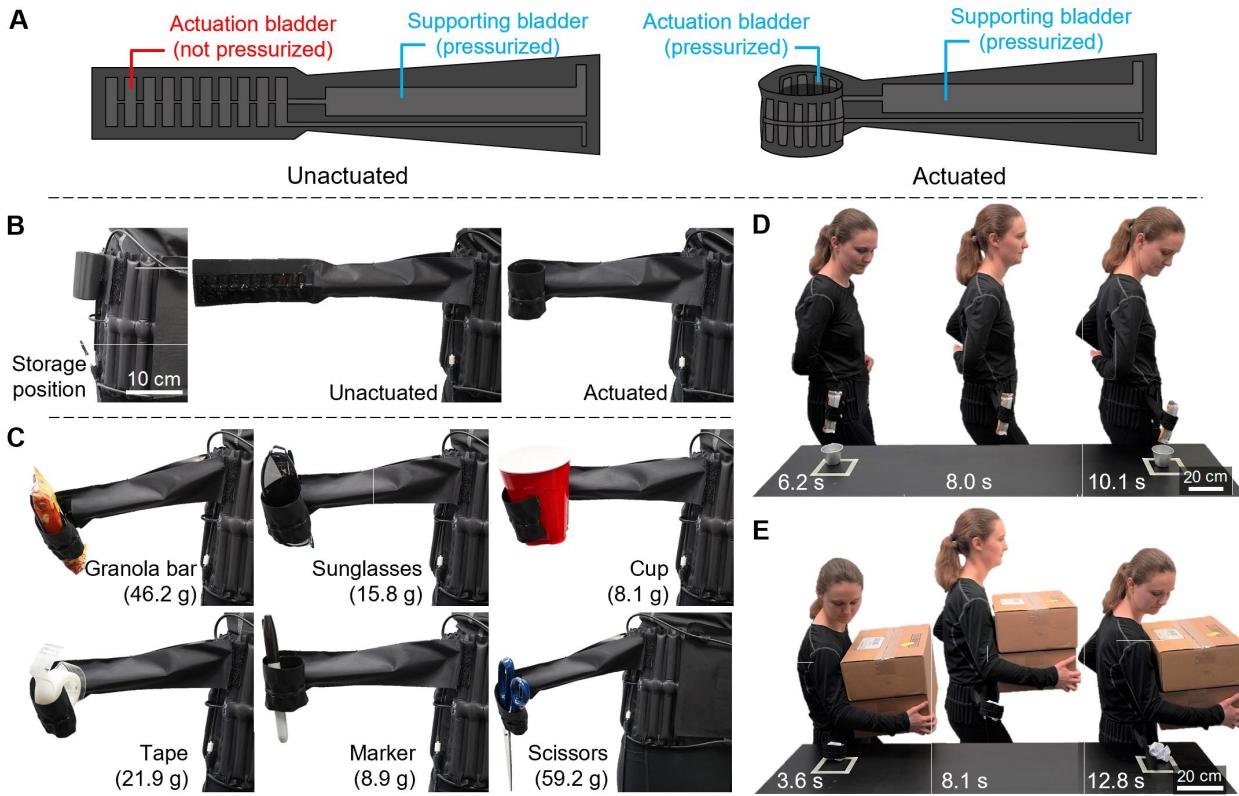

759

Fig. 2. Characterizing the performance of the energy harvesting system. (A) A user wearing the energy harvesting system walks on a treadmill during experimental measurements. (B) Schematic representation of the mechano-fluidic model used for performance evaluation and optimization. The inset shows the experimentally measured stepping force (solid curve) along with the matching trapezoidal waveform (dashed curve) used to model it. (C) Transient pressure traces predicted by the model (dashed curves) were validated against experimental measurements (solid curves). (D) Predicted and measured gas pressure inside the ESB for a 55 kg user walking at 3 mph. (E) Comparison of the maximum power output of the insole EHD with existing electromagnetic, piezoelectric, and triboelectric foot-strike energy harvesting systems.



760

761 **Fig. 3. Effect of walking speed on energy harvesting performance.** (A) Evolution of ESB
 762 pressure with time for the 35 mL EHD and for a 72 kg human user walking at different speeds.
 763 Each curve represents transient pressure data smoothed over two step cycles and averaged over
 764 three replicate measurements. (B) The pressure traces in (A) collapse when normalized by the
 765 maximum ESB pressure, suggesting that the fill rate is independent of walking speed. The inset
 766 shows a small increase in the final gas pressure in the ESB at faster walking speeds.



767
768 **Fig. 4. Evaluating system performance for users of different bodyweights.** (A) The cohort of
769 test users representing a range of bodyweights, leg lengths, and foot sizes. (B) ESB pressure
770 recorded as a function of time for the 35 mL EHD and for the five users all walking at 3 mph.
771 Raw pressure data were smoothed over two step cycles and then averaged over three replicates.
772 (C) Pressure traces in (B) normalized by the maximum ESB pressure show no significant
773 variation in fill time between users. The inset indicates that the maximum ESB pressure increases
774 proportionally with the user's bodyweight. (D) Transient responses of the mechano-fluidic model
775 from a parametric sweep of the amplitude of stepping force, simulating users of different weights.
776 (E) The final ESB pressure in (D) increases proportionally with the peak heel force exerted on the
777 EHD.

778

779 **Fig. 5. The pneumatic arm-lift assistive actuator.** (A) The actuator mounted on the user's
780 garment beneath the shoulder, shown in an actuated state after pressurization with compressed air
781 generated by the user. (B) When pressurized, the actuator imparts a lifting torque on the shoulder
782 joint of a mannequin; the mannequin was used to preclude any influence of muscular effort when
783 testing on a human user. (C) Schematic representation of the experimental setup used to
784 characterize the lifting torque. (D) The angular displacement of the arm produced by the actuator
785 as a function of the input pressure and the weight suspended from the arm. Data markers denote
786 averaged measurements, and the error bars indicate the range of observed angles across three
787 replicates.

788 **Fig. 6. The supernumerary robotic arm powered by the energy harvesting system. (A)**
789 Schematic diagram of the dual-bladder system that lends mechanical strength and enables gripper
790 actuation. **(B)** The third arm in the storage, deployed (unactuated), and actuated configurations.
791 **(C)** The third arm gripping objects of various shapes, weights, and surface textures. **(D)** A time-
792 lapse sequence of the user employing the third arm to pick up, transport, and deliver a 43 g
793 granola bar. **(E)** The third arm used to pick up and transport a crumpled piece of paper while the
794 user's arms are full.

795 **Supplementary Materials**

796 Supplementary Text

797 Figs. S1–S12

800 Tables S1–S7

801 [References 58–91](#)

802 Movies S1–S3

803 Data S1 and S2

Supplementary Materials for

A Wearable Textile-Based Pneumatic Energy Harvesting System for Assistive Robotics

Rachel A. Shveda, Anoop Rajappan, Te Faye Yap, Zhen Liu, Marquise D. Bell, Barclay Jumet,
Vanessa Sanchez, Daniel J. Preston*

*Corresponding author. Email: djp@rice.edu

This PDF file includes:

Supplementary Text
Figs. S1 to S12
Tables S1 to S7
[References \(58 to 91\)](#)

Other Supplementary Materials for this manuscript include the following:

Movies S1 to S3
Data S1 and S2

Supplementary Text

Mechano-fluidic model for the textile-based energy harvesting system

Ideal gas law. The ideal gas law is used to model air temperature and pressure inside the insole pouch and the wearable tank:

$$PV = mRT \quad (S1)$$

Here P is the pressure, V is the volume, m is the mass, R is the specific gas constant for air, and T is the absolute temperature. The gas pressure within the EHD, $P_{EHD}(t)$, and inside the wearable ESB, $P_{ESB}(t)$, are both initially equal to atmospheric pressure. The mass of air inside the EHD, $m_{EHD}(t)$, is calculated as:

$$m_{EHD}(t) = \frac{P_{EHD}(t)V_{EHD}}{RT_S} \quad (S2)$$

where V_{EHD} is the volume of the EHD, and T_S is the temperature inside the user's shoe.

Internal gas volumes of EHDs were determined experimentally using a universal testing machine (68SC-2, Instron). The EHD was compressed between the flat platens of the Instron, with the outlet connected to a long clear tube open at the other end to atmosphere. A small liquid plug (of approximately 0.2 mL of dyed water) was introduced into the clear tubing at the end closest to the EHD outlet. The movement of the plug inside the tube was tracked as the EHD was slowly compressed, and the volume of air expelled from the EHD was inferred as the product of the displacement of the plug and the known cross-sectional area of the tube. The changing volume of the EHD with compression is approximated using a piecewise quadratic function of the form:

$$V_{EHD}(x) = \begin{cases} A - Bx - Cx^2 & 0 \leq x \leq x_m \\ 0 & x \geq x_m \text{ (where } A - Bx_m - Cx_m^2 = 0) \end{cases} \quad (S3)$$

where x is the distance by which the EHD is compressed. The coefficients of the polynomial were obtained by least-squares regression to the experimentally measured volume data (Fig. S4). The compression at zero volume, x_m , is the compression at which the gas volume inside the pouch is assumed to be zero; this quantity was set equal to the displacement at which the reaction force from the EHD (as measured on the Instron) began rising rapidly, indicating the “bottoming-out” of the EHD.

The average shoe temperature T_S was measured using a thermocouple taped to the insole of the user's shoe during experiments. During the compression phase, air inside the EHD heats up because of fast, near-adiabatic compression by the falling foot during each step. It then cools down over the remainder of the stepping cycle because of heat loss to the environment, and by mixing with the cool air drawn in during the intake phase. The air temperature thus rises and falls cyclically as stepping progresses. For simplicity, this variation (which was observed to have a magnitude of less than 5 K) is neglected in the model, and air inside the EHD is assumed to be at a steady, “effective” temperature. This effective temperature was measured during stepping experiments and found to be $T_S = 296$ K.

The wearable ESB is modeled as a flexible but inelastic bladder that is partly inflated at the start of the experiment. The air inside the ESB is assumed to always be at room temperature. The degree of inflation at $t = 0$ is set by an adjustable parameter, f_{ESB} , which controls the initial mass of air inside the ESB. As air is pumped in by the EHD, the pressure inside the ESB is assumed to remain atmospheric until full inflation is reached (i.e., while the storage space within the ESB

transitions from flat chambers to a series of expanded flexible textile cylinders). The mass of air at full inflation, $m_{ESB,c}$, is calculated as:

$$m_{ESB,c} = \frac{P_a V_{ESB}}{RT_a} \quad (S4)$$

where P_a is the atmospheric pressure, V_{ESB} is volume of the ESB when fully inflated, and T_a is the ambient temperature. Once inflated, the ESB is assumed to remain at its maximum volume, which we estimated from the overall geometry of its chambers to be 744 mL. The initial mass of air in the ESB at the start of the experiment is given by:

$$m_{ESB}(0) = f_{ESB} m_{ESB,c} \quad (S5)$$

A loop, implemented in MATLAB, steps through time at small intervals of dt seconds—with the stepping force $F_{step}(t)$ applied to the EHD at a certain rate—to compute the internal pressures in the system components as the user walks for a set period (Data S1).

Force balance on the EHD. At any given timestep in the loop, four forces act on the top wall of the EHD, as shown in Fig. 2B. We perform a force balance on the EHD to determine the distance of compression, x , given by:

$$F_{step} + F_{atm}(x) - F_{spring}(x) - F_{gas}(x, m_{EHD}) = 0. \quad (S6)$$

Here F_{step} is the instantaneous force exerted by the user's foot, F_{atm} is the force from atmospheric pressure, F_{spring} is the restoring force from the foam inside the EHD, and F_{gas} is the force from internal gas pressure. The force from atmospheric pressure is given by:

$$F_{atm} = P_a A \quad (S7)$$

where A is the effective contact area of the EHD, assumed equal to the projected area of its lenticular pouch. To find this area, the geometry of the pouch is modeled as two spherical caps joined at the seam, each with a curved surface area that remains constant with compression. Vernier calipers were used to measure the projected radii, a_{EHD} , and heights, h_{EHD} , of the undeformed EHD pouches. We then set:

$$\pi \left[a_{EHD}^2 + \left(\frac{h_{EHD}}{2} \right)^2 \right] = \pi \left[a^2(x) + \left(\frac{h_{EHD} - x}{2} \right)^2 \right] \quad (S8)$$

where $a(x)$ denotes the projected radius of the deformed EHD when compressed through by a distance x . The contact area is then approximated as:

$$A(x) = \pi a^2(x) \quad (S9)$$

The force from gas pressure is calculated as:

$$F_{gas} = \frac{m_{EHD} R T_s}{V_{EHD}(x)} A(x) \quad (S10)$$

where the internal volume of the EHD, $V_{EHD}(x)$, was modeled using the quadratic polynomial in Eq. S3 above.

Stepping force. A force sensing resistor (FSR 406, Interlink Electronics) was used to monitor the stepping force exerted by the user's foot on the EHD when walking on a treadmill

(TR150, Xterra Fitness) at a constant pace. Sample measurements for the 35 mL EHD prototype are shown in Fig. S5A. Transient data was collected by means of an analog voltage acquisition device (USB-6211, National Instruments) in conjunction with the voltage divider circuit shown in Fig. S5B; the force sensor was connected in series with a $47.5\ \Omega$ resistor across a 5 V DC source. The data was converted to resistance, and then to force, using the sensor's response curve (Fig. S5C).

The stepping force on the EHD was idealized as a trapezoidal waveform in the numerical model. The force amplitude was estimated by matching peak pressures attained inside the EHD during walking and under simulated compression using a universal testing machine (86SC-2, Instron). First, a pressure sensor was connected to the EHD outlet and the gas pressure inside the EHD was recorded with the user walking on the treadmill. Then, the EHD was placed between the platens of the Instron with the outlet connected to a digital pressure gauge. The force exerted by the platen was monitored during rapid compression of the EHD, and the amplitude of the trapezoidal waveform was set equal to the peak force for which the maximum gas pressure attained inside the EHD matched that recorded during walking on the treadmill. The time period, duty cycle, and the slope of the rising and falling edges of the trapezoidal function were matched to the experimental waveform measured by the insole force sensing resistor as the user walked on the treadmill (Fig. S5A).

Restoring force from the foam. The Neo-Hookean model for hyperelastic solids is a non-linear elastic model commonly used to represent the large strain response of elastomers, rubbers, and other soft flexible materials. The restoring force exerted by the foam inside the EHD was modeled using a Neo-Hookean-type force function given by:

$$F_{\text{spring}}(x) = C \left(\frac{1}{\lambda^2} - \lambda \right) \quad (\text{S11})$$

where λ is the stretch ratio,

$$\lambda = \frac{h_{\text{EHD}} - x}{h_{\text{EHD}}} \quad (\text{S12})$$

and C is a constant pre-factor obtained by regression to the force vs compression data obtained from measurements on the universal testing machine (86SC-2, Instron). During this test, the EHD was placed between the platens of the machine with its outlet open to the atmosphere, and gradually compressed at a rate of 0.5 mm/s. The resulting force vs displacement curves for all three EHD prototypes, along with the corresponding Neo-Hookean fits, are shown in Fig. S6.

Time-stepping loop. At each timestep, MATLAB's inbuilt non-linear iterative root finding algorithm, `fzero`, is used to solve Eq. S6 to determine the equilibrium compression $x(t)$ of the EHD; the compression $x(t - dt)$ at the previous time step is used as the initial guess for the solver. Next, the gas pressure inside the EHD is calculated:

$$P_{\text{EHD}}(t) = \frac{m_{\text{EHD}}(t)RT_s}{V_{\text{EHD}}[x(t)]} \quad (\text{S13})$$

We then check for mass flow out of the EHD to the ESB or into the EHD through the intake valve. If $P_{\text{EHD}}(t) > P_{\text{ESB}}(t)$ then air flows from the EHD to the ESB; here $P_{\text{ESB}}(t)$ is the air pressure inside the ESB. The flow rate of air into the ESB, Q_{ESB} , is calculated as:

$$Q_{ESB} = \frac{P_{EHD} - P_{ESB}}{r_o} \quad (S14)$$

where r_o is the fluidic resistance of the tube connecting the EHD to the ESB. Here, we assume that the pressure drop across tubes is proportional to the flow rate,

$$\Delta P = rQ \quad (S15)$$

which is true when the flow inside the tubes is laminar. The resistance of check valves and other connectors is assumed negligible, as corroborated by experimental measurements. The flow resistance of the outlet tube connecting the EHD to the ESB was estimated experimentally by measuring the pressure drop across the tube using a pressure gauge while imposing known constant flow rates of air through the tube using a syringe pump. The mass of air transferred to the ESB, dm_{ESB} , is calculated as:

$$dm_{ESB} = \frac{P_{EHD} Q_{ESB} dt}{RT_S} \quad (S16)$$

with the restriction that the mass of air transferred cannot exceed the total mass of air available inside the EHD, $dm_{ESB} \leq m_{EHD}(t)$.

If $P_{EHD}(t) < P_a$ then ambient air flows through the intake valve into the EHD. Flow rate into the EHD from the atmosphere, Q_a , is calculated as:

$$Q_a = \frac{P_a - P_p}{r_i} \quad (S17)$$

where r_i is the fluidic resistance of the intake tube, also determined experimentally using a syringe pump as described above. Since the inlet resistance is negligibly small, the pressure inside the EHD remains near atmospheric during most of the reinflation phase. The mass of air transferred into the EHD from atmosphere, dm_a , is then given by:

$$dm_a = \frac{P_a Q_a dt}{RT_a}, \quad (S18)$$

with the constraint that the mass of air transferred cannot exceed the mass of air required to refill the EHD to ambient pressure; this maximum value is given by:

$$dm_{max} = \frac{P_a V_{EHD}[x(t)]}{RT_S} - m_{EHD}(t) \quad (S19)$$

where $m_{EHD}(t)$ is the mass of air currently inside the EHD.

Lastly, the mass of air inside the EHD and the ESB are updated. The mass inside the ESB becomes:

$$m_{ESB}(t + dt) = m_{ESB}(t) + dm_{ESB} \quad (S20)$$

If $m_{ESB} > m_{ESB,c}$, then the ESB is fully inflated, and its internal gas pressure is given by the ideal gas law:

$$P_{ESB} = \frac{m_{ESB} RT_a}{V_{ESB}}; \quad (S21)$$

otherwise, the ESB is only partly inflated, and the pressure is set equal to the atmospheric pressure. The mass inside the EHD is also updated according to:

$$m_{EHD}(t + dt) = m_{EHD}(t) - dm_{ESB} + dm_a \quad (S22)$$

before the next iteration of the loop.

Model predictions for the 6 mL, 35 mL, and 72 mL EHD prototypes, in conjunction with the 744 mL ESB, are shown in Fig. S9. The smallest (6 mL) EHD had the slowest rate of fill but achieved the highest ESB pressure, equal to 1.2 bar. The largest (72 mL) EHD had the fastest rate of fill but achieved the lowest ESB pressure of 0.6 bar. The 35 mL EHD had a rate of fill intermediate to those of the 6 mL and 72 mL EHDs, and achieved an ESB pressure of 0.9 bar.

Power output and efficiency. We define the energy conversion efficiency of our system as:

$$\eta = \frac{\text{Energy stored in the ESB when full}}{\text{Total mechanical work done by the foot}} \times 100\% \quad (S23)$$

First, stored energy in the ESB is calculated as the reversible work of expansion (against the atmosphere) of the pressurized air contained in the ESB:

$$W = m_{ESB}RT_a \ln\left(\frac{P_{ESB}}{P_a}\right) \quad (S24)$$

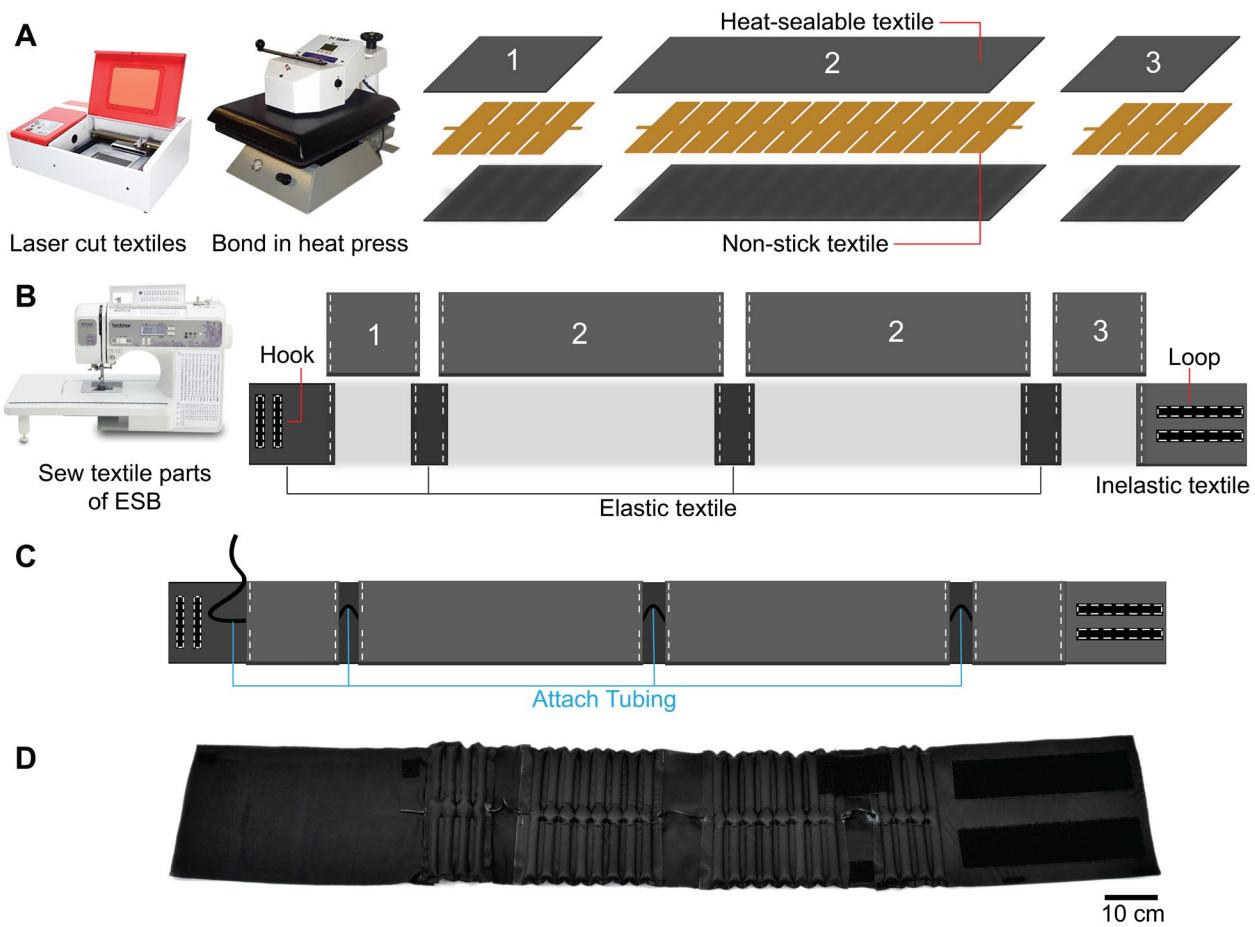
The stored energy is shown as a function of time in Fig. S7A. The power output of the EHD for step n was computed as the rate of increase in stored energy averaged over one stepping cycle of duration T :

$$\dot{W} = \frac{W(nT + T) - W(nT)}{T}. \quad (S25)$$

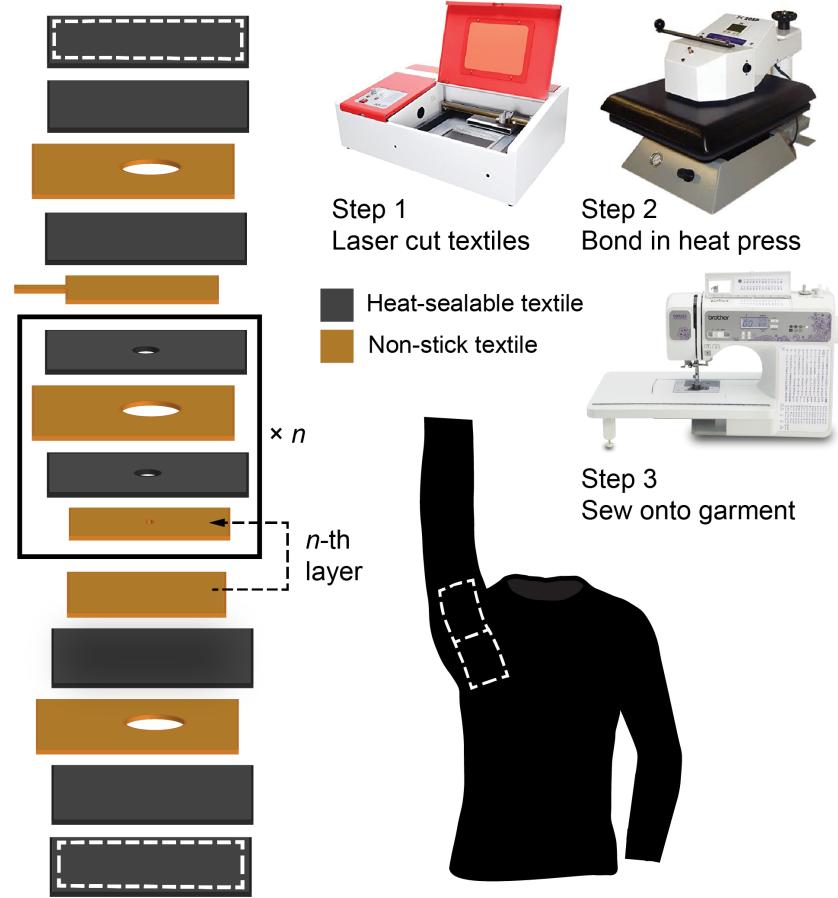
The power output of the EHD is shown as a function of time in Fig. S7B, and as a function of ESB pressure in Fig. S8. For computing the efficiency, we compare the stored energy and the input work until “full inflation” of the ESB, which we take to be the point when the ESB pressure reaches 99% of its final value:

$$P_{ESB}(t_{full}) - P_a = 0.99[P_{ESB}(\infty) - P_a] \quad (S26)$$

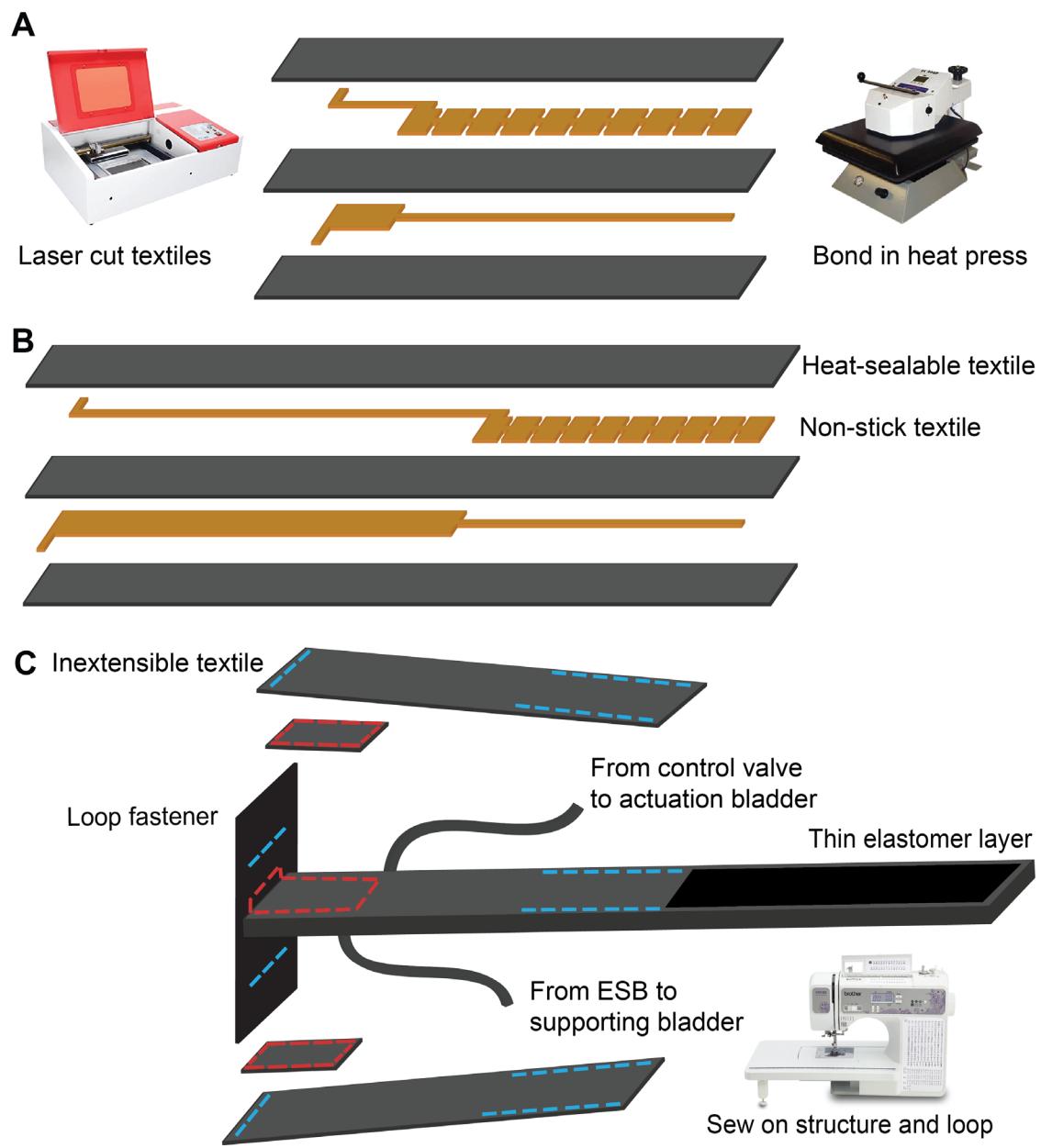
This full inflation point is marked in Fig. S9 for all three EHD prototypes. The total work done by the foot in compressing the EHD is calculated by integrating the instantaneous downward stepping force, $F_{step}(t)$, with respect to the resulting compression dx of the EHD wall; any negative work done by the EHD on the foot during the intake phase is discarded in computing this total work, yielding a conservative estimate.

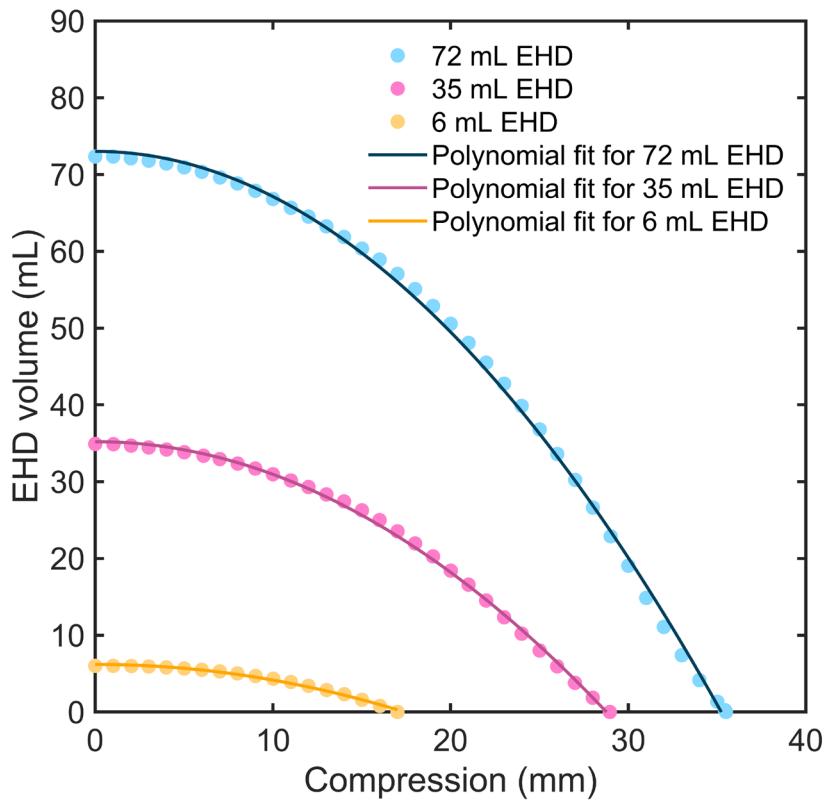

A brief note on the durability of textile-based devices

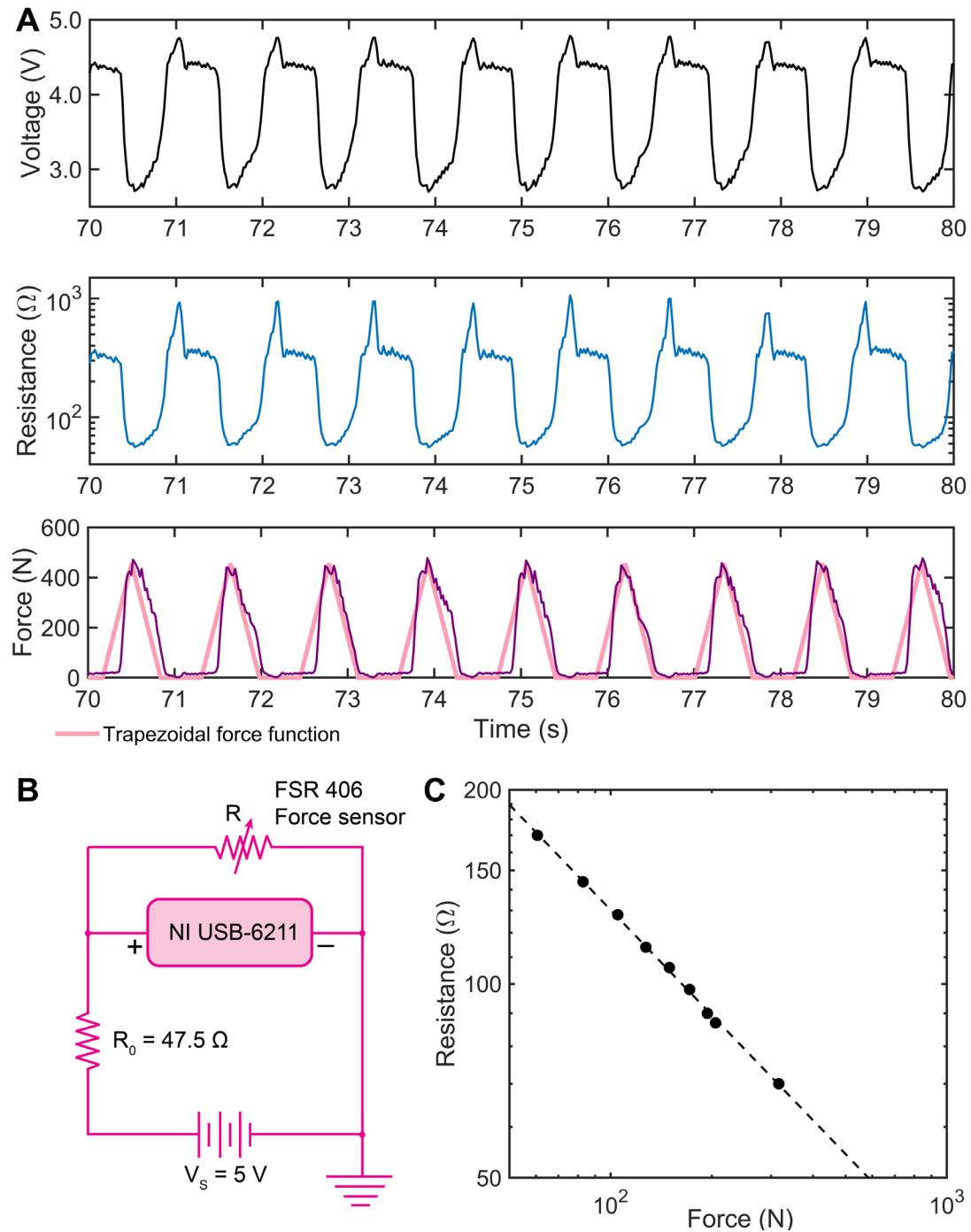
A crucial consideration for wearable devices is their durability under the rigors of everyday use. Our choice of structural materials—namely, nylon taffeta fabric and polyurethane foam—for building the EHD and ESB make these devices capable of withstanding rough handling and cyclic loading anticipated during routine service. Over the course of this study, our EHD and ESB prototypes have been subjected to several hours of cumulative tests involving five users of various bodyweights (52–87 kg) walking on a treadmill at different speeds (1–3 mph, or 1.6–4.8 km/h).

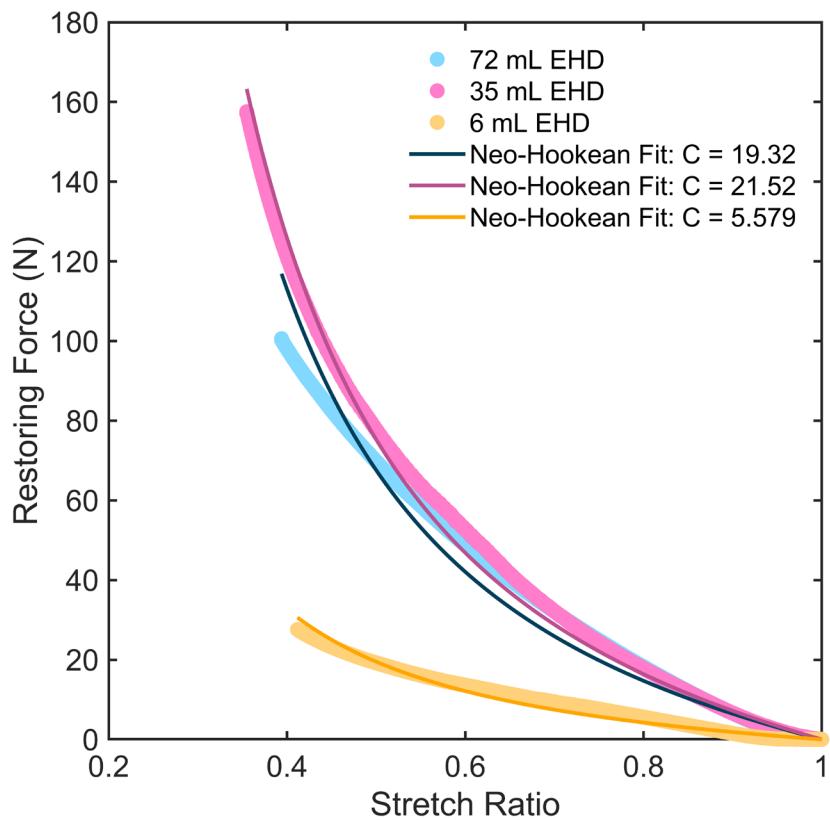

For instance, the 35 mL EHD has endured more than 200 minutes of cumulative walking tests, equivalent to a total distance of over 9 miles (14.5 km). Similarly, the ESB has undergone over 100 pressurization and depressurization cycles without structural failure or leaks. **To further verify the durability of our device, we built a mechanical test rig that simulates the repetitive compression of the EHD by the user's foot during walking, with which we subjected the 35 mL EHD to an additional 200,000 loading-unloading cycles at a simulated footfall frequency of 1 Hz.** Neither component sustained any discernible structural damage or performance deterioration because of these extensive tests, indicating a promising outlook for the long-term reliability of our devices. However, a future systematic investigation of their durability under accelerated wear conditions would be helpful in proving their suitability for prolonged use.

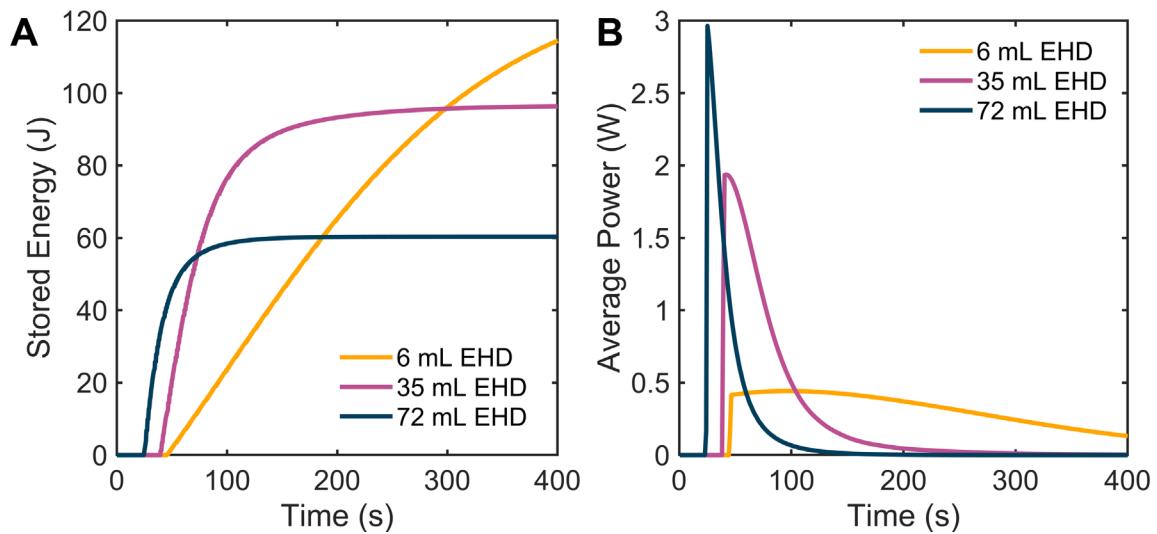
As a step in this direction, we tested the durability of our devices under machine washing; specifically, we subjected the 35 mL EHD to five wash cycles with laundry detergent (Tide Free and Gentle, Procter & Gamble) inside a household washing machine (model WF45R6100AW/US, Samsung Electronics Co. Ltd.) and tested its performance afterwards. The data are shown in Fig. S12 for a 52 kg user walking on the treadmill at 3 mph. Comparison of ESB pressure traces recorded before and after washing the EHD show no significant changes in system performance, neglecting slight fluctuations on account of natural variations in the user's gait.

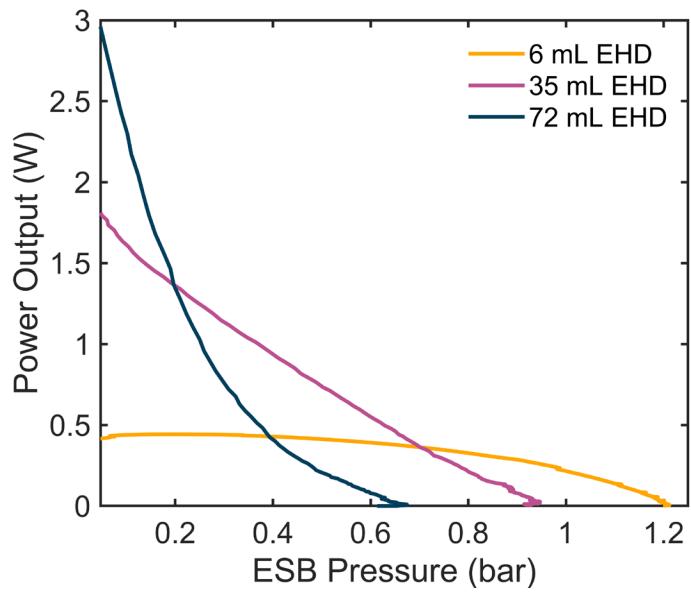

As with the EHD and ESB prototypes, the two assistive actuators—the arm-lift and the supernumerary arm—have both been subjected to multiple rounds of actuation over the course of this study; for instance, the arm-lift actuator underwent more than 150 pressurization events, with suspended loads of up to 15 lbs (6.8 kg), without incurring any discernible structural damage or loss of function (Fig. 5D). **We also tested the arm-lift afterwards for an additional 1000 actuation cycles using an automated pneumatic test rig, and again observed no damage or deterioration.** We did not undertake a more detailed characterization of our assistive actuators because they were intended mainly as practical demonstrations of the capabilities of our energy harvesting system—the EHD and ESB—which forms the core focus of our work. A variety of assistive actuators, similar in design and function to our arm-lift device and supernumerary arm, have been extensively reviewed and characterized in the extant literature; in principle, any of these actuators powered using compressed air may be coupled to our energy harvesting system with minimal or no modification.

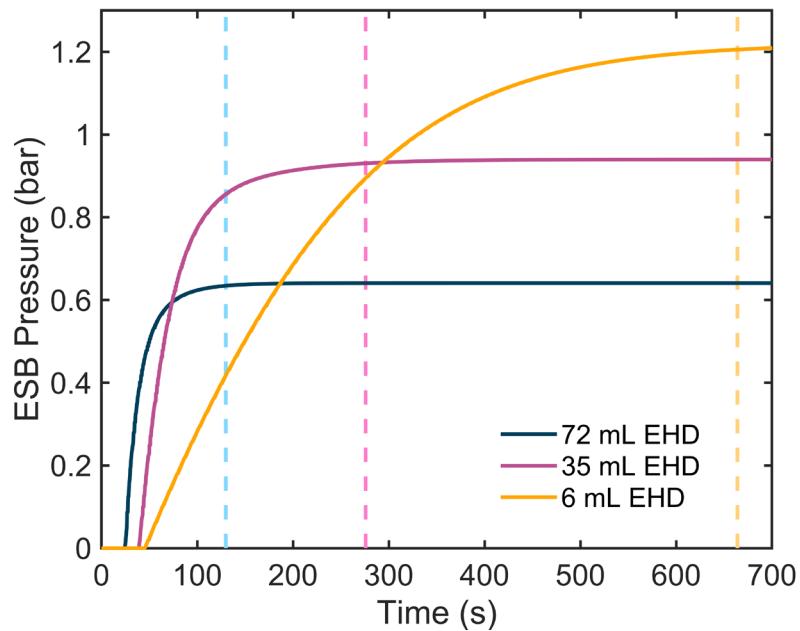

Fig. S1. Fabrication of the wearable ESB. (A) Schematic of textile layers cut using a laser cutter and arrangement for heat sealing. (B) Sewing pattern for addition of elastic textile, inelastic textile, and hook and loop fasteners. (C) Schematic of final wearable ESB after attachment of pneumatic lines. (D) Photograph of the completed prototype of the wearable ESB.

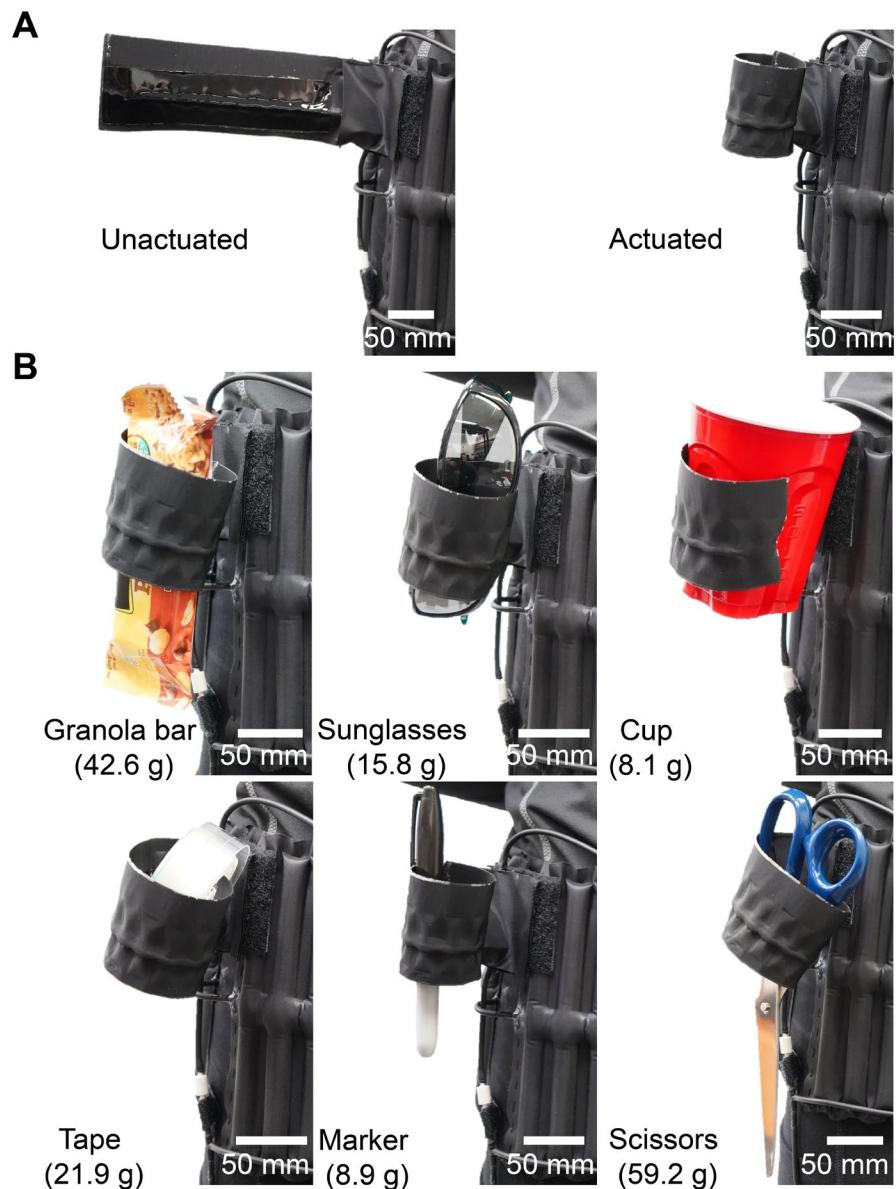

Fig. S2. Fabrication of the arm-lift assistive device. The schematic diagram on the left shows the textile layers of the arm-lift actuator and their arrangement for bonding. The sketch on the bottom right depicts the sewing pattern for attachment to the armpit of a compression shirt.

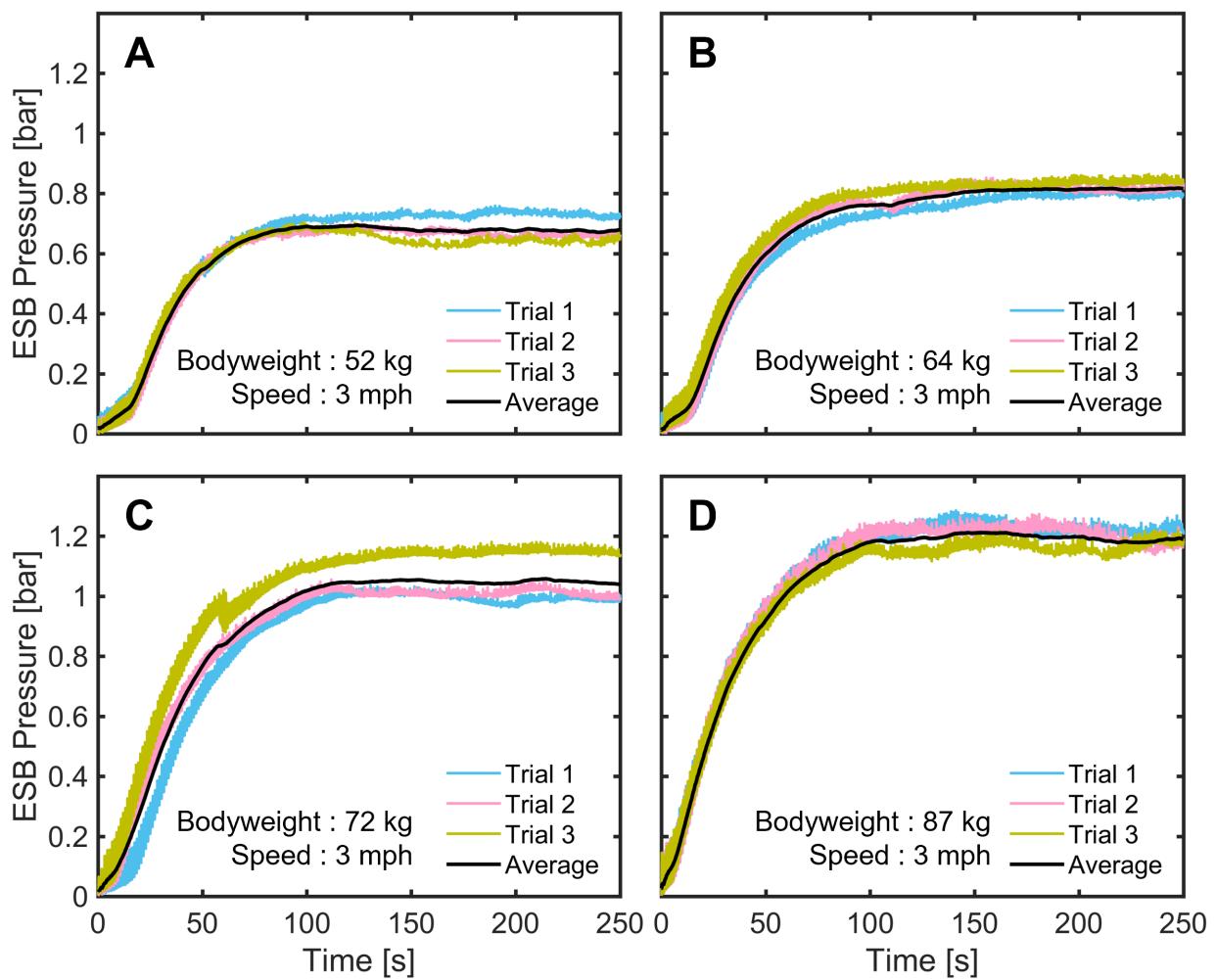

Fig. S3. Fabrication of the supernumerary robotic arm. Schematic diagrams of textile layers and their arrangement for bonding for (A) the “short” and (B) the “long” supernumerary robotic arms. (C) Sewing patterns for inelastic-textile-based structural additions and loop fastener for ESB mounting.


Fig. S4. Experimental measurements of the internal gas volume of insole EHDs as a function of compression. The solid curves denote polynomial fits to the experimental data of the form $V(x) = A - Bx - Cx^2$, where $V(x)$ is the volume in mL and x is the compression in mm. The fit coefficients are given by $A = 73.00$, $B = 2.581 \times 10^{-11}$, and $C = 0.05881$ for the 72 mL EHD; $A = 35.20$, $B = 1.774 \times 10^{-11}$, and $C = 0.04253$ for the 35 mL EHD; and $A = 6.199$, $B = 1.4600 \times 10^{-11}$, and $C = 0.02043$ for the 6 mL EHD.


Fig. S5. Experimental characterization of stepping force. (A) Stepping force measured as a function of time for the 35 mL EHD and for a walking speed of 3 mph. The measured output voltage from the sensor was converted first to resistance and then to force using a calibration curve. (B) Schematic of the voltage divider circuit used to monitor changes in sensor resistance. (C) Resistance-to-force calibration data for the FSR 406 obtained by applying a range of known weights and measuring sensor resistance.


Fig. S6. Experimental measurement of the restoring force from the foam inside the EHD pouch. Force measurements were acquired by compressing each of the three EHD prototypes on a universal testing machine (Instron 68SC-2).


Fig. S7. Performance of the textile-based energy harvesting system. (A) Stored energy in the ESB as a function of time with the user walking at 3 mph. (B) Power output from the EHD averaged over each stepping cycle.


Fig. S8. Variation in output power as a function of ESB pressure for the 6 mL, 35 mL, and 72 mL EHD prototypes. This plot indicates the steady power output that may be drawn from the system by a balanced load at a given pressure.

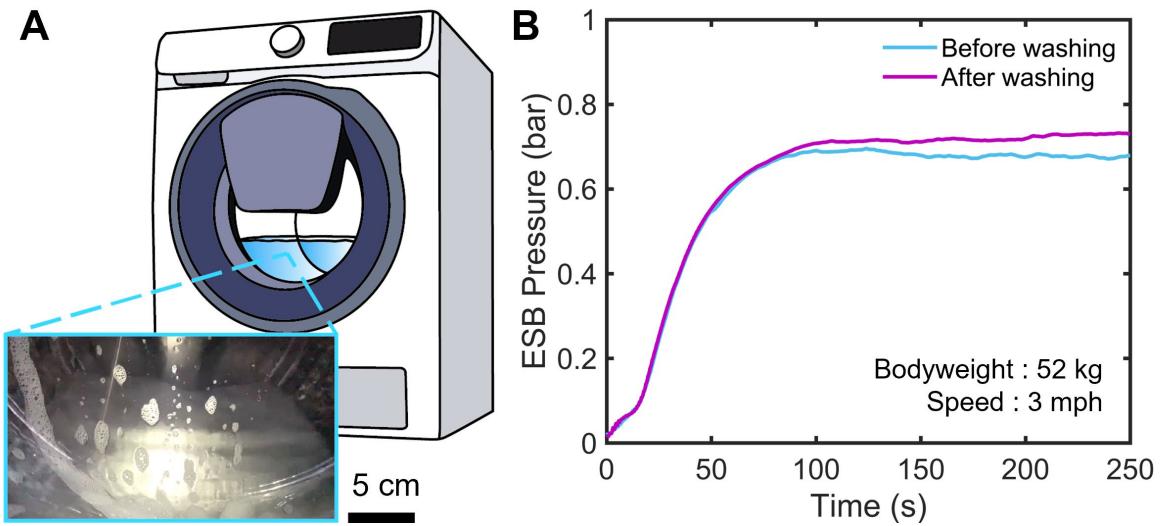

Fig. S9. Time to full ESB inflation. ESB pressure as a function of time based on the mechano-fluidic model for the 6 mL, 35 mL, and 72 mL EHD prototypes. The vertical dashed lines denote the point of “full inflation” of the ESB (when gas pressure reaches 99% of the final steady-state value), used in the computation of the conversion efficiency.

Fig. S10. Demonstration of the short supernumerary arm powered by the textile-based energy harvesting system. (A) The short arm in the unactuated and actuated configurations. (B) The actuated arm grasping objects of various shapes and weights: a granola bar (42.6 g), a pair of sunglasses (15.8 g), a cup (8.1 g), a tape roll (21.9 g), a marker pen (8.9 g), and a pair of scissors (59.2 g). The long version of the supernumerary arm is shown in the main text.

Fig. S11. Characterization of energy harvesting performance for multiple users. (A–D) ESB pressure as a function of time for the 35 mL EHD, and for users of different body weights, all walking at 3 mph. Included in each plot are the raw pressure data for 3 replicate tests, and the averaged pressure curve smoothed over two step cycles for each user.

Fig. S12. Durability of the textile EHD under machine washing. (A) The 35 mL EHD was machine washed five times with laundry detergent inside a front-load washing machine. (B) ESB pressure traces recorded both before and after washing (for a 52 kg user walking at 3 mph) showed no deterioration in pumping performance.

Table S1. Material cost for fabricating insole EHDs.

	6 mL	35 mL	72 mL
Heat-sealable textile (\$14.95/1.67 yd ²)	\$0.16	\$0.55	\$0.85
Non-stick textile (\$13.95/1.67 yd ²)	\$0.04	\$0.15	\$0.28
Polyurethane foam (\$27.78/pint)	\$0.13	\$0.79	\$1.61
Soft tubing (\$0.42/ft)	\$0.11	\$0.11	\$0.11
Total cost	\$0.44	\$1.60	\$2.85

Table S2. Material cost for fabricating the textile ESB.

Heat-sealable textile (\$14.95/1.67 yd ²)	\$2.14
Non-stick textile (\$13.95/1.67 yd ²)	\$0.58
Soft tubing (\$0.42/ft)	\$0.32
Total cost	\$3.04

Table S3. Material cost for fabricating the full textile-based energy harvesting system.

	6 mL	35 mL	72 mL
Heat-sealable textile (\$14.95/1.67 yd ²)	\$2.30	\$2.69	\$2.99
Non-stick textile (\$13.95/1.67 yd ²)	\$0.62	\$0.73	\$0.86
Polyurethane foam (\$27.78/pint)	\$0.13	\$0.79	\$1.61
Soft tubing (\$0.42/ft)	\$1.63	\$1.63	\$1.63
Check valves (\$6.94 each)	\$13.88	\$13.88	\$13.88
Total cost	\$18.56	\$19.72	\$20.97

Table S4. Material cost for fabricating the arm-lift assistive device.

Heat-sealable textile (\$14.95/1.67 yd ²)	\$1.21
Non-stick textile (\$13.95/1.67 yd ²)	\$0.86
Soft tubing (\$0.42/ft)	\$0.28
Long sleeve compression shirt	\$19.99
Sewing thread (\$2.99/400 yd)	\$0.01
Total cost	\$22.35

Table S5. Material cost for fabricating the short and long supernumerary arms.

	Short (18 cm)	Long (30 cm)
Heat-sealable textile (\$14.95/1.67 yd ²)	\$0.33	\$0.57
Non-stick textile (\$13.95/1.67 yd ²)	\$0.06	\$0.12
Soft tubing (\$0.42/ft)	\$0.42	\$0.42
Check valves (\$6.94 each)	\$6.94	\$6.94
Soft silicone rubber gel (\$32.21/pint)	\$0.13	\$0.13
Total cost	\$7.89	\$8.19

Table S6. Maximum average power output of various foot-strike energy harvesting devices.

Device Type	Author, Year (Reference)	Peak Power Output
Electromagnetic	Hayashida, 2000 (58)	59 mW at 1 Hz
	Duffy, 2004 (59)	8.5 mW at 1 Hz
	Rao, 2013 (60)	0.3 mW at 4 km/h
	Shen, 2013 (61)	1.8 mW (walking)
	Xie, 2015 (62)	1.39 W at 5 km/h
	Purwadi, 2015 (63)	1.1 W at 7.2 km/h
	Ylli, 2015 (64)	0.84 mW at 6 km/h
	Xie, 2016 (65)	0.35 W at 7.2 km/h
	Wu, 2017 (66)	2.3 mW (running)
	Li, 2021 (67)	68 mW at 6 km/h
Piezoelectric	Shenck, 2001 (68)	8.4 mW at 1.1 Hz
	Howells, 2009 (69)	90.3 mW at 1 step
	Rocha, 2010 (70)	0.013 mW at 1 step
	Zhao, 2014 (71)	1 mW at 1 Hz
	Meier, 2014 (72)	2 μ W (running)
	Jung, 2015 (73)	0.5 mW at 0.5 Hz
	Kalantarian, 2016 (74)	11.5 mW at 3250 steps
	Fan, 2017 (75)	0.35 mW at 8 km/h
	Turkmen, 2018 (76)	1.43 mW at 1 Hz
	Chaudhary, 2020 (77)	0.2 mW at 6 km/h
	Ramalingam, 2021 (78)	256 mW (walking)
	Wang, 2021 (79)	1.35 mW (theoretical)
	Jeong, 2021 (80)	52 μ W at 1 step
	Hou, 2013 (81)	1.4 mW (peak)
Triboelectric	Zhang, 2015 (82)	4.9 mW (peak)
	Huang, 2015 (83)	2.1 mW at 1.8 Hz
	Haque, 2016 (84)	0.25 mW at 0.9 Hz
	Haque, 2018 (85)	0.28 mW (walking)
	Yun, 2021 (86)	2.6 mW at 1 Hz
	Yuan, 2021 (87)	1.35 mW at 3 Hz
	Wang, 2021 (88)	36 μ W at 1.2 Hz
	Yao, 2021 (89)	213 μ W at 5 Hz
	Gao, 2022 (90)	0.99 mW at 5 Hz (peak)
Tribo-piezo hybrid	Lee, 2020 (91)	127 μ W (running)

Table S7. Characterization of the arm-lift assistive device. The table lists the angle of the upper arm with the vertical (top row) and the corresponding estimate for the lifting torque (bottom row) as a function of the input pressure to the arm-lift actuator and the weight suspended from the distal end of the arm.

		Weight suspended at the end of the arm (lbs.)						
		0	2.5	5	7.5	10	12.5	15
Actuator inflation pressure (bar)	0	9.31° 0.36 N m	5.34° 0.87 N m	0.57° 0.16 N m	1.71° 0.70 N m	3.20° 1.71 N m	2.79° 1.84 N m	4.67° 3.65 N m
	0.1	30.20° 1.11 N m	16.86° 2.70 N m	5.79° 1.66 N m	7.25° 2.97 N m	8.17° 4.36 N m	8.25° 5.42 N m	7.25° 5.66 N m
	0.2	38.91° 1.38 N m	23.78° 3.76 N m	14.92° 4.23 N m	11.57° 4.72 N m	11.66° 6.20 N m	11.08° 7.26 N m	10.91° 8.50 N m
	0.3	44.48° 1.54 N m	30.80° 4.77 N m	19.10° 5.38 N m	14.62° 5.94 N m	14.61° 7.74 N m	13.46° 8.79 N m	13.00° 10.10 N m
	0.4	47.87° 1.63 N m	33.91° 5.20 N m	23.06° 6.44 N m	17.71° 7.16 N m	16.82° 8.88 N m	15.88° 10.34 N m	15.33° 11.87 N m
	0.5	52.06° 1.73 N m	37.34° 5.65 N m	25.56° 7.09 N m	19.40° 7.82 N m	17.46° 9.20 N m	19.02° 12.31 N m	16.26° 12.57 N m
	0.6	55.88° 1.82 N m	39.78° 5.96 N m	29.47° 8.08 N m	20.17° 8.12 N m	22.89° 11.93 N m	19.42° 12.56 N m	17.84° 13.75 N m
	0.7	61.13° 1.92 N m	41.58° 6.18 N m	32.27° 8.77 N m	28.69° 11.31 N m	23.32° 12.14 N m	20.21° 13.05 N m	18.64° 14.35 N m
	0.8	62.89° 1.96 N m	43.75° 6.44 N m	34.92° 9.40 N m	29.29° 11.52 N m	24.84° 12.88 N m	22.71° 14.59 N m	20.38° 15.63 N m
	0.9	64.02° 1.98 N m	45.66° 6.66 N m	36.21° 9.71 N m	32.46° 12.64 N m	25.79° 13.34 N m	23.89° 15.30 N m	20.70° 15.87 N m
	1.0	65.05° 1.99 N m	46.18° 6.72 N m	36.36° 9.74 N m	32.74° 12.73 N m	26.08° 13.48 N m	24.17° 15.47 N m	21.54° 16.48 N m

Movie S1. Demonstration of the textile-based pneumatic energy harvesting system. The insole EHD harvests pneumatic energy as the user walks on a treadmill, which is stored in the wearable ESB.

Movie S2. Demonstration of the arm-lift assistive device. Pneumatic energy stored in the ESB (internal pressure of 1 bar) is utilized to actuate the arm-lift device, which abducts the shoulder joint of a mannequin arm.

Movie S3. Demonstration of the supernumerary robotic arm. Pneumatic energy stored in the ESB is utilized to operate the third arm device, enabling the user to pick up and move assorted objects on a table.

Data S1. (Separate file) Annotated MATLAB script implementing the mechano-fluidic model for the energy harvesting system.

Data S2. (Separate file) Vector design files used to laser pattern textile layers for fabricating the insole EHD, wearable ESB, and various assistive devices.